JP2012192401A - Catalyst member, and production method for the same - Google Patents

Catalyst member, and production method for the same Download PDF

Info

Publication number
JP2012192401A
JP2012192401A JP2012029125A JP2012029125A JP2012192401A JP 2012192401 A JP2012192401 A JP 2012192401A JP 2012029125 A JP2012029125 A JP 2012029125A JP 2012029125 A JP2012029125 A JP 2012029125A JP 2012192401 A JP2012192401 A JP 2012192401A
Authority
JP
Japan
Prior art keywords
catalyst
powder
metal
alloy
pure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012029125A
Other languages
Japanese (ja)
Inventor
Yuki Hirono
友紀 廣野
Tetsuro Kariya
哲朗 仮屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2012029125A priority Critical patent/JP2012192401A/en
Publication of JP2012192401A publication Critical patent/JP2012192401A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst member, and a production method for the same, which satisfy both of the cost reduction by simplifying the production process, and the reaction efficiency improvement by dispersing homogenously a catalyst and increasing a specific surface area of the catalyst.SOLUTION: The catalyst member is a metal member 1 in which a metal powder and/or an alloy powder 2 having a catalytic function is fixed to a metal member 1 and a surface roughness Ra of a plane causing catalytic reaction of the catalyst member is finished into 1-300 μm. The metal powder and/or the alloy powder 2 is composed of one or not less than two substances selected from the group consisting of pure Ni, pure Co, pure Ti, Ni alloy, Co alloy, and Ti alloy. The production method for the same comprises using cold spray.

Description

本発明は、触媒機能を有する金属粉末及び/又は合金粉末が、金属部材に固着している触媒部材で触媒部材のうち触媒反応を起こす面の表面粗さRaが1〜300μmに仕上げられた金属部材であるもの及びその製造方法に関するものである。   In the present invention, a metal powder and / or alloy powder having a catalytic function is a catalyst member fixed to a metal member, and the surface roughness Ra of the surface of the catalyst member that causes a catalytic reaction is finished to 1 to 300 μm. The present invention relates to a member and a manufacturing method thereof.

一般的に触媒は、触媒成分単体又は触媒成分を含んだ合金粉末がバインダーなどとともに混合され、ペレット・粒塊といった固形状に形成され、使用されている。具体的には、含浸法、イオン交換法、共沈法などによって金属成分を導入したのち、焼成、水素還元などの処理を行うことにより試料調製される。このような上記現状の含浸法、イオン交換法、共沈法などによって金属成分を導入したのち、バインダーなどとともに混合され、焼成、水素還元などの処理を行う製造方法では、多数の製造工程を経なければならないという問題がある。   In general, a catalyst is used by forming a catalyst component alone or an alloy powder containing the catalyst component together with a binder and the like to form a solid such as pellets or agglomerates. Specifically, the sample is prepared by introducing a metal component by an impregnation method, an ion exchange method, a coprecipitation method, or the like and then performing a treatment such as calcination or hydrogen reduction. In the manufacturing method in which a metal component is introduced by the above-described current impregnation method, ion exchange method, coprecipitation method, etc., and mixed with a binder or the like, and subjected to treatment such as firing and hydrogen reduction, a number of manufacturing steps are performed. There is a problem of having to.

上述した背景のもとに、例えば、特開2009−66594号公報(特許文献1)に開示されているように、基材表面上に可視光応答型光触媒と抗菌性のある金属粒子の混合物を溶射またはコールドスプレー法にて成膜する方法が提案されている。また、特表2009−512781号公報(特許文献2)に開示されているように、粉状遷移金属酸化物を触媒皮膜として金属基板表面に溶射またはコールドスプレー法にて成膜する方法が提案されている。
特開2009−66594号公報 特表2009−512781号公報
Based on the background described above, for example, as disclosed in JP 2009-66594 A (Patent Document 1), a mixture of a visible light responsive photocatalyst and antibacterial metal particles is formed on a substrate surface. A method for forming a film by thermal spraying or cold spraying has been proposed. Further, as disclosed in JP-T-2009-512781 (Patent Document 2), a method of forming a film on a metal substrate surface by thermal spraying or cold spraying using a powdered transition metal oxide as a catalyst film has been proposed. ing.
JP 2009-66594 A Special table 2009-512781

上述した特許文献1や特許文献2に記載されている、溶射またはコールドスプレー法にて成膜する方法では、高速フレーム溶射などの使用により基板への強固な密着を重視した溶射条件である。そのため、成膜された被膜層は、粒子が激しく押つぶれたような形状になることが予測でき、表面粗さが低い平滑な表面形状で、比表面積も低下するなどの問題がある。   In the method described in Patent Document 1 and Patent Document 2 described above, the film formation is performed by thermal spraying or cold spraying, which is a thermal spraying condition in which strong adhesion to the substrate is emphasized by using high-speed flame spraying or the like. Therefore, the formed coating layer can be predicted to have a shape in which particles are crushed violently, and there is a problem that the surface area is smooth and the specific surface area is low.

