JP2016160441A - Surface treatment method and intermetallic compound coat-attached component made of metal - Google Patents

Surface treatment method and intermetallic compound coat-attached component made of metal Download PDF

Info

Publication number
JP2016160441A
JP2016160441A JP2015037046A JP2015037046A JP2016160441A JP 2016160441 A JP2016160441 A JP 2016160441A JP 2015037046 A JP2015037046 A JP 2015037046A JP 2015037046 A JP2015037046 A JP 2015037046A JP 2016160441 A JP2016160441 A JP 2016160441A
Authority
JP
Japan
Prior art keywords
melting point
intermetallic compound
point metal
metal
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015037046A
Other languages
Japanese (ja)
Other versions
JP6513968B2 (en
Inventor
広野 鈴木
Hirono Suzuki
広野 鈴木
周也 齋藤
Shuya Saito
周也 齋藤
潤 小茂鳥
Jun Komodori
潤 小茂鳥
剣吾 深沢
Kengo Fukazawa
剣吾 深沢
佳孝 三阪
Yoshitaka Misaka
佳孝 三阪
川嵜 一博
Kazuhiro Kawasaki
一博 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Keio University
Original Assignee
Neturen Co Ltd
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Keio University filed Critical Neturen Co Ltd
Priority to JP2015037046A priority Critical patent/JP6513968B2/en
Publication of JP2016160441A publication Critical patent/JP2016160441A/en
Application granted granted Critical
Publication of JP6513968B2 publication Critical patent/JP6513968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a carbon steel for an intermetallic compound coat-attached structure in which an intermetallic compound coat excellent in heat resistance and oxidation resistance is formed on the surface of a structural material comprising a metallic component.SOLUTION: In a surface treatment method, a projection material is jetted out to a metallic object to be treated which is induction-heated up to a predetermined heat treatment temperature in an inert gas atmosphere, to thereby carry out surface treatment. In the surface treatment method, the projection material includes a high melting metal having a melting point higher than the heat treatment temperature, and a low melting metal having a melting point lower than the heat treatment temperature.SELECTED DRAWING: Figure 1

Description

本出願に係る発明は、例えば炭素鋼などの金属製部材の表面処理により耐熱性、耐酸化性に優れた金属間化合物被膜を形成する表面処理方法及び、当該表面処理方法により得られる金属間化合物被膜付き金属製部材に関する。   The present invention relates to a surface treatment method for forming an intermetallic compound film excellent in heat resistance and oxidation resistance by surface treatment of a metal member such as carbon steel, and an intermetallic compound obtained by the surface treatment method. The present invention relates to a coated metal member.

従来より、タービンやターボチャージャーなどの構造材料は、運転効率の向上や、耐用年数の長期化等の要求により、高温環境下における強度の向上や、耐酸化性や、耐食性、耐摩耗性等に優れた高機能材料の開発が強く要望されている。このような高機能材料としては、Ni−Alや、Ti−Al等の金属間化合物を含んだNi−Al系合金や、Ti−Al系合金が多様されている。   Conventionally, structural materials such as turbines and turbochargers have improved strength in high-temperature environments, oxidation resistance, corrosion resistance, wear resistance, etc. due to demands for improved operating efficiency and longer service life. There is a strong demand for the development of excellent high-performance materials. Examples of such highly functional materials include Ni-Al alloys containing an intermetallic compound such as Ni-Al and Ti-Al, and Ti-Al alloys.

例えば、特許文献1には、耐摩耗性、耐凝着性を向上すると共に、機械加工性を向上させ、かつ低コストで製造可能なアルミニウム合金鋳物を得ることを目的として、「他部品と摺動する摺動部を有するアルミニウム合金鋳物であり、Al(アルミニウム)と、Ni(ニッケル)、Ti(チタニウム)、Fe(鉄)よりなる群から選ばれた少なくとも一種の金属元素との金属化合物が分散複合されてなる耐摩耗性アルミニウム合金鋳物」が開示されている。   For example, Patent Document 1 discloses that an aluminum alloy casting that improves wear resistance and adhesion resistance, improves machinability, and can be manufactured at low cost is “slidable with other parts. An aluminum alloy casting having a sliding portion that moves, and a metal compound of Al (aluminum) and at least one metal element selected from the group consisting of Ni (nickel), Ti (titanium), and Fe (iron) A wear-resistant aluminum alloy casting formed by dispersion and composite is disclosed.

また、特許文献2には、鋳造欠陥が少なく、かつ、加工性に優れて熱間圧延を容易にしうるTi−Al系合金圧延用素材を提供することを目的として、「主要成分としてTi及びAlを含有するTiAl系合金溶湯を、板状キャビティを有し、板厚方向に対して片側断熱、片側冷却構造の鋳型に注湯して指向性凝固をさせることにより板状に鋳造するTiAl系合金圧延用素材の製造方法」が開示されている。   Further, Patent Document 2 discloses that “Ti and Al as main components are used for the purpose of providing a raw material for rolling a Ti—Al-based alloy that has few casting defects and has excellent workability and can be easily hot rolled. TiAl-based alloy that has a plate-like cavity and is cast into a plate shape by pouring into a mold with one-side heat insulation and one-side cooling structure in the plate thickness direction to cause directional solidification A method for producing a rolling material "is disclosed.

特開平6−93412号公報JP-A-6-93412 特開平8−290257号公報JP-A-8-290257

しかし、上述した特許文献1の耐摩耗性アルミニウム合金鋳物は、アルミニウム溶湯にNi、Ti、Feよりなる群から選ばれた金属粉末を混合した後、直ちにプランジャにより金型に射出注湯し、その混合及び凝固途中で金属粉末とAl溶湯の反応により金属間化合物を生成すると同時にその金属間化合物を分散複合化させることにより製造するものであるため、合金鋳物のかたちに応じて金型を製造する必要がある。また、得られた金属間化合物を有する耐摩耗性アルミニウム合金鋳物は、室温における延性に乏しく、難加工材であることから、後加工によって、成形することが困難であった。同様に、特許文献2のTi−Al系合金圧延用素材は、指向性凝固をさせることにより、圧延加工を容易とすることができるが、切削加工等の加工が困難である。ゆえに、表面に凹凸形状が施された構造用部材をNi−Alや、Ti−Al等の金属間化合物を用いて製造することは困難であった。   However, the wear-resistant aluminum alloy casting of Patent Document 1 described above is prepared by injecting and pouring a metal powder selected from the group consisting of Ni, Ti, and Fe into a molten aluminum, and immediately injecting it into a mold with a plunger. Since the intermetallic compound is produced by the reaction of the metal powder and the molten Al during mixing and solidification, and the intermetallic compound is dispersed and compounded, the mold is manufactured according to the shape of the alloy casting. There is a need. In addition, the obtained wear-resistant aluminum alloy casting having an intermetallic compound has poor ductility at room temperature and is a difficult-to-work material, so it has been difficult to form by post-processing. Similarly, the Ti—Al-based alloy rolling material of Patent Document 2 can be easily rolled by directional solidification, but is difficult to perform such as cutting. Therefore, it has been difficult to manufacture a structural member having a concavo-convex shape on the surface using an intermetallic compound such as Ni-Al or Ti-Al.

上述した状況に鑑み、市場からは、複雑形状の部材であっても、高温強度や耐酸化性、耐摩耗性に優れたNi−Alや、Ti−Al等の金属間化合物を用いた耐熱性構造材の開発が望まれていた。   In view of the situation described above, the heat resistance using intermetallic compounds such as Ni-Al and Ti-Al, which are excellent in high-temperature strength, oxidation resistance, and wear resistance, even in the case of members having a complicated shape, from the market. The development of structural materials was desired.

そこで、本件発明者等は、鋭意研究の結果、本発明に係る表面処理方法を採用することで、金属部材からなる構造材の表面に耐熱性、耐酸化性に優れた金属間化合物被膜を形成した金属間化合物被膜付き金属製部材の製造を可能とした。   Therefore, the inventors of the present invention, as a result of diligent research, formed an intermetallic compound film excellent in heat resistance and oxidation resistance on the surface of the structural material made of a metal member by adopting the surface treatment method according to the present invention. It was possible to produce a metal member with an intermetallic compound coating.

すなわち、本発明に係る表面処理方法は、不活性ガス雰囲気中において所定の熱処理温度に誘導加熱されている金属製の被処理物に投射材を噴射して表面処理する表面処理方法であって、投射材は、融点が当該熱処理温度より高い高融点金属と、融点が当該熱処理温度より低い低融点金属とを含み、当該被処理物の表面に金属間化合物を形成することを特徴とする。   That is, the surface treatment method according to the present invention is a surface treatment method in which a surface treatment is performed by spraying a projection material onto a metal workpiece that is induction-heated to a predetermined heat treatment temperature in an inert gas atmosphere, The projection material includes a high melting point metal having a melting point higher than the heat treatment temperature and a low melting point metal having a melting point lower than the heat treatment temperature, and forms an intermetallic compound on the surface of the object to be processed.

本発明に係る表面処理方法は、前記被処理物が、構造用炭素鋼部材であることが好ましい。   In the surface treatment method according to the present invention, the workpiece is preferably a structural carbon steel member.

また、本発明に係る表面処理方法は、前記高融点金属が、Ti、及び/又は、Niであることが好ましい。   In the surface treatment method according to the present invention, the refractory metal is preferably Ti and / or Ni.

また、本発明に係る表面処理方法は、前記低融点金属が、Al、及び/又は、Znであることが好ましい。   In the surface treatment method according to the present invention, the low melting point metal is preferably Al and / or Zn.

さらに、本発明に係る表面処理方法は、前記投射材が、前記高融点金属の粒子と、前記低融点金属の粒子とをメカニカルミリング法により混合、粉砕、反応させることにより得たメカニカルミリング粒子であることが好ましい。   Further, in the surface treatment method according to the present invention, the projection material is a mechanical milling particle obtained by mixing, pulverizing, and reacting the high melting point metal particles and the low melting point metal particles by a mechanical milling method. Preferably there is.

また、本発明に係る表面処理方法は、前記メカニカルミリング法において、前記高融点金属の粒子と、前記低融点金属の粒子にプロセス制御剤を添加して前記投射材を作製することが好ましい。   In the surface treatment method according to the present invention, in the mechanical milling method, it is preferable that a process control agent is added to the high melting point metal particles and the low melting point metal particles to produce the projection material.

また、本発明に係る表面処理方法は、前記高融点金属と、前記低融点金属との混合比率が、原子数比で当該低融点金属の方が多いことが好ましい。   In the surface treatment method according to the present invention, it is preferable that the mixing ratio of the high melting point metal and the low melting point metal is larger in terms of the number ratio of the low melting point metal.

さらに、本発明に係る表面処理方法は、前記被処理物の誘導加熱による熱処理温度が700℃〜1100℃であることが好ましい。   Furthermore, in the surface treatment method according to the present invention, it is preferable that the heat treatment temperature of the object to be treated by induction heating is 700 ° C. to 1100 ° C.

本発明に係る金属間化合物被膜付き金属製部材は、上述した表面処理方法により得られた金属間化合物被膜付き金属製部材であって、当該金属製部材の表面に、前記高融点金属と前記低融点金属との金属間化合物被膜を備えたことを特徴とする。   The metal member with an intermetallic compound film according to the present invention is a metal member with an intermetallic compound film obtained by the surface treatment method described above, and the refractory metal and the low metal are formed on the surface of the metal member. An intermetallic compound film with a melting point metal is provided.

また、本発明に係る金属間化合物被膜付き金属製部材は、前記高融点金属、及び/又は、前記低融点金属と、金属製部材を構成する基材金属との金属間化合物を含むことが好ましい。   The metal member with an intermetallic compound film according to the present invention preferably contains an intermetallic compound of the high melting point metal and / or the low melting point metal and a base metal constituting the metal member. .

