JP2016117935A - Surface treatment method for sliding member, and sliding member - Google Patents

Surface treatment method for sliding member, and sliding member Download PDF

Info

Publication number
JP2016117935A
JP2016117935A JP2014259453A JP2014259453A JP2016117935A JP 2016117935 A JP2016117935 A JP 2016117935A JP 2014259453 A JP2014259453 A JP 2014259453A JP 2014259453 A JP2014259453 A JP 2014259453A JP 2016117935 A JP2016117935 A JP 2016117935A
Authority
JP
Japan
Prior art keywords
sliding
sliding member
surface treatment
unevenness
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014259453A
Other languages
Japanese (ja)
Other versions
JP6783500B2 (en
Inventor
間瀬 恵二
Keiji Mase
恵二 間瀬
正三 石橋
Shozo Ishibashi
正三 石橋
祐介 近藤
Yusuke Kondo
祐介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Manufacturing Co Ltd
Original Assignee
Fuji Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Manufacturing Co Ltd filed Critical Fuji Manufacturing Co Ltd
Priority to JP2014259453A priority Critical patent/JP6783500B2/en
Publication of JP2016117935A publication Critical patent/JP2016117935A/en
Application granted granted Critical
Publication of JP6783500B2 publication Critical patent/JP6783500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment method for a sliding member exhibiting friction properties and wear resistance stably over a long period.SOLUTION: A sliding part as the part to be slid-contacted with at least the other member in a sliding member is formed of an alloy in which carbide and/or an intermetallic compound is scattered into the matrix, and the matrix in the vicinity of the surface of the sliding part is selectively removed to form projecting parts made of the carbide and/or intermetallic compound on the surface of the sliding part, and further, the height of the projecting parts is formed so as to be 0.05 to 3.0 μm, preferably, to 0.1 to 2.0 μm.SELECTED DRAWING: Figure 7

Description

本発明は,金型,工具,刃物,軸受等,他部材と摺接される部分(本発明において「摺動部」という)を有する摺動部材の表面処理方法,及び該方法で処理された表面を有する摺動部材に関する。   The present invention provides a surface treatment method for a sliding member having a portion (referred to as a “sliding portion” in the present invention) having sliding contact with other members, such as a mold, a tool, a cutter, a bearing, and the like, and the surface treatment method. The present invention relates to a sliding member having a surface.

摺動部材の摺動部の低摩擦性,耐摩耗性を実現するために,従来から各種の表面処理技術が提案されている。   Conventionally, various surface treatment techniques have been proposed in order to realize low friction and wear resistance of the sliding portion of the sliding member.

このような低摩擦性,耐摩耗性を実現するための表面処理の1つとして,二硫化モリブデンや酸化スズ等の固体潤滑剤を,摺動部に対しバインダと共に塗布し,メッキし,あるいはスパッタリング等で蒸着することにより,固体潤滑剤を含む被膜を形成することが提案されている。   As one of the surface treatments for realizing such low friction and wear resistance, a solid lubricant such as molybdenum disulfide or tin oxide is applied to the sliding part together with a binder, plated, or sputtered. It has been proposed to form a film containing a solid lubricant by evaporating the film by, for example.

一例として,後掲の特許文献1では,この様な固体潤滑剤を含む被膜を比較的簡単に形成する方法として,摺動部の表面にブラスト加工装置を使用して二硫化モリブデンの微細粉体を衝突させることにより,表面から深さ20μm以内の表面に,固体潤滑剤である二硫化モリブデンを含有する層を形成することを提案している(特許文献1の請求項1他参照)。   As an example, in Patent Document 1 described later, as a method of forming such a coating containing a solid lubricant relatively easily, a fine powder of molybdenum disulfide is used by using a blasting device on the surface of the sliding portion. Has been proposed to form a layer containing molybdenum disulfide, which is a solid lubricant, on a surface within a depth of 20 μm from the surface (see claim 1 and others of Patent Document 1).

また,前述した低摩擦性,耐摩耗性を,摺動部に対する潤滑油の給油性の向上と,潤滑油の保持力の向上によって実現することも提案されており,このような給油性や保持力の向上を得るために,後掲の特許文献2には,摺動部材の摺動面に,所定のパターンで寸法が0.5〜500μmの凹凸を形成することが提案されている(特許文献2参照)。   In addition, it has been proposed that the low friction and wear resistance described above be achieved by improving the lubricity of the sliding oil and improving the retention of the lubricant. In order to obtain an improvement in force, Patent Document 2 listed below proposes forming irregularities with dimensions of 0.5 to 500 μm in a predetermined pattern on the sliding surface of the sliding member (patent). Reference 2).

国際公開2002/040743号公報International Publication No. 2002/040743 特開2002−323045号公報JP 2002-323045 A

以上で説明した従来技術のうち,摺動部の表面に固体潤滑剤を含有する被膜を形成する構成では,摺動部は固体潤滑剤を含有する被膜を介して相手方の部材と接触することとなるため,低摩擦性,耐摩耗性を向上させることができる。   Among the conventional techniques described above, in the configuration in which the coating containing the solid lubricant is formed on the surface of the sliding portion, the sliding portion comes into contact with the mating member through the coating containing the solid lubricant. Therefore, low friction and wear resistance can be improved.

しかし,このような被膜の形成によって低摩擦性と耐摩耗性を実現した摺動部材では,固体潤滑剤が被膜より脱落し,又は,固体潤滑剤を含む被膜が剥離してしまうと,低摩擦性や耐摩耗性が失われる。   However, in a sliding member that achieves low friction and wear resistance by forming such a coating, if the solid lubricant falls off the coating or the coating containing the solid lubricant peels off, the friction And wear resistance are lost.

そのため,被膜は下地に対し強固に付着している必要があり,高い付着強度を得るためには,処理時間,その他の処理条件の厳格な管理が必要で,処理作業に専門性が必要となる。   For this reason, the coating must adhere firmly to the substrate, and in order to obtain high adhesion strength, it is necessary to strictly manage the processing time and other processing conditions, and specialist processing is required. .

また,固体潤滑剤を含有する被膜は,下地層の材質や加工状態によっては剥離が生じ易くなるため,被膜の剥離を防止して,長期間,低摩擦性や耐摩耗性を発揮させるためには,適切な下地処理が必要となり,作業工数が多くなる。   In addition, coatings containing solid lubricants are prone to peeling depending on the material and processing conditions of the underlying layer. Therefore, in order to prevent peeling of the coating and to exhibit low friction and wear resistance over a long period of time. This requires an appropriate surface treatment and increases the number of work steps.

