JP2013221168A - Surface treatment device and surface treatment method - Google Patents

Surface treatment device and surface treatment method Download PDF

Info

Publication number
JP2013221168A
JP2013221168A JP2012092434A JP2012092434A JP2013221168A JP 2013221168 A JP2013221168 A JP 2013221168A JP 2012092434 A JP2012092434 A JP 2012092434A JP 2012092434 A JP2012092434 A JP 2012092434A JP 2013221168 A JP2013221168 A JP 2013221168A
Authority
JP
Japan
Prior art keywords
steel material
surface treatment
chamber
particles
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012092434A
Other languages
Japanese (ja)
Other versions
JP5943686B2 (en
Inventor
Takuma Sasaki
拓磨 佐々木
Takahiro Fukuoka
隆弘 福岡
Jun Komodori
潤 小茂鳥
Kengo Fukazawa
剣吾 深沢
Yoshitaka Misaka
佳孝 三阪
Kazuhiro Kawasaki
一博 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Keio University
Original Assignee
Neturen Co Ltd
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Keio University filed Critical Neturen Co Ltd
Priority to JP2012092434A priority Critical patent/JP5943686B2/en
Publication of JP2013221168A publication Critical patent/JP2013221168A/en
Application granted granted Critical
Publication of JP5943686B2 publication Critical patent/JP5943686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enhance corrosion resistance of a steel material, by forming a metal diffusion layer containing nickel and iron on a surface of the steel material in shot peening using NiO particles.SOLUTION: A surface treatment device for forming a metal diffusion layer containing nickel and iron on a surface of a steel material includes: a chamber 110 whose interior is replaced with an inert gas; a support part 120 arranged in the inside of the chamber 110, to support a base material W; an induction-heating coil 130 arranged in a periphery of the support part 120, to heat the base material W; a high-frequency applying part 200 for supplying a high-frequency current to the induction-heating coil 130, to induction-heat the base material W; and a projection material injecting part 141 for injecting, toward the support part 120, a projection material P which is a mixture of NiO particles and SKH 59 material particles harder than the steel material.

Description

本発明は、鉄鋼材を加熱しつつ投射材を噴射して鉄鋼材表面にニッケルと鉄を含む金属拡散層を形成する表面処理装置及び表面処理方法に関し、特に耐腐食性を向上させることができる技術に関する。   The present invention relates to a surface treatment apparatus and a surface treatment method for forming a metal diffusion layer containing nickel and iron on a steel material surface by spraying a projection material while heating the steel material, and in particular, can improve corrosion resistance. Regarding technology.

鉄鋼材料はその使用環境、用途、求められる特性により様々なものが存在する.特に、ステンレス鋼は強度、耐食性ともに優れた材料であり、機械部品に要求される特性はある程度満たしているといえる.しかしながら、ステンレス鋼はレアメタルが合金元素として多量に添加されているため、炭素鋼と比較すると非常に高価である。このため、安価に供給される炭素鋼を母材として用い、その表層部のみに合金元素を拡散させ、材料特性が向上できれば、レアメタルの使用量を極限まで低下させることが可能となる。   There are various types of steel materials depending on the usage environment, application, and required characteristics. In particular, stainless steel is a material with excellent strength and corrosion resistance, and it can be said that it satisfies the properties required for machine parts to some extent. However, stainless steel is very expensive compared to carbon steel because rare metals are added in a large amount as an alloying element. For this reason, if carbon steel supplied at low cost is used as a base material, the alloy elements can be diffused only in the surface layer portion, and the material characteristics can be improved, the amount of rare metal used can be reduced to the limit.

このように表層部のみに合金元素を付与する方法の1つとして、鉄鋼材等の金属材からなる基材に微粒子の投射材を噴射して表面処理を施す方法が知られている。(例えば、特許文献1、2参照。)
投射材として、Crの他、Niが腐食の進展を抑制する効果があることが知られている。Niを鉄鋼材表面に拡散させるためには、NiO粒子を用い、900℃以上の高温下においてNiO粒子と基材のFeとの間で還元反応を生じさせ、NiOから解離したNiを基材に拡散させる技術が知られている。なお、Niが基材に拡散するか否かについては、ヒューム・ロザリーの法則によれば、溶質原子と溶媒原子の半径の差が15%以内であれば、溶質原子が溶媒原子に対して置換型固溶体を形成しやすいことが知られている。溶媒原子をFe、溶質原子をNiとすると、両者の原子半径の差は0.81%であるため、Niは基材のFeに対する固溶体形成能に優れるといえる。以上から、900℃以上においてNiOはFeにより還元され、NiOから解離したNiは基材のFeに拡散するものと考えられる。
As one of the methods for applying the alloy element only to the surface layer portion in this way, a method is known in which surface treatment is performed by injecting a fine particle projection material onto a base material made of a metal material such as a steel material. (For example, see Patent Documents 1 and 2.)
As a projection material, in addition to Cr, it is known that Ni has an effect of suppressing the progress of corrosion. In order to diffuse Ni to the steel material surface, NiO particles are used, a reduction reaction is caused between NiO particles and Fe of the base material at a high temperature of 900 ° C. or higher, and Ni dissociated from NiO is used as the base material. A diffusion technique is known. Whether or not Ni diffuses into the base material is determined according to Hume-Rosery's law, if the difference in radius between the solute atom and the solvent atom is within 15%, the solute atom is substituted for the solvent atom. It is known that it is easy to form a mold solid solution. When the solvent atom is Fe and the solute atom is Ni, the difference between the atomic radii of both is 0.81%. Therefore, it can be said that Ni is excellent in solid solution forming ability with respect to Fe of the base material. From the above, it is considered that NiO is reduced by Fe at 900 ° C. or higher, and Ni dissociated from NiO diffuses into Fe of the base material.