本発明に係る表面処理方法によれば、不活性ガス雰囲気中において所定の熱処理温度で誘導加熱されている被処理物に投射材を噴射して表面処理する表面処理方法において、投射材は、融点が当該熱処理温度よりも高い高融点金属と、融点が当該熱処理温度よりも低い低融点金属とを含むことにより、被処理物の表面に、高融点金属粒子と、低融点金属粒子、もしくは、高融点金属と低融点金属粒子からなるメカニカルミリング粒子を衝突させて、当該高融点金属と低融点金属とを当該被処理物の表面に移着させて、これら高融点金属と低融点金属とから成る金属間化合物や、高融点金属及び/又は低融点金属と被処理物を構成する基材金属とから成る金属間化合物を含む金属間化合物被膜を当該被処理物の表面に形成することができる。よって、表面に凹凸形状が施された複雑な被処理物であっても、その表面に高融点金属と低融点金属と被処理物を構成する基材金属とから成る金属間化合物被膜を形成して、被処理物の機械的特性を向上させることができる。   According to the surface treatment method of the present invention, in the surface treatment method in which the projection material is sprayed onto the workpiece that is induction-heated at a predetermined heat treatment temperature in an inert gas atmosphere, the projection material has a melting point. Includes a high melting point metal having a melting point higher than the heat treatment temperature and a low melting point metal having a melting point lower than the heat treatment temperature, so that the surface of the object to be treated has a high melting point metal particle, a low melting point metal particle, or a high melting point metal. A mechanical milling particle composed of a melting point metal and a low melting point metal particle is collided, and the high melting point metal and the low melting point metal are transferred to the surface of the object to be processed. An intermetallic compound film containing an intermetallic compound or an intermetallic compound composed of a high melting point metal and / or a low melting point metal and a base metal constituting the object to be processed can be formed on the surface of the object to be processed. Therefore, even if the surface of the workpiece has a rough surface, an intermetallic compound coating consisting of a refractory metal, a low melting point metal, and a base metal constituting the workpiece is formed on the surface. Thus, the mechanical properties of the object to be processed can be improved.

特に、高融点金属として、Ti、又は、Niを用い、低融点金属として、Al、又は、Znを用いることにより、Ti−AlやNi−Al、Ti−ZnやNi−Znの金属間化合物からなる被膜を被処理物の表面に形成することができる。よって、被処理物の表面にこれら金属間化合物の特性を付与することができる。従って、本件発明によれば、例えば、Ti−AlやNi−Al等の金属間化合物から成る被膜を炭素鋼の表面に形成することで、高温強度や耐酸化性、耐摩耗性に優れた金属間化合物被膜付き構造用炭素鋼を製造することが可能となる。また、当該金属間化合物が被処理物を構成する基材金属を含むことにより、当該金属間化合物被膜の炭素鋼に対する密着性を確保することができる。   In particular, by using Ti or Ni as the high melting point metal and Al or Zn as the low melting point metal, the intermetallic compound of Ti—Al, Ni—Al, Ti—Zn, or Ni—Zn is used. Can be formed on the surface of the workpiece. Therefore, the characteristics of these intermetallic compounds can be imparted to the surface of the workpiece. Therefore, according to the present invention, for example, by forming a film made of an intermetallic compound such as Ti-Al or Ni-Al on the surface of carbon steel, a metal excellent in high-temperature strength, oxidation resistance, and wear resistance. It becomes possible to produce structural carbon steel with an intermetallic compound coating. Moreover, the adhesiveness with respect to the carbon steel of the said intermetallic compound film can be ensured because the said intermetallic compound contains the base metal which comprises a to-be-processed object.

本発明の表面処理方法による被膜形成メカニズムを説明する図である。It is a figure explaining the film formation mechanism by the surface treatment method of this invention. 本発明の表面処理方法を適用した表面処理装置の概略構成図である。It is a schematic block diagram of the surface treatment apparatus to which the surface treatment method of this invention is applied. 制御装置の電気ブロック図である。It is an electrical block diagram of a control apparatus. 実施例の試験片の熱履歴を示す図である。It is a figure which shows the heat history of the test piece of an Example. 実施例1及び実施例2のXRDにより分析した結果である。It is the result analyzed by XRD of Example 1 and Example 2. 実施例1及び実施例2のSEM及びEDXにより分析した結果である。It is the result of having analyzed by SEM and EDX of Example 1 and Example 2. FIG. 実施例3及び実施例4のXRDにより分析した結果である。It is the result analyzed by XRD of Example 3 and Example 4. 実施例3及び実施例4のSEM及びEDXにより分析した結果である。It is the result of having analyzed by SEM and EDX of Example 3 and Example 4. FIG. 実施例5のXRDにより分析した結果である。It is the result analyzed by XRD of Example 5. 実施例5のSEM及びEDXにより分析した結果である。It is the result analyzed by SEM and EDX of Example 5. 実施例5のビッカース硬さ試験の結果である。It is a result of the Vickers hardness test of Example 5. 高温連続酸化試験を行った実施例5のSEM及びEDXにより分析した結果である。It is the result of having analyzed by SEM and EDX of Example 5 which performed the high temperature continuous oxidation test. 実施例6〜実施例8のSEM及びEDXにより分析した結果である。It is the result of having analyzed by SEM and EDX of Example 6-8. 高温連続酸化試験を行った比較例のSEM及びEDXにより分析した結果である。It is the result of having analyzed by SEM and EDX of the comparative example which performed the high temperature continuous oxidation test. 高温連続酸化試験を行った実施例6のSEM及びEDXにより分析した結果である。It is the result of having analyzed by SEM and EDX of Example 6 which performed the high temperature continuous oxidation test. 高温連続酸化試験を行った実施例7のSEM及びEDXにより分析した結果である。It is the result of having analyzed by SEM and EDX of Example 7 which performed the high temperature continuous oxidation test. 高温連続酸化試験を行った実施例8のSEM及びEDXにより分析した結果である。It is the result of having analyzed by SEM and EDX of Example 8 which performed the high temperature continuous oxidation test.

以下、本発明に係る「表面処理方法」及び当該表面処理方法により得られる「金属間化合物被膜付き金属製部材」のそれぞれの実施の形態について説明する。   Hereinafter, each embodiment of the “surface treatment method” according to the present invention and the “metal member with an intermetallic compound film” obtained by the surface treatment method will be described.

<本発明に係る表面処理方法の形態>
本発明に係る表面処理方法は、不活性ガス雰囲気中において所定の熱処理温度に誘導加熱されている金属製の被処理物に投射材を噴射して表面処理する表面処理方法であって、投射材は、融点が当該熱処理温度より高い高融点金属と、融点が当該熱処理温度より低い低融点金属とを含み、当該被処理物の表面に金属間化合物を形成することを特徴とする。
<Form of surface treatment method according to the present invention>
A surface treatment method according to the present invention is a surface treatment method in which a projection material is sprayed onto a metal workpiece that is induction-heated to a predetermined heat treatment temperature in an inert gas atmosphere. Includes a high melting point metal having a melting point higher than the heat treatment temperature and a low melting point metal having a melting point lower than the heat treatment temperature, and forms an intermetallic compound on the surface of the object to be processed.

本発明における表面処理方法では、表面処理雰囲気を不活性ガス雰囲気とした雰囲気制御化(Atomospheric controlled)で高周波誘導加熱(Induction−Heating:IH)を用いて、被処理物を加熱した状態で微粒子ピーニング(Fine Particle Peening:FPP)が可能となるAIH−FPP処理を用いる。   In the surface treatment method according to the present invention, fine particle peening is performed in a state in which an object to be treated is heated using high-frequency induction heating (Induction-Heating: IH) under atmosphere control (atmospherically controlled) where the surface treatment atmosphere is an inert gas atmosphere. An AIH-FPP process that enables (Fine Particle Peening: FPP) is used.

本発明において、表面処理の対象となる被処理物は、金属製部材、例えば、炭素鋼等のFeを主成分とする鋼材を用いることが好ましい。本発明において、不活性ガス雰囲気中において所定の熱処理温度に誘導加熱されている被処理物に噴射する投射材は、融点が当該熱処理温度より高い高融点金属と、融点が当該熱処理温度より低い低融点金属とを含むものを用いる。   In the present invention, the workpiece to be surface-treated is preferably a metal member, for example, a steel material mainly composed of Fe such as carbon steel. In the present invention, a projection material that is injected into an object that is induction-heated to a predetermined heat treatment temperature in an inert gas atmosphere includes a refractory metal whose melting point is higher than the heat treatment temperature, and a low melting point that is lower than the heat treatment temperature. A material containing a melting point metal is used.

高融点金属は、融点が例えば、700℃〜1100℃である熱処理温度よりも500℃〜900℃以上高い金属を用いることが好ましい。具体的に高融点金属は、融点が1668℃であるTiや、1455℃であるNiを用いることができる。これらTi及びNiは、一方のみを高融点金属として用いて低融点金属と共に投射材を構成しても良いが、Ti及びNiの両者を高融点金属として用いても良い。   As the refractory metal, it is preferable to use a metal whose melting point is higher by 500 ° C. to 900 ° C. than the heat treatment temperature of 700 ° C. to 1100 ° C., for example. Specifically, Ti having a melting point of 1668 ° C. or Ni having a melting point of 1455 ° C. can be used as the refractory metal. Only one of these Ti and Ni may be used as a refractory metal to form a projection material together with a low melting point metal, but both Ti and Ni may be used as a refractory metal.

低融点金属は、融点が例えば、700℃〜1100℃である熱処理温度よりも低い金属を用いることが好ましい。具体的に低融点金属は、融点が660℃であるAlや、419℃であるZnを用いることができる。これらAl及びZnは、一方のみを低融点金属として用いて高融点金属と共に投射材を構成しても良いが、Al及びZnの両者を低融点金属として用いても良い。   As the low melting point metal, it is preferable to use a metal having a melting point lower than the heat treatment temperature of 700 ° C. to 1100 ° C., for example. Specifically, Al having a melting point of 660 ° C. or Zn having 419 ° C. can be used as the low melting point metal. Although only one of these Al and Zn may be used as a low melting point metal to form a projection material together with a high melting point metal, both Al and Zn may be used as a low melting point metal.

本発明の表面処理方法による被膜形成メカニズムについて図1を参照して説明する。図1に示すように、本発明は、高周波誘導加熱法により加熱した金属製、例えば炭素鋼部材からなる被処理物に、高融点金属と、低融点金属とを含む投射材を噴射するAIH−FPP処理を行うことにより(S1)、被処理物に衝突した投射材のうち、特に低融点金属の部分が被処理物の表面に溶解して(S2)、当該投射材が被処理物の表面に溶着する(S3)。そして、被処理物、この場合、鉄基材の全体が溶融することなく、最表面のみで局所的に融点が降下する。すなわち、鉄基材の反応表面のみ半溶融状態となり、投射材を構成する低融点金属と高融点金属と被処理物を構成する鉄基材の反応性が向上するフラックス効果が生じる。   The film formation mechanism by the surface treatment method of the present invention will be described with reference to FIG. As shown in FIG. 1, this invention is AIH- which injects the projection material containing a high melting-point metal and a low melting-point metal to the to-be-processed object made from the metal heated by the high frequency induction heating method, for example, a carbon steel member. By performing the FPP process (S1), among the projection material colliding with the object to be processed, particularly the low melting point metal portion is dissolved on the surface of the object to be processed (S2), and the projection material becomes the surface of the object to be processed. (S3). And a to-be-processed object, in this case, the whole iron base material does not melt | dissolve but melting | fusing point falls locally only by the outermost surface. That is, only the reaction surface of the iron base material is in a semi-molten state, and a flux effect is generated in which the reactivity of the low melting point metal and the high melting point metal constituting the projection material and the iron base material constituting the object to be processed is improved.

よって、反応性が高まった半溶融状態の鉄基材の表面では、低融点金属と高融点金属からなる金属間化合物が合成されるときに放出される生成熱が連鎖的に進行することにより(S4)、当該鉄基材の表面は、瞬間的に高温(例えば、1500℃〜3000℃)に保持されて、低融点金属と高融点金属、さらには、金属製部材を構成する基材金属を含む金属間化合物の被膜が形成される(S5)。   Therefore, on the surface of the iron base in a semi-molten state with increased reactivity, the heat of formation released when an intermetallic compound composed of a low melting point metal and a high melting point metal is synthesized in a chain ( S4) The surface of the iron substrate is instantaneously maintained at a high temperature (for example, 1500 ° C. to 3000 ° C.), and a low melting point metal and a high melting point metal, and further, a base metal constituting a metal member is used. A film of the intermetallic compound is formed (S5).