なお,前述したように,ブラスト加工装置を使用して二硫化モリブデンの粉体を噴射するという比較的簡単な方法により固体潤滑剤を含有する被膜を摺動部の表面に形成することができる特許文献1に記載の方法では,バインダによる塗布やメッキ,スパッタリング等の方法によって固体潤滑剤を含有する被膜を形成する場合に比較して,被膜の形成が容易である。   In addition, as described above, a patent that can form a coating film containing a solid lubricant on the surface of a sliding portion by a relatively simple method of spraying molybdenum disulfide powder using a blasting machine. In the method described in Document 1, it is easier to form a coating film as compared with the case where a coating film containing a solid lubricant is formed by a method such as coating with a binder, plating, or sputtering.

しかし,特許文献1に記載の方法によって固体潤滑剤を含有する被膜を形成した場合であっても,形成した被膜が摩耗や摩擦剥離によって消滅すれば,低摩擦性や耐摩耗性を発揮しなくなる。   However, even when a film containing a solid lubricant is formed by the method described in Patent Document 1, if the formed film disappears due to wear or frictional peeling, low friction and wear resistance cannot be exhibited. .

従って,このように固体潤滑剤を含有する被膜の形成による低摩擦性,耐摩耗性の向上は,摺動部材の使用開始から比較的短期間の間,初期なじみを向上させる目的で採用するのが一般的であり,長期間,安定的に低摩擦性や耐摩耗性を得られるものとはなっていない。   Therefore, the improvement of low friction and wear resistance due to the formation of the coating containing the solid lubricant is adopted for the purpose of improving the initial familiarity for a relatively short period from the start of use of the sliding member. However, low friction and wear resistance cannot be obtained stably for a long period of time.

これに対し,摺動部の表面に微細な凹凸を形成した特許文献2に記載の構成では,面圧の高い摺動部においても凹凸間に潤滑油が入り込むことで,摺動部に対する給油性が向上すると共に,油膜の保持性が向上し,これにより,低摩擦性と耐摩耗性を実現することができるものとなっている。   On the other hand, in the configuration described in Patent Document 2 in which fine irregularities are formed on the surface of the sliding portion, the lubricating oil enters between the irregularities even in the sliding portion having a high surface pressure. As well as improving the oil film retention, low friction and wear resistance can be realized.

また,特許文献2に記載の構成は,摺動部の表面凹凸形状によって低摩擦性や耐摩耗性を得ようというものであり,固体潤滑剤を含む被膜の形成によって低摩擦性,耐摩耗性を実現する特許文献1に記載の方法とは異なり,被膜の剥離に伴う性能の低下等といった問題も生じない。   In addition, the configuration described in Patent Document 2 is intended to obtain low friction and wear resistance by the surface irregularity shape of the sliding portion, and low friction and wear resistance by forming a film containing a solid lubricant. Unlike the method described in Patent Document 1 that realizes the above, there is no problem such as a decrease in performance due to peeling of the film.

しかし,摺動部の表面に凹凸を形成した特許文献2に記載の構成においても,摺動部の表面に形成した凹凸の凸部が,経時と共に相手方の部材と擦れ合うことで摩耗し,これに伴い摺動部が平滑化することにより給油性や油膜の保持性能が低下する。   However, even in the configuration described in Patent Document 2 in which unevenness is formed on the surface of the sliding portion, the uneven convexity formed on the surface of the sliding portion wears due to rubbing against the other member over time. As a result, the sliding portion is smoothed, so that the oil supply property and the oil film holding performance are deteriorated.

そこで本発明は,上記従来技術として説明した構成中,摺動部の表面に凹凸を形成することにより得られる給油性と油膜保持性の向上により,低摩擦性,耐摩耗性の向上を図るものでありながら,経時によっても凹凸形状の平滑化が生じ難く,従って長期間にわたって安定して低摩擦性,耐摩耗性を発揮することができる摺動部材の表面処理方法,及び前記方法によって表面処理された摺動部材を提供することを目的とする。   Therefore, the present invention aims to improve low friction and wear resistance by improving the oil supply and oil film retention obtained by forming irregularities on the surface of the sliding portion in the configuration described as the above prior art. However, it is difficult for the uneven shape to be smoothed over time, and thus the surface treatment method of the sliding member that can stably exhibit low friction and wear resistance over a long period of time, and the surface treatment by the above method It is an object to provide a sliding member.

上記目的を達成するための,本発明の摺動部材の表面処理方法は,
摺動部材のうち少なくとも他部材と摺接される部分である摺動部を,素地中に炭化物及び/又は金属間化合物が散在した合金により形成し,
前記摺動部の表面付近における前記素地を選択的に除去することにより,前記摺動部の表面に,前記炭化物及び/又は金属間化合物から成る凸部を形成し,前記凸部の高さを0.05〜3.0μm,好ましくは0.1〜2.0μmとしたことを特徴とする(請求項1,2)。
In order to achieve the above object, the surface treatment method for a sliding member of the present invention comprises:
A sliding part that is at least a part in sliding contact with the other member is formed of an alloy in which carbides and / or intermetallic compounds are dispersed in the substrate,
By selectively removing the substrate in the vicinity of the surface of the sliding portion, a convex portion made of the carbide and / or intermetallic compound is formed on the surface of the sliding portion, and the height of the convex portion is increased. The thickness is 0.05 to 3.0 μm, preferably 0.1 to 2.0 μm (claims 1 and 2).

ここで,本発明の表面形状の定義について説明する。表面形状の「凸部の高さ」の定義については,下記の方法により測定した数値で定義する。
凸部の高さの測定方法
1.測定装置
キーエンス社製 レーザー顕微鏡VK-X250を使用。
2.測定法
上記測定装置で測定したデータに対して,任意の位置のプロファイル曲線を測定。
プロファイル曲線の平坦部と凸部の高さを任意に測定して,それを凸部高さとした(図7)。
なお,鏡面は凸部高さ「0」とする。
Here, the definition of the surface shape of the present invention will be described. The definition of the “height of the convex portion” of the surface shape is defined by the numerical value measured by the following method.
How to measure the height of convex parts
1. Measurement equipment Uses Keyence laser microscope VK-X250.
2.Measurement method Measure the profile curve at any position for the data measured by the above measuring device.
The height of the flat part and the convex part of the profile curve was measured arbitrarily, and it was defined as the convex part height (FIG. 7).
The mirror surface has a convex height “0”.

また,前記素地の除去は,前記摺動部の表面を,例えば,Ra0.03μm以下の鏡面に鏡面研磨した後に行うことが好ましい(請求項3)。   Further, the removal of the substrate is preferably performed after the surface of the sliding portion is mirror-polished to a mirror surface with a Ra of 0.03 μm or less, for example (Claim 3).