上述のような問題を解消するために、発明者らは鋭意開発を進めた結果、触媒材料である金属粉末及び/又は合金粉末を、コールドスプレー法等で直接支持体となる金属部材に固着させ、触媒部材のうち触媒反応を起こす面の表面粗さRaを1〜300μmとすることにある。触媒活性において、最も大きな要因は、いかに触媒の反応比表面積を大きくとれるかというところである。そのため、上記の触媒反応を起こす面の表面粗さRaを1〜300μmとすることで、大きな比表面積を実現する。   In order to solve the above problems, the inventors have made extensive developments, and as a result, the metal powder and / or alloy powder, which is a catalyst material, is directly fixed to a metal member that is a support by a cold spray method or the like. The surface roughness Ra of the catalyst member that causes a catalytic reaction is 1 to 300 μm. The biggest factor in catalyst activity is how large the reaction specific surface area of the catalyst can be. Therefore, a large specific surface area is realized by setting the surface roughness Ra of the surface causing the catalytic reaction to be 1 to 300 μm.

加えて、「Ni等の融点の高い純金属では焼結温度が高い」、「焼結しようとするとその温度変化により形成組織が変化してしまうため焼結し難い合金の使用は難しい」といった課題に対して、コールドスプレー法による瞬間的な強大なエネルギーが粉末粒子間、粉末粒子−基板間にかかることで、融点の高い純金属や難焼結合金粉末であっても塑性変形による強固な結合により、触媒部材として使用可能になる。   In addition, problems such as "highly melting pure metals such as Ni have a high sintering temperature" and "it is difficult to use an alloy that is difficult to sinter because the formation structure changes when the temperature is changed by sintering" On the other hand, the strong energy generated by the cold spray method is applied between the powder particles and between the powder particles and the substrate. Thus, it can be used as a catalyst member.

また、今まで焼結していた工程がコールドスプレー法により省略できるといった製造工程簡略化による低コスト化が実現可能になる。これらの目的は、製造工程簡略化による低コスト化と触媒の均一分散と比表面積の増大による反応効率向上の両立を可能とする触媒部材及びその製造方法を提供することにある。   In addition, it is possible to realize cost reduction by simplifying the manufacturing process such that the sintering process up to now can be omitted by the cold spray method. An object of the present invention is to provide a catalyst member and a method for producing the same that can achieve both cost reduction by simplifying the production process, uniform dispersion of the catalyst, and improvement of reaction efficiency by increasing the specific surface area.

その発明の要旨とするところは、
(1)触媒機能を有する金属粉末及び/又は合金粉末を金属部材に固着し、触媒部材のうち触媒反応を起こす面の表面粗さRaが1〜300μmに仕上げられた金属部材であることを特徴とする触媒部材。
(2)前記(1)に記載の金属粉末及び/又は合金粉末が、純Ni,純Co,純Ti、Ni合金,Co合金,Ti合金の1種または2種以上からなることを特徴とする触媒部材。
The gist of the invention is that
(1) A metal member having a catalytic function in which metal powder and / or alloy powder is fixed to a metal member, and the surface roughness Ra of the surface of the catalyst member that causes a catalytic reaction is finished to 1 to 300 μm. Catalyst member.
(2) The metal powder and / or alloy powder described in (1) above is composed of one or more of pure Ni, pure Co, pure Ti, Ni alloy, Co alloy, and Ti alloy. Catalyst member.

(3)触媒機能を有する金属粉末及び/又は合金粉末をコールドスプレー法を用いて金属部材に固着させ、該金属部材の表面粗さRaを1〜300μmとすることを特徴とする触媒部材の製造方法にある。   (3) Production of a catalyst member characterized in that a metal powder and / or alloy powder having a catalytic function is fixed to a metal member using a cold spray method, and the surface roughness Ra of the metal member is 1 to 300 μm. Is in the way.

以上述べたように、本発明では、触媒材料である金属粉末及び/又は合金粉末を、金属部材上に直接固着させることにより、従来の触媒形態で必要だったバインダーといった使用材料削減、焼成、水素還元などの製造工程を簡略化でき、表面粗さの増大による比表面積の増大も得られる。これにより、製造工程簡略化による低コストと反応効果の向上を両立することが可能になる等極めて優れた効果を奏するものである。   As described above, in the present invention, the metal powder and / or alloy powder, which is the catalyst material, is directly fixed on the metal member, thereby reducing the material used such as the binder required in the conventional catalyst form, firing, hydrogen The production process such as reduction can be simplified, and the specific surface area can be increased by increasing the surface roughness. As a result, it is possible to achieve both extremely low cost and improved reaction effect due to simplification of the manufacturing process.