例えば、被処理物としての炭素鋼に対して、高融点金属がNi、低融点金属がAlである投射材を用いてAIH−FPP処理を施した場合には、炭素鋼の表面には、NiAl、NiAl、FeAl等からなる金属間化合物被膜が形成される。また、被処理物としての炭素鋼に対して、高融点金属がTi、低融点金属がAlである投射材を用いてAIH−FPP処理を施した場合には、炭素鋼の表面には、TiAl、TiAl12Fe等からなる金属間化合物被膜が形成される。これらNi−Al系の金属間化合物や、Ti−Al系の金属間化合物は、高温強度や、耐酸化性、耐摩耗性等の機械的特性に優れたものであるため、被処理物としての炭素鋼の表面は、当該表面処理によって、これら高温強度や、耐酸化性、耐摩耗性等の機械的特性を向上させることができる。 For example, when AIH-FPP treatment is performed on a carbon steel as an object to be processed using a projection material in which the high melting point metal is Ni and the low melting point metal is Al, the surface of the carbon steel is NiAl An intermetallic compound film made of NiAl 3 , Fe 2 Al 5 or the like is formed. In addition, when the AIH-FPP treatment is performed on the carbon steel as the object to be processed using a projection material in which the high melting point metal is Ti and the low melting point metal is Al, the surface of the carbon steel is TiAl. 3. An intermetallic compound film made of TiAl 12 Fe or the like is formed. These Ni—Al based intermetallic compounds and Ti—Al based intermetallic compounds are excellent in mechanical properties such as high temperature strength, oxidation resistance, and wear resistance. The surface of carbon steel can improve mechanical properties such as high-temperature strength, oxidation resistance, and wear resistance by the surface treatment.

上述した投射材は、高融点金属の粒子と低融点金属の粒子とを混合することにより作製した混合粒子であってもよく、高融点金属の粒子と低融点金属の粒子とをメカニカルミリング法により混合、粉砕、反応させることにより作製したメカニカルミリング粒子(以下、MM粒子と称する)であっても良い。   The above-mentioned projection material may be a mixed particle produced by mixing high melting point metal particles and low melting point metal particles, and the high melting point metal particles and the low melting point metal particles are mechanically milled. Mechanical milling particles (hereinafter referred to as MM particles) produced by mixing, pulverizing, and reacting may be used.

投射材が、メカニカルミリング法を用いて作製したMM粒子である場合には、高融点金属の粒子と低融点金属の粒子とが圧着した状態であるため、均一に高融点金属と低融点金属とを被処理物の表面に投射することができる。よって、被処理物の表面において成分元素のバラツキが少ない均一な金属間化合物被膜を形成することが可能となる。この場合、金属間化合物を形成する前の未反応の低融点金属が溶融して当該溶融相を通じて被処理物を構成する基材金属であるFe等が表面に拡散する不都合を回避することができるため、金属間化合物被膜付き被処理物の耐酸化性や高温強度を向上させることができる。   When the projection material is MM particles produced using a mechanical milling method, the high melting point metal particles and the low melting point metal particles are in a state of being pressure-bonded. Can be projected onto the surface of the workpiece. Therefore, it is possible to form a uniform intermetallic compound film with less variation of component elements on the surface of the object to be processed. In this case, it is possible to avoid the inconvenience that the unreacted low melting point metal before forming the intermetallic compound is melted and Fe or the like, which is the base metal constituting the object to be processed, diffuses to the surface through the molten phase. Therefore, it is possible to improve the oxidation resistance and high-temperature strength of the workpiece with the intermetallic compound coating.

当該メカニカルミリング法を用いてMM粒子を作製する場合には、投射材の高融点金属粒子と低融点金属粒子の混合比率は、原子数比で低融点金属の方を多くすることが好ましい。具体的には、高融点金属粒子:低融点金属粒子は、原子数比で1:3〜1:4の範囲内とすることがより好ましい。なぜなら、高融点金属粒子と低融点金属粒子の混合比率が、原子数比で低融点金属粒子の方が高融点金属粒子よりも少なくなると、低融点金属粒子が十分に被処理物の表面に溶着することができず、表面全体を均一に融点降下させることが困難となるからである。また、高融点金属粒子と低融点金属粒子の混合比率が、原子数比で低融点金属粒子が低融点金属粒子よりも多くなりすぎると、金属間化合物を形成しない未反応状態の低融点金属が溶融相を形成し、当該溶融相を通じて被処理物を構成する基材金属であるFe等が表面に拡散し、耐酸化性や高温強度の低下を招く場合があるからである。ただし、本願発明は、高融点金属粒子と低融点金属粒子の混合比率を上述した範囲に限定するものではなく、被処理物の表面において成分元素のバラツキが少ない均一な金属間化合物被膜を形成することが可能混合比率であれば良いものとする。   When producing MM particles using the mechanical milling method, it is preferable that the mixing ratio of the high melting point metal particles and the low melting point metal particles of the projection material is larger in terms of the number ratio of the low melting point metal. Specifically, the high melting point metal particles: low melting point metal particles are more preferably in the range of 1: 3 to 1: 4 in terms of atomic ratio. This is because when the mixing ratio of the high melting point metal particles and the low melting point metal particles is less than the high melting point metal particles in terms of the number ratio, the low melting point metal particles are sufficiently welded to the surface of the workpiece. This is because it is difficult to lower the melting point uniformly over the entire surface. In addition, when the mixing ratio of the high melting point metal particles and the low melting point metal particles is more than the low melting point metal particles in the atomic ratio, the unreacted low melting point metal that does not form an intermetallic compound is formed. This is because Fe or the like, which is a base metal that forms a melt phase and forms the object to be processed, diffuses to the surface through the melt phase, leading to a decrease in oxidation resistance and high-temperature strength. However, the present invention does not limit the mixing ratio of the high melting point metal particles and the low melting point metal particles to the above-described range, and forms a uniform intermetallic compound film with less variation of component elements on the surface of the object to be processed. Any mixing ratio is possible.

当該メカニカルミリング法によるMM粒子の作製時において、高融点金属粒子と低融点金属粒子の混合物にプロセス制御剤を添加することが好ましい。プロセス制御剤としては、例えば、2−プロパノールやメタノールやエタノールなどのアルコール、オレイン酸やリノレン酸などの有機酸、ステアリン酸や炭素などの固形物を採用することができる。当該プロセス制御剤を用いることにより、メカニカルミリング法により作製されるMM粒子の内部及び外部を問わず、全体的に高融点金属粒子と低融点金属粒子を均一に複合させることができる。よって、当該プロセス制御剤を用いたメカニカルミリング法により作製されたMM粒子を用いて被処理物の表面処理を行うことにより、より成分元素にバラツキの少ない均質な金属間化合物被膜の形成が可能となる。   When producing MM particles by the mechanical milling method, it is preferable to add a process control agent to the mixture of the high melting point metal particles and the low melting point metal particles. As the process control agent, for example, alcohols such as 2-propanol, methanol and ethanol, organic acids such as oleic acid and linolenic acid, and solids such as stearic acid and carbon can be employed. By using the process control agent, the high melting point metal particles and the low melting point metal particles can be uniformly combined as a whole regardless of the inside and outside of the MM particles produced by the mechanical milling method. Therefore, it is possible to form a homogeneous intermetallic compound coating with less variation in component elements by performing surface treatment of the workpiece using MM particles produced by mechanical milling using the process control agent. Become.

さらに、本発明に係る表面処理方法は、上述したAIH−FPP処理における被処理物の誘導加熱による熱処理温度を700℃〜1100℃とすることが好ましい。当該熱処理温度が700℃を下回る場合には、当該被処理物に投射される低融点金属を被処理物の表面において十分に溶融させることができず、当該低融点金属と高融点金属とから成る投射材の被処理物表面への移着が困難となり、金属間化合物被膜の形成が困難となるからである。当該熱処理温度が1100℃を上回る場合には、被処理物を構成する基材が溶融して変形を生じる問題があるため、好ましくないからである。   Furthermore, in the surface treatment method according to the present invention, it is preferable that the heat treatment temperature of the object to be treated in the above-described AIH-FPP treatment is 700 ° C. to 1100 ° C. When the heat treatment temperature is lower than 700 ° C., the low melting point metal projected onto the object to be processed cannot be sufficiently melted on the surface of the object to be processed, and consists of the low melting point metal and the high melting point metal. This is because it becomes difficult to transfer the projection material to the surface of the workpiece, and it becomes difficult to form the intermetallic compound film. This is because when the heat treatment temperature exceeds 1100 ° C., there is a problem in that the base material constituting the object to be processed melts and deforms, which is not preferable.

次に、本発明の表面処理方法を適用した表面処理装置について図面を参照して説明する。図2は本発明の表面処理方法を適用した表面処理装置1の概略構成図である。本実施の形態における表面処理装置1は、気密に形成されたチャンバ2を備えている。当該チャンバ2内には、被処理物Wを載置する支持台11と、当該支持台11の上に載置された被処理物Wの周囲に設けられた誘導加熱コイル(加熱手段)12が設けられ、当該チャンバ2には、当該支持台11の上に載置された被処理物Wに向けて投射材3又は不活性ガスを噴射する噴射部(投射材噴射部又は不活性ガス噴射部)20が配設されている。   Next, a surface treatment apparatus to which the surface treatment method of the present invention is applied will be described with reference to the drawings. FIG. 2 is a schematic configuration diagram of a surface treatment apparatus 1 to which the surface treatment method of the present invention is applied. The surface treatment apparatus 1 in the present embodiment includes a chamber 2 formed in an airtight manner. In the chamber 2, there are a support 11 on which the workpiece W is placed, and an induction heating coil (heating means) 12 provided around the workpiece W placed on the support 11. An injection unit (a projection material injection unit or an inert gas injection unit) is provided in the chamber 2 to inject the projection material 3 or an inert gas toward the workpiece W placed on the support base 11. ) 20 is provided.

チャンバ2内には、チャンバ2内のガスを排気する排気口13と、チャンバ2内のガスの酸素濃度を検出する酸素濃度計14が配設されている。当該排気口13には、当該排気口13の開閉を制御する排気口開閉弁13Aが設けられている。支持台11には、当該支持台11上に載置された被処理物Wの表面温度を検出する温度センサ15が配設されている。誘導加熱コイル12は、チャンバ2外に設けられた高周波印加装置5に接続され、所定の周波数の高周波電流が印加される。当該高周波印加装置5は、単一、あるいは複数の周波数の高周波電流を誘導加熱コイル12に印加し、被処理物Wを誘導加熱する。   An exhaust port 13 for exhausting the gas in the chamber 2 and an oxygen concentration meter 14 for detecting the oxygen concentration of the gas in the chamber 2 are disposed in the chamber 2. The exhaust port 13 is provided with an exhaust port opening / closing valve 13 </ b> A that controls opening and closing of the exhaust port 13. A temperature sensor 15 that detects the surface temperature of the workpiece W placed on the support table 11 is disposed on the support table 11. The induction heating coil 12 is connected to a high frequency application device 5 provided outside the chamber 2 and is applied with a high frequency current having a predetermined frequency. The high-frequency application device 5 applies high-frequency currents having a single frequency or a plurality of frequencies to the induction heating coil 12 to inductively heat the workpiece W.

チャンバ2に配設された噴射部20は、支持台11に向けられた噴射ノズル21を備えている。当該噴射ノズル21には、不活性ガスを供給するガス供給部23が接続されている。ガス供給部23から噴射ノズル21に不活性ガスを供給するガス供給経路24には、ガス供給量を調整するガス調整弁22が介設されていると共に、当該調整弁22のガス下流側に位置して、投射材供給経路25が分岐して接続されている。当該投射材供給経路25は、投射材3を収容したホッパー26を介して噴射ノズル21に接続されている。当該投射材供給経路25には、ホッパー26内への不活性ガスの流入量を調整する投射材調整弁27が介設されている。   The injection unit 20 disposed in the chamber 2 includes an injection nozzle 21 directed to the support base 11. A gas supply unit 23 for supplying an inert gas is connected to the injection nozzle 21. The gas supply path 24 for supplying the inert gas from the gas supply unit 23 to the injection nozzle 21 is provided with a gas adjustment valve 22 for adjusting the gas supply amount, and is located on the gas downstream side of the adjustment valve 22. Then, the projection material supply path 25 is branched and connected. The projection material supply path 25 is connected to the injection nozzle 21 via a hopper 26 that houses the projection material 3. The projection material supply path 25 is provided with a projection material adjustment valve 27 that adjusts the amount of inert gas flowing into the hopper 26.