更に,前記表面処理は,平面視における前記凸部の面積が,後述の観察により,前記摺動部の面積の4%以上となるよう前記凸部を形成することが好ましい(請求項4)。   Furthermore, it is preferable that the surface treatment forms the convex portion so that the area of the convex portion in a plan view is 4% or more of the area of the sliding portion, as will be described later.

なお,前記凸部の面積比(%)の算出は,SEMで撮影した写真(平面)中の面積比から求めた。   In addition, calculation of the area ratio (%) of the convex part was calculated | required from the area ratio in the photograph (plane) image | photographed with SEM.

なお,前記凹凸の形成後,形成された前記凹凸を維持した状態で前記摺動部の表面に耐摩擦性及び/又は耐摩耗性を有する被膜をコーティングするものとしても良い(請求項5)。   In addition, it is good also as what coats the surface of the said sliding part which has friction resistance and / or abrasion resistance in the state which maintained the said unevenness | corrugation formed after forming the said unevenness | corrugation (Claim 5).

また,本発明の摺動部材は,
他部材と摺接される摺動部を備え,
少なくとも前記摺動部が,
素地中に炭化物及び/又は金属間化合物が散在した合金により形成されていると共に,
前記摺動部の表面付近における前記素地を選択的に除去することにより形成された,前記炭化物及び/又は金属間化合物から成る凸部が形成されており,該凸部の高さは,0.05〜3.0μm,好ましくは0.1〜2.0μmであることを特徴とする(請求項6,7)。
The sliding member of the present invention is
It has a sliding part that comes into sliding contact with other members,
At least the sliding part is
Formed of an alloy in which carbides and / or intermetallic compounds are scattered in the substrate,
A convex portion made of the carbide and / or an intermetallic compound is formed by selectively removing the base material in the vicinity of the surface of the sliding portion. It is 05-3.0 micrometers, Preferably it is 0.1-2.0 micrometers (Claims 6 and 7).

更に,前記平面視における前記凸部の面積が,前記摺動部の面積の4%以上であることが好ましい(請求項8)。   Furthermore, it is preferable that the area of the convex part in the plan view is 4% or more of the area of the sliding part.

なお,前記凹凸が形成された前記摺動部の表面に,前記凹凸を維持した状態で耐摩擦性及び/又は耐摩耗性を有する被膜を形成するものとしても良い(請求項9)。   In addition, it is good also as what forms the film which has abrasion resistance and / or abrasion resistance in the state which maintained the said unevenness | corrugation in the surface of the said sliding part in which the said unevenness | corrugation was formed.

以上で説明した本発明の構成により,本発明の摺動部材の表面処理方法及び摺動部材によれば,以下の顕著な効果を得ることができた。   With the configuration of the present invention described above, the following remarkable effects can be obtained according to the surface treatment method and the sliding member of the sliding member of the present invention.

摺動部材の少なくとも摺動部を,素地中に炭化物及び/又は金属間化合物が散在した合金により形成し,前記摺動部の表面付近における前記素地を選択的に除去することで,前記摺動部に,前記炭化物及び/又は金属間化合物から成る凸部を有し,且つ,前記凸部の高さを0.05〜3.0μm,好ましくは0.1〜2.0μmに形成したことで,炭化物或いは金属間化合物という高硬度の材質で形成された凸部と,これに対し低硬度の素地によって形成された凹部から成る凹凸を摺動部の表面に形成することができた。   At least the sliding part of the sliding member is formed of an alloy in which carbides and / or intermetallic compounds are dispersed in the base material, and the base material in the vicinity of the surface of the sliding part is selectively removed to thereby remove the sliding part. Having a convex portion made of the carbide and / or intermetallic compound in the portion, and having a height of the convex portion of 0.05 to 3.0 μm, preferably 0.1 to 2.0 μm. Concavities and convexities formed of a high hardness material such as carbide or intermetallic compound and a concave portion formed by a low hardness substrate could be formed on the surface of the sliding portion.

その結果,摺動部に形成された凹凸の存在により,摺動部に対し潤滑油が供給され易く,且つ,油膜が保持され易くなると共に,本発明の方法で摺動部に形成された凹凸の凸部は高硬度であるために摩耗し難く,経時による凹凸の平滑化が生じ難く,その結果,前述した良好な給油性と油膜の保持性を,長期間,安定的に維持することができ,低摩擦性と耐摩耗性を長期に亘って発揮する摺動部材を提供することができた。   As a result, the presence of the irregularities formed on the sliding portion makes it easy to supply lubricating oil to the sliding portion and the oil film is easily held, and the irregularities formed on the sliding portion by the method of the present invention. Since the convex part of the material has high hardness, it is difficult to wear, and it is difficult to smooth the unevenness over time. As a result, the above-mentioned good oil supply and oil film retention can be stably maintained for a long time. And a sliding member that exhibits low friction and wear resistance over a long period of time.

しかも,素地部分に対し,素地中に析出した炭化物及び/又は金属間化合物は高硬度であることから,摺動部の表面に対し既知の機械的,化学的な研磨,例えばブラスト加工,ドライエッチング,ウェットエッチング等によって,素地部分を選択的に除去し,炭化物や金属間化合物から成る高硬度の凸部を比較的容易に形成することができた。   In addition, since the carbide and / or intermetallic compound deposited in the substrate has a high hardness with respect to the substrate portion, the surface of the sliding portion is known to have a known mechanical or chemical polishing, such as blasting or dry etching. The base portion was selectively removed by wet etching, etc., and a high hardness convex portion made of carbide or intermetallic compound could be formed relatively easily.

すなわち,素地と炭化物,及び/又は素地と金属間化合物間に硬度差が存在することにより,摺動部に対し研磨やエッチングを行うと,素地に比較して,炭化物及び/又は金属間化合物の部分は研磨やエッチングがされ難いことから,炭化物及び/又は金属間化合物の部分が残って突出することとなる。   That is, when there is a hardness difference between the substrate and carbide and / or the substrate and the intermetallic compound, when the sliding portion is polished or etched, the carbide and / or intermetallic compound is compared with the substrate. Since the portion is difficult to be polished or etched, the carbide and / or intermetallic compound portion remains and protrudes.