以下、本発明について詳細に説明する。
触媒活性において、最も大きな要因は、いかに触媒の反応比表面積を大きくとれるかというところである。そのため、触媒材料である金属粉末及び/又は合金粉末を、コールドスプレー法等で直接支持体となる金属部材に固着させ、触媒部材のうち触媒反応を起こす面の表面粗さRaを1〜300μmとすることで、大きな比表面積を実現する。
Hereinafter, the present invention will be described in detail.
The biggest factor in catalyst activity is how large the reaction specific surface area of the catalyst can be. Therefore, the metal powder and / or alloy powder that is the catalyst material is directly fixed to the metal member that becomes the support by a cold spray method or the like, and the surface roughness Ra of the surface that causes the catalytic reaction of the catalyst member is 1 to 300 μm. By doing so, a large specific surface area is realized.

加えて、「Ni等の融点の高い純金属では焼結温度が高い」、「焼結しようとするとその温度変化により形成組織が変化してしまうため焼結し難い合金の使用は難しい」といった課題に対して、コールドスプレー法による瞬間的な強大なエネルギーが粉末粒子間、粉末粒子−基板間にかかることで、融点の高い純金属や難焼結合金粉末であっても塑性変形による強固な結合により、触媒部材として使用可能になる。   In addition, problems such as "highly melting pure metals such as Ni have a high sintering temperature" and "it is difficult to use an alloy that is difficult to sinter because the formation structure changes when the temperature is changed by sintering" On the other hand, the strong energy generated by the cold spray method is applied between the powder particles and between the powder particles and the substrate. Thus, it can be used as a catalyst member.

また、今まで焼結していた工程がコールドスプレー法により省略できるといった製造工程簡略化による低コスト化が実現可能になる。これらの目的は、製造工程簡略化による低コスト化と触媒の均一分散と比表面積の増大による反応効率向上の両立を可能とする触媒部材及びその製造方法を提供することである。   In addition, it is possible to realize cost reduction by simplifying the manufacturing process such that the sintering process up to now can be omitted by the cold spray method. An object of the present invention is to provide a catalyst member and a method for manufacturing the same that can achieve both cost reduction by simplifying the manufacturing process, uniform dispersion of the catalyst, and improvement of reaction efficiency by increasing the specific surface area.

本発明における製造方法として、特にコールドスプレー法を用いることで従来必要だったバインダーが不要になり、触媒原料そのままを使用することで、バインダー被覆され、反応に関与できなかった触媒部分も無くなり、反応性を向上できる。すなわち、コールドスプレー法によって、例えば、Ni系やCo系、Ti系合金粉末を金属基板上に溶射することによって、粉末のプレス加工、成形体の焼結の2工程を1工程(工程簡略化)での触媒作製を可能とする。また、従来の粉末のプレス加工、成形体の焼結過程の時点では行えなかった空孔率の制御もコールドスプレー法により可能になる。また、焼結に不向きな材料であっても容易に金属基材に固着させることができる。   As a production method in the present invention, a binder that has been conventionally required by using a cold spray method in particular becomes unnecessary, and by using the catalyst raw material as it is, there is no catalyst portion that is coated with the binder and cannot participate in the reaction, and the reaction Can be improved. That is, by spraying, for example, Ni-based, Co-based, or Ti-based alloy powder onto a metal substrate by a cold spray method, two steps of powder pressing and sintering of the formed body are performed in one step (process simplification). Makes it possible to produce a catalyst. Moreover, the control of the porosity, which could not be performed at the time of the conventional powder pressing process and the sintering process of the molded body, can be performed by the cold spray method. Moreover, even if it is a material unsuitable for sintering, it can be easily fixed to a metal base material.

さらに、低融点でかつ柔らかなSnとNi、Co、Tiを合金化させることで、コール
ドスプレー時の衝撃で変形しやすくなり、結果、基板上に複雑形状を形成する。Cuに関しても、Cu合金は延展性のあるSn同様に柔らかい金属Cuを用いることで、コールドスプレー時の衝撃で変形しやすくなり、基板上に複雑形状を形成する。また、SnやCuよりも硬い金属であるFeを含んだ合金を使用することで、SnやCu合金よりも、コールドスプレー時に元の粉末形状を維持しやすい。そのため、空隙が大きくなり、結果、比表面積を増大させることが出来る。他の合金含有元素としては、Sn、Cu、Fe以外に、軟質のAl、Bi、Znを含むことができる。上記同様、コールドスプレー時の衝撃で変形しやすくなり、結果、基板上に複雑形状を形成しやすくなる。
Furthermore, by alloying Sn, Ni, Co, and Ti, which have a low melting point and soft, it is easily deformed by an impact during cold spraying, and as a result, a complicated shape is formed on the substrate. As for Cu, Cu alloy is easily deformed by impact during cold spraying by using soft metal Cu like Sn, which has spreadability, and forms a complicated shape on the substrate. Further, by using an alloy containing Fe, which is a metal harder than Sn or Cu, it is easier to maintain the original powder shape during cold spraying than Sn or Cu alloy. As a result, the gap becomes larger, and as a result, the specific surface area can be increased. As other alloy-containing elements, soft Al, Bi, and Zn can be included in addition to Sn, Cu, and Fe. Like the above, it becomes easy to deform | transform by the impact at the time of cold spray, As a result, it becomes easy to form a complicated shape on a board | substrate.