不活性ガスとしては、アルゴンなどの希ガスや窒素ガスを用いることができる。噴射ノズル21からの不活性ガスの噴射速度は、例えば、数十m/秒〜数千m/秒とすることが好ましい。なお、当該不活性ガスの噴射ノズル21からの噴射量の制御は、噴射速度ではなく噴射圧(例えば0.5MPa)により制御しても良い。   As the inert gas, a rare gas such as argon or a nitrogen gas can be used. The injection speed of the inert gas from the injection nozzle 21 is preferably, for example, several tens m / sec to several thousand m / sec. Note that the injection amount of the inert gas from the injection nozzle 21 may be controlled not by the injection speed but by the injection pressure (for example, 0.5 MPa).

図3は本実施の形態に係る表面処理装置1の制御装置Cの電気ブロック図を示す。当該制御装置Cは、汎用のマイクロコンピュータにより構成されており、制御プログラムが記憶されたメモリが内蔵されている。当該制御装置Cの入力側には、酸素濃度計14と、被処理物Wの表面温度を検出する温度センサ15が接続されている。当該制御装置Cの出力側には、高周波印加装置5を介して誘導加熱コイル12が接続されると共に、ガス調整弁22と、投射材調整弁27と、排気口開閉弁13Aが接続されている。   FIG. 3 shows an electric block diagram of the control device C of the surface treatment apparatus 1 according to the present embodiment. The control device C is constituted by a general-purpose microcomputer and has a built-in memory in which a control program is stored. An oxygen concentration meter 14 and a temperature sensor 15 that detects the surface temperature of the workpiece W are connected to the input side of the control device C. The induction heating coil 12 is connected to the output side of the control device C via the high-frequency application device 5, and the gas adjustment valve 22, the projection material adjustment valve 27, and the exhaust port opening / closing valve 13 </ b> A are connected. .

制御装置Cは、内蔵されたメモリに記憶された制御プログラムと、検出された酸素濃度や、被処理物Wの表面温度等の情報に基づいて、高周波印加装置5、ガス調整弁22、投射材調整弁27の制御を行い、被処理物Wの加熱温度や、投射材3の噴射速度や噴射量、不活性ガスの噴射量を制御する。   The control device C is based on the control program stored in the built-in memory and information such as the detected oxygen concentration and the surface temperature of the workpiece W, the high-frequency application device 5, the gas regulating valve 22, and the projection material. The control valve 27 is controlled to control the heating temperature of the workpiece W, the injection speed and injection amount of the projection material 3, and the injection amount of the inert gas.

次に、本実施の形態に係る表面処理装置1の動作について説明する。まず始めに、制御装置Cは、ガス調整弁22を開放すると共に、投射材調整弁27を閉鎖し、さらに、排気口開閉弁13Aを開放する。これにより、噴射ノズル21から不活性ガスのみがチャンバ2内に噴射され、チャンバ2内の空気は、排気口13から排出され、チャンバ2内には、不活性ガスが充填される。酸素濃度計14により検出されたチャンバ2内の酸素濃度が所定値以下(例えば、0.3%以下)にまで低下したら、制御装置Cは、排気口開閉弁13Aを閉じ、さらにガス調整弁22を閉じて噴射ノズル21からの不活性ガスの噴射を停止する。その後、制御装置Cは、高周波印加装置5から誘導加熱コイル12に高周波電流を供給し、温度センサ15の出力に基づいて被処理物Wの表面温度を所定の熱処理温度まで加熱する。   Next, the operation of the surface treatment apparatus 1 according to the present embodiment will be described. First, the control device C opens the gas adjustment valve 22, closes the projection material adjustment valve 27, and further opens the exhaust port opening / closing valve 13A. Thereby, only the inert gas is injected from the injection nozzle 21 into the chamber 2, the air in the chamber 2 is discharged from the exhaust port 13, and the chamber 2 is filled with the inert gas. When the oxygen concentration in the chamber 2 detected by the oxygen concentration meter 14 decreases to a predetermined value or less (for example, 0.3% or less), the control device C closes the exhaust port on-off valve 13A and further controls the gas adjustment valve 22. And the injection of the inert gas from the injection nozzle 21 is stopped. Thereafter, the control device C supplies a high-frequency current from the high-frequency applying device 5 to the induction heating coil 12 and heats the surface temperature of the workpiece W to a predetermined heat treatment temperature based on the output of the temperature sensor 15.

次に、制御装置Cは、ガス調整弁22及び投射材調整弁27を開放制御し、噴射ノズル21から投射材3及び不活性ガスを噴射させてショットピーニング処理を行う。このとき、温度センサ15により被処理物Wの表面温度が所定の熱処理温度、具体的には、上述したように700℃〜1100℃の範囲のいずれかに設定された温度に保持されるように、誘導加熱コイル12に高周波電流が供給されている。よって、不活性ガス雰囲気中において誘導加熱されている被処理物Wの表面に、投射材3が衝突すると、当該投射材3が被処理物Wの表面に移着すると共に内部に拡散して、上述したような金属間化合物被膜が形成される。このとき、チャンバ2内には酸素ガスが極めて少ない状態であるため、被処理物Wの表面には、酸化スケールが殆ど生成されない。   Next, the control device C controls the opening of the gas adjustment valve 22 and the projection material adjustment valve 27, and injects the projection material 3 and the inert gas from the injection nozzle 21 to perform the shot peening process. At this time, the temperature sensor 15 keeps the surface temperature of the workpiece W at a predetermined heat treatment temperature, specifically, at a temperature set in the range of 700 ° C. to 1100 ° C. as described above. The induction heating coil 12 is supplied with a high-frequency current. Therefore, when the projection material 3 collides with the surface of the workpiece W that is induction-heated in an inert gas atmosphere, the projection material 3 moves to the surface of the workpiece W and diffuses inside. An intermetallic compound film as described above is formed. At this time, since the oxygen gas is extremely small in the chamber 2, almost no oxide scale is generated on the surface of the workpiece W.

次に、制御装置Cは、投射材調整弁27を閉塞し、ガス調整弁22のみを開放して、噴射ノズル21から不活性ガスのみを被処理物Wに噴射し、所定時間、例えば30秒かけて冷却を行う。以上の工程を経ることにより、金属製の被処理物Wの表面に、高融点金属と低融点金属とを含んだ金属間化合物により形成される金属間化合物被膜が形成される。次に、本発明に係る金属間化合物被膜付き金属製部材の形態について説明する。   Next, the control device C closes the projection material adjustment valve 27, opens only the gas adjustment valve 22, and injects only the inert gas from the injection nozzle 21 onto the workpiece W, for a predetermined time, for example, 30 seconds. To cool. By passing through the above process, the intermetallic compound film formed by the intermetallic compound containing the high melting point metal and the low melting point metal is formed on the surface of the metal workpiece W. Next, the form of the metal member with an intermetallic compound film according to the present invention will be described.

<本発明に係る金属間化合物被膜付き金属製部材の形態>
本発明に係る金属間化合物被膜付き金属製部材は、詳細は上述した如き表面処理方法により得られるものであって、当該金属製部材の表面に、前記高融点金属と前記低融点金属との金属間化合物被膜を備えたことを特徴とする。
<Mode of Metal Member with Intermetallic Compound Film According to the Present Invention>
The metal member with an intermetallic compound film according to the present invention is obtained in detail by the surface treatment method as described above, and the metal of the high melting point metal and the low melting point metal is formed on the surface of the metal member. An intermetallic compound coating is provided.

被処理物は、上述したように、誘導加熱法による加熱が可能な金属製部材であれば、いずれのものを用いることができる。例えば、炭素鋼等のFeを主成分とする鋼材を用いることが好ましい。   As described above, any object can be used as long as it is a metal member that can be heated by induction heating. For example, it is preferable to use a steel material mainly composed of Fe such as carbon steel.

当該金属製部材の表面に形成する金属間化合物被膜は、高融点金属と低融点金属との金属間化合物により形成される。高融点金属としては、上述したように、融点が当該表面処理において金属製の被処理物の誘導加熱温度である熱処理温度より高い、例えば、TiやNi等を用いることが好ましい。低融点金属としては、融点が当該熱処理温度よりも低い、例えば、AlやZn等を用いることが好ましい。   The intermetallic compound film formed on the surface of the metal member is formed of an intermetallic compound of a high melting point metal and a low melting point metal. As described above, as the refractory metal, it is preferable to use, for example, Ti or Ni whose melting point is higher than the heat treatment temperature that is the induction heating temperature of the metal object in the surface treatment. As the low melting point metal, it is preferable to use, for example, Al or Zn having a melting point lower than the heat treatment temperature.

当該金属間化合物被膜は、上述した高融点金属と低融点金属とから成る金属間化合物以外にも、当該高融点金属、及び/又は、当該低融点金属と、金属製部材を構成する基材金属との金属間化合物を含むことが好ましい。   In addition to the above-described intermetallic compound composed of a high melting point metal and a low melting point metal, the intermetallic compound film is a base metal constituting the high melting point metal and / or the low melting point metal and a metal member. And an intermetallic compound.

具体的には、被処理物としての炭素鋼に対して、高融点金属がNi、低融点金属がAlである投射材を用いて本発明に係る表面処理を施した場合、炭素鋼の表面には、NiAl、NiAl、FeAl等の金属間化合物を含む金属間化合物被膜を形成することができる。また、被処理物としての炭素鋼に対して、高融点金属がTi、低融点金属がAlである投射材を用いて本発明に係る表面処理を施した場合、炭素鋼の表面には、TiAl、TiAl12Fe等の金属間化合物を含む金属間化合物被膜を形成することができる。これら被処理物の表面に形成される金属間化合物被膜は、高融点金属と低融点金属、及び/又は基材金属を含むものであればよく、表面処理条件によって形成される金属間化合物は異なるため、これに限定されるものではない。 Specifically, when the surface treatment according to the present invention is performed on a carbon steel as an object to be processed using a projection material in which the high melting point metal is Ni and the low melting point metal is Al, Can form an intermetallic compound film containing an intermetallic compound such as NiAl, NiAl 3 , Fe 2 Al 5 or the like. Moreover, when the surface treatment which concerns on this invention using the projection material whose high melting point metal is Ti and low melting point metal is Al with respect to the carbon steel as a to-be-processed object, on the surface of carbon steel, TiAl 3 , an intermetallic compound film containing an intermetallic compound such as TiAl 12 Fe can be formed. The intermetallic compound film formed on the surface of the object to be processed may contain a high melting point metal, a low melting point metal, and / or a base metal, and the intermetallic compound formed varies depending on the surface treatment conditions. Therefore, it is not limited to this.

当該高融点金属と低融点金属の金属間化合物、例えば、上述したNi−Al系の金属間化合物や、Ti−Al系の金属間化合物は、高温強度や、耐酸化性、耐摩耗性等の機械的特性に優れたものである。ゆえに、当該金属間化合物からなる金属間化合物被膜付きの金属製部材は、表面について高温強度や、耐酸化性、耐摩耗性等の機械的特性を向上させることができる。また、当該金属間化合物被膜には、被処理物を構成する基材元素を含む金属間化合物が含まれていることにより、当該金属間化合物被膜と被処理物との間には、機械的特性を十分に発揮しうる密着性を確保することができる。   The intermetallic compound of the high melting point metal and the low melting point metal, for example, the above-described Ni-Al intermetallic compound or Ti-Al intermetallic compound has high temperature strength, oxidation resistance, wear resistance, etc. It has excellent mechanical properties. Therefore, the metal member with an intermetallic compound film made of the intermetallic compound can improve mechanical properties such as high-temperature strength, oxidation resistance, and wear resistance on the surface. In addition, since the intermetallic compound film contains an intermetallic compound containing a base element constituting the object to be processed, mechanical properties are present between the intermetallic compound film and the object to be processed. Can be secured.