そのため,前述したように既知の各種の方法で研磨あるいはエッチングを行うことで,比較的容易に炭化物や金属間化合物を突出させて凸部を形成可能であると共に,仮に経時に伴い凸部が摩耗した場合であっても,これを容易に再生することができた。   Therefore, as described above, by performing polishing or etching by various known methods, it is possible to form the convex portion by relatively easily projecting the carbide or intermetallic compound, and the convex portion wears over time. Even in this case, it was possible to reproduce it easily.

しかも,素地の除去を行う際,凸部として残る炭化物や金属間化合物の部分に対しても,僅かながら研磨やエッチングが及ぶことから,凸部は,角が取れた丸みを帯びた形状に形成されることで,他部材に対し摺接した際に相手方部材への攻撃性も低下させることができる。   Moreover, when removing the substrate, the carbides and intermetallic compounds that remain as protrusions are slightly polished and etched, so the protrusions are rounded. By doing so, the aggression on the counterpart member can also be reduced when sliding against the other member.

その結果,凸部が丸みを帯びた形状であることは,凸部が高硬度であることとも相俟って,摺動時における摺動抵抗の減少にも寄与するものとなっている。   As a result, the rounded shape of the convex portion contributes to a reduction in sliding resistance during sliding, coupled with the fact that the convex portion has high hardness.

また,前記凸部の高さを0.05〜3.0μm,より好ましくは0.1〜2.0μmの範囲とした構成では,摩擦抵抗を極小化することができた(図3)。   Further, in the configuration in which the height of the convex portion is in the range of 0.05 to 3.0 μm, more preferably 0.1 to 2.0 μm, the frictional resistance can be minimized (FIG. 3).

更に,素地部分の除去を,摺動部を鏡面とした後に行う構成にあっては,素地部分の除去によって形成された凸部の高さを比較的均一な状態に揃えることができた。   Furthermore, in the configuration in which the substrate portion is removed after the sliding portion is used as a mirror surface, the height of the convex portion formed by removing the substrate portion can be made to be relatively uniform.

更に,前述した低摩擦性,耐摩耗性は,前述平面視における前記凸部の面積を,前記摺動部の面積の4%以上に形成することで得ることができた。   Further, the low friction and wear resistance described above can be obtained by forming the area of the convex part in the plan view to be 4% or more of the area of the sliding part.

なお,前記凹凸の形成後の摺動部の表面に,前記凹凸を維持した状態で更に耐摩擦性及び/又は耐摩耗性を有する被膜をコーティングした構成では,前述した凹凸の形成との相乗効果により更なる低摩擦性と耐摩耗性の向上を得ることができた。   In addition, in the configuration in which the surface of the sliding portion after the formation of the unevenness is coated with a coating having further friction resistance and / or wear resistance while maintaining the unevenness, a synergistic effect with the formation of the unevenness described above. As a result, it was possible to further improve the low friction and wear resistance.

本発明の表面処理方法を実施した試験片(SKD11)の表面電子顕微鏡写真(SEM像)。The surface electron micrograph (SEM image) of the test piece (SKD11) which implemented the surface treatment method of this invention. ボールオンディスク摩擦摩耗試験の試験方法の説明図。Explanatory drawing of the test method of a ball-on-disk friction abrasion test. 摺動部に形成された凹凸の凸部の高さと摩擦係数の関係を示すグラフ。The graph which shows the relationship between the height of the convex part of the unevenness | corrugation formed in the sliding part, and a friction coefficient. 本発明の表面処理方法を実施した試験片(SUS440)の表面電子顕微鏡写真(SEM像)。The surface electron micrograph (SEM image) of the test piece (SUS440) which implemented the surface treatment method of this invention. 本発明の表面処理方法を実施した試験片(粉末ハイス鋼:SKH51)の表面電子顕微鏡写真(SEM像)。The surface electron micrograph (SEM image) of the test piece (powdered high-speed steel: SKH51) which implemented the surface treatment method of this invention. 本発明の表面処理方法を実施した試験片(Al−Si系合金:AC8A)の表面電子顕微鏡写真(SEM像)。The surface electron micrograph (SEM image) of the test piece (Al-Si type alloy: AC8A) which implemented the surface treatment method of this invention. 凸部の高さを規定するプロファイル曲線を示す。The profile curve which prescribes | regulates the height of a convex part is shown.

次に,本発明の実施形態につき添付図面を参照しながら以下説明する。   Next, embodiments of the present invention will be described below with reference to the accompanying drawings.

〔処理対象〕
本発明の表面処理方法は,使用時に他部材と摺接される部分である摺動部を備えた摺動部材全般を対象とし,このような摺動部材の一例としては,金型(例えば,絞り,曲げ等のプレス金型等),各種工具や刃物(例えばドリル等の穴あけ工具,バイト,フライス等の切削工具),軸,軸受等を挙げることができるが,特にこれらに限定されるものではない。
〔Processing object〕
The surface treatment method of the present invention is intended for all sliding members having a sliding portion that is a portion that is in sliding contact with other members at the time of use. As an example of such a sliding member, a mold (for example, Squeezing and bending press dies), various tools and cutting tools (for example, drilling tools, cutting tools such as tools, milling tools, etc.), shafts, bearings, etc. is not.

本発明で処理対象とする摺動部材は,少なくともその摺動部を,素地中に炭化物や金属間化合物が散在した合金によって形成する。   In the sliding member to be treated in the present invention, at least the sliding portion is formed of an alloy in which carbides and intermetallic compounds are scattered in the substrate.

このような合金の例として炭素鋼の一種である合金工具鋼(SKD1)を例に取り説明すると,この合金工具鋼(SKD1)の焼入れ,焼戻し組織では,焼戻しマルテンサイトから成る素地中に,Cr73から成る比較的粗大な粒状組織と,Cr236から成る比較的微細な粒状組織が「炭化物」として析出,散在しており,このような構造を備えた合金は,前述した摺動部の材質として使用可能である。 As an example of such an alloy, an alloy tool steel (SKD1), which is a kind of carbon steel, will be described as an example. In the quenched and tempered structure of this alloy tool steel (SKD1), a Cr tempered martensite base material contains Cr. A relatively coarse grain structure composed of 7 C 3 and a relatively fine grain structure composed of Cr 23 C 6 are precipitated and scattered as “carbides”. It can be used as the material of the moving part.

上記合金工具鋼(SKD1)の例では,素地中に散在している炭化物はCr73,Cr236であったか,このような炭化物としては,例えば,M3C,M236,M73,M2C,M6C,MC等(Mは金属元素)を挙げることができ,M(金属元素)としては,Fe,Cr,Mo,W,V,Ti等を挙げることができる。 In the example of the alloy tool steel (SKD1), the carbides scattered in the substrate were Cr 7 C 3 and Cr 23 C 6 , or examples of such carbides include M 3 C, M 23 C 6 , M 7 C 3 , M 2 C, M 6 C, MC, etc. (M is a metal element) can be mentioned, and M (metal element) is Fe, Cr, Mo, W, V, Ti, etc. Can do.