上記したコールドスプレー法を用いた結果、触媒材料を均一に分散でき、かつ触媒部材のうち触媒反応を起こす面の表面粗さRaは1〜300μmで比表面積も大きく反応効率の向上を図ることができ、かつその固着時のエネルギーにより触媒粉末同士が強固に固着、金属シートとも強固に固着することで、反応時の触媒粉末の滑落なども無く連続した製造ラインにおいて、触媒の強度やメンテナンスフリーといったメリットが付加される。   As a result of using the above-mentioned cold spray method, the catalyst material can be uniformly dispersed, and the surface roughness Ra of the surface of the catalyst member that causes the catalytic reaction is 1 to 300 μm, the specific surface area is large, and the reaction efficiency can be improved. The catalyst powder is firmly fixed by the energy at the time of fixing, and the metal sheet is also firmly fixed, so that there is no catalyst powder sliding down at the time of reaction, etc. Merits are added.

本発明において、触媒機能を有する金属粉末及び/又は合金粉末を金属部材に固着し、触媒部材のうち触媒反応を起こす面の表面粗さRaが1〜300μmの金属部材とした理由は、触媒部材のうち触媒反応を起こす面の表面粗さRaが1μm未満では、触媒としての空孔率や比表面積が小さく、触媒としての作用、効果が十分に得られないことから、触媒部材のうち触媒反応を起こす面の表面粗さRaを1〜300μmとした。好ましくは、1〜50μmとする。その上限を300μmとしたのは、微細粒子を適用した場合のその比表面積向上により、触媒としての効果が十分達成させることと、Raが大き過ぎると部材としての強度が劣化するためである。   In the present invention, the metal powder and / or alloy powder having a catalytic function is fixed to the metal member, and the reason why the surface roughness Ra of the surface of the catalyst member causing the catalytic reaction is 1 to 300 μm is the catalyst member. If the surface roughness Ra of the surface causing the catalytic reaction is less than 1 μm, the porosity and specific surface area as the catalyst are small, and the action and effect as a catalyst cannot be sufficiently obtained. The surface roughness Ra of the surface that causes erosion was 1 to 300 μm. Preferably, the thickness is 1 to 50 μm. The upper limit is set to 300 μm because the effect as a catalyst is sufficiently achieved by improving the specific surface area when fine particles are applied, and the strength as a member deteriorates when Ra is too large.

請求項2に関して、コールドスプレー法によって、「Ni等の融点の高い純金属では焼結温度が高い」、「焼結しようとするとその温度変化により形成組織が変化してしまうため焼結し難い合金の使用は難しい」といった材料に対して、コールドスプレー法による瞬間的な強大なエネルギーが粉末粒子間、粉末粒子−基板間にかかることで、融点の高い純金属や難焼結合金粉末であっても塑性変形による強固な結合により、触媒部材として使用可能になる。   With respect to claim 2, by a cold spray method, “a pure metal having a high melting point such as Ni has a high sintering temperature”, “an alloy that is difficult to sinter because the formation structure changes due to temperature change when sintering is attempted. In contrast to materials that are difficult to use, the instantaneous and powerful energy generated by the cold spray method is applied between the powder particles and between the powder particles and the substrate. Can also be used as a catalyst member due to the strong bonding by plastic deformation.

さらに、請求項1に記載の金属粉末及び/又は合金粉末を、純Ni,純Co,純Ti、Ni合金,Co合金,Ti合金の1種または2種以上使用することで、今までにはなかった表面形状を形成できる。例えば、合金とすることで、純金属よりも硬さを柔らかくすることによってバインダーがなくでも、結合性がよく、多孔質の触媒部材が得られる。   Furthermore, by using one or more of pure Ni, pure Co, pure Ti, Ni alloy, Co alloy, and Ti alloy as the metal powder and / or alloy powder according to claim 1, The surface shape that did not exist can be formed. For example, by making it an alloy, it is possible to obtain a porous catalyst member with good bonding properties even if there is no binder by making the hardness softer than pure metal.