特開2008−1930号公報JP 2008-1930 A 特開2010−163686号公報JP 2010-163686 A

上述した基材の表面処理方法では、次のような問題があった。すなわち、実際にNiO粒子を投射した場合、時間や圧力を増大させても十分な厚さのNi拡散層が形成されなかった。これは基材表面にFe酸化層が形成されるためであると考えられる。Fe酸化層は脆く、不動態皮膜を形成しないため、所望の耐腐食性が得られなかった。   The substrate surface treatment method described above has the following problems. That is, when NiO particles were actually projected, a Ni diffusion layer having a sufficient thickness was not formed even if time and pressure were increased. This is considered to be because an Fe oxide layer is formed on the substrate surface. Since the Fe oxide layer was brittle and did not form a passive film, the desired corrosion resistance could not be obtained.

そこで本発明は、NiO粒子を用いたショットピーニングにおいて鉄鋼材表面にニッケルと鉄を含む金属拡散層を形成することで、鉄鋼材の耐腐食性を向上させることができる表面処理装置及び表面処理方法を提供することを目的としている。   Accordingly, the present invention provides a surface treatment apparatus and a surface treatment method capable of improving the corrosion resistance of a steel material by forming a metal diffusion layer containing nickel and iron on the surface of the steel material in shot peening using NiO particles. The purpose is to provide.

前記課題を解決し目的を達成するために、本発明の表面処理装置及び表面処理方法は次のように構成されている。   In order to solve the problems and achieve the object, the surface treatment apparatus and the surface treatment method of the present invention are configured as follows.

鉄鋼材表面にニッケルと鉄を含む金属拡散層を形成する表面処理装置において、不活性ガスで置換されたチャンバと、このチャンバ内に配置され、前記鉄鋼材を支持する支持部と、この支持部の周囲に配置され、前記鉄鋼材を加熱する誘導加熱コイルと、この誘導加熱コイルに高周波電流を供給して前記鉄鋼材を誘導加熱する高周波印加部と、前記支持部に向けて前記NiO粒子及び前記鉄鋼材より硬いSKH59材粒子噴射させる第1の投射材噴射部と、前記SKH59材粒子を前記鉄鋼材表面に噴射する第2の投射材噴射部とを備えていることを特徴とする。   In a surface treatment apparatus for forming a metal diffusion layer containing nickel and iron on a surface of a steel material, a chamber replaced with an inert gas, a support portion disposed in the chamber and supporting the steel material, and the support portion An induction heating coil for heating the steel material, a high-frequency application unit for induction heating the steel material by supplying a high-frequency current to the induction heating coil, and the NiO particles toward the support unit. It has the 1st projection material injection part which injects the SKH59 material particle harder than the said steel material, and the 2nd projection material injection part which injects the said SKH59 material particle on the said steel material surface, It is characterized by the above-mentioned.

鉄鋼材表面に前記鉄鋼材を形成する元素と原子半径の差が15%以内の金属を含む金属拡散層を形成する表面処理装置において、不活性ガスで置換されたチャンバと、このチャンバ内に配置され、前記鉄鋼材を支持する支持部と、この支持部の周囲に配置され、前記鉄鋼材を加熱する誘導加熱コイルと、この誘導加熱コイルに高周波電流を供給して前記鉄鋼材を誘導加熱する高周波印加部と、前記支持部に向けて前記鉄鋼材を形成する元素と原子半径の差が15%以内の金属粒子と、前記鉄鋼材より硬い拡散促進粒子とを混合した投射材を複数回噴射させる投射材噴射部とを備えていることを特徴とする。   In a surface treatment apparatus for forming a metal diffusion layer containing a metal having an atomic radius of 15% or less with respect to an element forming the steel material on the surface of the steel material, a chamber replaced with an inert gas, and a chamber disposed in the chamber A support portion that supports the steel material; an induction heating coil that is disposed around the support portion and that heats the steel material; and a high-frequency current is supplied to the induction heating coil to inductively heat the steel material. A high-frequency application unit, a projection material in which a metal particle having an atomic radius difference of 15% or less and a diffusion promoting particle harder than the steel material are mixed and injected multiple times toward the support unit. And a blasting material injection unit to be provided.

鉄鋼材表面にニッケルと鉄を含む金属拡散層を形成する表面処理装置において、不活性ガスで置換されたチャンバと、このチャンバ内に配置され、前記鉄鋼材を支持する支持部と、この支持部の周囲に配置され、前記鉄鋼材を加熱する誘導加熱コイルと、この誘導加熱コイルに高周波電流を供給して前記鉄鋼材を誘導加熱する高周波印加部と、前記支持部に向けて前記NiO粒子及び前記鉄鋼材より硬いSKH59材粒子噴射させる投射材噴射部とを備えていることを特徴とする。   In a surface treatment apparatus for forming a metal diffusion layer containing nickel and iron on a surface of a steel material, a chamber replaced with an inert gas, a support portion disposed in the chamber and supporting the steel material, and the support portion An induction heating coil for heating the steel material, a high-frequency application unit for induction heating the steel material by supplying a high-frequency current to the induction heating coil, and the NiO particles toward the support unit. And a projection material injection unit for injecting SKH59 material particles that are harder than the steel material.

チャンバ内に収容された鉄鋼材表面にニッケルと鉄を含む金属拡散層を形成する表面処理方法において、前記チャンバ内を不活性ガスに置換する置換工程と、前記鉄鋼材を所定の処理温度まで加熱する加熱工程と、前記酸化ニッケル粒子と前記鉄鋼材より硬いSKH59材粒子を前記鉄鋼材表面に噴射する第1の噴射工程と、前記SKH59材粒子を前記鉄鋼材表面に噴射する第2の噴射工程とを備えていることを特徴とする。   In a surface treatment method for forming a metal diffusion layer containing nickel and iron on a surface of a steel material accommodated in a chamber, a replacement step of replacing the inside of the chamber with an inert gas, and heating the steel material to a predetermined processing temperature A first injection step of injecting the nickel oxide particles and SKH59 material particles harder than the steel material onto the surface of the steel material, and a second injection step of injecting the SKH59 material particles onto the surface of the steel material. It is characterized by having.