なお,本発明における「炭化物」には炭素(C)と金属(M)の化合物のみならず,更に窒素(N)が結合した「炭窒化物」を含む。   The “carbide” in the present invention includes not only a compound of carbon (C) and metal (M) but also “carbonitride” in which nitrogen (N) is bonded.

また,金属間化合物は,2つ以上の成分金属が結合してできたもので,一例として,CuAl2,Mg2Si,Ni3Al,Fe2Mo等がある。 The intermetallic compound is formed by combining two or more component metals, and examples thereof include CuAl 2 , Mg 2 Si, Ni 3 Al, Fe 2 Mo, and the like.

このような炭化物あるいは金属間化合物が素地中に析出した合金としては,前述した合金工具鋼(SKD)の他,ハイス鋼(SKH),炭素工具鋼(SK),合金工具鋼(SKS),ステンレス鋼(SUS),高炭素クロム軸受鋼(SUJ)等の炭素鋼や,Cu,Mg,Ni等を合金成分として添加した多元Al−Si合金,青銅等を挙げることができる。   Alloys in which such carbides or intermetallic compounds are precipitated in the substrate include the above-described alloy tool steel (SKD), high-speed steel (SKH), carbon tool steel (SK), alloy tool steel (SKS), stainless steel. Examples thereof include carbon steels such as steel (SUS) and high carbon chromium bearing steel (SUJ), multi-element Al-Si alloys added with Cu, Mg, Ni and the like as alloy components, bronze and the like.

このように,素地中に炭化物や金属間化合物が散在した合金では,素地(炭素鋼ではFe,多元Al−Si合金ではAl,青銅ではCu)に対し,炭化物や金属間化合物の硬度は高いものとなる。   Thus, in the alloy in which carbides and intermetallic compounds are scattered in the substrate, the hardness of the carbides and intermetallic compounds is higher than that of the substrate (Fe in carbon steel, Al in multi-component Al-Si alloy, Cu in bronze). It becomes.

本発明では,このように素地に対し,炭化物や金属間化合物が高硬度である点を利用して,以下に説明するように摺動部の表面に,低摩擦性,耐摩耗性の向上に有効な給油性,油膜保持性を実現する凹凸を形成する。   In the present invention, by utilizing the fact that carbides and intermetallic compounds have a high hardness with respect to the substrate as described above, the surface of the sliding portion is improved in low friction and wear resistance as described below. Concavities and convexities that realize effective oil supply and oil film retention are formed.

〔凹凸の形成〕
前述したように,本発明の方法で処理対象とする摺動部材は,少なくとも摺動部が,素地中に炭化物や金属間化合物が散在した合金によって形成されていることから,この摺動部に対し,研磨やエッチングを施すと,相対的に高硬度である炭化物や金属間化合物の研磨速度或いはエッチング速度に比較して,相対的に低硬度である素地部分の研磨速度或いはエッチング速度は速くなる。
[Formation of irregularities]
As described above, the sliding member to be treated by the method of the present invention has at least the sliding portion formed of an alloy in which carbides and intermetallic compounds are dispersed in the substrate. On the other hand, when polishing or etching is performed, the polishing rate or etching rate of the base portion having a relatively low hardness is higher than the polishing rate or etching rate of carbide or intermetallic compound having relatively high hardness. .

その結果,摺動部の表面に対し研磨やエッチングを施すと,素地部分に対しては研磨やエッチングが進行する一方,高硬度である炭化物や金属間化合物に対しては研磨やエッチングが殆ど生じず,素地部分のみが選択的に除去されて炭化物や金属間化合物の部分が突出して凸部を形成することで,摺動部の表面に凹凸が形成される。   As a result, when polishing or etching is performed on the surface of the sliding portion, polishing or etching progresses on the base portion, while polishing or etching occurs almost on carbides or intermetallic compounds that have high hardness. Instead, only the base portion is selectively removed and the carbide and intermetallic compound portions protrude to form a convex portion, thereby forming irregularities on the surface of the sliding portion.

このように,本発明では,素地部分と,炭化物あるいは金属間化合物部分の硬度差によって生じる研磨速度,エッチング速度の相違に着目して凹凸を形成するものであることから,この凹凸の形成方法としては,既知の各種の機械的・化学的研磨方法,エッチング方法を使用することができる。   As described above, in the present invention, since the unevenness is formed by paying attention to the difference in polishing rate and etching rate caused by the hardness difference between the base portion and the carbide or intermetallic compound portion, In this case, various known mechanical and chemical polishing methods and etching methods can be used.

一例として,このような研磨方法としては,ブラストによる研磨等を挙げることができ,また,エッチング方法としては,エッチングガスを使用して行うドライエッチング,エッチング液を使用して行うウェットエッチングを挙げることができる。   As an example, such a polishing method may include polishing by blasting, and the etching method may include dry etching using an etching gas and wet etching using an etching solution. Can do.

もっとも,大がかりな装置が必要であると共に,使用後のエッチング液やエッチングガスの処理が必要となるドライエッチング,ウェットエッチングに比較して,比較的簡単な装置構成によって行うことができる機械的な研磨による凹凸の形成は,コスト面で有利である。   However, a large-scale device is required, and mechanical polishing that can be performed with a relatively simple device configuration compared to dry etching and wet etching that require processing of the etching solution and etching gas after use. The formation of irregularities by means of cost is advantageous in terms of cost.

特に,ブラストによる研磨は,摺動部材の形状が複雑な場合であっても表面全体を均一に研磨することが比較的容易である点で好ましい。   In particular, polishing by blasting is preferable in that it is relatively easy to uniformly polish the entire surface even when the shape of the sliding member is complicated.

なお,このような研磨やエッチングによる凹凸の形成は,研削や切削等の加工が施された後の摺動部に対して直接行うことも可能であるが,好ましくは,凹凸を形成する前に,摺動部を鏡面,好ましくはRa0.1μm以下,より好ましくはRa0.03μm以下の鏡面に加工してから行うことが好ましく,このように鏡面に加工した後に凹凸の形成を行うこことで,形成された凹凸の凸部の高さを所定の範囲内に揃え易くなる。   It should be noted that the formation of unevenness by such polishing or etching can be performed directly on the sliding portion after processing such as grinding or cutting, but preferably before forming the unevenness. , It is preferable that the sliding portion is processed into a mirror surface, preferably a mirror surface of Ra 0.1 μm or less, more preferably Ra 0.03 μm or less. It becomes easy to align the heights of the formed uneven projections within a predetermined range.