次に、本発明に係る表面処理方法の実施例1〜実施例8について説明する。   Next, Examples 1 to 8 of the surface treatment method according to the present invention will be described.

実施例1では、被処理物Wとしてφ15mmの円盤状に機械加工した後、♯240〜1200のエメリー紙を用いて一方の端面を鏡面状に仕上げた機械構造用炭素鋼(S45C)の試験片を用いた。当該機械構造用炭素鋼の試験片の化学組成を以下の表1に示す。   In Example 1, a machine structural carbon steel (S45C) test piece, which was machined as a workpiece W into a disk shape of φ15 mm and then finished with one end face mirror-like using # 240-1200 emery paper Was used. The chemical composition of the test piece of the carbon steel for machine structure is shown in Table 1 below.

実施例1で用いた投射材は、Ti粒子とAl粒子の混合粒子を用いた。具体的には、Ti粒子とAl粒子を原子数比で1:1として容器に入れた後、手動で撹拌することにより混合粒子を得た。   The projection material used in Example 1 was a mixed particle of Ti particles and Al particles. Specifically, Ti particles and Al particles were put in a container with an atomic ratio of 1: 1, and then mixed particles were obtained by manually stirring.

実施例1では、上述した表面処理装置1を用いて、当該試験片の表面処理を行った。具体的には、上述した試験片を誘導加熱コイル12の内側に設置した後、噴射ノズル21から窒素ガスを供給し、チャンバ2内の雰囲気を窒素ガスに置換した。その後、試験片を熱処理温度として700℃まで昇温し、その温度を維持しながら粒子供給量0.1g/s、投射距離100mm、噴射圧力0.5MPaで、10秒間投射した。さらに、投射後30秒間処理温度を保持し、その後ガス冷却を行った。以上の操作を行うことにより、実施例1としての金属間化合物被膜付き構造用炭素鋼を得た。当該試験片の熱履歴を図4に示す。   In Example 1, the surface treatment of the test piece was performed using the surface treatment apparatus 1 described above. Specifically, after the test piece described above was installed inside the induction heating coil 12, nitrogen gas was supplied from the injection nozzle 21, and the atmosphere in the chamber 2 was replaced with nitrogen gas. Thereafter, the test piece was heated to 700 ° C. as a heat treatment temperature, and was projected for 10 seconds at a particle supply rate of 0.1 g / s, a projection distance of 100 mm, and an injection pressure of 0.5 MPa while maintaining the temperature. Furthermore, the treatment temperature was maintained for 30 seconds after the projection, and then gas cooling was performed. By performing the above operation, structural carbon steel with an intermetallic compound coating as Example 1 was obtained. The thermal history of the test piece is shown in FIG.

実施例2は、実施例1と熱処理温度のみが異なり、それ以外は、同様の試験片、投射材、実験条件を採用して、金属間化合物被膜付き構造用炭素鋼を得た。実施例2では、熱処理温度を900℃とした。   Example 2 was different from Example 1 only in the heat treatment temperature, and otherwise, the same test piece, projection material, and experimental conditions were employed to obtain a structural carbon steel with an intermetallic compound coating. In Example 2, the heat treatment temperature was 900 ° C.

実施例3は、実施例1と用いた投射材のみが異なり、それ以外は、同様の試験片、実験条件を採用して、金属間化合物被膜付き構造用炭素鋼を得た。実施例3で用いた投射材は、Ti粒子とAl粒子のMM粒子(プロセス制御剤なし)を用いた。具体的には、Ti粒子とAl粒子を原子数比で1:1として容器に入れた後、遊星型ボールミルを用いたメカニカルミリング法により作製した。具体的なメカニカルミリング法による条件は、大気環境下で60分、回転数800rpmとした。   Example 3 was different from Example 1 only in the projection material used. Except that, the same test piece and experimental conditions were used to obtain a structural carbon steel with an intermetallic compound coating. As the projection material used in Example 3, MM particles of Ti particles and Al particles (no process control agent) were used. Specifically, Ti particles and Al particles were put in a container with an atomic ratio of 1: 1, and then produced by a mechanical milling method using a planetary ball mill. The specific conditions for the mechanical milling method were 60 minutes under the atmospheric environment and a rotation speed of 800 rpm.

実施例4は、実施例2と熱処理温度のみが異なり、それ以外は、同様の試験片、投射材、実験条件を採用して、金属間化合物被膜付き構造用炭素鋼を得た。実施例4では、熱処理温度を900℃とした。   Example 4 was different from Example 2 only in the heat treatment temperature. Otherwise, the same test piece, projection material, and experimental conditions were employed to obtain a structural carbon steel with an intermetallic compound coating. In Example 4, the heat treatment temperature was 900 ° C.

実施例5は、実施例1と同様の試験片を用いた。実施例5で用いた投射材は、Ti粒子とAl粒子のMM粒子(プロセス制御剤あり)を用いた。具体的には、Ti粒子とAl粒子を原子数比で1:3として容器に入れた後、遊星型ボールミルを用いたメカニカルミリング法により作製した。具体的なメカニカルミリング法による条件は、使用粒子重量20gに対して、プロセス制御剤としての1%イソプロパノールを添加し、BPR(Ball to powder Ratio ジルコニアボール(粒径1cm)と粒子重量比)10:1、大気環境下で6時間、回転数300rpmとした。実施例5では、実施例1と同様の装置を用いて、チャンバ2内の雰囲気をアルゴンガスとし、熱処理温度を1000℃、粒子供給量0.05g/s、投射距離100mm、噴射圧力0.5MPaで、投射時間20秒、投射後の保持時間60秒とした。   In Example 5, the same test piece as in Example 1 was used. As the projection material used in Example 5, MM particles (with process control agent) of Ti particles and Al particles were used. Specifically, Ti particles and Al particles were put in a container with an atomic ratio of 1: 3, and then manufactured by a mechanical milling method using a planetary ball mill. Specific conditions for the mechanical milling method include adding 1% isopropanol as a process control agent to 20 g of the used particle weight, and BPR (Ball to powder Ratio zirconia ball (particle diameter 1 cm) and particle weight ratio) 10: 1. The number of revolutions was 300 rpm for 6 hours in an atmospheric environment. In Example 5, using the same apparatus as in Example 1, the atmosphere in the chamber 2 was argon gas, the heat treatment temperature was 1000 ° C., the particle supply amount was 0.05 g / s, the projection distance was 100 mm, and the injection pressure was 0.5 MPa. Thus, the projection time was 20 seconds and the holding time after projection was 60 seconds.

実施例6は、実施例1と同様の試験片を用いた。実施例6で用いた投射材は、Ni粒子とAl粒子のMM粒子(プロセス制御剤あり)を用いた。具体的には、Ni粒子とAl粒子を容器に入れた後、遊星型ボールミルを用いたメカニカルミリング法により作製した。具体的なメカニカルミリング法による条件は、Ni粒径2〜3μm、Al粒径30μmのNi粒子とAl粒子を原子数比で2:8とした使用粒子重量20gに対して、プロセス制御剤としての1%イソプロパノール(0.2g)を添加し、BPR10:1、大気環境下で6時間、回転数200rpmとした。実施例6では、実施例1と同様の装置を用いて、チャンバ2内の雰囲気をアルゴンガスとし、熱処理温度を700℃、粒子供給量0.1g/s、投射距離100mm、噴射圧力0.5MPaで、投射時間20秒、投射後の保持時間60秒とした。   In Example 6, the same test piece as in Example 1 was used. As the projection material used in Example 6, MM particles (with process control agent) of Ni particles and Al particles were used. Specifically, Ni particles and Al particles were put in a container and then manufactured by a mechanical milling method using a planetary ball mill. The specific conditions by the mechanical milling method were as follows: Ni particles having a particle size of 2 to 3 μm and Al particles having a particle size of 30 μm and an Al particle ratio of 2: 8 in terms of the used particle weight of 20 g were used as a process control agent. 1% isopropanol (0.2 g) was added, BPR was 10: 1, and the rotation speed was 200 rpm for 6 hours in an atmospheric environment. In Example 6, using the same apparatus as in Example 1, the atmosphere in the chamber 2 was argon gas, the heat treatment temperature was 700 ° C., the particle supply amount was 0.1 g / s, the projection distance was 100 mm, and the injection pressure was 0.5 MPa. Thus, the projection time was 20 seconds and the holding time after projection was 60 seconds.

実施例7は、実施例6と熱処理温度のみが異なり、それ以外は、同様の試験片、投射材、実験条件を採用して、金属間化合物被膜付き構造用炭素鋼を得た。実施例7では、熱処理温度を900℃とした。   Example 7 was different from Example 6 only in the heat treatment temperature. Otherwise, the same test piece, projection material, and experimental conditions were employed to obtain a structural carbon steel with an intermetallic compound coating. In Example 7, the heat treatment temperature was 900 ° C.

実施例8は、実施例6と熱処理温度のみが異なり、それ以外は、同様の試験片、投射材、実験条件を採用して、金属間化合物被膜付き構造用炭素鋼を得た。実施例8では、熱処理温度を1000℃とした。   Example 8 was different from Example 6 only in the heat treatment temperature, and otherwise, the same test piece, projection material, and experimental conditions were employed to obtain a structural carbon steel with an intermetallic compound coating. In Example 8, the heat treatment temperature was 1000 ° C.

上述した各実施例1〜実施例8の実験条件について表2にまとめて示す。   Table 2 summarizes the experimental conditions of Examples 1 to 8 described above.

上述した各実施例1〜実施例5の各金属間化合物被膜付き構造用炭素鋼の表面について、走査型電子顕微鏡(Scaning electron microscope:SEM)、エネルギー分散型X線分光装置(Energy Dispersive X−ray spectrometoerEDX)、及び、X線回折装置(X−Ray Diffractometer:XRD)を用いて、評価を行った。実施例6〜実施例8の各金属間化合物被膜付き構造用炭素鋼については、SEM、EDXによる評価、及び高温連続酸化試験による評価を行った。   About the surface of each structural carbon steel with each intermetallic compound coating of each of Examples 1 to 5 described above, a scanning electron microscope (SEM), an energy dispersive X-ray spectrometer (Energy Dispersive X-ray) Evaluation was performed using a spectrometer EDX) and an X-ray diffractometer (XRD). About the structural carbon steel with each intermetallic compound film of Examples 6 to 8, evaluation by SEM and EDX and evaluation by a high-temperature continuous oxidation test were performed.

(1)実施例1及び実施例2について
図5に実施例1及び実施例2の試験片についてのXRDの分析結果を示す。図5に示すように、Ti粒子とAl粒子の混合粒子を投射材として用いて、700℃でAIH−FPP処理を施した実施例1の試験片の表面には、TiAlのピークが存在し、当該チタンとアルミニウムから成る金属間化合物が存在することがわかる。また、900℃でAIH−FPP処理を施した実施例2の試験片の表面には、TiAlやTiAlのピークが存在しており、当該チタンとアルミニウムから成る金属間化合物が存在することがわかる。
(1) About Example 1 and Example 2 FIG. 5 shows the XRD analysis results for the test pieces of Example 1 and Example 2. FIG. As shown in FIG. 5, there is a TiAl 3 peak on the surface of the test piece of Example 1 which was subjected to AIH-FPP treatment at 700 ° C. using mixed particles of Ti particles and Al particles as a projection material. It can be seen that there is an intermetallic compound composed of titanium and aluminum. Further, Ti 3 Al and TiAl peaks are present on the surface of the test piece of Example 2 subjected to the AIH-FPP treatment at 900 ° C., and an intermetallic compound composed of the titanium and aluminum may be present. Recognize.

