JP2010091202A - Refrigerant piping joint structure - Google Patents

Refrigerant piping joint structure Download PDF

Info

Publication number
JP2010091202A
JP2010091202A JP2008262413A JP2008262413A JP2010091202A JP 2010091202 A JP2010091202 A JP 2010091202A JP 2008262413 A JP2008262413 A JP 2008262413A JP 2008262413 A JP2008262413 A JP 2008262413A JP 2010091202 A JP2010091202 A JP 2010091202A
Authority
JP
Japan
Prior art keywords
refrigerant pipe
refrigerant
pipe
connection port
joint structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008262413A
Other languages
Japanese (ja)
Inventor
Sadayasu Inagaki
定保 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008262413A priority Critical patent/JP2010091202A/en
Publication of JP2010091202A publication Critical patent/JP2010091202A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joint structure for refrigerant piping of a heat exchanger etc. for an air conditioner capable of achieving highly reliable brazing performance without impairing productivity of the product. <P>SOLUTION: The refrigerant piping includes a first copper refrigerant pipe and a second copper refrigerant pipe communicated with in the axially orthogonal direction and connected to a lateral wall of the first refrigerant pipe. A connection port formed by swelling a portion of the lateral wall to form a tubular shape by pressure molding is provided on the lateral part of the first refrigerant pipe, and the second refrigerant pipe is connected and integrated with the first refrigerant pipe by fitting and brazing one end of the second refrigerant pipe to the tubular connection port. Due to this configuration, a jointing face of the connection port on the first refrigerant pipe side and the fitting part on the second refrigerant pipe side is formed by jointing the pipe inner face and outer face, so as to achieve a large jointing area even in thin copper pipes. Since a minute clearance can be secured on the jointing interface, this can prevent stress concentration and dropping of the second refrigerant pipe even if the surface of the first refrigerant pipe is corroded under corrosive environment. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、空気調和機用熱交換器その他の冷媒配管の接合構造に関するものである。   The present invention relates to a heat exchanger for an air conditioner and a joining structure of other refrigerant pipes.

一般に空気調和機に使用する熱交換器には、プレートフィンを用いたクロスフィンコイル式のもの(特許文献1,2参照)やメッシュフィンを用いたメッシュフィンタイプのもの(特許文献3参照)など種々のタイプのものが採用されているが、それらの何れのものにあっても、伝熱管とヘッダー部分には相互にサイズの異なる銅管を直交方向に接続する冷媒配管接合構造が採用されている。   Generally, heat exchangers used in air conditioners include cross fin coil type plates using plate fins (see Patent Documents 1 and 2), mesh fin type types using mesh fins (see Patent Document 3), and the like. Various types of pipes are adopted, but in any of them, the refrigerant pipe joint structure that connects copper pipes of different sizes in the orthogonal direction is adopted for the heat transfer pipe and the header part. Yes.

今、例えば図8に、従来のプレートフィンを用いたクロスフィンコイル式の空気調和機用熱交換器20とその冷媒分配管1部分の構成の一例を示している。   Now, for example, FIG. 8 shows an example of the configuration of a conventional cross fin coil type air conditioner heat exchanger 20 using plate fins and its refrigerant distribution pipe 1 part.

図8中、符号2,2・・・は上下方向に所定の間隔を置いて多段構造に配設された複数本の銅製の伝熱管であり、これら複数本の伝熱管2,2・・・には、管板21を介して多数枚のプレートフィン22,22・・・が所定のフィンピッチを有して直交する状態で嵌装されている。   In FIG. 8, reference numerals 2, 2... Are a plurality of copper heat transfer tubes arranged in a multi-stage structure with a predetermined interval in the vertical direction, and the plurality of heat transfer tubes 2, 2. Are fitted with a plurality of plate fins 22, 22... Perpendicular to each other with a predetermined fin pitch.

そして、同複数本の伝熱管2,2・・・の一端2a,2a・・・は、同じく銅製の冷媒分配管(ヘッダー)1に対して軸直交方向に連通して接続されている。   And the one ends 2a, 2a ... of the heat transfer tubes 2, 2 ... are connected to the refrigerant distribution pipe (header) 1 made of copper in the direction orthogonal to the axis.

冷媒分配管1は伝熱管2,2・・・よりも大径の銅管よりなり、例えば図9(a)〜(d)、図10に示すように、先ず大径の冷媒分配管1の側壁部1aに軸直交方向に貫通する伝熱管嵌合穴1bを開け(図9のa)、次に小径側伝熱管2の一端側嵌合部2aに縮管加工による大径のくびれ部2bを形成する(図9のb)。そして、その上で、伝熱管2の一端側嵌合部2aを伝熱管嵌合穴1b内に挿入し(図9のc)、その後、大径のくびれ部2bを固定箇所として両者をロウ材Rによってロウ付け(図9のdおよび図10)して接合固定する方法が一般に採用されている。   The refrigerant distribution pipe 1 is made of a copper pipe having a larger diameter than the heat transfer pipes 2, 2..., For example, as shown in FIGS. 9 (a) to 9 (d) and FIG. A heat transfer tube fitting hole 1b penetrating in the direction perpendicular to the axis is formed in the side wall 1a (a in FIG. 9), and then a large diameter constricted portion 2b is formed in one end side fitting portion 2a of the small diameter side heat transfer tube 2 by contraction processing. (B in FIG. 9). Then, the one end side fitting portion 2a of the heat transfer tube 2 is inserted into the heat transfer tube fitting hole 1b (c in FIG. 9), and then both of them are brazed using the large-diameter constricted portion 2b as a fixed portion. A method of joining and fixing by brazing with R (FIG. 9d and FIG. 10) is generally adopted.

特開平5−203285号公報JP-A-5-203285 特開平5−248785号公報JP-A-5-248785 特開平6−117728号公報JP-A-6-117728

通常の場合は、このような現状の方法での接合で特に問題が生じていないが、熱交換器20の設置環境中に銅に対して腐食性のある物質が含まれているような場合には、例えば図11の(a)から(b)に示すように、接合箇所が外れるケースが経験されている。   In normal cases, there is no particular problem in joining by such a current method, but in the case where a substance corrosive to copper is contained in the installation environment of the heat exchanger 20. For example, as shown in (a) to (b) of FIG.