チャンバ内に収容された鉄鋼材表面に前記鉄鋼材を形成する元素と原子半径の差が15%以内の金属を含む金属拡散層を形成する表面処理方法において、前記チャンバ内を不活性ガスに置換する置換工程と、前記鉄鋼材を所定の処理温度まで加熱する加熱工程と、前記鉄鋼材を形成する元素と原子半径の差が15%以内の金属粒子と、前記鉄鋼材より硬い拡散促進粒子とを混合した投射材を前記鉄鋼材表面に複数回噴射させる噴射工程とを備えていることを特徴とする表面処理方法。   In a surface treatment method for forming a metal diffusion layer containing a metal having a difference in atomic radius within 15% from an element forming the steel material on the surface of the steel material accommodated in the chamber, the inside of the chamber is replaced with an inert gas. A replacement step, a heating step of heating the steel material to a predetermined processing temperature, metal particles having an atomic radius difference of 15% or less, and diffusion promoting particles harder than the steel material. And a spraying step of spraying the projection material mixed with a plurality of times onto the surface of the steel material.

チャンバ内に収容された鉄鋼材表面にニッケルと鉄を含む金属拡散層を形成する表面処理方法において、前記チャンバ内を不活性ガスに置換する置換工程と、前記鉄鋼材を所定の処理温度まで加熱する加熱工程と、前記酸化ニッケル粒子と前記鉄鋼材より硬いSKH59材粒子を前記鉄鋼材表面に噴射する噴射工程とを備えていることを特徴とする。   In a surface treatment method for forming a metal diffusion layer containing nickel and iron on a surface of a steel material accommodated in a chamber, a replacement step of replacing the inside of the chamber with an inert gas, and heating the steel material to a predetermined processing temperature A heating step, and an injection step of injecting the nickel oxide particles and SKH59 material particles harder than the steel material onto the surface of the steel material.

本発明によれば、NiO粒子を用いたショットピーニングにおいて鉄鋼材表面にニッケルと鉄を含む金属拡散層を形成することで、鉄鋼材の耐腐食性を向上させることが可能となる。   According to the present invention, it is possible to improve the corrosion resistance of a steel material by forming a metal diffusion layer containing nickel and iron on the surface of the steel material in shot peening using NiO particles.

本発明の一実施の形態に係る表面処理方法より鉄鋼材表面に金属拡散層を形成する表面処理装置の構成を示す説明図。Explanatory drawing which shows the structure of the surface treatment apparatus which forms a metal diffusion layer in the steel material surface from the surface treatment method which concerns on one embodiment of this invention. 同表面処理装置における制御方式1の時間と温度変化との関係を示す説明図。Explanatory drawing which shows the relationship between the time of the control system 1 in the surface treatment apparatus, and a temperature change. 同表面処理装置において処理された基材の断面を模式的に示す説明図。Explanatory drawing which shows typically the cross section of the base material processed in the same surface treatment apparatus. 同表面処理装置において処理された基材の断面を模式的に示す説明図。Explanatory drawing which shows typically the cross section of the base material processed in the same surface treatment apparatus. 同表面処理装置において処理された基材の断面を模式的に示す説明図。Explanatory drawing which shows typically the cross section of the base material processed in the same surface treatment apparatus. 同表面処理装置において処理された基材の断面を模式的に示す説明図。Explanatory drawing which shows typically the cross section of the base material processed in the same surface treatment apparatus. 同表面処理装置における制御方式2の時間と温度変化との関係を示す説明図。Explanatory drawing which shows the relationship between the time of the control method 2 in the surface treatment apparatus, and a temperature change. 同表面処理装置において処理された基材の断面を模式的に示す説明図。Explanatory drawing which shows typically the cross section of the base material processed in the same surface treatment apparatus. 同表面処理装置における制御方式3の時間と温度変化との関係を示す説明図。Explanatory drawing which shows the relationship between the time of the control method 3 in the surface treatment apparatus, and a temperature change. 同表面処理装置において処理された基材の断面を模式的に示す説明図。Explanatory drawing which shows typically the cross section of the base material processed in the same surface treatment apparatus.

図1は本発明の第1の実施の形態に係る表面処理方法を実施する表面処理装置100の概略構成を示す断面図である。表面処理装置100は、基材Wを誘導加熱しつつ投射材P又は投射材Qを噴射して表面処理する装置である。ここで、基材Wとしては、鉄鋼材を対象としている。一方、投射材Pとしては、NiO粒子及びSKH59鋼の混合材、投射材Qとしては、SKH59鋼が用いられる。SKH59鋼は基材Wより硬く、かつ、不活性であり、Niが基材W中へ拡散することを促進する性質を有する粒子(拡散促進粒子)である。これらの平均粒径は数μm〜数百μmに調整されている。   FIG. 1 is a cross-sectional view showing a schematic configuration of a surface treatment apparatus 100 for performing a surface treatment method according to a first embodiment of the present invention. The surface treatment apparatus 100 is an apparatus that performs surface treatment by injecting the projection material P or the projection material Q while induction heating the base material W. Here, the base material W is a steel material. On the other hand, as the projection material P, a mixed material of NiO particles and SKH59 steel is used, and as the projection material Q, SKH59 steel is used. The SKH59 steel is particles (diffusion promoting particles) that are harder than the substrate W and inert, and have the property of accelerating the diffusion of Ni into the substrate W. These average particle diameters are adjusted to several μm to several hundred μm.