次に、SEMとEDXによる分析結果について述べる。図6に実施例1及び実施例2の試験片の縦断面をSEMとEDXにより分析した結果を示す。700℃で混合粒子を投射した実施例1の試験片には、Al粒子の移着が確認されるものの、Ti粒子の移着がわずかに確認されたことがわかる。一方、900℃で混合粒子を投射した実施例2の試験片には、Ti粒子の移着がAl粒子に囲まれるかたちで確認される。実施例2では、粒子間に空隙が多数存在しており、明りょうではないが、金属間化合物被膜が炭素鋼の表面に形成されていることがわかる。当該結果は、投射粒子はAl粒子が先に被処理物の表面に衝突し溶融した後、溶融部分にTi粒子が衝突することでTi粒子が移着したことを示唆している。そのため、融点の高いTi粒子の移着には融点の低いAl粒子の溶融が不可欠である可能性がある。このことが、処理温度700℃では、Al粒子の溶融が十分ではなく、Ti粒子の移着が起こりにくかった理由と考えられる。また、処理温度900℃においても、混合粒子ではTi及びAl粒子の衝突に時間差があるため、空隙が存在する金属間化合物被膜が形成されたものと考えられる。   Next, analysis results by SEM and EDX will be described. The result of having analyzed the longitudinal section of the test piece of Example 1 and Example 2 by SEM and EDX in FIG. In the test piece of Example 1 in which the mixed particles were projected at 700 ° C., although the transfer of Al particles was confirmed, it was found that the transfer of Ti particles was slightly confirmed. On the other hand, in the test piece of Example 2 in which the mixed particles were projected at 900 ° C., the transfer of Ti particles was confirmed in a manner surrounded by Al particles. In Example 2, there are many voids between the particles, and although not clear, it can be seen that an intermetallic compound coating is formed on the surface of the carbon steel. The result suggests that after the Al particles collide with the surface of the object to be processed and melt, the Ti particles migrated by the Ti particles colliding with the melted portion. Therefore, melting of Al particles having a low melting point may be indispensable for transferring Ti particles having a high melting point. This is considered to be the reason why the Al particles were not sufficiently melted at the treatment temperature of 700 ° C., and Ti particles were hardly transferred. Further, even at a treatment temperature of 900 ° C., it is considered that an intermetallic compound film having voids was formed because there was a time difference in the collision of Ti and Al particles in the mixed particles.

(2)実施例3及び実施例4について
図7に実施例3及び実施例4の試験片についてのXRDの分析結果を示す。図7に示すように、Ti粒子とAl粒子のMM粒子(プロセス制御剤なし)を投射材として用いて、700℃でAIH−FPP処理を施した実施例3の試験片の表面には、TiAlやTiAlの金属間化合物のピークが強く存在していることがわかる。また、900℃でAIH−FPP処理を施した実施例4の試験片の表面には、TiAlやTiAl、TiAl、Al12TiFeのピークが存在しており、当該チタンとアルミニウムから成る金属間化合物の他にも、Ti、Al、Feを含む金属間化合物のピークが検出されていることから、被処理物の基材金属が金属間化合物被膜中に拡散していると考えられる。
(2) About Example 3 and Example 4 FIG. 7 shows the XRD analysis results for the test pieces of Example 3 and Example 4. As shown in FIG. 7, the surface of the test piece of Example 3 which was subjected to AIH-FPP treatment at 700 ° C. using MM particles (without a process control agent) of Ti particles and Al particles as a projecting material was TiAl. It can be seen that there is a strong peak of the intermetallic compound of 3 and Ti 3 Al. The surface of the test piece of Example 4 which has been subjected to AIH-FPP treated at 900 ° C., TiAl 3 and Ti 3 Al, TiAl, Al 12 Ti 3 peak of Fe is present, from the titanium and aluminum In addition to the intermetallic compound, the peak of the intermetallic compound containing Ti, Al, and Fe is detected, so it is considered that the base metal of the object to be processed is diffused in the intermetallic compound film. .

次に、SEMとEDXによる分析結果について述べる。図8に実施例3及び実施例4の試験片の縦断面をSEMとEDXにより分析した結果を示す。700℃でMM粒子(プロセス制御剤なし)を投射した実施例3の試験片では、混合粒子を投射した実施例1の場合と同様に、Ti粒子の移着が殆ど確認されないことがわかる。一方、900℃でMM粒子(プロセス制御剤なし)を投射した実施例4の試験片では、Ti、Al、Feを含む100μmほどの金属間化合物被膜が確認できた。よって、MM粒子を用いることで、Ti粒子とAl粒子を被処理物の表面に同時に衝突させることができるようになった結果、空隙が消滅し、安定な金属間化合物被膜が形成されたと考えられる。   Next, analysis results by SEM and EDX will be described. The result of having analyzed the longitudinal section of the test piece of Example 3 and Example 4 by SEM and EDX in FIG. 8 is shown. It can be seen that in the test piece of Example 3 in which MM particles (without a process control agent) were projected at 700 ° C., transfer of Ti particles was hardly confirmed as in Example 1 in which mixed particles were projected. On the other hand, in the test piece of Example 4 in which MM particles (without a process control agent) were projected at 900 ° C., an intermetallic compound film of about 100 μm containing Ti, Al, and Fe could be confirmed. Therefore, by using MM particles, Ti particles and Al particles can simultaneously collide with the surface of the object to be processed. As a result, voids disappear and a stable intermetallic compound film is formed. .

(3)実施例5について
実施例5は、上述したXRD、SEM及びEDXに加えて得られた金属間化合物被膜付き構造用炭素鋼のビッカース硬さ試験及び高温酸化試験を行って、評価を行った。
(3) About Example 5 Example 5 was evaluated by performing a Vickers hardness test and a high-temperature oxidation test on the structural carbon steel with intermetallic compound coating obtained in addition to the above-described XRD, SEM, and EDX. It was.

図9に実施例5の試験片についてのXRDの分析結果を示す。図9に示すように、Ti粒子とAl粒子のMM粒子(プロセス制御剤あり)を投射材として用いて、1000℃でAIH−FPP処理を施した実施例5の試験片の表面には、TiAlやAl12TiFeのピークが存在しており、当該チタンとアルミニウムから成る金属間化合物の他にも、Ti、Al、Feを含む金属間化合物のピークが検出されていることから、被処理物の基材金属が金属間化合物被膜中に拡散していると考えられる。TiとAlから成る金属間化合物は、上述したように、TiAl、TiAl、TiAl等が存在するが、Ti粒子とAl粒子の存在比率を1:3とした実施例5において、被処理物の表面に形成された金属間化合物としてTiAlが明りょうに検出されている。 FIG. 9 shows the XRD analysis results for the test piece of Example 5. As shown in FIG. 9, the surface of the test piece of Example 5 which was subjected to AIH-FPP treatment at 1000 ° C. using MM particles (with a process control agent) of Ti particles and Al particles as a projecting material had TiAl 3 and Al 12 Ti 3 Fe peaks exist, and in addition to the intermetallic compound composed of titanium and aluminum, peaks of intermetallic compounds including Ti, Al, and Fe are detected. It is considered that the base metal of the treated product is diffused in the intermetallic compound film. As described above, the intermetallic compound composed of Ti and Al includes TiAl, TiAl 3 , Ti 3 Al, etc., but in Example 5 in which the ratio of Ti particles to Al particles was 1: 3, TiAl 3 is clearly detected as an intermetallic compound formed on the surface of the object.

次に、SEMとEDXによる分析結果について述べる。図10に実施例5の試験片の縦断面をSEMとEDXにより分析した結果を示す。1000℃でMM粒子(プロセス制御剤あり)を投射した実施例5の試験片Ti、Al、Feを含む450μmほどの金属間化合物被膜が確認できた。よって、MM粒子(プロセス制御剤あり)を用い、かつ、被処理物を1000℃に加熱することにより、Ti粒子とAl粒子を被処理物の表面に同時に衝突させることで空隙が消滅し、Ti、Al、Feが均一に分散した安定な金属間化合物被膜が形成されたと考えられる。   Next, analysis results by SEM and EDX will be described. The result of having analyzed the longitudinal cross-section of the test piece of Example 5 by SEM and EDX in FIG. 10 is shown. An intermetallic compound coating of about 450 μm containing the test pieces Ti, Al, and Fe of Example 5 projected with MM particles (with a process control agent) at 1000 ° C. was confirmed. Therefore, by using MM particles (with a process control agent) and heating the object to be processed at 1000 ° C., the Ti particles and Al particles collide with the surface of the object to be processed at the same time, thereby eliminating the voids. It is considered that a stable intermetallic compound film in which Al and Fe were uniformly dispersed was formed.

次に、ビッカース硬さ試験による評価について述べる。図11に実施例5の試験片のビッカース硬さ試験の結果を示す。1000℃でMM粒子(プロセス制御剤あり)を投射した実施例5の試験片は、金属間化合物被膜の表層付近の硬さは安定していないが、被処理物の表面から250nmまでの範囲で、700HV前後でほぼ安定した硬さの金属間化合物被膜が形成されていることがわかる。よって、金属間化合物被膜の内部では均質な金属間化合物が形成されていることがわかる。   Next, evaluation by the Vickers hardness test will be described. The result of the Vickers hardness test of the test piece of Example 5 is shown in FIG. In the test piece of Example 5 in which MM particles (with a process control agent) were projected at 1000 ° C., the hardness in the vicinity of the surface layer of the intermetallic compound coating was not stable, but in the range from the surface of the workpiece to 250 nm. It can be seen that an intermetallic compound film having a substantially stable hardness is formed around 700 HV. Therefore, it turns out that the homogeneous intermetallic compound is formed inside the intermetallic compound film.

次に、高温連続酸化試験の結果について述べる。当該高温連続酸化試験は、JIS Z 2281に準拠して、上述したAIH−FPP処理による表面処理後の実施例5の試験片を炉に入れて、大気環境下で900℃、100時間加熱することにより行った。高温連続酸化試験後の試験片についてSEMとEDXによる分析結果を図12に示す。試験片の上面には、TiとAl、Feの金属間化合物被膜が形成されており、側面には、当該金属間化合物被膜が形成されていない状態であることが図12からわかる。そして、図12の酸素の分布をみると、金属間化合物被膜が形成されていない側面は、酸素が表面から4.5mmの範囲まで拡散していることがわかる。これに対し、金属間化合物被膜が形成された上面は、殆ど酸素が拡散していないことがわかる。   Next, the results of the high temperature continuous oxidation test will be described. In the high-temperature continuous oxidation test, the test piece of Example 5 after the surface treatment by the AIH-FPP treatment described above is placed in a furnace in accordance with JIS Z 2281 and heated at 900 ° C. for 100 hours in an atmospheric environment. It went by. The analysis result by SEM and EDX about the test piece after a high-temperature continuous oxidation test is shown in FIG. It can be seen from FIG. 12 that an intermetallic compound film of Ti, Al, and Fe is formed on the upper surface of the test piece, and the intermetallic compound film is not formed on the side surface. When the oxygen distribution in FIG. 12 is observed, it can be seen that oxygen diffuses from the surface to a range of 4.5 mm on the side surface where the intermetallic compound film is not formed. On the other hand, it can be seen that almost no oxygen diffuses on the upper surface on which the intermetallic compound film is formed.

高温連続酸化試験により増加した試験片の単位面積当たりの重量を算出した。本発明のAIH−FPP処理による表面処理を行わなかった試験片の単位面積当たりの酸化増量は、160mg/cmであった。これに対し、上面に本発明のAIH−FPP処理による表面処理を行った実施例5の単位面積当たりの酸化増量は、95mg/cmであった。当該試験結果から、未処理材に比較して、本発明のAIH−FPP処理による表面処理を行った実施例5の試験片では、質量増加を60%程度に低下することができたことがわかる。当該結果より、形成されたTi−Alの金属間化合物被膜は、被処理物である炭素鋼表面の酸化を大幅に抑制することができ、耐酸化性を向上させることが可能となったことがわかる。 The weight per unit area of the test piece increased by the high-temperature continuous oxidation test was calculated. The oxidation increase per unit area of the test piece not subjected to the surface treatment by the AIH-FPP treatment of the present invention was 160 mg / cm 2 . On the other hand, the amount of increase in oxidation per unit area of Example 5 in which the surface treatment by the AIH-FPP treatment of the present invention was performed on the upper surface was 95 mg / cm 2 . From the test results, it can be seen that the increase in mass could be reduced to about 60% in the test piece of Example 5 in which the surface treatment by the AIH-FPP treatment of the present invention was performed as compared with the untreated material. . From the results, it was found that the formed Ti—Al intermetallic compound film was able to significantly suppress the oxidation of the surface of the carbon steel as the object to be processed, and to improve the oxidation resistance. Recognize.