この現象は、ロウ付け部近傍の銅管表面が腐食Xを受けるとロウ材Rと冷媒分配管1との界面に隙間が生じ、この部分に振動等の応力が集中して徐々に接合面の剥離が進行するためであると考えられる。   This phenomenon is caused when a copper pipe surface near the brazing portion is subjected to corrosion X, a gap is formed at the interface between the brazing material R and the refrigerant distribution pipe 1, and stress such as vibration is concentrated on this portion so that the joint surface gradually increases. This is considered to be due to the progress of peeling.

ロウ材Rの優れた接合強度や密着性、気密性を充分に得るためには、適切なクリアランスのある接合面に必要な量のロウ材Rが確実に浸透して行くのが好ましいのであるが、冷媒分配管1の側壁部1aに伝熱管2をロウ付けする際には、そのような条件を生産性を損なわない範囲で満足させるのは難しい。   In order to sufficiently obtain the excellent bonding strength, adhesion, and airtightness of the brazing material R, it is preferable that a necessary amount of the brazing material R penetrates into the joining surface having an appropriate clearance. When brazing the heat transfer tube 2 to the side wall portion 1a of the refrigerant distribution pipe 1, it is difficult to satisfy such conditions as long as productivity is not impaired.

また、図9(a)〜(d)の接合方法では、ロウ付けに適したクリアランスが確保されている面は、大径管の肉厚面と小径管の側面(表面)との接触面であるが、今後、銅使用量の削減のために、例えば図12の(a)から(b)に示すように、大径管の肉厚Wを減じることになれば、さらに接触面は小さくなり、接合強度が低下することが予想される。   Further, in the joining methods of FIGS. 9A to 9D, the surface where the clearance suitable for brazing is ensured is the contact surface between the thick surface of the large diameter tube and the side surface (surface) of the small diameter tube. However, in order to reduce the amount of copper used in the future, for example, as shown in FIGS. 12A to 12B, if the wall thickness W of the large-diameter pipe is reduced, the contact surface is further reduced. The bonding strength is expected to decrease.

さらに、地球温暖化防止のために実用化が急がれている炭酸ガス(CO2)を冷媒として使用することになれば、ロウ付け部の耐圧強度がさらに必要となり、現行の方法では接合部の信頼性(シール性)が低下するものと考えられる。 Furthermore, if carbon dioxide (CO 2 ), which is urgently used to prevent global warming, is used as a refrigerant, the pressure resistance of the brazing part is further required. It is considered that the reliability (sealability) of the resin deteriorates.

以上のような事情は、上述クロスフィンコイル式の熱交換器の場合だけでなく、例えば図13に示すようなメッシュフィン熱交換器10の上下両ヘッダー(冷媒分配管)1A,1Bとそれらの間を連結する伝熱管2,2・・・の場合にも同様であり、それらの間に上記図9(a)〜(d)、図10と同様の接合構造が採用されている限り、同様の問題が生じる。   The above situation is not limited to the case of the above-described cross fin coil heat exchanger, but also upper and lower headers (refrigerant distribution pipes) 1A and 1B of the mesh fin heat exchanger 10 as shown in FIG. The same applies to the case of the heat transfer tubes 2, 2... Connecting them, as long as the joint structures similar to those shown in FIGS. 9 (a) to 9 (d) and FIG. Problem arises.

なお、図13のメッシュフィン熱交換器10は、上下方向に離設した入口ヘッダー1Aと出口ヘッダー1B間を複数本の伝熱管2,2・・・で連結する一方、上記複数本の伝熱管2,2・・・部分にメッシュフィン14を設けてなる多パス型熱交換器であって、上記下方側入口ヘッダー1Aの開口部と上記上方側出口ヘッダー1Bの開口部とを所定の長さの気液分離筒11で連結するとともに該気液分離筒11の上部に気液2相冷媒の供給管12を接続し、該気液2相冷媒供給管12を当該気液分離筒11内でガス冷媒と液冷媒との上下2層に分離し、ガス冷媒を上記出口ヘッダー1Bを介してバイパスされるととに液冷媒のみを上記入口ヘッダー1Aを介して上記伝熱管2,2・・・に供給分配するようにし、気液2相状態で流入する冷媒を各パスに均等に分配することによって熱交換性能が十分に発揮されるようにしたものである。   The mesh fin heat exchanger 10 shown in FIG. 13 connects the inlet header 1A and the outlet header 1B separated in the vertical direction with a plurality of heat transfer tubes 2, 2,. 2 is a multi-pass heat exchanger in which mesh fins 14 are provided in the portion, and the opening of the lower inlet header 1A and the opening of the upper outlet header 1B have a predetermined length. And a gas-liquid two-phase refrigerant supply pipe 12 is connected to the upper portion of the gas-liquid separation cylinder 11, and the gas-liquid two-phase refrigerant supply pipe 12 is connected within the gas-liquid separation cylinder 11. When the gas refrigerant and the liquid refrigerant are separated into two upper and lower layers, and the gas refrigerant is bypassed through the outlet header 1B, only the liquid refrigerant is passed through the inlet header 1A and the heat transfer tubes 2, 2,. Refrigerant that flows in a gas-liquid two-phase state. Is obtained by the heat exchange performance is sufficiently exhibited by equally distributed to each path.

符号13は、熱交換終了後のガス冷媒の出口配管である。   Reference numeral 13 denotes an outlet pipe for the gas refrigerant after completion of heat exchange.

また、同様の問題は、このような空気調和機用熱交換器の伝熱管とヘッダー部だけでなく、例えば複数の空気調和機用室内機ユニットに共通に冷媒を供給する主配管と同主配管から個々の室内機ユニットに対して冷媒を分配する分岐管との間においても生じ得る。   In addition, the same problem is caused not only by the heat transfer tubes and header portions of such an air conditioner heat exchanger, but also, for example, main piping and main piping for supplying refrigerant in common to a plurality of air conditioner indoor unit units. To a branch pipe that distributes the refrigerant to the individual indoor unit.