図1に示すように、表面処理装置100は、気密に形成されたチャンバ110を備えている。チャンバ110内には、基材Wを載置する支持台120と、この支持台120の周囲に設けられた誘導加熱コイル130と、支持台120に向けて投射材又は不活性ガスを噴射する噴射ノズル(投射材噴射部)140とが設けられている。   As shown in FIG. 1, the surface treatment apparatus 100 includes a chamber 110 formed in an airtight manner. In the chamber 110, a support table 120 on which the substrate W is placed, an induction heating coil 130 provided around the support table 120, and an injection for injecting a projection material or an inert gas toward the support table 120. A nozzle (projection material injection unit) 140 is provided.

支持台120には、基材Wの表面温度を測定する温度センサ121が設けられている。温度センサ121の出力は制御部300に接続されている。   The support 120 is provided with a temperature sensor 121 that measures the surface temperature of the substrate W. The output of the temperature sensor 121 is connected to the control unit 300.

誘導加熱コイル130は、チャンバ110外に設けられた高周波印加装置200に接続され、所定の周波数の高周波電流が印加される。   The induction heating coil 130 is connected to a high frequency application device 200 provided outside the chamber 110, and a high frequency current having a predetermined frequency is applied thereto.

チャンバ110内には、噴射ノズル140が設けられ、支持台120に向けられたノズル141を備えている。噴射ノズル140には、電磁弁142を介してアルゴンガス(不活性ガス)を供給するガスボンベ160及び流量弁・圧力調整弁161に接続されている。流量弁・圧力調整弁161では、アルゴンガスを吸引式の噴射圧で例えば、0.3MPa以上となるように制御する。   An injection nozzle 140 is provided in the chamber 110 and includes a nozzle 141 directed toward the support base 120. The injection nozzle 140 is connected to a gas cylinder 160 for supplying argon gas (inert gas) and a flow rate / pressure regulating valve 161 via an electromagnetic valve 142. In the flow rate valve / pressure regulating valve 161, the argon gas is controlled to be, for example, 0.3 MPa or more by a suction type injection pressure.

流量弁・圧力調整弁161は、さらに粒子フィーダ150,150Aに接続されたフィーダライン151,151Aに接続されている。フィーダライン151には粒子フィーダ調整弁152〜154が設けられ、噴射ノズル140に投射材Pが供給されている。フィーダライン151Aには粒子フィーダ調整弁152A〜154Aが設けられ、噴射ノズル140に投射材Qが供給されている。   The flow valve / pressure regulating valve 161 is further connected to feeder lines 151 and 151A connected to the particle feeders 150 and 150A. The feeder line 151 is provided with particle feeder adjusting valves 152 to 154, and the projection material P is supplied to the injection nozzle 140. The feeder line 151 </ b> A is provided with particle feeder adjustment valves 152 </ b> A to 154 </ b> A, and the projection material Q is supplied to the injection nozzle 140.

高周波印加装置200は、単一、或いは複数の周波数の高周波電流を誘導加熱コイル130に印加し、基材Wを誘導加熱する。   The high-frequency applying device 200 applies high-frequency currents having a single frequency or a plurality of frequencies to the induction heating coil 130 to inductively heat the substrate W.

図1中300は、表面処理装置100の各部を制御する制御部を示している。制御部300は、作業者の設定、予め設定されたプログラム、センサ出力等の情報に基づいて、高周波印加装置200、電磁弁142、粒子フィーダ調整弁152〜154,152A〜154A、基材Wの加熱、投射材P,Qの噴射速度・噴射量、アルゴンガスの噴射・噴射タイミング等を調整する。   In FIG. 1, reference numeral 300 denotes a control unit that controls each part of the surface treatment apparatus 100. Based on information such as operator settings, preset programs, sensor output, etc., the control unit 300 is configured of the high-frequency application device 200, the electromagnetic valve 142, the particle feeder adjustment valves 152 to 154, 152A to 154A, and the base material W. The heating, the injection speed / injection amount of the projection materials P and Q, the argon gas injection / injection timing, and the like are adjusted.

なお、以下説明する図2,7,9において、FPP(P)は投射材Pの投射、FPP(Q)は投射材Qの投射を示している。   2, 7 and 9 described below, FPP (P) indicates the projection of the projection material P, and FPP (Q) indicates the projection of the projection material Q.

本実施の形態における制御部300では、制御方式1、制御方式2、制御方式3を行う。制御方式1では、図2に示すように、高周波印加装置200から誘導加熱コイル130に高周波電流を供給させて基材Wを900℃まで加熱させ、その後にノズル141から投射材Pを投射圧力0.5MPa、投射時間30秒だけ噴射させるとともに基材Wが900℃に維持される状態に誘導加熱コイル130に高周波電流を供給させ、噴射停止・加熱のみ30秒間した後、ノズル141からアルゴンガスのみを噴射させて基材Wを冷却させるように制御を行う。   In the control unit 300 in the present embodiment, control method 1, control method 2, and control method 3 are performed. In the control method 1, as shown in FIG. 2, a high frequency current is supplied from the high frequency application device 200 to the induction heating coil 130 to heat the substrate W to 900 ° C., and then the projection material P is applied from the nozzle 141 to the projection pressure 0. Injecting only 0.5 MPa and a projection time of 30 seconds and supplying the high-frequency current to the induction heating coil 130 in a state where the substrate W is maintained at 900 ° C. After stopping and heating only for 30 seconds, only argon gas is supplied from the nozzle 141. Is controlled so as to cool the substrate W.