請求項3に関して、コールドスプレー法を用いた結果、触媒材料を均一に分散でき、かつ触媒部材のうち触媒反応を起こす面の表面粗さRaは1〜300μmで比表面積も大きく反応効率の向上を図ることができ、かつその固着時のエネルギーにより触媒粉末同士が強固に固着、金属シートとも強固に固着することで、反応時の触媒粉末の滑落なども無く連続した製造ラインにおいて、触媒の強度やメンテナンスフリーな製造方法である。   As for the third aspect, as a result of using the cold spray method, the catalyst material can be uniformly dispersed, and the surface roughness Ra of the surface of the catalyst member causing the catalytic reaction is 1 to 300 μm, and the specific surface area is large and the reaction efficiency is improved. The catalyst powder can be firmly fixed by the energy at the time of fixing, and the metal sheet is also firmly fixed, so that the catalyst strength and This is a maintenance-free manufacturing method.

例えば、Ni系やCo系、Ti系合金粉末を金属基板上に溶射することによって、粉末のプレス加工、成形体の焼結の2工程を1工程(工程簡略化)での触媒作製を可能とする。また、従来の粉末のプレス加工、成形体の焼結過程の時点では行えなかった空孔率の制御もコールドスプレー法により可能になる。また、焼結に不向きな材料であっても容易に金属基材に固着させることができる。   For example, by spraying Ni-based, Co-based, and Ti-based alloy powders onto a metal substrate, it is possible to produce a catalyst in one step (process simplification) of the two steps of powder pressing and sintering of the compact. To do. Moreover, the control of the porosity, which could not be performed at the time of the conventional powder pressing process and the sintering process of the molded body, can be performed by the cold spray method. Moreover, even if it is a material unsuitable for sintering, it can be easily fixed to a metal base material.

以下、本発明について図面に従って詳細に説明する。
図1は、本発明に係る金属基板に金属粉末及び/又は合金粉末を固着させた状態を示す断面概略図である。この図1に示すように、金属基板1に本発明に係る触媒機能を有する金属粉末及び/又は合金粉末2が、金属基板1に固着している。ここで固着しているとは、図1のように金属粉末及び/又は合金粉末2の粒子形状が完全に残っており、表面粗さRaが1μm≦Ra≦300μmと非常に凹凸のある形態をしている。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing a state in which metal powder and / or alloy powder is fixed to a metal substrate according to the present invention. As shown in FIG. 1, a metal powder and / or alloy powder 2 having a catalytic function according to the present invention is fixed to a metal substrate 1. Here, the term “fixed” means that the particle shape of the metal powder and / or the alloy powder 2 remains completely as shown in FIG. 1, and the surface roughness Ra is 1 μm ≦ Ra ≦ 300 μm and very uneven. is doing.

図2も、本発明に係る金属基板に金属粉末及び/又は合金粉末を固着させた状態を示す断面概略図である。この図2に示すように、金属粉末及び/又は合金粉末2の粒子形状がくずれてはいるが表面粗さRaが1μm≦Ra≦300μmと凹凸のある形態をしている。図3は、触媒機能を有する金属層及び/又は合金層3を平滑に被覆され、その表面粗さRaは1μm未満と、滑らかに金属基板1に被覆されている形態を示している。   FIG. 2 is also a schematic cross-sectional view showing a state in which metal powder and / or alloy powder is fixed to the metal substrate according to the present invention. As shown in FIG. 2, although the particle shape of the metal powder and / or the alloy powder 2 is broken, the surface roughness Ra is 1 μm ≦ Ra ≦ 300 μm and is uneven. FIG. 3 shows a form in which the metal layer and / or alloy layer 3 having a catalytic function is smoothly coated and the surface roughness Ra is less than 1 μm, and the metal substrate 1 is smoothly coated.

また、本発明に係るコールドスプレー法とは、触媒粉末を溶融またはガス化させることなく空気や不活性ガスと共に高速流で固相状態のまま金属基板に衝突させて被膜を形成する技術である。この方法によれば、高速に加速された触媒粉末粒子が金属基板に衝突したときに起こる粒子の塑性変形や基板中への物理的なめり込みにより金属基板の表面に適度な凹凸を持った触媒膜が固着される。このような原理で金属基板上に試料が固着されるため、バインダーが不要となり、触媒粉末の固着が可能となる。   The cold spray method according to the present invention is a technique for forming a film by colliding with a metal substrate in a solid state in a high-speed flow together with air or inert gas without melting or gasifying the catalyst powder. According to this method, a catalyst film having moderate irregularities on the surface of the metal substrate due to plastic deformation of the particles that occur when the catalyst powder particles accelerated at high speed collide with the metal substrate and physical penetration into the substrate. Is fixed. Since the sample is fixed on the metal substrate based on such a principle, a binder is not necessary and the catalyst powder can be fixed.

また、本発明においては、使用する粉末の組成、粒径、形状、又はコールドスプレーの噴射条件を適切に設定することにより、表面粗さRaを制御することができる。ここで、コールドスプレー法による噴射溶射条件を適切に設定するとは、例えば、粉末への熱による特性変化を抑えるためにガス温度を800℃、また金属基板への最適なめり込み方や積層状態を考慮して粉末とともに噴射するガス圧力を3MPaとした。   In the present invention, the surface roughness Ra can be controlled by appropriately setting the composition, particle size, shape, or cold spraying conditions of the powder to be used. Here, to properly set the spray spraying conditions by the cold spray method, for example, in order to suppress changes in characteristics due to heat to the powder, the gas temperature is set to 800 ° C., and the optimal penetration and lamination state to the metal substrate is considered. The gas pressure injected with the powder was 3 MPa.