本願発明は、このような課題を解決するためになされたもので、製品の生産性を損なうことなく、信頼性の高いロー付け性能を実現し得る冷媒配管接合構造を提供することを目的とするものである。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a refrigerant pipe joint structure that can realize highly reliable brazing performance without impairing product productivity. Is.

本願発明は、上述の問題を解決するために、次のような有効な課題解決手段を備えて構成されている。   In order to solve the above-described problems, the present invention is configured with the following effective problem solving means.

(1) 請求項1の発明の課題解決手段
この発明の課題解決手段は、銅製の第1の冷媒管と、該第1の冷媒管の側壁部に対して軸直交方向に連通して接続される銅製の第2の冷媒管とを備えてなる冷媒配管であって、上記第1の冷媒管の側部には、加圧成形により側壁部の一部を管状に膨出させて形成した接続口部が設けられており、該管状の接続口部に対して上記第2の冷媒管の一端を嵌合してロー付けすることにより、上記第1の冷媒管に対して上記第2の冷媒管が接続一体化されていることを特徴としている。
(1) Problem Solving Means of the Invention of Claim 1 The problem solving means of the present invention is a first refrigerant pipe made of copper and connected to the side wall portion of the first refrigerant pipe in a direction perpendicular to the axis. A second refrigerant pipe made of copper, and a connection formed by expanding a part of the side wall into a tubular shape by pressure molding on the side of the first refrigerant pipe An opening is provided, and one end of the second refrigerant pipe is fitted and brazed to the tubular connection opening, whereby the second refrigerant is applied to the first refrigerant pipe. The tube is connected and integrated.

このような構成によると、第1の冷媒管側接続口部と第2の冷媒管側嵌合部との接合面が管内面と外面との接合になるため、薄肉銅管になっても相互の接合面積を広く取ることができる。   According to such a configuration, since the joint surface between the first refrigerant pipe side connection port portion and the second refrigerant pipe side fitting portion is the joint between the pipe inner surface and the outer surface, the thin copper pipes are mutually connected. The bonding area can be increased.

また、相互の接合界面に微小なクリアランスを確保できるために、腐食性環境下において第1の冷媒管の表面が腐食しても、従来のように応力集中を起こして、第2の冷媒管が脱落するようなことがない。   In addition, since a minute clearance can be secured at the joint interface, even if the surface of the first refrigerant pipe corrodes in a corrosive environment, stress concentration occurs as in the conventional case, and the second refrigerant pipe There is no such thing as dropping out.

(2) 請求項2の発明の課題解決手段
この発明の課題解決手段は、上記請求項1の発明の課題解決手段の構成において、加圧成形時には、成形部を所定の加熱手段により加熱するようにしたことを特徴としている。
(2) The problem solving means of the invention of claim 2 The problem solving means of the invention is such that, in the configuration of the problem solving means of the invention of claim 1, the molded part is heated by a predetermined heating means during pressure molding. It is characterized by that.

このようにすると、膨出成形される第1の冷媒管側壁部の硬度が低下して延性が高くなるので、膨出成形加工が容易になり、精度の高い膨出成形加工が実現される。   If it does in this way, since the hardness of the 1st refrigerant | coolant tube side wall part which carries out an expansion molding will fall and ductility will become high, an expansion molding process will become easy and a highly accurate expansion molding process will be implement | achieved.

(3) 請求項3の発明の課題解決手段
この発明の課題解決手段は、上記請求項1又は2の発明の課題解決手段の構成において、第2の冷媒管の第1の冷媒管側接続口部との嵌合部は、第1の冷媒管の接続口部を内側に嵌合するための拡管加工が施されていることを特徴としている。
(3) The problem solving means of the invention of claim 3 The problem solving means of the invention is the first refrigerant pipe side connection port of the second refrigerant pipe in the configuration of the problem solving means of the invention of claim 1 or 2. The fitting part with the part is characterized by being subjected to a pipe expansion process for fitting the connection port part of the first refrigerant pipe inside.

このように、第2の冷媒管は、その接続すべき一端側を上記嵌合すべき第1の冷媒管の接続口部の外径に対応した内径となるように拡管加工(フレア加工)し、同拡管部を上記第1の冷媒管の接続口部に嵌合し、同嵌合面の界面にロウ材を流し込んでロー付けすることによって接続一体化するようにすると、相互の管径の相違に関係なく、上記請求項1又は2の発明同様の高いシール性を実現することができる。   In this way, the second refrigerant pipe is expanded (flared) so that one end side to be connected has an inner diameter corresponding to the outer diameter of the connection port of the first refrigerant pipe to be fitted. When the pipe expansion part is fitted into the connection port part of the first refrigerant pipe and the brazing material is poured into the interface of the fitting surface and brazed, the mutual pipe diameters are increased. Regardless of the difference, high sealing performance similar to that of the first or second aspect of the invention can be realized.

(4) 請求項4の発明の課題解決手段
この発明の課題解決手段は、上記請求項1又は2の発明の課題解決手段の構成において、第1の冷媒管の第2の冷媒管との接続口部は、第2の冷媒管を内側に嵌合するための拡管加工が施されていることを特徴としている。
(4) Problem solving means of the invention of claim 4 The problem solving means of the invention is the connection of the first refrigerant pipe to the second refrigerant pipe in the configuration of the problem solving means of the invention of claim 1 or 2. The mouth portion is characterized by being subjected to tube expansion processing for fitting the second refrigerant tube inside.

このように、第1の冷媒管の第2の冷媒管を接続する接続口部を、第2の冷媒管の外径に対応した内径となるように拡管加工(フレア加工)し、同拡管部に対して上記第2の冷媒管一端を嵌合し、該嵌合面の界面にロウ材を流し込んでロー付けすることによって接続一体化するようにしても、やはり相互の管径の相違に関係なく、上記請求項1又は2の発明同様の高いシール性を実現することができる。   In this way, the connecting port portion for connecting the second refrigerant pipe of the first refrigerant pipe is expanded (flared) so as to have an inner diameter corresponding to the outer diameter of the second refrigerant pipe. Even if one end of the second refrigerant pipe is fitted to the interface and the connection is integrated by pouring the brazing material into the interface of the fitting surface and brazing, it is still related to the difference in the pipe diameters. However, the same high sealing performance as that of the first or second aspect of the invention can be realized.

