JPH03158453A - Formation of tial compound layer - Google Patents

Formation of tial compound layer

Info

Publication number
JPH03158453A
JPH03158453A JP29545689A JP29545689A JPH03158453A JP H03158453 A JPH03158453 A JP H03158453A JP 29545689 A JP29545689 A JP 29545689A JP 29545689 A JP29545689 A JP 29545689A JP H03158453 A JPH03158453 A JP H03158453A
Authority
JP
Japan
Prior art keywords
powder
tial
compound layer
spraying
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29545689A
Other languages
Japanese (ja)
Inventor
Takashi Morikawa
隆 森川
Hiroyuki Shamoto
社本 裕幸
Yoshiki Tsunekawa
好樹 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29545689A priority Critical patent/JPH03158453A/en
Publication of JPH03158453A publication Critical patent/JPH03158453A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily form a TiAl compound layer of arbitrary range of composition and amount of building-up by carrying out low-pressure plasma spraying by using a Ti powder containing specific amounts of Al powder as a thermal spraying material. CONSTITUTION:Low-pressure plasma spraying is performed by using a Ti powder containing 7-43wt.% Al powder as a thermal spraying material. At this time, it is preferable to regulate internal pressure in a decomposition chamber to <= about 20KPa, and further, it is desirable to keep the temp. of a base material for thermal spraying at >= about 630 deg.C. Moreover, as an atmospheric gas for plasma formation, a gaseous mixture of Ar and H2 or respective single gases can be used. By this method, a layer of TiAl compound having an arbitrary composition in the above range can be bult up on the base material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はTiAl系化合物層の形成方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for forming a TiAl-based compound layer.

[従来の技術] Ti−Al2元系において、常温における49〜55原
子%A1の組成域において、金属間化合物T i A 
lが存在する。このTiAl金属間化合物は、比重が小
さく、高温強度、耐酸化性に優れているため、軽量の耐
熱材料として、有望視されている。
[Prior art] In the Ti-Al binary system, in the composition range of 49 to 55 at.% A1 at room temperature, the intermetallic compound T i A
l exists. This TiAl intermetallic compound has a low specific gravity and is excellent in high-temperature strength and oxidation resistance, so it is considered promising as a lightweight heat-resistant material.

しかしながら、このTiAl金属間化合物は、池の金属
間化合物と同様に、通常の金属や合金にくらべて脆く、
常温延性に乏しく、まだ本格的に実用化されていない、
そのため、比較的延性の出やすいTi寄りのTiAl+
Ti、At相境界に近い組成の化合物を中心に、延性を
改良する研究が続けられている。
However, this TiAl intermetallic compound, like the pond intermetallic compound, is more brittle than ordinary metals and alloys.
It has poor room temperature ductility and has not yet been put into practical use.
Therefore, TiAl+, which is closer to Ti and is relatively more ductile,
Research is continuing to improve ductility, focusing on compounds with compositions close to the Ti and At phase boundaries.

また、T1は溶融状態で非常に活性な金属であるため、
カルシア製のるつぼを用い真空誘導溶解する方法が提案
されており(特開昭61−223172号公報)、T 
i A lが難加工性であるため、AIおよびTiの粉
体温合物を密封容器中で成形した後焼結する粉末冶金の
手法が提案されている(特開昭62−70531号公報
)、さらに、TiA金属間化合物の加工方法として、耐
熱合金からなるシース材を用いた恒温鍛造法が提案され
ている(特開昭61−213361号公報)。
In addition, since T1 is a very active metal in the molten state,
A vacuum induction melting method using a calcia crucible has been proposed (Japanese Patent Application Laid-open No. 61-223172), and T.
Since iAl is difficult to process, a powder metallurgy method has been proposed in which a powder mixture of AI and Ti is molded in a sealed container and then sintered (Japanese Patent Laid-Open No. 70531/1983). Furthermore, as a method for processing TiA intermetallic compounds, an isothermal forging method using a sheath material made of a heat-resistant alloy has been proposed (Japanese Patent Application Laid-Open No. 61-213361).

[発明が解決しようとする課題] そこで、TiAl系金属問化合物の高温強度および耐酸
化性を利用する方法として、部材の表面にTiAl系金
属間化合物を金属溶射により盛金する方法が考えられる
。しかしながら、部材の表面にT i A 1層を金属
溶射により盛金するには、高価なT i A l粉末を
用いる必要があり、その場合にはTiAlの組成および
量を容易に変えることが困難であるため、盛金の条件を
うまくコントロールしないと割れが生じるという欠点が
あった。
[Problems to be Solved by the Invention] Therefore, as a method of utilizing the high-temperature strength and oxidation resistance of the TiAl-based intermetallic compound, a method of depositing the TiAl-based intermetallic compound on the surface of the member by metal spraying can be considered. However, in order to deposit a single layer of TiAl on the surface of a component by metal spraying, it is necessary to use expensive TiAl powder, and in that case, it is difficult to easily change the composition and amount of TiAl. Therefore, there was a drawback that cracks would occur unless the conditions of the deposit were well controlled.