(4)実施例6〜実施例8について
実施例6〜実施例8では、SEM、EDX及び高温酸化試験を行って、評価を行った。
(4) About Examples 6 to 8 In Examples 6 to 8, evaluation was performed by performing SEM, EDX, and a high temperature oxidation test.

図13に実施例6〜実施例8の各試験片の縦断面をSEMとEDXにより分析した結果を示す。700℃でMM粒子(プロセス制御剤あり)を投射した実施例6の試験片には、Al粒子及びNi粒子の移着が確認されたことがわかる。しかし、当該Al粒子及びNi粒子から合成される金属間化合物被膜中に、Feが殆ど拡散していないことがわかる。一方、900℃でMM粒子(プロセス制御剤あり)を投射した実施例7及び1000℃でMM粒子(プロセス制御剤あり)を投射した実施例8の試験片には、Ni、Al、Feを含む200μmほどの金属間化合物被膜が確認できた。よって、MM粒子(プロセス制御剤あり)を用い、かつ、被処理物を900℃〜1000℃に加熱することにより、Ni粒子とAl粒子を被処理物の表面に同時に衝突させることで、Ni、Al、Feが均一に分散した安定な金属間化合物被膜が形成されたと考えられる。   The result of having analyzed the longitudinal section of each test piece of Example 6-8 in FIG. 13 by SEM and EDX is shown. It can be seen that the transfer of Al particles and Ni particles was confirmed in the test piece of Example 6 in which MM particles (with a process control agent) were projected at 700 ° C. However, it can be seen that Fe hardly diffuses in the intermetallic compound film synthesized from the Al particles and Ni particles. On the other hand, the test pieces of Example 7 in which MM particles (with a process control agent) were projected at 900 ° C. and Example 8 in which MM particles (with a process control agent) were projected at 1000 ° C. contained Ni, Al, and Fe. An intermetallic compound film of about 200 μm was confirmed. Therefore, by using MM particles (with process control agent) and heating the object to be processed at 900 ° C. to 1000 ° C., Ni particles and Al particles collide with the surface of the object to be processed at the same time, Ni, It is considered that a stable intermetallic compound film in which Al and Fe were uniformly dispersed was formed.

次に、高温連続酸化試験の結果について述べる。当該高温連続酸化試験は、JIS Z 2281に準拠して、上述したAIH−FPP処理による表面処理後の実施例6〜実施例8の試験片を炉に入れて、大気環境下で900℃、昇温時間0.5時間、試験時間100時間加熱することにより行った。試験終了直後から試験環境を開放して、空気を流入させながら冷却を行った。高温連続酸化試験後の試験片についてSEMとEDXによる分析結果を図14〜図17に示す。図14は、比較としての本発明のAIH−FPP処理による表面処理を行わなかった試験片のSEMとEDXによる分析結果を示す。図15は700℃でMM粒子(プロセス制御剤あり)を投射した実施例6の高温連続酸化試験後のSEMとEDXによる分析結果を示す。図16は900℃でMM粒子(プロセス制御剤あり)を投射した実施例7の高温連続酸化試験後のSEMとEDXによる分析結果を示す。図17は1000℃でMM粒子(プロセス制御剤あり)を投射した実施例8の高温連続酸化試験後のSEMとEDXによる分析結果を示す。   Next, the results of the high temperature continuous oxidation test will be described. According to JIS Z 2281, the high-temperature continuous oxidation test was performed by placing the test pieces of Examples 6 to 8 after the surface treatment by the above-described AIH-FPP treatment in a furnace and increasing the temperature to 900 ° C. in an atmospheric environment. The heating was carried out by heating for 0.5 hour and test time of 100 hours. Immediately after the test was completed, the test environment was opened, and cooling was performed while inflowing air. The analysis results by SEM and EDX of the test pieces after the high-temperature continuous oxidation test are shown in FIGS. FIG. 14 shows the analysis results by SEM and EDX of a test piece that was not subjected to surface treatment by AIH-FPP treatment of the present invention as a comparison. FIG. 15 shows the analysis results by SEM and EDX after the high-temperature continuous oxidation test of Example 6 in which MM particles (with a process control agent) were projected at 700 ° C. FIG. 16 shows the analysis results by SEM and EDX after the high-temperature continuous oxidation test of Example 7 in which MM particles (with a process control agent) were projected at 900 ° C. FIG. 17 shows the analysis results by SEM and EDX after the high-temperature continuous oxidation test of Example 8 in which MM particles (with a process control agent) were projected at 1000 ° C.

各実施例6〜実施例8の試験片の上面には、NiとAl、Feの金属間化合物被膜が形成されており、側面には、当該金属間化合物被膜が形成されていない状態であることが図15〜図17からわかる。そして、図15〜図17の酸素の分布をみると、金属間化合物被膜が形成されていない側面は、酸素が表面から4.5mmの範囲まで拡散していることがわかる。一方、700℃でMM粒子(プロセス制御剤あり)を投射した実施例6の金属間化合物被膜が形成された上面は、Ni−Al金属間化合物被膜の下層においてもFeの酸化が進行していることが見られる。これにより、700℃でMM粒子(プロセス制御剤あり)を投射した実施例6は、未処理の比較例と比べると酸素の拡散が小さいが、長時間の酸化試験によって被処理物の基材の内部に酸化が進行していく可能性があることがわかる。これは、低温処理により残存した未反応のAlが溶融し、溶融相を通じてFeが被処理物の上面に拡散し、又は空隙を通してFeが被処理物の上面に拡散したものと考えられる。   The test piece of each of Examples 6 to 8 is formed with an intermetallic compound film of Ni, Al, and Fe on the upper surface, and the intermetallic compound film is not formed on the side surface. Can be seen from FIGS. 15 to 17, it can be seen that oxygen diffuses from the surface to a range of 4.5 mm on the side surface where the intermetallic compound film is not formed. On the other hand, on the upper surface on which the intermetallic compound film of Example 6 was projected at 700 ° C. with MM particles (with process control agent), oxidation of Fe progresses even in the lower layer of the Ni—Al intermetallic compound film. It can be seen. Thereby, although Example 6 which projected MM particle | grains (with a process control agent) at 700 degreeC has a small diffusion of oxygen compared with the untreated comparative example, the base material of the object to be treated was obtained by a long-time oxidation test. It can be seen that oxidation may progress inside. This is considered that unreacted Al remaining by the low-temperature treatment melts, and Fe diffuses to the upper surface of the object to be processed through the melt phase, or Fe diffuses to the upper surface of the object to be processed through the voids.

他方、900℃でMM粒子(プロセス制御剤あり)を投射した実施例7の金属間化合物被膜が形成された上面は、金属間化合物被膜からのみ酸素が検出されており、被処理物のFe基材からは酸化が見られないことがわかる。このことから、被処理物のFe基材の酸化を、Ni−Alの金属間化合物被膜により抑制することができたことがわかる。   On the other hand, the upper surface on which the intermetallic compound film of Example 7 in which MM particles (with a process control agent) were projected at 900 ° C. had oxygen detected only from the intermetallic compound film, and the Fe group of the workpiece It can be seen that the material does not oxidize. From this, it can be seen that the oxidation of the Fe base material of the object to be processed could be suppressed by the Ni—Al intermetallic compound coating.

また、1000℃でMM粒子(プロセス制御剤あり)を投射した実施例8の金属間化合物被膜が形成された上面は、900℃で処理を行った実施例7と同様に、被処理物のFe基材からは酸化が見られないことがわかる。このことから、被処理物のFe基材の酸化を、Ni−Alの金属間化合物被膜により抑制することができたことがわかる。   Further, the upper surface on which the intermetallic compound film of Example 8 in which MM particles (with a process control agent) were projected at 1000 ° C. was formed in the same manner as in Example 7 processed at 900 ° C. It can be seen that no oxidation is seen from the substrate. From this, it can be seen that the oxidation of the Fe base material of the object to be processed could be suppressed by the Ni—Al intermetallic compound coating.

次に、高温連続酸化試験により増加した試験片の単位面積当たりの重量を算出した。本発明のAIH−FPP処理による表面処理を行わなかった比較例としての試験片は、上面及び側面には、肉眼で明らかに確認可能な酸化スケールが形成されていた。当該比較例として試験片の単位面積当たりの酸化増量は、190mg/cmであった。これに対し、上面に本発明のAIH−FPP処理による表面処理を行った実施例6〜実施例8は、いずれも表面処理を行っていない側面には、肉眼で確認可能な酸化スケールが形成されていたが、表面処理が行われていた上面には、酸化スケールは確認できなかった。実施例6の単位面積当たりの酸化増量は、140mg/cmであり、実施例7の単位面積当たりの酸化増量は、100mg/cmであり、実施例8の単位面積当たりの酸化増量は、100mg/cmであった。当該試験結果から、未処理材に比較して、本発明のAIH−FPP処理による700℃で表面処理を行った実施例6の試験片では、質量増加を73%程度、本発明のAIH−FPP処理による900℃又は1000℃で表面処理を行った実施例7又は実施例8の試験片では、質量増加を53%程度に低下することができたことがわかる。当該結果より、形成されたNi−Alの金属間化合物被膜は、被処理物である炭素鋼表面の酸化を大幅に抑制することができ、耐酸化性を向上させることが可能となったことがわかる。 Next, the weight per unit area of the test piece increased by the high-temperature continuous oxidation test was calculated. In the test piece as a comparative example in which the surface treatment by the AIH-FPP treatment of the present invention was not performed, an oxide scale that can be clearly confirmed with the naked eye was formed on the upper surface and the side surface. As the comparative example, the increase in oxidation per unit area of the test piece was 190 mg / cm 2 . On the other hand, in Example 6 to Example 8 in which the surface treatment by the AIH-FPP treatment of the present invention was performed on the upper surface, an oxide scale that can be confirmed with the naked eye is formed on the side surface on which no surface treatment is performed. However, no oxide scale was observed on the upper surface where the surface treatment was performed. The oxidation increase per unit area of Example 6 is 140 mg / cm 2 , the oxidation increase per unit area of Example 7 is 100 mg / cm 2 , and the oxidation increase per unit area of Example 8 is It was 100 mg / cm 2 . From the test results, in the test piece of Example 6 that was surface-treated at 700 ° C. by the AIH-FPP treatment of the present invention as compared with the untreated material, the mass increase was about 73%, and the AIH-FPP of the present invention was about 73%. In the test piece of Example 7 or Example 8 in which the surface treatment was performed at 900 ° C. or 1000 ° C. by the treatment, it was found that the increase in mass could be reduced to about 53%. From the results, the formed Ni—Al intermetallic compound film can greatly suppress the oxidation of the surface of the carbon steel that is the object to be processed, and the oxidation resistance can be improved. Recognize.

本発明に係る表面処理方法は、被処理物の表面に高温強度や耐酸化性、耐摩耗性に優れた金属間化合物被膜を形成することができる。よって、製品形状に形成した後で、その表面に高融点金属と低融点金属と被処理物を構成する基材金属とから成る金属間化合物被膜を形成して、被処理物の機械的特性を向上させることができ、複雑な凹凸形状を有する基材において、特に有効である。   The surface treatment method according to the present invention can form an intermetallic compound coating excellent in high temperature strength, oxidation resistance, and wear resistance on the surface of an object to be treated. Therefore, after forming into a product shape, an intermetallic compound film composed of a high melting point metal, a low melting point metal and a base metal constituting the object to be processed is formed on the surface, and the mechanical characteristics of the object to be processed are It can be improved and is particularly effective in a substrate having a complicated uneven shape.