このような構成によると、第1の冷媒管側接続口部と第2の冷媒管との相互の接合面が管内面と外面との接合になるため、薄肉銅管になっても相互の接合面積を広く取ることができる。   According to such a configuration, the mutual joint surface between the first refrigerant pipe side connection port and the second refrigerant pipe becomes the joint between the pipe inner surface and the outer surface, so that even if a thin-walled copper pipe is used, the mutual joint is performed. A large area can be taken.

また、同相互の接合界面に微小なクリアランスを確保できるために、腐食性環境下において第1の冷媒管表面が腐食しても、従来のように応力集中を起こして、第2の冷媒管が脱落することがない。   In addition, since a minute clearance can be secured at the joint interface, even if the surface of the first refrigerant pipe corrodes in a corrosive environment, stress concentration occurs as in the conventional case, and the second refrigerant pipe It will not drop out.

(5) 請求項5の発明の課題解決手段
この発明の課題解決手段は、上記請求項1,2.3又は4の発明の課題解決手段の構成において、第1の冷媒管が大径管で、第2の冷媒管が小径管であることを特徴としている。
(5) Problem solving means of the invention of claim 5 The problem solving means of the invention is the structure of the problem solving means of the invention of claim 1, 2.3 or 4, wherein the first refrigerant pipe is a large-diameter pipe. The second refrigerant pipe is a small diameter pipe.

このような構成によると、大径の第1の冷媒管側接続口部と小径の第2の冷媒管側嵌合部との接合面が管内面と外面との接合になるため、薄肉銅管になっても接合面積を広く取ることができる。   According to such a configuration, since the joint surface between the large-diameter first refrigerant tube side connection port and the small-diameter second refrigerant tube-side fitting portion is a joint between the tube inner surface and the outer surface, the thin copper tube Even if it becomes, it can take a large joining area.

また、接合界面に微小なクリアランスを確保できるために、腐食性環境下において第1の冷媒管の表面が腐食しても、従来のような応力集中を起こして、第2の冷媒管が脱落するようなことがない。   In addition, since a minute clearance can be secured at the joining interface, even if the surface of the first refrigerant pipe corrodes in a corrosive environment, stress concentration as in the conventional case occurs, and the second refrigerant pipe falls off. There is no such thing.

(6) 請求項6の発明の課題解決手段
この発明の課題解決手段は、上記請求項1,2,3,4又は5の発明の課題解決手段の構成において、第1の冷媒管が空気調和機用熱交換器の冷媒分配管であり、第2の冷媒管が同空気調和機用熱交換器の伝熱管であることを特徴としている。
(6) Problem solving means of the invention of claim 6 The problem solving means of the invention is the structure of the problem solving means of the invention of claim 1, 2, 3, 4 or 5, wherein the first refrigerant pipe is air-conditioned. The second refrigerant pipe is a heat transfer pipe of the air conditioner heat exchanger.

このような構成の場合、大径の空気調和機用冷媒分配管に対して、小径の伝熱管を接続するに際して、上述の請求項1,2,3,4又は5の発明の課題解決手段の作用を得ることができる。   In such a configuration, when connecting a small-diameter heat transfer pipe to a large-diameter refrigerant distribution pipe for an air conditioner, the problem-solving means of the invention of the above-mentioned claim 1, 2, 3, 4 or 5 The effect can be obtained.

(7) 請求項7の発明の課題解決手段
この発明の課題解決手段は、上記請求項1,2,3,4又は5の発明の課題解決手段の構成において、第1の冷媒管が複数の空気調和機用室内機ユニットに共通に冷媒を供給する主配管であり、第2の冷媒管が同主配管から個々の室内機ユニットに対して冷媒を分配する分岐管であることを特徴としている。
(7) Problem solving means of the invention of claim 7 The problem solving means of the invention is the structure of the problem solving means of the invention of claim 1, 2, 3, 4 or 5, wherein a plurality of first refrigerant pipes are provided. It is a main pipe that supplies refrigerant in common to the indoor unit for an air conditioner, and the second refrigerant pipe is a branch pipe that distributes the refrigerant from the main pipe to each indoor unit. .

このような構成の場合、大径の空気調和機用室内機ユニットに共通に冷媒を供給する主配管に対して、同主配管から個々の室内機ユニットに対して冷媒を分配する小径の分岐管を接続するに際して、上述の請求項1,2,3,4又は5の発明の課題解決手段の作用を得ることができる。   In such a configuration, a small-diameter branch pipe that distributes the refrigerant from the main pipe to the individual indoor unit units with respect to the main pipe that supplies the refrigerant in common to the large-diameter indoor unit for the air conditioner. When connecting the two, it is possible to obtain the function of the problem solving means of the first, second, third, fourth or fifth invention.

以上の結果、本願発明の冷媒配管構造によれば、十分に気密性や接合強度が高く、また振動に対しても強い、微小なクリアランスをもったロー付け強度、耐久性の高い冷媒配管構造の実現が可能となり、CO2冷媒などにも適用可能な耐久性、信頼性の高い空気調和機を提供することができる。 As a result, according to the refrigerant pipe structure of the present invention, the refrigerant pipe structure having sufficiently high airtightness and bonding strength, strong against vibration, brazing strength with minute clearance, and high durability. This makes it possible to provide a highly durable and reliable air conditioner that can be applied to CO 2 refrigerant and the like.

以下、本願発明の最良の実施の形態について、添付の図面を参照しながら詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.

図1〜図6は、本願発明の最良の実施の形態に係る銅製冷媒配管の接合構造および接合方法の構成を示している。   FIGS. 1-6 has shown the structure of the joining structure and joining method of copper refrigerant | coolant piping which concern on best embodiment of this invention.