制御方式2では、図7に示すように、高周波印加装置200から誘導加熱コイル130に高周波電流を供給させて基材Wを900℃まで加熱させ、その後にノズル141から投射材Pを投射圧力0.5MPa、投射時間30秒だけ噴射させるとともに基材Wが900℃に維持される状態に誘導加熱コイル130に高周波電流を供給させる。次に、噴射停止・加熱のみ30秒間した後、ノズル141からアルゴンガスのみを噴射させて基材Wを冷却させる。さらに、投射材Qを投射圧力0.5MPa、投射時間30秒だけ噴射させる制御を行う。   In the control method 2, as shown in FIG. 7, a high frequency current is supplied from the high frequency application device 200 to the induction heating coil 130 to heat the substrate W to 900 ° C., and then the projection material P is ejected from the nozzle 141 to a projection pressure of 0. The high frequency current is supplied to the induction heating coil 130 so that the substrate W is sprayed for 5 seconds and the projection time is 30 seconds and the substrate W is maintained at 900 ° C. Next, after stopping injection and heating only for 30 seconds, only the argon gas is injected from the nozzle 141 to cool the substrate W. Further, control is performed to inject the projection material Q for a projection pressure of 0.5 MPa and a projection time of 30 seconds.

制御方式3では、図9に示すように、高周波印加装置200から誘導加熱コイル130に高周波電流を供給させて基材Wを900℃まで加熱させ、その後にノズル141から投射材Pを投射圧力0.5MPa、投射時間30秒だけ噴射させるとともに基材Wが900℃に維持される状態に誘導加熱コイル130に高周波電流を供給させる。次に、噴射停止・加熱のみ30秒間した後、投射材Pを投射圧力0.5MPa、投射時間30秒だけ噴射させるとともに基材Wが900℃に維持される状態に誘導加熱コイル130に高周波電流を供給させ、噴射停止・加熱のみ30秒間した後、ノズル141からアルゴンガスのみを噴射させて基材Wを冷却させるように制御を行う。   In the control method 3, as shown in FIG. 9, a high frequency current is supplied from the high frequency application device 200 to the induction heating coil 130 to heat the substrate W to 900 ° C., and then the projection material P is ejected from the nozzle 141 to a projection pressure of 0. The high frequency current is supplied to the induction heating coil 130 so that the substrate W is sprayed for 5 seconds and the projection time is 30 seconds and the substrate W is maintained at 900 ° C. Next, after only stopping and heating the injection for 30 seconds, the projection material P is injected for a projection pressure of 0.5 MPa and a projection time of 30 seconds, and the substrate W is maintained at 900 ° C. and the induction heating coil 130 is fed with a high-frequency current. After the injection is stopped and heated only for 30 seconds, only the argon gas is injected from the nozzle 141 to control the substrate W to be cooled.

このように構成された表面処理装置100は、上述した制御方式1,2,3の制御により動作する。最初に制御方式1について説明する。   The surface treatment apparatus 100 configured as described above operates under the control methods 1, 2, and 3 described above. First, the control method 1 will be described.

制御方式1では、投射材Pについては、NiO粒子とSKH59鋼との混合比率を、NiO粒子の比率を100%(NiO100)、75%(NiO75)、50%(NiO50)、25%(NiO25)と変えて、耐腐食性を比較した。この時、NiO粒子の比率が25%及び50%のものが耐腐食性に優れることが判る。これに対し、NiO粒子の比率が75%〜100%のものは、耐腐食性については劣っている。   In the control method 1, for the projection material P, the mixing ratio of NiO particles and SKH59 steel is set, and the ratio of NiO particles is 100% (NiO100), 75% (NiO75), 50% (NiO50), 25% (NiO25). The corrosion resistance was compared. At this time, it can be seen that those having a NiO particle ratio of 25% and 50% are excellent in corrosion resistance. On the other hand, those having a NiO particle ratio of 75% to 100% are inferior in corrosion resistance.

一方、図3〜図6の断面を拡大した模式図に示すように、基材Wの断面は、NiO粒子とSKH59鋼との混合比率によって大きく変化する。図3に示すように、NiO100の場合、酸化鉄LFが厚く形成され、その下にNi拡散層LMが形成されている。また、図4に示すように、NiO75の場合、酸化鉄LFが薄くなり、その下に酸化鉄LFとNi拡散層LMとが混在する層が形成されている。   On the other hand, as shown in the schematic diagrams in which the cross sections of FIGS. 3 to 6 are enlarged, the cross section of the substrate W varies greatly depending on the mixing ratio of the NiO particles and the SKH59 steel. As shown in FIG. 3, in the case of NiO100, the iron oxide LF is formed thick, and the Ni diffusion layer LM is formed thereunder. Further, as shown in FIG. 4, in the case of NiO75, the iron oxide LF is thinned, and a layer in which the iron oxide LF and the Ni diffusion layer LM are mixed is formed thereunder.

NiO100及びNiO75では、NiOがFeにより還元されると共に、酸化鉄が形成されることによるものと考えられる。   In NiO100 and NiO75, it is considered that NiO is reduced by Fe and iron oxide is formed.

さらに、図5に示すように、NiO50の場合、酸化鉄LFの量が少なくなる。さらにまた、図6に示すように、NiO25の場合、酸化鉄LFの量がさらに少なくなり、Ni拡散層LMの割合が大きくなる。これは、NiO50及びNiO25では、硬質なSKH59鋼の混合比率が高くなるため、酸化鉄の破壊が促進されたためである。   Furthermore, as shown in FIG. 5, in the case of NiO50, the amount of iron oxide LF is reduced. Furthermore, as shown in FIG. 6, in the case of NiO25, the amount of iron oxide LF is further reduced and the proportion of the Ni diffusion layer LM is increased. This is because, in NiO50 and NiO25, the mixing ratio of the hard SKH59 steel is high, so that the destruction of iron oxide is promoted.

以上のことから、SKH59鋼の混合比率が高いほど、酸化鉄が減少することを明らかになった。これにより、SKH59鋼の混合比率を増すことで、Niの拡散が拡大し、耐腐食性が向上することがわかる。なお、NiO25であっても酸化鉄は残存する。   From the above, it became clear that the higher the mixing ratio of SKH59 steel, the lower the iron oxide. Thus, it can be seen that increasing the mixing ratio of SKH59 steel increases the diffusion of Ni and improves the corrosion resistance. Note that iron oxide remains even with NiO25.