また、本発明に係る金属粉末及び/又は合金粉末とは触媒機能を有する純Ni,純Co,純Ti、Ni合金,Co合金,Ti合金の1種または2種以上を含むものである。また、表面粗さ増大のため、腐食処理等の表面処理を行うことも可能である。上記したように、粉末の組成は、触媒機能を有するNi,Co,Tiの1種または2種以上の単体およびそれらの合金を掲げることができる。   The metal powder and / or alloy powder according to the present invention includes one or more of pure Ni, pure Co, pure Ti, Ni alloy, Co alloy, and Ti alloy having a catalytic function. In addition, surface treatment such as corrosion treatment can be performed to increase the surface roughness. As described above, the composition of the powder can be one or more of Ni, Co, and Ti having a catalytic function, and alloys thereof.

本発明に係る金属粉末及び/又は合金粉末は、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融後、Arガス雰囲気中、ガス噴射させるとともに出湯させ、急冷凝固することで目的とするガスアトマイズ微粉末を得た。あるいは、Arガス雰囲気中で高周波誘導溶解炉により加熱溶融後、Arガス雰囲気中、回転数40000rpmで回転するディスク上に溶湯を出湯させ、急冷凝固することで目的とするディスクアトマイズ微粉末を得た。あるいは、液体急冷薄帯、共沈法、メカニカルアロイング法により試料粉末を得た。   The metal powder and / or alloy powder according to the present invention is a target gas atomized fine powder by heating and melting in a high-frequency induction melting furnace in an Ar gas atmosphere, then injecting gas in the Ar gas atmosphere, hot water being discharged, and rapid solidification. Got. Alternatively, after heating and melting in a high-frequency induction melting furnace in an Ar gas atmosphere, the molten metal is discharged onto a disk rotating at a rotational speed of 40000 rpm in the Ar gas atmosphere, and rapidly solidified to obtain a target disk atomized fine powder. . Alternatively, a sample powder was obtained by liquid quenching ribbon, coprecipitation method, mechanical alloying method.

以下、本発明について実施例によって具体的に説明する。
NiやCo、Tiの金属粉末及びNiやCo、Tiの各元素をベースとする合金粉末をArガス雰囲気中で高周波誘導溶解炉により加熱溶融後、Arガス雰囲気中に出湯させ、ガスアトマイズではArガスを溶湯に当てて噴霧して、またディスクアトマイズ法では回転数40000rpmで回転するディスク上に落下させてディスクの遠心力により溶湯を飛散させて球状微粉末を得た。あるいは、液体急冷薄帯、共沈法、メカニカルアロイング法による試料粉末を得た。また、これらの粉末を所定量計量して混合した。この粉末を図1、2に示すように、金属基板上に固着させる。その作製処理方法として、上記で示したコールドスプレー法、又は焼結法、焼結+研磨法を採用し、表1に本発明の効果を示した。
Hereinafter, the present invention will be specifically described with reference to examples.
Ni, Co, Ti metal powder and alloy powder based on each element of Ni, Co, Ti are heated and melted in a high-frequency induction melting furnace in an Ar gas atmosphere, and then discharged into the Ar gas atmosphere. Was applied to the molten metal and sprayed. In the disk atomization method, the liquid was dropped on a disk rotating at a rotational speed of 40000 rpm, and the molten metal was scattered by the centrifugal force of the disk to obtain a spherical fine powder. Alternatively, a sample powder was obtained by a liquid quenching ribbon, a coprecipitation method, or a mechanical alloying method. A predetermined amount of these powders were weighed and mixed. This powder is fixed on a metal substrate as shown in FIGS. As the preparation processing method, the cold spray method, the sintering method, or the sintering + polishing method described above was adopted, and Table 1 shows the effects of the present invention.

なお、コールドスプレー法では、NiやCo、Tiの金属粉末及びNiやCo、Tiの各元素をベースとする合金粉末の噴出ノズルと金属基板間距離を10〜20mmに保ち、ガス温度を800℃、ガス圧力を3MPa、さらに凹凸により表面粗さRaが1〜300μmになるように同じ場所への噴射を避け、N2ガスとともに試料を10〜40mm/sのノズル移動速度で金属基板上に噴出、固着させた。   In the cold spray method, the distance between the metal nozzle of the metal powder of Ni, Co and Ti and the alloy powder based on each element of Ni, Co and Ti and the metal substrate is kept at 10 to 20 mm, and the gas temperature is 800 ° C. The gas pressure is 3 MPa, and the surface roughness Ra is 1 to 300 μm due to the unevenness, so that the injection to the same place is avoided, and the sample is jetted onto the metal substrate together with N 2 gas at a nozzle moving speed of 10 to 40 mm / s. It was fixed.