(本実施の形態における冷媒配管の接合構造および接合方法)
先ず図1は、本実施の形態における銅製冷媒管の接合構造および接合方法を採用して構成したクロスフィンコイル型空気調和機用熱交換器の構成を示している。
(Joint structure and joining method of refrigerant piping in the present embodiment)
First, FIG. 1 shows a configuration of a heat exchanger for a cross fin coil type air conditioner configured by adopting a copper refrigerant pipe joining structure and joining method according to the present embodiment.

図1中、符号1は大径の銅管よりなる冷媒分配管、2は同大径の銅管よりなる冷媒分配管1に対し、同大径の冷媒分配管1の側部に形成されている筒状の接続口部3を介して直交方向に接続一体化される小径の銅管よりなる伝熱管である。   In FIG. 1, reference numeral 1 is a refrigerant distribution pipe made of a large-diameter copper pipe, and 2 is formed on the side of the refrigerant distribution pipe 1 having the same large diameter with respect to the refrigerant distribution pipe 1 made of the same large-diameter copper pipe. This is a heat transfer tube made of a small-diameter copper tube that is connected and integrated in the orthogonal direction via the cylindrical connection port 3.

大径の銅管である冷媒分配管1の接続口部3は、後述するように同大径の銅管である冷媒分配管1の側壁部1aを所定の成形型内で高圧気体又は高圧液体により加圧して塑性変形され、その先端部の閉塞面を切り落すことにより、先端部が開口した上記伝熱管2の径に対した所定の径の管体に構成されている。   As will be described later, the connection port 3 of the refrigerant distribution pipe 1 that is a large-diameter copper pipe is connected to the side wall portion 1a of the refrigerant distribution pipe 1 that is the same large-diameter copper pipe within a predetermined molding die. By being pressed and plastically deformed and cutting off the closed surface at the tip, the tube is configured to have a predetermined diameter with respect to the diameter of the heat transfer tube 2 with the tip opened.

小径の銅管である伝熱管2は、その接合すべき一端側を上記嵌合すべき接続口部3の外径に対応した内径に拡管(フレア加工)し、同拡管部2aを上記大径の銅管である冷媒分配管1側の接続口部3に嵌合し、同嵌合面の界面にロウを流し込んでロー付けすることによって接続一体化されている。   The heat transfer tube 2, which is a small-diameter copper tube, is expanded (flared) at one end side to be joined to an inner diameter corresponding to the outer diameter of the connection port portion 3 to be fitted, and the expanded tube portion 2 a is expanded to the large diameter. Are connected to the connection port 3 on the refrigerant distribution pipe 1 side, which is a copper pipe, and is connected and integrated by pouring wax into the interface of the fitting surface and brazing.

このような構成によると、接合面が管内面と外面の接合になるため、薄肉銅管になっても接合面積を広く取ることができる。   According to such a configuration, since the joint surface is a joint between the inner surface of the tube and the outer surface, a large joint area can be obtained even when the thin copper tube is formed.

また、接合界面に微小なクリアランスを確保できるために、腐食性環境において大径の銅管である冷媒分配管1の表面が腐食しても応力集中を起こして、小径の銅管である伝熱管2が脱落するようなことがない。   Further, since a minute clearance can be secured at the joining interface, stress concentration occurs even if the surface of the refrigerant distribution pipe 1 which is a large-diameter copper pipe corrodes in a corrosive environment, and a heat transfer pipe which is a small-diameter copper pipe. 2 will not fall off.

(冷媒分配管と伝熱管相互の接合方法)
次に図2〜図6は、上記冷媒分配管1と伝熱管2相互の接合構造を実現する冷媒分配管と伝熱管相互の接合方法を示している。
(Joint method between refrigerant distribution pipe and heat transfer pipe)
Next, FIGS. 2 to 6 show a method for joining the refrigerant distribution pipe and the heat transfer pipe to realize the joint structure between the refrigerant distribution pipe 1 and the heat transfer pipe 2.

(1) 大径の銅管である冷媒分配管1に接続口部3を形成する工程・・・図3の(a)〜(b)
同接合方法では、先ず図3の(a)に示すように、大径の銅管である冷媒分配管1を緊密に収納する収納室5aと同収納された冷媒分配管1の側部にあって、同冷媒分配管1の側壁部1aを管状に膨出変形される成形空間5bとを備えた金属製の高圧成形金型5を準備し、この高圧成形金型5内に大径の冷媒分配管1を収納セットして蓋6を閉め、例えば上部側高圧液供給口7から冷媒分配管1の内側に高圧の液体を供給し、収納された冷媒分配管1の側壁部1aを上記成形空間5b内に膨出変形させる。
(1) Step of forming the connection port 3 in the refrigerant distribution pipe 1 which is a large-diameter copper pipe: (a) to (b) in FIG.
In this joining method, first, as shown in FIG. 3 (a), the refrigerant distribution pipe 1 which is a large-diameter copper pipe is placed in a side portion of the refrigerant distribution pipe 1 which is stored in the storage chamber 5a in which the refrigerant distribution pipe 1 is tightly stored. Then, a metal high-pressure molding die 5 provided with a molding space 5 b that bulges and deforms into a tubular shape at the side wall 1 a of the refrigerant distribution pipe 1 is prepared, and a large-diameter refrigerant is contained in the high-pressure molding die 5. The distribution pipe 1 is stored and set, and the lid 6 is closed. For example, a high-pressure liquid is supplied to the inside of the refrigerant distribution pipe 1 from the upper side high-pressure liquid supply port 7, and the side wall 1 a of the stored refrigerant distribution pipe 1 is formed as described above. The bulge is deformed into the space 5b.

この時、上記高圧成形金型5の成形空間5bの外周部分に金型加熱用の電気ヒータ8を設け、上記高圧成形空間5bおよび冷媒分配管1の側壁1a部分を高温状態に加熱する。   At this time, an electric heater 8 for heating the mold is provided in the outer peripheral portion of the molding space 5b of the high-pressure molding die 5, and the high-pressure molding space 5b and the side wall 1a portion of the refrigerant distribution pipe 1 are heated to a high temperature state.