なお、投射材P及び投射材Qに用いられるNiO粒子及びSKH59鋼については、これらの組み合わせに限定されるものではない。   In addition, about the NiO particle | grains and SKH59 steel used for the projection material P and the projection material Q, it is not limited to these combinations.

NiO粒子に代わるものとしては、前述したように、ヒューム・ロザリーの法則によれば、溶質原子と溶媒原子の半径の差が15%以内であれば、溶質原子が溶媒原子に対して置換型固溶体を形成しやすいことが知られている。このため、溶媒原子をFeとすると、溶質原子は、Cr,Ni,Si,Mo,Cu,V,W,Mn,Co等が拡散される。   As an alternative to NiO particles, as described above, according to Hume-Rosery's law, if the difference in radius between the solute atoms and the solvent atoms is within 15%, the solute atoms are substituted solid solutions with respect to the solvent atoms. It is known that it is easy to form. Therefore, when the solvent atom is Fe, Cr, Ni, Si, Mo, Cu, V, W, Mn, Co, and the like are diffused in the solute atom.

この他、ヘッグの法則によれば、溶質原子が溶媒原子の半径の59%以内であれば侵入型固溶体を形成することになるため、N,C等は拡散される。   In addition, according to Heg's law, if the solute atoms are within 59% of the radius of the solvent atoms, an interstitial solid solution is formed, and N, C, etc. are diffused.

一方、SKH59鋼に代わるものとしては、溶質原子の拡散を促進させるための粒子ということになることから、鉄鋼材表面の組織を微細化させさらに転位を多量に導入することのできる粒子であればよい。SKH59鋼のように基材である鉄鋼材よりも硬ければ適するため、具体的には,高速度工具鋼,超硬合金,炭化ケイ素,酸化チタン,アルミナ,W,V,Si,合金工具鋼,窒化ホウ素,ダイヤモンド,鋳鉄,スチールショット等が適用される。   On the other hand, as an alternative to SKH59 steel, it is a particle for promoting diffusion of solute atoms, so that it is a particle that can refine the structure of the steel material surface and introduce a large amount of dislocations. Good. Since it is suitable if it is harder than the base steel material such as SKH59 steel, specifically, high-speed tool steel, cemented carbide, silicon carbide, titanium oxide, alumina, W, V, Si, alloy tool steel Boron nitride, diamond, cast iron, steel shot, etc. are applied.

制御方式2では、投射材P(NiO25)を投射した後、投射材Qを投射する。この場合、図8に示すように、表面の酸化鉄LFはほとんど投射材Qにより除去された。したがって、上述したNiO25よりもさらに耐腐食性が向上する。   In the control method 2, after projecting the projection material P (NiO25), the projection material Q is projected. In this case, as shown in FIG. 8, most of the iron oxide LF on the surface was removed by the projection material Q. Therefore, the corrosion resistance is further improved as compared with the above-described NiO25.

制御方式3では、投射材P(NiO25)を投射した後、所定時間経過後に、同じように投射材P(NiO25)を投射する、いわゆる2段処理を行っている。図10に示すように、Ni拡散層LMの厚さが上述したNiO25の倍以上となる。一方、酸化鉄LFがNi拡散層LMに散在する。   In the control method 3, after projecting the projection material P (NiO25), a so-called two-stage process is performed in which the projection material P (NiO25) is similarly projected after a predetermined time has elapsed. As shown in FIG. 10, the thickness of the Ni diffusion layer LM is more than twice that of the NiO 25 described above. On the other hand, iron oxide LF is scattered in the Ni diffusion layer LM.

これは次のような理由によるものと考えられる。すなわち、1回目の投射材Pの投射により、図6に示すようなNi拡散層LMが形成される。次に、2回目の投射材Pの投射に際し、基材Wの温度が上昇し、基材Wの変形抵抗が低下し、NiO粒子の移着量が増加する。移着量の増加により、酸化鉄の形成が促進する。さらに基材Wの変形抵抗が低下したことにより、基材Wの塑性変形量が増加し、その結果、除去しきれなかった酸化鉄LFがNi拡散層LM内部に巻き込まれることになった。   This is thought to be due to the following reasons. That is, the Ni diffusion layer LM as shown in FIG. 6 is formed by the first projection of the projection material P. Next, when the projection material P is projected for the second time, the temperature of the base material W rises, the deformation resistance of the base material W decreases, and the transfer amount of NiO particles increases. The increase in the transfer amount promotes the formation of iron oxide. Furthermore, since the deformation resistance of the base material W was reduced, the amount of plastic deformation of the base material W increased, and as a result, the iron oxide LF that could not be removed was caught inside the Ni diffusion layer LM.

制御方式3では、Ni拡散層LMの厚さが格段に大きくなったことにより、上述したNiO25よりもさらに耐腐食性が向上する。   In the control method 3, since the thickness of the Ni diffusion layer LM is significantly increased, the corrosion resistance is further improved as compared with the above-described NiO25.

なお、上述した制御方式3では、投射材Pの投射を2回行っているが、3回以上行ってもよい。この場合、さらにNi拡散層LMがさらに厚くなる。   In the control method 3 described above, the projection material P is projected twice, but may be performed three times or more. In this case, the Ni diffusion layer LM is further thickened.