以上のように、NiやCo、Tiの金属粉末及びNiやCo、Tiの各元素をベースとする合金粉末をコールドスプレー法による高速に加速されたNiやCo、Tiの金属粉末及びNiやCo、Tiの各元素をベースとする合金粉末が金属基板に衝突したときに起こる粒子の塑性変形や基板中への物理的なめり込みにより金属基板の表面に適度な凹凸、すなわち、表面粗さRaが1〜300μmとなり、粒子が固着される。   As described above, Ni, Co, Ti metal powder and alloy powder based on each element of Ni, Co, Ti are accelerated at high speed by the cold spray method, and Ni, Co, Ti metal powder and Ni or Co. When the alloy powder based on each element of Ti collides with the metal substrate, the surface of the metal substrate has appropriate irregularities, that is, the surface roughness Ra, due to plastic deformation of the particles and physical penetration into the substrate. It becomes 1-300 micrometers, and particle | grains adhere.

Figure 2012192401
Figure 2012192401

Figure 2012192401
Figure 2012192401

Figure 2012192401
表1〜2に示すNo.1〜40は、本発明例であり、表3に示すNo.41〜51は、比較例である。
Figure 2012192401
No. shown in Tables 1-2. 1 to 40 are examples of the present invention. 41 to 51 are comparative examples.

本発明例であるNo.1〜40では、表面粗さRaは1〜300μmで反応性の向上に至った。また、コールドスプレー法により、その固着時のエネルギーにより触媒粉末同士が強固に固着、金属基板とも強固に固着することで、反応時の触媒粉末の滑落なども無く連続した製造ラインにおいて、触媒の強度やメンテナンスフリーといったメリットが付加された。   No. which is an example of the present invention. In 1-40, surface roughness Ra was 1-300 micrometers, and it came to the improvement of the reactivity. Also, by the cold spray method, the catalyst powders are firmly fixed to each other by the energy at the time of fixing, and the metal substrate is also firmly fixed, so that the strength of the catalyst in a continuous production line without the catalyst powder falling off during the reaction. And maintenance-free benefits.

一方で、表3に示す比較例No.41〜47では表面が図3に示すような滑らかな形態になる。表面粗さRaが1μm未満であり、製造工程の簡略化と触媒反応の向上には至らない。また、比較例No.48〜51では表面粗さRaが300μmを超え、製造工程の簡略化と触媒反応の向上には至らない。   On the other hand, Comparative Example No. In 41-47, the surface becomes a smooth form as shown in FIG. The surface roughness Ra is less than 1 μm, and the manufacturing process is not simplified and the catalytic reaction is not improved. Comparative Example No. In 48-51, surface roughness Ra exceeds 300 micrometers, and it does not lead to the simplification of a manufacturing process and the improvement of a catalytic reaction.

以上にように、Ni系やCo系、Ti系合金粉末をコールドスプレー成膜法により、金属基板上に溶射することによって、空隙を設けつつ相互結着できることで、従来の製造工程を簡略化することができ、かつ焼結に不向きな材料や単体合金の触媒部材を容易に製造可能となり、また、触媒の空孔率や比表面積を向上させることが出来る極めて優れた触媒およびその製造方法を提供することにある。   As described above, Ni-based, Co-based, and Ti-based alloy powders are sprayed onto a metal substrate by a cold spray film forming method, thereby enabling mutual bonding while providing voids, thereby simplifying the conventional manufacturing process. It is possible to easily produce a catalyst member made of a material or a single alloy that is unsuitable for sintering, and to provide an extremely excellent catalyst capable of improving the porosity and specific surface area of the catalyst and a method for producing the catalyst. There is to do.

本発明に係る金属基板に金属粉末及び/又は合金粉末を固着させた状態を示す断面概略図である。It is a section schematic diagram showing the state where metal powder and / or alloy powder were made to adhere to the metal substrate concerning the present invention. 本発明に係る金属基板に金属粉末及び/又は合金粉末を固着させた状態を示す断面概略図である。It is a section schematic diagram showing the state where metal powder and / or alloy powder were made to adhere to the metal substrate concerning the present invention. 従来の金属基板に金属層及び/又は合金層を平滑に被覆した状態を示す断面概略図である。It is the cross-sectional schematic which shows the state which coat | covered the metal layer and / or the alloy layer smoothly on the conventional metal substrate.