このようにすると、同側壁部1a部分が焼きなまされて硬度が低下し、延性が高くなるので、上記高圧成形空間5b内の凹溝面に沿った塑性変形が生じやすくなり、比較的に低圧力での精度の高い塑性変形が可能となる。   In this case, the side wall portion 1a is annealed to reduce the hardness and increase the ductility, so that plastic deformation along the concave groove surface in the high-pressure forming space 5b is likely to occur, and relatively Highly accurate plastic deformation at low pressure is possible.

(2) 塑性変形した冷媒分配管1の取り出しと接続口部3の開口加工・・・図4の(a)〜(c)
以上の高圧成形金型5による接続口部3の成形が完了すると、同接続口部3が形成された図3(a)のような冷媒分配管1が取り出される。
(2) Removal of plastically deformed refrigerant distribution pipe 1 and opening processing of connection port portion 3 (a) to (c) of FIG.
When the molding of the connection port portion 3 by the high pressure molding die 5 is completed, the refrigerant distribution pipe 1 as shown in FIG. 3A in which the connection port portion 3 is formed is taken out.

そして、続いて同冷媒分配管1の接続口部3先端の閉塞面部3aが、図4の(b)に示すように切り落されて先端が開口される。   Then, the closed surface portion 3a at the tip of the connection port portion 3 of the refrigerant distribution pipe 1 is cut off as shown in FIG.

この結果、図4(c)に示すような小径の伝熱管2との接続が可能となった接続口部3を備えた大径の冷媒分配管1が完成される。   As a result, the large-diameter refrigerant distribution pipe 1 including the connection port portion 3 that can be connected to the small-diameter heat transfer pipe 2 as shown in FIG. 4C is completed.

(3) 伝熱管2一端の拡管加工
一方、上記(2)の接続口部3形成加工に対応して、同図4(c)の接続口部3の外径に対応して適切に嵌合せしめられ、相互の嵌合面間にロー材を流して適切にロー付け加工がなされるように、図5(a)に示す小径側伝熱管2の冷媒分配管1側接続口部3への嵌合端部2aが図5(b)のように拡管加工(フレア加工)される。
(3) Tube expansion processing of one end of the heat transfer tube 2 On the other hand, corresponding to the processing of forming the connection port 3 in (2) above, the fitting is appropriately performed corresponding to the outer diameter of the connection port 3 in FIG. The small diameter side heat transfer tube 2 shown in FIG. 5 (a) is connected to the refrigerant distribution pipe 1 side connection port 3 so that the brazing material can be appropriately flowed between the mating surfaces. The fitting end 2a is expanded (flared) as shown in FIG.

(4) 最終的なロー付け加工
以上の(1)〜(3)のようにして、大径側の冷媒分配管1に軸直交方向の接続口部3が形成され、それに対応して小径の伝熱管2の接続すべき嵌合端部2aの拡管加工が施されると、続いて両者が同軸上に突き合わされ、その後図6のように矢印方向に嵌合された後に、最終的に相互の嵌合面F部にロー材が流されて、図2のように接合固定される。
(4) Final brazing process As described above in (1) to (3), the connecting port portion 3 in the direction perpendicular to the axis is formed in the refrigerant distribution pipe 1 on the large diameter side, and the small diameter correspondingly is formed. When the pipe end of the fitting end 2a to be connected to the heat transfer tube 2 is applied, the two are subsequently abutted on the same axis and then fitted in the direction of the arrow as shown in FIG. The brazing material is poured into the fitting surface F part of FIG. 2 and joined and fixed as shown in FIG.

このようにして、図1のような空気調和機用のクロスフィンコイル形の熱交換器20が形成される(図1において、接合部以外の構成は前述した図8のものと同じ)。   In this way, a cross fin coil heat exchanger 20 for an air conditioner as shown in FIG. 1 is formed (in FIG. 1, the configuration other than the joint is the same as that of FIG. 8 described above).

このような構成によると、冷媒分配管1側接続口部3と伝熱管2側嵌合部との接合面が管内面と外面との接合になるため、薄肉銅管になっても相互の接合面積を可及的に広く取ることができる。   According to such a configuration, since the joint surface between the refrigerant distribution pipe 1 side connection port 3 and the heat transfer tube 2 side fitting portion becomes the joint between the pipe inner surface and the outer surface, mutual joining even if it becomes a thin copper pipe The area can be taken as wide as possible.

また、相互の接合界面に微小なクリアランスを確保できるために、腐食性環境下において冷媒分配管1の表面が腐食しても、従来のように応力集中を起こして、伝熱管2が脱落するようなことがなくなる。   In addition, since a minute clearance can be secured at the joint interface, even if the surface of the refrigerant distribution pipe 1 corrodes in a corrosive environment, stress concentration occurs as in the conventional case so that the heat transfer tube 2 falls off. There is nothing wrong.

また、伝熱管2は、その接続すべき一端2a側を上記嵌合すべき冷媒分配管1の接続口部3の外径に対応した内径となるように拡管加工(フレア加工)し、同拡管部を上記冷媒分配管1の接続口部3に嵌合し、同嵌合面の界面Fにロウ材を流し込んでロー付けすることによって接続一体化するようにしているので、相互の管径の相違に関係なく、高いシール性を実現することができる。   The heat transfer tube 2 is expanded (flared) so that the one end 2a side to be connected has an inner diameter corresponding to the outer diameter of the connection port 3 of the refrigerant distribution pipe 1 to be fitted. Are connected to the connection port portion 3 of the refrigerant distribution pipe 1 and connected and integrated by pouring and brazing a brazing material into the interface F of the fitting surface. Regardless of the difference, high sealing performance can be realized.

なお、この場合、上記とは逆に冷媒分配管1の伝熱管2を接続する接続口部3の方を、伝熱管2の外径に対応した内径となるように拡管加工(フレア加工)し、同拡管部に対して伝熱管2の一端を嵌合し、該嵌合面の界面Fにロウ材を流し込んでロー付けすることによって接続一体化するようにしても良く、その場合にも相互の管径の相違に関係なく、上記同様の高いシール性を実現することができる。   In this case, in contrast to the above, the connecting port portion 3 for connecting the heat transfer pipe 2 of the refrigerant distribution pipe 1 is expanded (flared) so as to have an inner diameter corresponding to the outer diameter of the heat transfer pipe 2. , One end of the heat transfer tube 2 may be fitted to the expanded portion, and the connection may be integrated by pouring a brazing material into the interface F of the fitting surface and brazing. Regardless of the difference in the tube diameter, the same high sealing performance as described above can be realized.