なお、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。   Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

100…表面処理装置、110…チャンバ、120…支持台、121…温度センサ、130…誘導加熱コイル、140…噴射ノズル、142…電磁弁、150…粒子フィーダ、151,151A…フィーダライン、152〜154,152A〜154A…粒子フィーダ調整弁、160…ガスボンベ、161…流量弁・圧力調整弁、200…高周波印加装置、300…制御部、W…基材、P…投射材(NiO粒子+SKH59鋼)、Q…投射材(SKH59鋼)。   DESCRIPTION OF SYMBOLS 100 ... Surface treatment apparatus, 110 ... Chamber, 120 ... Support stand, 121 ... Temperature sensor, 130 ... Induction heating coil, 140 ... Injection nozzle, 142 ... Electromagnetic valve, 150 ... Particle feeder, 151, 151A ... Feeder line, 152- 154, 152A to 154A ... Particle feeder adjustment valve, 160 ... Gas cylinder, 161 ... Flow rate valve / pressure adjustment valve, 200 ... High frequency application device, 300 ... Control unit, W ... Base material, P ... Projection material (NiO particles + SKH59 steel) , Q ... Projection material (SKH59 steel).

Claims (6)

鉄鋼材表面にニッケルと鉄を含む金属拡散層を形成する表面処理装置において、
不活性ガスで置換されたチャンバと、
このチャンバ内に配置され、前記鉄鋼材を支持する支持部と、
この支持部の周囲に配置され、前記鉄鋼材を加熱する誘導加熱コイルと、
この誘導加熱コイルに高周波電流を供給して前記鉄鋼材を誘導加熱する高周波印加部と、
前記支持部に向けて前記NiO粒子及び前記鉄鋼材より硬いSKH59材粒子噴射させる第1の投射材噴射部と、
前記SKH59材粒子を前記鉄鋼材表面に噴射する第2の投射材噴射部とを備えていることを特徴とする表面処理装置。
In a surface treatment apparatus that forms a metal diffusion layer containing nickel and iron on the surface of a steel material,
A chamber replaced with an inert gas;
A support part disposed in the chamber and supporting the steel material;
An induction heating coil disposed around the support and heating the steel material;
A high-frequency application unit for induction-heating the steel material by supplying a high-frequency current to the induction heating coil;
A first blast material injection unit for injecting SKH59 material particles harder than the NiO particles and the steel material toward the support unit;
A surface treatment apparatus comprising: a second projecting material injection unit that injects the SKH59 material particles onto the surface of the steel material.
鉄鋼材表面に前記鉄鋼材を形成する元素と原子半径の差が15%以内の金属を含む金属拡散層を形成する表面処理装置において、
不活性ガスで置換されたチャンバと、
このチャンバ内に配置され、前記鉄鋼材を支持する支持部と、
この支持部の周囲に配置され、前記鉄鋼材を加熱する誘導加熱コイルと、
この誘導加熱コイルに高周波電流を供給して前記鉄鋼材を誘導加熱する高周波印加部と、
前記支持部に向けて前記鉄鋼材を形成する元素と原子半径の差が15%以内の金属粒子と、前記鉄鋼材より硬い拡散促進粒子とを混合した投射材を複数回噴射させる投射材噴射部とを備えていることを特徴とする表面処理装置。
In a surface treatment apparatus for forming a metal diffusion layer containing a metal having a difference in atomic radius within 15% between an element forming the steel material on the surface of the steel material,
A chamber replaced with an inert gas;
A support part disposed in the chamber and supporting the steel material;
An induction heating coil disposed around the support and heating the steel material;
A high-frequency application unit for induction-heating the steel material by supplying a high-frequency current to the induction heating coil;
A projection material injection unit that injects a plurality of times a projection material in which a difference between an element forming the steel material and a metal particle having an atomic radius within 15% and a diffusion promoting particle harder than the steel material are mixed toward the support portion. A surface treatment apparatus comprising:
鉄鋼材表面にニッケルと鉄を含む金属拡散層を形成する表面処理装置において、
不活性ガスで置換されたチャンバと、
このチャンバ内に配置され、前記鉄鋼材を支持する支持部と、
この支持部の周囲に配置され、前記鉄鋼材を加熱する誘導加熱コイルと、
この誘導加熱コイルに高周波電流を供給して前記鉄鋼材を誘導加熱する高周波印加部と、
前記支持部に向けて前記NiO粒子及び前記鉄鋼材より硬いSKH59材粒子噴射させる投射材噴射部とを備えていることを特徴とする表面処理装置。
In a surface treatment apparatus that forms a metal diffusion layer containing nickel and iron on the surface of a steel material,
A chamber replaced with an inert gas;
A support part disposed in the chamber and supporting the steel material;
An induction heating coil disposed around the support and heating the steel material;
A high-frequency application unit for induction-heating the steel material by supplying a high-frequency current to the induction heating coil;
A surface treatment apparatus comprising: a projection material injection unit configured to inject SKH59 material particles harder than the NiO particles and the steel material toward the support unit.
チャンバ内に収容された鉄鋼材表面にニッケルと鉄を含む金属拡散層を形成する表面処理方法において、
前記チャンバ内を不活性ガスに置換する置換工程と、
前記鉄鋼材を所定の処理温度まで加熱する加熱工程と、
前記酸化ニッケル粒子と前記鉄鋼材より硬いSKH59材粒子を前記鉄鋼材表面に噴射する第1の噴射工程と、
前記SKH59材粒子を前記鉄鋼材表面に噴射する第2の噴射工程とを備えていることを特徴とする表面処理方法。
In the surface treatment method of forming a metal diffusion layer containing nickel and iron on a steel material surface accommodated in a chamber,
A replacement step of replacing the inside of the chamber with an inert gas;
A heating step of heating the steel material to a predetermined processing temperature;
A first injection step of injecting the nickel oxide particles and SKH59 material particles harder than the steel material onto the surface of the steel material;
And a second spraying step of spraying the SKH59 material particles onto the surface of the steel material.
チャンバ内に収容された鉄鋼材表面に前記鉄鋼材を形成する元素と原子半径の差が15%以内の金属を含む金属拡散層を形成する表面処理方法において、
前記チャンバ内を不活性ガスに置換する置換工程と、
前記鉄鋼材を所定の処理温度まで加熱する加熱工程と、
前記鉄鋼材を形成する元素と原子半径の差が15%以内の金属粒子と、前記鉄鋼材より硬い拡散促進粒子とを混合した投射材を前記鉄鋼材表面に複数回噴射させる噴射工程とを備えていることを特徴とする表面処理方法。
In a surface treatment method for forming a metal diffusion layer containing a metal having a difference in atomic radius of 15% or less from an element forming the steel material on the surface of the steel material housed in the chamber,
A replacement step of replacing the inside of the chamber with an inert gas;
A heating step of heating the steel material to a predetermined processing temperature;
An injection step of injecting a projection material, which is a mixture of metal particles having an atomic radius of 15% or less and a diffusion promoting particle harder than the steel material, onto the surface of the steel material a plurality of times. The surface treatment method characterized by the above-mentioned.
チャンバ内に収容された鉄鋼材表面にニッケルと鉄を含む金属拡散層を形成する表面処理方法において、
前記チャンバ内を不活性ガスに置換する置換工程と、
前記鉄鋼材を所定の処理温度まで加熱する加熱工程と、
前記酸化ニッケル粒子と前記鉄鋼材より硬いSKH59材粒子を前記鉄鋼材表面に噴射する噴射工程とを備えていることを特徴とする表面処理方法。
In the surface treatment method of forming a metal diffusion layer containing nickel and iron on a steel material surface accommodated in a chamber,
A replacement step of replacing the inside of the chamber with an inert gas;
A heating step of heating the steel material to a predetermined processing temperature;
A surface treatment method comprising: an injection step of injecting the nickel oxide particles and SKH59 material particles harder than the steel material onto the surface of the steel material.
JP2012092434A 2012-04-13 2012-04-13 Surface treatment apparatus and surface treatment method Active JP5943686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092434A JP5943686B2 (en) 2012-04-13 2012-04-13 Surface treatment apparatus and surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092434A JP5943686B2 (en) 2012-04-13 2012-04-13 Surface treatment apparatus and surface treatment method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016064579A Division JP6118931B2 (en) 2016-03-28 2016-03-28 Surface treatment apparatus and surface treatment method