本発明は、部材の表面にT i A I系化合物層を形
成する方法における前記のごとき問題点に鑑みてなされ
たものであって、T i A l粉末を用いずに組成範
囲および盛金量を容易にコントロールすることのできる
T i A I系化合物層の形成方法を提供することを
目的とする。
The present invention has been made in view of the above-mentioned problems in the method of forming a T i A I compound layer on the surface of a member, and it is possible to easily change the composition range and the amount of metal deposit without using T i A I powder. It is an object of the present invention to provide a method for forming a T i A I-based compound layer that can be controlled.

[課題を解決するための手段] 本発明のT i A I系化合物層の形成方法は、重量
比で7〜43%のA1粉末を含有するTi粉末を溶射材
料として、減圧プラズマ溶射することを要旨とする。
[Means for Solving the Problems] The method for forming a TiA I-based compound layer of the present invention includes low-pressure plasma spraying using Ti powder containing 7 to 43% A1 powder by weight as a spraying material. This is the summary.

溶射材料として用いるTi粉末に混合するA1粉末量が
重量比が7%未満であるとT i A l系化合物は殆
ど生成しない、また、A1粉末の重量比が43%を越え
ると、生成した化合物にA1が残存し、TiAl皮膜の
耐摩耗性等の特性を著しく劣化させて好ましくない、な
お、A1量36%以下ではTiが残存しているが、これ
は適度に混在することで、TiAl皮膜の靭性改善に有
効と考えられる。
If the weight ratio of the A1 powder mixed with the Ti powder used as a thermal spraying material is less than 7%, hardly any TiAl-based compounds will be produced, and if the weight ratio of the A1 powder exceeds 43%, the produced compounds will be A1 remains in the TiAl film, which is undesirable because it significantly deteriorates the properties such as wear resistance of the TiAl film.In addition, if the A1 amount is 36% or less, Ti remains, but if it is mixed in a moderate amount, the TiAl film It is considered to be effective in improving the toughness of

減圧プラズマ溶射は、溶射ガン、基材移動装置および基
材を、減圧無酸素状態に制御できる減圧室内に組み込ん
でプラズマ溶射を行う従来から公知の減圧プラズマ溶射
装置を用いて行う。
Low-pressure plasma spraying is performed using a conventionally known low-pressure plasma spraying apparatus that performs plasma spraying by incorporating a thermal spray gun, a substrate moving device, and a substrate into a reduced-pressure chamber that can be controlled to a reduced-pressure, oxygen-free state.

減圧プラズマ溶射を行う際の減圧室の内圧は、20KP
a(150Lorr)以下とすることが好ましい、減圧
室の内圧が20KPaより高い場合は、生成した皮膜が
ポーラスとなり、密着性が悪くなる。X圧室の内圧は、
低く・なればなる程、液滴の温度が上がり、T i A
 I皮膜の生成には有利である。
The internal pressure of the vacuum chamber when performing vacuum plasma spraying is 20KP.
If the internal pressure of the decompression chamber is preferably higher than 20 KPa, the resulting film becomes porous and the adhesion deteriorates. The internal pressure of the X-pressure chamber is
The lower the temperature, the higher the temperature of the droplet, and T i A
It is advantageous for the production of I films.

また、プラズマ溶射を行う基材の移動速度が小さくなれ
ばなる程、減圧室の内圧が低くなればなる程、基材の温
度は上昇するが、減圧プラズマ溶射時においては、基材
の温度は630℃以上に保つ必要がある。基材の温度が
630℃未満であると、TiAl系化合物は殆ど生成さ
れない、従って、減圧プラズマ溶射に際しては、基材移
動速度、基材冷却方法、減圧室の内圧を適宜に選択して
、基材の温度を630℃以上に保つことが好ましい。
In addition, the slower the moving speed of the base material subjected to plasma spraying and the lower the internal pressure of the vacuum chamber, the higher the temperature of the base material will be. It is necessary to maintain the temperature at 630°C or higher. If the temperature of the substrate is less than 630°C, hardly any TiAl-based compounds will be produced. Therefore, during vacuum plasma spraying, the substrate moving speed, substrate cooling method, and internal pressure of the vacuum chamber should be appropriately selected to control the substrate temperature. It is preferable to maintain the temperature of the material at 630°C or higher.