1 金属基板
2 金属粉末及び/又は合金粉末
3 金属層及び/又は合金層


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
1 Metal substrate 2 Metal powder and / or alloy powder 3 Metal layer and / or alloy layer


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (3)

触媒機能を有する金属粉末及び/又は合金粉末を金属部材に固着し、触媒部材のうち触媒反応を起こす面の表面粗さRaが1〜300μmに仕上げられた金属部材であることを特徴とする触媒部材。 A catalyst characterized in that a metal powder and / or alloy powder having a catalytic function is fixed to a metal member, and a surface roughness Ra of the surface of the catalyst member that causes a catalytic reaction is finished to 1 to 300 μm. Element. 請求項1に記載の金属粉末及び/又は合金粉末が、純Ni,純Co,純Ti、Ni合金,Co合金,Ti合金の1種または2種以上からなることを特徴とする触媒部材。 A catalyst member, wherein the metal powder and / or alloy powder according to claim 1 is composed of one or more of pure Ni, pure Co, pure Ti, Ni alloy, Co alloy, and Ti alloy. 触媒機能を有する金属粉末及び/又は合金粉末をコールドスプレー法を用いて金属部材に固着させ、該金属部材の表面粗さRaを1〜300μmとすることを特徴とする触媒部材の製造方法。 A method for producing a catalyst member, characterized in that a metal powder and / or alloy powder having a catalytic function is fixed to a metal member using a cold spray method, and the surface roughness Ra of the metal member is 1 to 300 μm.
JP2012029125A 2011-02-28 2012-02-14 Catalyst member, and production method for the same Pending JP2012192401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012029125A JP2012192401A (en) 2011-02-28 2012-02-14 Catalyst member, and production method for the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011042006 2011-02-28
JP2011042006 2011-02-28
JP2012029125A JP2012192401A (en) 2011-02-28 2012-02-14 Catalyst member, and production method for the same

Publications (1)

Publication Number Publication Date
JP2012192401A true JP2012192401A (en) 2012-10-11

Family

ID=47084833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012029125A Pending JP2012192401A (en) 2011-02-28 2012-02-14 Catalyst member, and production method for the same

Country Status (1)

Country Link
JP (1) JP2012192401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160441A (en) * 2015-02-26 2016-09-05 学校法人慶應義塾 Surface treatment method and intermetallic compound coat-attached component made of metal
JP2018070985A (en) * 2016-11-04 2018-05-10 東邦チタニウム株式会社 Titanium-based porous body and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160441A (en) * 2015-02-26 2016-09-05 学校法人慶應義塾 Surface treatment method and intermetallic compound coat-attached component made of metal
JP2018070985A (en) * 2016-11-04 2018-05-10 東邦チタニウム株式会社 Titanium-based porous body and manufacturing method therefor

Similar Documents

Publication Publication Date Title
CN105149603B (en) High sphericity Inconel625 alloy powders and preparation method and application
CN109434118B (en) Preparation and forming method of amorphous reinforced metal matrix composite
CN104005021B (en) A kind of method of supersonic speed laser deposition low stress coating
KR20160113261A (en) Centrifugal atomization of iron-based alloys
JP5676161B2 (en) Thermal spray powder and method of forming thermal spray coating
CN101967595A (en) Spray-deposition nano particle reinforced zinc-based composite and preparation method thereof
CN105102157A (en) Copper alloy powder, sintered copper alloy body and brake lining for use in high-speed railway
JPWO2018116856A1 (en) Method for forming intermetallic compound sprayed coating, sprayed coating, method for producing metal product having sprayed coating, and roll for glass conveyance
JP2015232173A (en) Porous aluminum sintered body and manufacturing method of porous aluminum sintered body
Hushchyk et al. Nanostructured AlNiCoFeCrTi high-entropy coating performed by cold spray
CN110480022A (en) A kind of FeNiCuSn pre-alloyed powder, preparation method and application
CN110344045A (en) A kind of preparation method of fabricated in situ low pressure cold spraying CuAlNiCrTiSi high entropy alloy coating
JP2012192401A (en) Catalyst member, and production method for the same
CN108866542B (en) Preparation process of tin-based Babbitt alloy coating material based on 3D printing technology
CN108856721B (en) Preparation process of three-dimensional printing composite material based on micron-sized tin-based babbitt metal powder
CN103255413A (en) Cobalt-based self-lubricating coating laser-cladded on copper and copper alloy surface and preparation process
CN103060586A (en) Preparation method for complex-shape niobium-based ODS (oxide dispersion strengthening) alloy
JPWO2019123538A1 (en) Magnesium alloy powder and its sintered parts
CN107034375A (en) A kind of method that utilization hydride powder prepares high-compactness titanium article
CN103817341B (en) A kind of preparation method of high heat release nickel-based composite pow-der
KR20140001530A (en) Producing method of fe-tic composite powder by mechanically activation process
JP5872844B2 (en) Method for producing composite material and composite material
KR20160071619A (en) Method for manufacturing fe-based superalloy
CN105177414B (en) Nickel-carbon-ferrum-based powder metallurgy alloy and preparation method thereof
JPWO2019123537A1 (en) Magnesium alloy powder and its sintered parts