Publications (2)

Publication Number Publication Date
JP2013221168A true JP2013221168A (en) 2013-10-28
JP5943686B2 JP5943686B2 (en) 2016-07-05

Family

ID=49592373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092434A Active JP5943686B2 (en) 2012-04-13 2012-04-13 Surface treatment apparatus and surface treatment method

Country Status (1)

Country Link
JP (1) JP5943686B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016037512A (en) * 2014-08-05 2016-03-22 デクセリアルズ株式会社 Anisotropic conductive adhesive, method for producing the same, connection structure and method for producing the same
JP2016037513A (en) * 2014-08-05 2016-03-22 デクセリアルズ株式会社 Anisotropic conductive adhesive, method for producing the same, connection structure and method for producing the same
JP2016160441A (en) * 2015-02-26 2016-09-05 学校法人慶應義塾 Surface treatment method and intermetallic compound coat-attached component made of metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163686A (en) * 2008-12-18 2010-07-29 Keio Gijuku Surface treatment apparatus and surface treatment method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163686A (en) * 2008-12-18 2010-07-29 Keio Gijuku Surface treatment apparatus and surface treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016037512A (en) * 2014-08-05 2016-03-22 デクセリアルズ株式会社 Anisotropic conductive adhesive, method for producing the same, connection structure and method for producing the same
JP2016037513A (en) * 2014-08-05 2016-03-22 デクセリアルズ株式会社 Anisotropic conductive adhesive, method for producing the same, connection structure and method for producing the same
JP2016160441A (en) * 2015-02-26 2016-09-05 学校法人慶應義塾 Surface treatment method and intermetallic compound coat-attached component made of metal

Also Published As

Publication number Publication date
JP5943686B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5943686B2 (en) Surface treatment apparatus and surface treatment method
JP5645398B2 (en) Surface treatment apparatus and surface treatment method
JPWO2015151420A1 (en) Method for producing atomized metal powder
JP2016540108A (en) Production method of non-tempered steel
JP2012142388A (en) Method for producing rare earth magnet
CN108994309A (en) A kind of sinter-hardened water mist alloy powder and its manufacturing method
JP6118931B2 (en) Surface treatment apparatus and surface treatment method
JP5930827B2 (en) Surface treatment apparatus and surface treatment method
JP6477532B2 (en) Nitrogen treatment method
JP5534492B2 (en) Carbon tool steel strip manufacturing method
KR20130121894A (en) Method for heat-treating high-strength iron alloys
Baek et al. A Study on Micro-Structure and Wear Behavior of AISI M4 and CPM15V Deposited by Laser Melting
JP5984037B2 (en) Metal diffusion layer manufacturing method and steel material
JP2016160441A (en) Surface treatment method and intermetallic compound coat-attached component made of metal
JP7242344B2 (en) Method for producing austenitic iron alloy
CN103131964B (en) Method for improving as-cast structure homogeneity of X12CrMoWVNbN10-1-1 martensitic stainless steel
KR102337818B1 (en) Methods and apparatus for processing articles
JP2010279989A (en) Rolling roll and method for manufacturing the same
JP4478795B2 (en) Magnetic abrasive grains and magnetic polishing method
JP2014213441A (en) Shot-peening method obtaining high compressive residual stress
JP5675296B2 (en) Surface treatment apparatus and surface treatment method
CN108118238A (en) A kind of method for inhibiting non-hardened and tempered steel stocking product residual induction
JP2010106346A (en) Surface treatment apparatus
KR20130016236A (en) Mold, method for manufacturing a mold and method for manufacturing a plastic or composite material product by means of said mold
JP2020021804A (en) Sintered magnet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160524

R150 Certificate of patent or registration of utility model

Ref document number: 5943686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250