また,摺動部に対する凹凸の形成は,好ましくは,前記凸部の高さを0.05〜3.0μm,好ましくは0.1〜2.0μmとなるよう行う。   Further, the unevenness on the sliding portion is preferably formed so that the height of the convex portion is 0.05 to 3.0 μm, preferably 0.1 to 2.0 μm.

更に,形成された凸部の表面積が,摺動部の表面積の4%以上となるように,前述した凹凸を形成する。   Further, the above-described unevenness is formed so that the surface area of the formed convex portion is 4% or more of the surface area of the sliding portion.

以上のように,素地と炭化物の硬度差,素地と金属間化合物の硬度差,従って,研磨速度或いはエッチング速度の違いを利用して摺動部の表面に凹凸を形成することで,摺動部では,主として,素地部分が研磨により除去されて前述した凹凸が形成されるものの,炭化物や金属間化合物は高硬度であるとはいえ,これらの部分に対しても僅かながら研磨が及ぶ。   As described above, by forming unevenness on the surface of the sliding portion by utilizing the difference in hardness between the substrate and carbide, the difference in hardness between the substrate and the intermetallic compound, and thus the difference in polishing rate or etching rate, the sliding portion However, although the base portion is mainly removed by polishing to form the above-described unevenness, although the carbide and the intermetallic compound have high hardness, the polishing is slightly applied to these portions.

その結果,摺動部に形成された凸部は,角部が削られて丸みを帯びた形状に形成され,摺接される相手方部材に対する攻撃性が低減されたものとなると共に,この丸みを帯びた形状によって,摺接時における摩擦抵抗が軽減される。   As a result, the convex portion formed on the sliding portion is formed in a rounded shape by cutting off the corner portion, and the attacking property against the mating member is reduced. The crumpled shape reduces frictional resistance during sliding contact.

なお,前述した各加工方法による凹凸の形成は,下記のようにして行うことができる。   In addition, formation of the unevenness | corrugation by each processing method mentioned above can be performed as follows.

(1)凹凸形成方法1(ブラスト加工)
ブラスト加工装置としては,圧縮気体と共に研磨材を噴射するエア式(サクション式,重力式,直圧式,ブロアー式)の他,遠心力によって研磨材を投射する遠心式,回転するインペラとの衝突によって研磨材を投射する打撃式等,各種方式のブラスト加工装置を使用可能である。
(1) Concavity and convexity formation method 1 (blasting)
The blasting machine includes air type (suction type, gravity type, direct pressure type, blower type) that injects abrasive material with compressed gas, centrifugal type that projects abrasive material by centrifugal force, and collision with rotating impeller. Various types of blasting apparatus such as a hitting type for projecting an abrasive can be used.

投射する研磨材としては,セラミックス系研磨材(アルミナ,SiC,ジルコニア,ガラス),樹脂系研磨材,金属系研磨材(スチール,ステンレス,ハイス,銅)等の球状あるいは不定形の研磨材(ショット,グリッド)を使用することができ,又は,弾性研磨材(ゴム系又はゼラチン系の弾性体に砥粒を練り込み,又は前記弾性体の表面に砥粒を付着させた研磨材)等,各種研磨材を使用することができる。   As abrasives to be projected, spherical or irregular shaped abrasives (shots) such as ceramic abrasives (alumina, SiC, zirconia, glass), resin abrasives, metal abrasives (steel, stainless steel, high speed steel, copper) , Grid), or various types of elastic abrasives (abrasives in which abrasive grains are kneaded into rubber-based or gelatin-based elastic bodies or abrasive grains are adhered to the surface of the elastic bodies). Abrasives can be used.

使用する研磨材の粒径は,加工対象とする摺動部材の硬度,面粗度に応じて0.1〜1000μm(メディアン径D50)の範囲より選択することができ,特に,粒子径5μm以下の微粒子研磨材を使用する場合,炭化物や金属間化合物が削られ難く,素地部分が選択的に削られることで,炭化物や金属間化合物部分を***させ易い。   The particle size of the abrasive to be used can be selected from the range of 0.1 to 1000 μm (median diameter D50) according to the hardness and surface roughness of the sliding member to be processed. In particular, the particle size is 5 μm or less. When the fine particle abrasive is used, carbides and intermetallic compounds are difficult to be cut, and the base portion is selectively cut, so that the carbides and intermetallic compounds are easily raised.

また,前述した弾性研磨材を使用する場合,弾性体に練り込み,あるいは弾性体の表面に付着させる砥粒としては,セラミックス系(アルミナ,SiC等),ダイヤモンド,CBN,B4C等を使用することができ,その粒径は0.1〜10μm(メディアン径D50)を使用することができる。 Also, when using the above-mentioned elastic abrasive, ceramics (alumina, SiC, etc.), diamond, CBN, B 4 C, etc. are used as abrasive grains that are kneaded into the elastic body or adhered to the surface of the elastic body. The particle diameter can be 0.1 to 10 μm (median diameter D50).

一例として,ブラスト加工装置としてエア式(直圧式)のものを使用する場合,加工対象の材料硬度,面粗度,形状等に応じて,噴射圧力を0.01〜1MPa,ノズル内径(直径)を1〜12mm,ノズル距離(ノズル先端から加工表面迄の距離)を10〜200mm,ノズル角度を10〜90°の範囲で調整することで,前述した凹凸の形成が可能である。   As an example, when an air type (direct pressure type) blasting device is used, the injection pressure is 0.01 to 1 MPa and the nozzle inner diameter (diameter) depending on the material hardness, surface roughness, shape, etc. to be processed. 1 to 12 mm, the nozzle distance (distance from the nozzle tip to the processing surface) is adjusted to 10 to 200 mm, and the nozzle angle is adjusted to a range of 10 to 90 °, whereby the above-described unevenness can be formed.

なお,ブラスト加工を鏡面研磨された摺動部に対して行う場合,通常のブラスト加工ではRa0.03μm以下の鏡面状態として加工を行うことが好ましいが,弾性研磨材を使用する場合,Ra0.1μm以下であっても同様の凹凸形状の形成が可能である。   When blasting is performed on a mirror-polished sliding portion, it is preferable to perform processing in a mirror surface state of Ra 0.03 μm or less in normal blasting, but when using an elastic abrasive, Ra 0.1 μm Even in the following cases, the same uneven shape can be formed.