プラズマ生成のための雰囲気ガスとしては、ArとH7
の混合ガスまたはそれぞれの単独ガスを用いることがで
きる。混合ガスの混合比は特に制約はないが、H2が多
くなればプラズマ温度が上昇するため、TiAl皮膜の
生成には有利である。しかし、A「単独でも、装置の出
力を上げれば十分に可能である。
Ar and H7 are used as atmospheric gases for plasma generation.
A mixture of these gases or each gas alone can be used. Although there are no particular restrictions on the mixing ratio of the mixed gas, an increase in H2 increases the plasma temperature, which is advantageous for forming a TiAl film. However, A alone is fully possible if the output of the device is increased.

[作用] 電極と基材の間に発生したメインアークは、作動ガスと
ノズルによって、収束されてプラズマ柱となる。このプ
ラズマ柱の中へAIl粉末混合したTi粉末を供給して
溶融し、さらにプラズマアークにより、基材表面に溶融
溶着させる。
[Operation] The main arc generated between the electrode and the base material is converged into a plasma column by the working gas and the nozzle. Ti powder mixed with Al powder is fed into this plasma column and melted, and further melted and welded to the surface of the base material by a plasma arc.

溶着された盛会の組成範囲は、溶射材料であるTi粉末
中に混合するA1粉末の量によって、自由に調整するこ
とができる。また、プラズマ溶射条件あるいは減圧室の
内圧および基材の温度を適宜選択するこ乞により、Ti
Al系化合物層が盛金される。
The composition range of the welded material can be freely adjusted by changing the amount of A1 powder mixed into the Ti powder, which is the thermal spray material. In addition, by appropriately selecting the plasma spraying conditions, the internal pressure of the decompression chamber, and the temperature of the substrate, Ti
An Al-based compound layer is deposited.

[実施例] 本発明の好適な実施例について説明し、本発明の効果を
明らかにする。
[Example] Preferred examples of the present invention will be described to clarify the effects of the present invention.

(実施例1) 重量比で64%の純Tiおよび36%の純A1の混合粉
末を溶射材料として、第1表に示す減圧プラズマ溶射条
件で、5S41製の基材の上に、溶射皮膜を盛合した。
(Example 1) Using a mixed powder of 64% pure Ti and 36% pure A1 by weight as a thermal spray material, a thermal spray coating was formed on a 5S41 base material under the reduced pressure plasma spraying conditions shown in Table 1. There was a lot.

P=26.6KPa(200torr)では、溶射皮膜
は極めてポーラスで、容易に剥離したが、P=20.0
KPa、13.3KPa、6゜7KPaでは、良好な皮
膜が得られた。
At P=26.6 KPa (200 torr), the sprayed coating was extremely porous and easily peeled off, but at P=20.0
Good films were obtained at KPa, 13.3KPa, and 6°7KPa.

P=20.0KPa以下の内圧で得られた皮膜について
、その皮膜を構成する相について調べたところ、減圧室
の内圧(P)と基材の移動速度(vs)によって変化し
、生成した相は第2表に示すような結果となった。
Regarding the film obtained at an internal pressure of P = 20.0 KPa or less, we investigated the phases that make up the film, and found that it changes depending on the internal pressure (P) of the vacuum chamber and the moving speed (vs) of the base material, and the generated phase The results are shown in Table 2.

(以下余白) 第2表で得られた結果より、金属間化合物の生成は、主
として基材表面で生じており、Pとvsの低下は基材温
度Tsの上昇と対応し、TsがA1の融点に近い630
℃以上になれば、金属間化合物が生成することが判明し
た。
(Left below) From the results obtained in Table 2, the generation of intermetallic compounds mainly occurs on the substrate surface, and the decrease in P and vs corresponds to the increase in substrate temperature Ts, and Ts is higher than A1. 630 close to melting point
It has been found that intermetallic compounds are formed when the temperature exceeds ℃.