(その他の実施の形態)
(1) メッシュフィン型の空気調和機用熱交換器の場合
上記実施の形態の冷媒分配管1と伝熱管2との接合構造は、例えば図7に示すように、既に述べた図13に示すメッシュフィン型の空気調和機用熱交換器の上下ヘッダー(冷媒分配管)1A,1Bと伝熱管2,2・・・との接続部の接合構造にも全く同様に適用することができる。
(Other embodiments)
(1) In the case of a mesh fin type air conditioner heat exchanger The joining structure of the refrigerant distribution pipe 1 and the heat transfer pipe 2 of the above embodiment is shown in FIG. 13 already described, for example, as shown in FIG. The present invention can also be applied to the joint structure of the connection portion between the upper and lower headers (refrigerant distribution pipes) 1A, 1B and the heat transfer pipes 2, 2... Of the heat exchanger for a mesh fin type air conditioner.

(2) 複数の空気調和機用室内機ユニットに対して共通に冷媒を供給する主配管と同主配管から個々の室内機ユニットに対して冷媒を分配する分岐管との接合構造の場合
本願発明の冷媒配管の接合構造は、上述のような熱交換器の場合だけでなく、空気調和機用室内機ユニットに共通に冷媒を供給する大径の主配管に対して、同主配管から個々の室内機ユニットに対して冷媒を分配する小径の分岐管を接続する場合にも、全く同様に適用することができ、同様の作用を得ることができる。
(2) In the case of a joining structure of a main pipe that supplies refrigerant to a plurality of indoor unit units for an air conditioner and a branch pipe that distributes refrigerant from the main pipe to individual indoor unit units The refrigerant pipe joining structure is not limited to the case of the heat exchanger as described above, but with respect to the large-diameter main pipe that supplies the refrigerant in common to the indoor unit for the air conditioner, Even when a small-diameter branch pipe that distributes the refrigerant is connected to the indoor unit, the present invention can be applied in exactly the same manner, and the same action can be obtained.

本願発明の冷媒配管接合構造を採用して構成した最良の実施の形態に係るクロスフィンコイル型空気調和機用熱交換器の構成を示す一部切欠正面図である。It is a partially notched front view showing the configuration of the heat exchanger for a cross fin coil type air conditioner according to the best embodiment configured by adopting the refrigerant pipe joint structure of the present invention. 同熱交換器の要部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the principal part of the same heat exchanger. 同熱交換器の冷媒分配管の接続口部成形加工時の加工工程(a)〜(b)を示す断面図である(加工前(a)、加工後(b))。It is sectional drawing which shows the process process (a)-(b) at the time of a connection port part shaping | molding process of the refrigerant | coolant distribution piping of the same heat exchanger (before processing (a), after processing (b)). 同熱交換器の冷媒分配管側接続口部の最終的な開口工程(a)〜(c)を示す断面図である。It is sectional drawing which shows the last opening process (a)-(c) of the refrigerant | coolant distribution piping side connection port part of the same heat exchanger. 同熱交換器の伝熱管側嵌合部の拡管工程(a)〜(b)を示す断面図である(拡管前(a)、拡管後(b))。It is sectional drawing which shows the pipe expansion process (a)-(b) of the heat exchanger tube side fitting part of the heat exchanger (Before pipe expansion (a), After pipe expansion (b)). 同熱交換器の冷媒分配管側接続口部に対する伝熱管の接合(嵌合ロー付け)工程を示す断面図である。It is sectional drawing which shows the joining (fitting brazing) process of the heat exchanger tube with respect to the refrigerant distribution piping side connection port part of the same heat exchanger. 本願発明のその他の実施の形態に係る空気調和機用熱交換器の構成を示す正面図である。It is a front view which shows the structure of the heat exchanger for air conditioners which concerns on other embodiment of this invention. 従来のクロスフィンコイル型空気調和機用熱交換器の構成を示す一部切欠正面図である。It is a partially notched front view which shows the structure of the conventional heat exchanger for cross fin coil type | mold air conditioners. 同熱交換器における冷媒分配管と伝熱管との接合工程(a)〜(d)を示す縦断面図である。It is a longitudinal cross-sectional view which shows the joining process (a)-(d) of the refrigerant distribution piping and the heat exchanger tube in the same heat exchanger. 同熱交換器における冷媒配管と伝熱管とのロー付け完了状態を示す水平断面図である。It is a horizontal sectional view which shows the brazing completion state of the refrigerant | coolant piping and heat exchanger tube in the same heat exchanger. 同熱交換器における冷媒配管と伝熱管とのロー付け接合上の問題点((a)から(b)への分離)を示す図である。It is a figure which shows the problem (separation from (a) to (b)) in the brazing joining of the refrigerant | coolant piping and the heat exchanger tube in the same heat exchanger. 同熱交換器の図11の問題点を冷媒配管側管壁部の厚さとの関係で示す図である((a)は厚さ大の場合、(b)は厚さ小の場合)。It is a figure which shows the problem of FIG. 11 of the same heat exchanger by the relationship with the thickness of the refrigerant piping side pipe wall part ((a) when the thickness is large, (b) when the thickness is small). 従来の他の空気調和機用熱交換器の全体的な構成を示す正面図である。It is a front view which shows the whole structure of the other conventional heat exchanger for air conditioners.