また,通常のブラスト加工で凹凸を形成する場合,形成後の表面に対し弾性研磨材を使用したブラスト加工を更に行い,あるいは,後述する他の研磨方法やエッチング方法を行って表面を調整することで,更に機能向上を図るものとしても良い。   In addition, when irregularities are formed by normal blasting, the surface after formation may be further blasted using an elastic abrasive, or the surface may be adjusted by other polishing or etching methods described later. Therefore, the function may be further improved.

(2)凹凸形成方法2(エッチング)
摺動部に対する凹凸の形成は,エッチング(ドライ/ウェット)によって行うこともでき,摺動部を構成する材料,面粗度に応じて,エッチング液(シアン系,王水等の酸系,ヨウ素系),エッチングガス(CF,CHF,C,CFとOの混合ガス,SF,ClとHBrの混合ガス,SF,ClとBClの混合ガス,ClとCClの混合ガス,O),その他のエッチング条件を選択してエッチングを行う。
(2) Concavity and convexity formation method 2 (etching)
Concavities and convexities can be formed on the sliding part by etching (dry / wet). Depending on the material and surface roughness of the sliding part, the etching solution (acidic acid such as cyan and aqua regia, iodine System), etching gas (CF 4 , CHF 3 , C 4 F 8 , mixed gas of CF 4 and O 2 , mixed gas of SF 4 , Cl 2 and HBr, mixed gas of SF 6 , Cl 2 and BCl 3 , Cl Etching is performed by selecting a mixed gas of 2 and CCl 4 , O 2 ), and other etching conditions.

このエッチングによる凹凸の形成も,摺動部の面粗度に応じて,エッチング液やエッチングガス,その他の加工条件を変更して複数回にわたりエッチングを行うことで凹凸を形成するものとしても良く,また,エッチングによる加工後,弾性研磨材を使用した前述のブラスト加工等,他の加工方法と組み合わせて必要な凹凸面を形成するものとしても良い。   The formation of unevenness by this etching may also be performed by changing the etching solution, etching gas, and other processing conditions according to the surface roughness of the sliding part to form the unevenness by performing etching multiple times. Further, after processing by etching, a necessary uneven surface may be formed in combination with other processing methods such as the above-described blast processing using an elastic abrasive.

なお,鏡面に形成された摺動部に対しエッチングを行うことによって凹凸を形成する場合,摺動部をRa0.03μm以下の鏡面状態として加工を行うことが好ましい。   In addition, when forming an unevenness | corrugation by etching with respect to the sliding part formed in the mirror surface, it is preferable to process by making a sliding part into the mirror surface state of Ra0.03 micrometer or less.

ラッピング,バフ研磨はワークとラップ板(バフ)との間に砥粒が入り,ほぼ一定した距離を保持して研磨される。これにより,金属素地のマトリックス組織とマトリックス組織より硬い組織ともに同一の研磨速度で研磨される。このため硬い組織が選択的に凸状にならない。本発明では,噴射により飛翔した研磨材により研磨されるため,柔らかいマトリックス組織は硬質部に比べて選択的に研磨され,硬質部と軟質部に研磨量の差ができるので,削れにくい硬質部による凸部が形成される。   In lapping and buffing, abrasive grains enter between a workpiece and a lapping plate (buff), and polishing is performed while maintaining a substantially constant distance. As a result, both the matrix structure of the metal substrate and the structure harder than the matrix structure are polished at the same polishing rate. For this reason, a hard structure | tissue does not become convex selectively. In the present invention, since the polishing is performed by the abrasive material that has been blown by the jet, the soft matrix structure is selectively polished compared to the hard part, and the amount of polishing can be different between the hard part and the soft part. A convex part is formed.

〔耐摩耗・摩擦被膜の形成〕
以上のようにして凹凸が形成された摺動部材の摺動部は,これをそのままの状態で使用することも可能であるが,更に,その表面に,形成した凹凸を維持した状態で低摩擦性,耐摩耗性を付与するための被膜を形成するものとしても良い。
[Formation of wear-resistant and friction coating]
As described above, the sliding portion of the sliding member on which the unevenness is formed can be used as it is. However, the surface of the sliding member has a low friction while maintaining the formed unevenness. It is good also as what forms the film for providing property and abrasion resistance.

このような被膜としては,DLC被膜やセラミックス系の被膜(TiN,TiAlN,TiCrN,CrN,TiCN,TiSiN,AlCrSiN,CrSiN,ZrN等),フッ素樹脂被膜,モリブデン被膜,ポリテトラフルオロエチレン(所謂「テフロン」(登録商標))被膜等を挙げることかできる。   Such coatings include DLC coatings and ceramic coatings (TiN, TiAlN, TiCrN, CrN, TiCN, TiSiN, AlCrSiN, CrSiN, ZrN, etc.), fluororesin coatings, molybdenum coatings, polytetrafluoroethylene (so-called “Teflon”). "(Registered trademark)) coating film and the like.

このように,前述した凹凸の形成と共に,摺動部に低摩擦性,耐摩耗性の被膜を形成することで,凹凸の形成に伴う潤滑油の供給性の向上,油膜保持性の向上と,被膜の形成に伴う低摩擦性,耐摩耗性の相乗効果によって,摺動部の摩耗が生じ難くなる結果,より長期間にわたり,本発明の方法で表面処理を行った摺動部材に対し,低摩擦性と耐摩耗性を付与することができる。   In this way, the formation of unevenness as described above and the formation of a low friction and wear-resistant coating on the sliding part improve the supply of lubricating oil accompanying the formation of unevenness, improve the oil film retention, Due to the synergistic effect of low friction and wear resistance associated with the formation of the coating, wear of the sliding part is less likely to occur. Friction and wear resistance can be imparted.

〔ボールオンディスク摩擦摩耗試験機による試験〕
(1)試験の概要
本発明の方法で摺動部に表面処理が施された摺動部材(実施例1)と,摺動部を鏡面研磨した摺動部材(比較例1),摺動部に圧痕により形成された無数の凹部(マイクロディンプル)を備えた摺動部材(比較例2)をそれぞれ作成し,摩擦抵抗,耐摩耗性につき確認試験を行った結果を,以下に説明する。
[Test with ball-on-disk friction and wear tester]
(1) Outline of test A sliding member (Example 1) in which the sliding part is surface-treated by the method of the present invention, a sliding member (Comparative Example 1) in which the sliding part is mirror-polished, and the sliding part Each of the sliding members (Comparative Example 2) having innumerable recesses (micro dimples) formed by indentations on each of them was prepared, and the results of confirming the friction resistance and wear resistance will be described below.