P=6.7KPa、vs=5mm/seeの条件で形成
したT i A l )、T i A Iおよびα−T
iからなる皮膜のX線回折図形を第1図に1組織写真を
第2図に、高温硬さを第3図に示した。第1図のX線回
折図形より、T i A I系化合物(TiAI、Ti
Al5)のピークが明確に認められる。第2図の組織写
真より、基材温度の低い溶射初期に相当する基材との界
面付近は黒灰色のTi相が主成分であるが、それ以外の
部分には、TiAl系化合物の白い相が認められる。ま
た、第3図の高温硬度を示す図より、TAl系溶射皮膜
は同じく溶射法により製造したTi溶射皮膜よりも硬さ
が高いのみならず、一般に知られている溶製法によるT
 i A l (常温でHv約150〜250)よりも
著しく高く、急冷による微細化効果や、TiAl、等の
第2相の生成の効果が現れているものと思われる。
T i A l ), T i A I and α-T formed under the conditions of P = 6.7 KPa, vs = 5 mm/see
The X-ray diffraction pattern of the film made of i is shown in Fig. 1, the photograph of one structure is shown in Fig. 2, and the high temperature hardness is shown in Fig. 3. From the X-ray diffraction pattern in FIG.
The peak of Al5) is clearly recognized. From the microstructure photograph in Figure 2, the main component is a black-gray Ti phase near the interface with the base material, which corresponds to the early stage of thermal spraying when the base material temperature is low, but the white phase of TiAl-based compounds is present in other parts. is recognized. Furthermore, from the diagram showing the high-temperature hardness in Figure 3, not only is the TAl sprayed coating higher in hardness than the Ti sprayed coating produced by the same thermal spraying method, but also
i A l (Hv approximately 150 to 250 at room temperature), which is considered to be due to the refinement effect due to rapid cooling and the effect of the formation of a second phase such as TiAl.

(実施例2) P=6.7KPa、vs=5mm/5ecTAI量組成
を重量比で10〜45%の範囲で変化させて、減圧プラ
ズマ溶射皮膜を作製した。生成した相をX線回折により
同定し、結果を第3表に示した。
(Example 2) P=6.7KPa, vs=5mm/5ecTAI amount composition was varied in a range of 10 to 45% by weight to produce a reduced pressure plasma sprayed coating. The produced phase was identified by X-ray diffraction, and the results are shown in Table 3.

第      3      表 ()は微量 第3表の結果より、AI量5%以下では殆どTiAl系
化合物が生成せず、またA1145%以上では大量のA
1が未反応で残ってしまうことが分かる。
Table 3 () shows that, based on the results in Table 3, when the AI amount is less than 5%, hardly any TiAl-based compounds are produced, and when the A1 content is 45% or more, a large amount of A is produced.
It can be seen that 1 remains unreacted.

本実施例で得られた皮膜のうち、A1110%で生成し
た皮膜のX線回折図形を第4図に示した。
Among the films obtained in this example, the X-ray diffraction pattern of the film made of 10% A11 is shown in FIG.

(実施例3) 重量比で80%の純Ti、18%の純A1.2%のMn
からなる混合粉末を溶射材料として、P:6.7 K 
Pa、 vs= 5sm/seeの溶射条件で、減圧プ
ラズマ溶射により、溶射皮膜を作製した。
(Example 3) 80% pure Ti, 18% pure A, 1.2% Mn by weight
As a thermal spray material, a mixed powder consisting of P: 6.7 K
A thermal sprayed coating was produced by low pressure plasma spraying under thermal spraying conditions of Pa, vs=5 sm/see.

この皮膜をX線回折にて同定したところ、Ti3Al、
TiAl、T i A I 3、Tiにより構成されて
いることが判明した。この結果より、本発明法では、T
iAlの靭性や耐酸化性向上に効果のあることの知られ
ているMnやS;等の第3元素を合金化することも容易
であることが確認された。
When this film was identified by X-ray diffraction, it was found that Ti3Al,
It was found that it was composed of TiAl, T i A I 3, and Ti. From this result, in the method of the present invention, T
It was confirmed that it is also easy to alloy a third element such as Mn or S, which is known to be effective in improving the toughness and oxidation resistance of iAl.