Claims (7)

銅製の第1の冷媒管と、該第1の冷媒管の側壁部に対して軸直交方向に連通して接続される銅製の第2の冷媒管とを備えてなる冷媒配管であって、上記第1の冷媒管の側部には、加圧成形により側壁部の一部を管状に膨出させて形成した接続口部が設けられており、該管状の接続口部に対して上記第2の冷媒管の一端を嵌合してロー付けすることにより、上記第1の冷媒管に対して上記第2の冷媒管が接続一体化されていることを特徴とする冷媒配管接合構造。   A refrigerant pipe comprising a first refrigerant pipe made of copper and a second refrigerant pipe made of copper connected in communication with the side wall portion of the first refrigerant pipe in the direction perpendicular to the axis, A connection port portion formed by expanding a part of the side wall portion into a tubular shape by pressure molding is provided on a side portion of the first refrigerant tube, and the second connection port portion is formed with respect to the tubular connection port portion. A refrigerant pipe joint structure in which the second refrigerant pipe is connected and integrated with the first refrigerant pipe by fitting and brazing one end of the refrigerant pipe. 加圧成形時には、成形部を所定の加熱手段により加熱するようにしたことを特徴とする請求項1記載の冷媒配管接合構造。   The refrigerant pipe joint structure according to claim 1, wherein the molding part is heated by a predetermined heating means during the pressure molding. 第2の冷媒管の第1の冷媒管側接続口部との嵌合部は、第1の冷媒管の接続口部を内側に嵌合するための拡管加工が施されていることを特徴とする請求項1又は2記載の冷媒配管接合構造。   The fitting portion of the second refrigerant pipe with the first refrigerant pipe side connection port portion is subjected to a pipe expansion process for fitting the connection port portion of the first refrigerant pipe inside. The refrigerant pipe joint structure according to claim 1 or 2. 第1の冷媒管の第2の冷媒管との接続口部は、第2の冷媒管を内側に嵌合するための拡管加工が施されていることを特徴とする請求項1又は2記載の冷媒配管接合構造。   The connection port portion of the first refrigerant pipe with the second refrigerant pipe is subjected to a pipe expansion process for fitting the second refrigerant pipe inward. Refrigerant piping joint structure. 第1の冷媒管が大径管で、第2の冷媒管が小径管であることを特徴とする請求項1,2,3又は4記載の冷媒配管接合構造。   The refrigerant pipe joint structure according to claim 1, 2, 3, or 4, wherein the first refrigerant pipe is a large-diameter pipe and the second refrigerant pipe is a small-diameter pipe. 第1の冷媒管が空気調和機用熱交換器の冷媒分配管であり、第2の冷媒管が同空気調和機用熱交換器の伝熱管であることを特徴とする請求項1,2,3,4又は5記載の冷媒配管接合構造。   The first refrigerant pipe is a refrigerant distribution pipe of a heat exchanger for an air conditioner, and the second refrigerant pipe is a heat transfer pipe of a heat exchanger for the air conditioner. The refrigerant pipe joint structure according to 3, 4 or 5. 第1の冷媒管が複数の空気調和機用室内機ユニットに共通に冷媒を供給する主配管であり、第2の冷媒管が同主配管から個々の室内機ユニットに対して冷媒を分配する分岐管であることを特徴とする請求項1,2,3,4又は5記載の冷媒配管接合構造。   The first refrigerant pipe is a main pipe that supplies a common refrigerant to a plurality of indoor unit units for an air conditioner, and the second refrigerant pipe is a branch that distributes the refrigerant from the main pipe to each indoor unit. The refrigerant pipe joint structure according to claim 1, 2, 3, 4, or 5, wherein the refrigerant pipe joint structure is a pipe.
JP2008262413A 2008-10-09 2008-10-09 Refrigerant piping joint structure Pending JP2010091202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262413A JP2010091202A (en) 2008-10-09 2008-10-09 Refrigerant piping joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262413A JP2010091202A (en) 2008-10-09 2008-10-09 Refrigerant piping joint structure

Publications (1)

Publication Number Publication Date
JP2010091202A true JP2010091202A (en) 2010-04-22

Family

ID=42254096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262413A Pending JP2010091202A (en) 2008-10-09 2008-10-09 Refrigerant piping joint structure

Country Status (1)

Country Link
JP (1) JP2010091202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102091843A (en) * 2010-12-07 2011-06-15 安徽华海金属有限公司 Distributor welding method
JP2013174383A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp Air conditioner
WO2015104845A1 (en) * 2014-01-10 2015-07-16 三菱電機株式会社 Connecting member and distributor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102091843A (en) * 2010-12-07 2011-06-15 安徽华海金属有限公司 Distributor welding method
JP2013174383A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp Air conditioner
WO2015104845A1 (en) * 2014-01-10 2015-07-16 三菱電機株式会社 Connecting member and distributor

Similar Documents

Publication Publication Date Title
JP5351386B2 (en) Heat exchanger piping connector
JP5584769B2 (en) Water pipe using hydroforming and method for producing the same
JP4797998B2 (en) Heat exchanger piping joint structure and heat exchanger piping assembly method
JP2005121350A (en) Heat exchanger and method for manufacturing it
JP6075958B2 (en) Stainless steel pipe brazing method
WO2005123318A1 (en) Welding structure and welding method for aluminum accumulator and heat exchanger
WO2001049443A1 (en) Heat exchanger
JP2018529922A (en) Heat exchange tube for heat exchanger, heat exchanger, and method of assembling the same
JP2006322636A (en) Heat exchanger
JP2010214404A (en) Method for manufacturing heat exchanger, and air-conditioner using the heat exchanger
JP2009138909A (en) Pipe joint device
JP2010091202A (en) Refrigerant piping joint structure
JP2012097920A (en) Heat exchanger
US9149895B2 (en) Non-plain carbon steel header for a heat exchanger
JP2006242553A (en) Heat transfer tube, heat exchanger for supplying hot water, and heat pump water heater
US20070284086A1 (en) Transition assembly and method of connecting to a heat exchanger
JP2011075156A (en) Heat exchange unit
WO2010116730A1 (en) Heat exchanger and method for producing the same
JP2010203726A (en) Heat exchanger and air conditioner
JP2011099620A (en) Heat exchanger
JP2011075154A (en) Heat exchange unit
JP2006297472A (en) Manufacturing method of heat exchanger, and fin and tube of heat exchanger
JP2009250600A (en) Copper flat heat-transfer pipe
JP2009198132A (en) Tube for heat exchanger
JP2004239486A (en) Heat exchanger and its manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20120522