W 被処理物
C 制御装置
1 表面処理装置
2 チャンバ
3 投射材
5 高周波印加装置
11 支持台
12 誘導加熱コイル(加熱手段)
13 排気口
13A 排気口開閉弁
14 酸素濃度計
15 温度センサ
20 噴射部(投射材噴射部又は不活性ガス噴射部)
21 噴射ノズル
22 ガス調整弁
23 ガス供給部
24 ガス供給経路
25 投射材供給経路
26 ホッパー
27 投射材調整弁
W workpiece C control device 1 surface treatment device 2 chamber 3 projection material 5 high frequency application device 11 support base 12 induction heating coil (heating means)
13 Exhaust port 13A Exhaust port open / close valve 14 Oxygen concentration meter 15 Temperature sensor 20 Injection unit (projection material injection unit or inert gas injection unit)
DESCRIPTION OF SYMBOLS 21 Injection nozzle 22 Gas adjustment valve 23 Gas supply part 24 Gas supply path 25 Projection material supply path 26 Hopper 27 Projection material adjustment valve

Claims (10)

不活性ガス雰囲気中において所定の熱処理温度に誘導加熱されている金属製の被処理物に投射材を噴射して表面処理する表面処理方法であって、
投射材は、融点が当該熱処理温度より高い高融点金属と、融点が当該熱処理温度より低い低融点金属とを含み、当該被処理物の表面に金属間化合物を形成することを特徴とする表面処理方法。
A surface treatment method in which a surface treatment is performed by spraying a projection material onto a metal workpiece that is induction-heated to a predetermined heat treatment temperature in an inert gas atmosphere,
The projection material includes a high melting point metal whose melting point is higher than the heat treatment temperature and a low melting point metal whose melting point is lower than the heat treatment temperature, and forms an intermetallic compound on the surface of the object to be treated. Method.
前記被処理物が、構造用炭素鋼部材である請求項1記載の表面処理方法。   The surface treatment method according to claim 1, wherein the workpiece is a structural carbon steel member. 前記高融点金属が、Ti、及び/又は、Niである請求項1又は請求項2に記載の表面処理方法。   The surface treatment method according to claim 1, wherein the refractory metal is Ti and / or Ni. 前記低融点金属が、Al、及び/又は、Znである請求項1〜請求項3のいずれかに記載の表面処理方法。   The surface treatment method according to claim 1, wherein the low melting point metal is Al and / or Zn. 前記投射材が、前記高融点金属の粒子と、前記低融点金属の粒子とをメカニカルミリング法により混合、粉砕、反応させることにより得たメカニカルミリング粒子である請求項1〜請求項4のいずれかに記載の表面処理方法。   The said projecting material is the mechanical milling particle obtained by mixing, grind | pulverizing, and reacting the particle | grains of the said high melting point metal, and the particle | grains of the said low melting point metal by the mechanical milling method. The surface treatment method according to 1. 前記メカニカルミリング法において、前記高融点金属の粒子と、前記低融点金属の粒子にプロセス制御剤を添加して前記投射材を得る請求項5に記載の表面処理方法。   6. The surface treatment method according to claim 5, wherein in the mechanical milling method, a process control agent is added to the high melting point metal particles and the low melting point metal particles to obtain the projection material. 前記高融点金属と、前記低融点金属との混合比率は、原子数比で低融点金属の方が多い請求項6に記載の表面処理方法。   The surface treatment method according to claim 6, wherein a mixing ratio of the high melting point metal and the low melting point metal is higher in the low melting point metal in terms of an atomic ratio. 前記被処理物の誘導加熱による熱処理温度が700℃〜1100℃である請求項1〜請求項7のいずれかに記載の表面処理方法。   The surface treatment method according to any one of claims 1 to 7, wherein a heat treatment temperature of the object to be treated by induction heating is 700 ° C to 1100 ° C. 請求項1〜請求項8のいずれかに記載の表面処理方法により得られた金属間化合物被膜付き金属製部材であって、
当該金属製部材の表面に、前記高融点金属と前記低融点金属との金属間化合物被膜を備えたことを特徴とする金属間化合物被膜付き金属製部材。
A metal member with an intermetallic compound film obtained by the surface treatment method according to any one of claims 1 to 8,
A metal member with an intermetallic compound coating, comprising an intermetallic compound coating of the high melting point metal and the low melting point metal on a surface of the metal member.
さらに前記金属間化合物被膜は、前記高融点金属、及び/又は、前記低融点金属と、金属製部材を構成する基材金属との金属間化合物を含む請求項9の金属間化合物被膜付き金属製部材。   The intermetallic compound film further comprises an intermetallic compound of the high melting point metal and / or the low melting point metal and a base metal constituting the metal member. Element.
JP2015037046A 2015-02-26 2015-02-26 Surface treatment method Active JP6513968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015037046A JP6513968B2 (en) 2015-02-26 2015-02-26 Surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037046A JP6513968B2 (en) 2015-02-26 2015-02-26 Surface treatment method

Publications (2)

Publication Number Publication Date
JP2016160441A true JP2016160441A (en) 2016-09-05
JP6513968B2 JP6513968B2 (en) 2019-05-15

Family

ID=56846333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037046A Active JP6513968B2 (en) 2015-02-26 2015-02-26 Surface treatment method

Country Status (1)

Country Link
JP (1) JP6513968B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088955A (en) * 2021-02-24 2021-07-09 刘川 Metal surface corrosion-resistant wear-resistant coating based on high-frequency impact method and preparation method thereof
US11192300B2 (en) 2016-12-14 2021-12-07 Electronics And Telecommunications Research Institute System for and method of manufacturing three-dimensional structure

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103187A (en) * 1983-11-08 1985-06-07 Matsushita Refrig Co Production of pipe for heat exchanger
JPS61291903A (en) * 1985-06-18 1986-12-22 インコ、アロイス、インタ−ナシヨナル、インコ−ポレ−テツド Production of mechanical alloyed powder
JPH03158453A (en) * 1989-11-14 1991-07-08 Toyota Motor Corp Formation of tial compound layer
JPH08176783A (en) * 1994-12-28 1996-07-09 Toyota Motor Corp Thermal spraying method
JP2006070320A (en) * 2004-09-01 2006-03-16 Railway Technical Res Inst Surface-treated material, surface treatment method and surface treatment apparatus
JP2008127647A (en) * 2006-11-22 2008-06-05 High Frequency Heattreat Co Ltd Surface treatment device and method therefore
JP2009197294A (en) * 2008-02-25 2009-09-03 Honda Motor Co Ltd Manufacturing method of layered product
JP2010163686A (en) * 2008-12-18 2010-07-29 Keio Gijuku Surface treatment apparatus and surface treatment method
JP2011044653A (en) * 2009-08-24 2011-03-03 Sumitomo Metal Mining Co Ltd Method of manufacturing porous valve metal film
JP2012102361A (en) * 2010-11-09 2012-05-31 Keio Gijuku Method for manufacturing metal diffused layer, and metal material
JP2012192401A (en) * 2011-02-28 2012-10-11 Sanyo Special Steel Co Ltd Catalyst member, and production method for the same
JP2013116541A (en) * 2011-12-05 2013-06-13 Keio Gijuku Diamond film coated member and manufacturing method of the same
JP2013221168A (en) * 2012-04-13 2013-10-28 Keio Gijuku Surface treatment device and surface treatment method
US20140147601A1 (en) * 2012-11-26 2014-05-29 Lawrence Livermore National Security, Llc Cavitation And Impingement Resistant Materials With Photonically Assisted Cold Spray

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103187A (en) * 1983-11-08 1985-06-07 Matsushita Refrig Co Production of pipe for heat exchanger
JPS61291903A (en) * 1985-06-18 1986-12-22 インコ、アロイス、インタ−ナシヨナル、インコ−ポレ−テツド Production of mechanical alloyed powder
JPH03158453A (en) * 1989-11-14 1991-07-08 Toyota Motor Corp Formation of tial compound layer
JPH08176783A (en) * 1994-12-28 1996-07-09 Toyota Motor Corp Thermal spraying method
JP2006070320A (en) * 2004-09-01 2006-03-16 Railway Technical Res Inst Surface-treated material, surface treatment method and surface treatment apparatus
JP2008127647A (en) * 2006-11-22 2008-06-05 High Frequency Heattreat Co Ltd Surface treatment device and method therefore
JP2009197294A (en) * 2008-02-25 2009-09-03 Honda Motor Co Ltd Manufacturing method of layered product
JP2010163686A (en) * 2008-12-18 2010-07-29 Keio Gijuku Surface treatment apparatus and surface treatment method
JP2011044653A (en) * 2009-08-24 2011-03-03 Sumitomo Metal Mining Co Ltd Method of manufacturing porous valve metal film
JP2012102361A (en) * 2010-11-09 2012-05-31 Keio Gijuku Method for manufacturing metal diffused layer, and metal material
JP2012192401A (en) * 2011-02-28 2012-10-11 Sanyo Special Steel Co Ltd Catalyst member, and production method for the same
JP2013116541A (en) * 2011-12-05 2013-06-13 Keio Gijuku Diamond film coated member and manufacturing method of the same
JP2013221168A (en) * 2012-04-13 2013-10-28 Keio Gijuku Surface treatment device and surface treatment method
US20140147601A1 (en) * 2012-11-26 2014-05-29 Lawrence Livermore National Security, Llc Cavitation And Impingement Resistant Materials With Photonically Assisted Cold Spray

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11192300B2 (en) 2016-12-14 2021-12-07 Electronics And Telecommunications Research Institute System for and method of manufacturing three-dimensional structure
CN113088955A (en) * 2021-02-24 2021-07-09 刘川 Metal surface corrosion-resistant wear-resistant coating based on high-frequency impact method and preparation method thereof
CN113088955B (en) * 2021-02-24 2023-06-13 刘川 Metal surface corrosion-resistant wear-resistant coating based on high-frequency impact method and preparation method thereof

Also Published As

Publication number Publication date
JP6513968B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
Dadbakhsh et al. Selective laser melting to manufacture “in situ” metal matrix composites: a review
Gromov et al. Structure and properties of high-entropy alloys
Kong et al. Effect of remelting and annealing on the wear resistance of AlCoCrFeNiTi0. 5 high entropy alloys
TWI630100B (en) Consumer electronics machined housing using coating that exhibit metamorphic transformation
JP5731500B2 (en) Bearing steel
JP7018603B2 (en) Manufacturing method of clad layer
CN112139650A (en) Method for preparing intermetallic compound component based on additive manufacturing method in situ additive manufacturing
Kılıçay et al. Microstructural and tribological properties of induction cladded NiCrBSi/WC composite coatings
Huang et al. Microstructure and anti-oxidation behavior of laser clad Ni–20Cr coating on molybdenum surface
Makarov et al. Wear-resistant nickel-based laser clad coatings for high-temperature applications
Shengbin et al. Effects of laser remelting on microstructural characteristics of Ni-WC composite coatings produced by laser hot wire cladding
US9115421B2 (en) Method for nitriding surface of aluminum or aluminum alloy by cold spray method
Chen et al. A new 50Cr6Ni2Y alloy steel prepared by direct laser deposition: its design, microstructure and properties
Haq et al. Powder interface modification for synthesis of core-shell structured CoCrFeNiTi high entropy alloy composite
Ulianitsky et al. Structure and composition of Fe-Co-Ni and Fe-Co-Ni-Cu coatings obtained by detonation spraying of powder mixtures
Polozov et al. In situ synthesized Ti2AlNb-based composites produced by selective laser melting by addition of SiC-whiskers
Kang et al. A new way to net-shaped synthesis tungsten steel by selective laser melting and hot isostatic pressing
JP6513968B2 (en) Surface treatment method
Wang et al. Annealing effect on the intermetallic compound formation of cold sprayed Fe/Al composite coating
Wang et al. Microstructure evolution and mechanical properties of plasma sprayed AlCoCrFeNi2. 1 eutectic high-entropy alloy coatings
Wu et al. Rapid post processing of cold sprayed Inconel 625 by induction heating
Yu et al. Homogenizing the composition of in-situ fabricated Ti2AlNb-based alloy via manipulating the droplet transfer mode of twin-wire arc additive manufacturing
US20220134424A1 (en) High nitrogen steel powder and methods of making the same
Ju et al. Studies on as-cast microstructure and oxidation behavior of the FeCrBAl alloys at 1073 K
Huang et al. Microstructure and properties of NiTi shape memory alloy fabricated by double-wire plasma arc additive manufacturing with a nearly equal atomic ratio

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190411

R150 Certificate of patent or registration of utility model

Ref document number: 6513968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250