[発明の効果] 本発明のTiAl系化合物層の形成方法は以上詳述した
ように、重量比で7〜43%のAI粉末を含有するTi
粉末を溶射材料として、減圧プラズマ溶射することを特
徴とするものであって、プラズマ柱の中へA1粉末を混
合したTi粉末を供給して溶融することによって、基材
表面に溶融溶着された盛会の組成範囲は、溶射材料であ
るTi粉末中に混合するA1粉末の量によって、自由に
調整することができる。また、プラズマ溶射条件あるい
は減圧室の内圧および基材の温度を適宜選択することに
より、T i A I系化合物層を盛金することができ
る。さらに、得られた盛金は溶製法によるT i A 
I系化合物よりも硬度が高(、TiAlの靭性や耐酸化
性向上に効果のあることの知られているMnやS;等の
第3元素を合金化することも容易である。
[Effects of the Invention] As detailed above, the method for forming a TiAl-based compound layer of the present invention uses a TiAl-based compound layer containing 7 to 43% by weight of AI powder.
It is characterized by low-pressure plasma spraying using a powder as a thermal spraying material, and by supplying Ti powder mixed with A1 powder into a plasma column and melting it, the coating is fused and welded to the surface of the base material. The composition range of can be freely adjusted by changing the amount of A1 powder mixed into Ti powder, which is a thermal spray material. Further, by appropriately selecting the plasma spraying conditions, the internal pressure of the decompression chamber, and the temperature of the base material, it is possible to deposit the T i A I-based compound layer. Furthermore, the obtained metal is T i A by melting method.
It is also easy to alloy third elements such as Mn and S, which have higher hardness than I-based compounds (and are known to be effective in improving the toughness and oxidation resistance of TiAl).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はT i A I系化合物層(Ti+36%AI
)のX線回折図形、第2図はTiAl系化合物層(Ti
+36%AI)の金属組織を表す200倍の顕微鏡写真
、第3図はTi戊膜とTiAl系化合物皮膜(Ti+3
6%AI)の温度と硬度の関係を示す線図、第4図はT
 i A I系化合物層(Ti+10%AI)のX線回
折図形である。 第1図 第2図 00 硬300 ご 2 (HV)100 第3図 第4図
Figure 1 shows a Ti A I compound layer (Ti + 36% AI).
), and Figure 2 shows the X-ray diffraction pattern of the TiAl-based compound layer (Ti
Figure 3 is a 200x micrograph showing the metallographic structure of a Ti film and a TiAl-based compound film (Ti+36% AI).
6% AI), a diagram showing the relationship between temperature and hardness, Figure 4 is T
i A This is an X-ray diffraction pattern of an I-based compound layer (Ti+10% AI). Figure 1 Figure 2 00 Hard 300 Go 2 (HV) 100 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)重量比で7〜43%のAl粉末を含有するTi粉
末を溶射材料として、減圧プラズマ溶射することを特徴
とするTiAl系化合物層の形成方法。
(1) A method for forming a TiAl-based compound layer, which comprises performing low-pressure plasma spraying using Ti powder containing 7 to 43% Al powder by weight as a thermal spraying material.
JP29545689A 1989-11-14 1989-11-14 Formation of tial compound layer Pending JPH03158453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29545689A JPH03158453A (en) 1989-11-14 1989-11-14 Formation of tial compound layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29545689A JPH03158453A (en) 1989-11-14 1989-11-14 Formation of tial compound layer

Publications (1)

Publication Number Publication Date
JPH03158453A true JPH03158453A (en) 1991-07-08

Family

ID=17820824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29545689A Pending JPH03158453A (en) 1989-11-14 1989-11-14 Formation of tial compound layer

Country Status (1)

Country Link
JP (1) JPH03158453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160441A (en) * 2015-02-26 2016-09-05 学校法人慶應義塾 Surface treatment method and intermetallic compound coat-attached component made of metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160441A (en) * 2015-02-26 2016-09-05 学校法人慶應義塾 Surface treatment method and intermetallic compound coat-attached component made of metal

Similar Documents

Publication Publication Date Title
WO2022042204A1 (en) Method for preventing selective laser melting nickel-based superalloy from cracking
US9108276B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
JPH0474423B2 (en)
US9982332B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
JP4957968B2 (en) Cu-In-Ga ternary sintered alloy sputtering target and method for producing the same
CN102560338B (en) Metal ceramic coating and preparation method thereof
CN114525429B (en) High-strength titanium alloy and additive preparation method thereof
Xie et al. Isothermal oxidation behavior of electrospark deposited MCrAlX-type coatings on a Ni-based superalloy
SE520561C2 (en) Process for preparing a dispersion curing alloy
JPH08269696A (en) Method for vaporizing mg
CN112725658B (en) Preparation method of titanium-aluminum alloy target
RU2213802C2 (en) Method of applying coating on alloys
JPH03158453A (en) Formation of tial compound layer
JP2767972B2 (en) Method for producing TiAl-based intermetallic compound layer
JPH057461B2 (en)
Tomochika et al. Fabrication of NiTi intermetallic compound by a reactive gas laser atomization process
WO2014105239A1 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
JPS642186B2 (en)
JP2004115833A (en) Mo-Si-B ALLOY
JPH05320863A (en) Alloy member resistant against heat and corrosion and its production
JP2003508628A (en) Manufacturing method of bulk amorphous layer on bulk metal compact
JPH04337062A (en) Surface treating member and its production
KR100312838B1 (en) Improved method and its apparatus for aluminizing coating process
JPH08311585A (en) Fe-and v-containing titanium aluminide for precision casting
EP0112206A1 (en) Method of coating metallic surfaces with carbides