(2)試験対象(実施例及び比較例)
(2-1) 実施例1
摺動部材であるSDK11製の試験片(縦40mm,横40mm,厚さ5mm)の片面(摺動面)に,弾性研磨材を使用したブラスト加工により凹凸を形成した。
(2) Test subjects (Examples and Comparative Examples)
(2-1) Example 1
Concavities and convexities were formed on one side (sliding surface) of a test piece (length 40 mm, width 40 mm, thickness 5 mm) made of SDK11 as a sliding member by blasting using an elastic abrasive.

摺動面の加工は,ブラスト加工を開始する前,予め摺動部の表面をRa0.1μmの鏡面とした状態で開始し,ブラスト加工装置として不二製作所製の「SFSR−2」(サクション式)を使用し,D50:1.2μmの砥粒(材質:SiC(炭化ケイ素)がゴム系の弾性体に分散された,全体粒径650μmの弾性研磨材を噴射して凹凸を形成した。   Before starting the blasting process, the sliding surface process was started with the surface of the sliding part made a mirror surface of Ra 0.1 μm, and “SFSR-2” (suction type) manufactured by Fuji Seisakusho was used as a blasting machine. ), D50: 1.2 μm abrasive grains (material: SiC (silicon carbide) dispersed in a rubber-based elastic body), an elastic abrasive having a total particle diameter of 650 μm was sprayed to form irregularities.

なお,弾性研磨材の噴射は,噴射圧力0.2MPa,ノズル内径φ9mm,噴射距離50mm,噴射角度30°として加工時間10minで行った。   The elastic abrasive was injected at an injection pressure of 0.2 MPa, a nozzle inner diameter of 9 mm, an injection distance of 50 mm, an injection angle of 30 ° and a processing time of 10 minutes.

なお,上記処理後の試験片の表面を撮影した電子顕微鏡写真を図1に示す。   In addition, the electron micrograph which image | photographed the surface of the test piece after the said process is shown in FIG.

図1中,濃色のグレーに表れている部分(図1中に○印で囲んだ部分)が,SKD11に含まれるクロム系の炭化物(Cr)であり,上記加工によって***し凸部となった部分である。 In FIG. 1, the portion appearing in dark gray (the portion surrounded by a circle in FIG. 1) is chromium-based carbide (Cr 7 C 3 ) contained in SKD11, which is raised and raised by the above processing. It is a part that became a part.

加工後の摺動部の凸部高さは0.2μmでSEM画像中に現れた凸部の面積は,摺動部の総面積に対し30%である。   The height of the convex part of the sliding part after processing is 0.2 μm, and the area of the convex part appearing in the SEM image is 30% with respect to the total area of the sliding part.

(2-2) 比較例1(鏡面)
比較例1として,同様の試験片(SKD11)の片面を,Ra0.02μmの鏡面に研磨したのみで,他の処理を行っていない試験片を用意した。
(2-2) Comparative Example 1 (mirror surface)
As Comparative Example 1, a test piece was prepared by polishing only one side of a similar test piece (SKD11) to a mirror surface of Ra 0.02 μm and not performing other treatments.

(2-3) 比較例2(マイクロディンプル)
比較例1の試験片の鏡面加工面(Ra0.02μm)に対し,下記の2工程の加工を行い,摺動部となる表面に,ショットの衝突によって形成された圧痕から成る無数の凹部(マイクロディンプル)を形成した。
(2-3) Comparative Example 2 (Micro Dimple)
The mirror-finished surface (Ra 0.02 μm) of the test piece of Comparative Example 1 is processed in the following two steps, and the innumerable concave portions (micrometers) made of indentations formed by shot collision on the surface that becomes the sliding portion. Dimple) was formed.

工程1
不二製作所製のブラスト加工装置「SCF−3」(サクション式),ブラストガン「F2−4型」を使用して,ハイス鋼製のビーズ(不二製作所製「FHS♯400」)噴射圧力は0.5MPa,ノズル内径φ9mm,噴射距離100〜150mm,噴射角度90°,加工時間10〜20秒(40mm×40mmの範囲)で噴射して,試験片の表面に,ビーズの衝突によりマイクロディンプルを形成した。
Process 1
Blast processing equipment “SCF-3” (suction type) manufactured by Fuji Seisakusho and blast gun “F2-4 type” are used, and the injection pressure of beads made of high-speed steel (“FHS # 400” manufactured by Fuji Seisakusho) is 0.5MPa, nozzle inner diameter 9mm, injection distance 100-150mm, injection angle 90 °, injection time 10-20 seconds (in the range of 40mm x 40mm), micro dimples on the surface of the test piece by the collision of beads Formed.

工程2
前記マイクロディンプルが形成された後の試験片の表面に対し,不二製作所製のブラスト加工装置シリウス「LDQWSR−3」(ブロワー式)を使用して,弾性研磨材(不二製作所製「SI−G100−7」)を噴射圧力は0.06MPa,ノズル内径φ9mm,噴射距離50〜100mm,噴射角度30〜40°,加工時間2秒(40mm×40mmの範囲)で噴射して,試験片の表面をRa0.2μmに調整した。
Process 2
The surface of the test piece after the microdimple is formed is made of an elastic abrasive (“SI-” manufactured by Fuji Seisakusho, using a blasting machine Sirius “LDQWSR-3” (blower type) manufactured by Fuji Seisakusho. G100-7 ”) is sprayed at an injection pressure of 0.06 MPa, a nozzle inner diameter of 9 mm, an injection distance of 50 to 100 mm, an injection angle of 30 to 40 °, and a processing time of 2 seconds (in the range of 40 mm × 40 mm). Was adjusted to Ra 0.2 μm.

(3)試験内容
(3-1) 試験方法
実施例1及び比較例1,2の各試験片に対し,ボールオンディスク摩擦摩耗試験機(レスカ製「FPR2100」)を使用して,摩擦摩耗試験を行った。
(3) Test content
(3-1) Test Method A friction wear test was performed on each of the test pieces of Example 1 and Comparative Examples 1 and 2 using a ball-on-disk friction wear tester (“FPR2100” manufactured by Reska).

ボールオンディスク摩擦摩耗試験法は,図2に示すように試験片にボールを所定の荷重をかけた状態で押しつけて回転摺動させることにより動摩擦係数を測定する試験方法であり(JIS R 1613),本試験例では,荷重を1500gf,回転速度200min-1,回転径を直径5mm,ボール材としてSUJ2(直径6mm)を使用して,測定を行った。 The ball-on-disk friction and wear test method is a test method in which the dynamic friction coefficient is measured by pressing and sliding a ball against a test piece under a predetermined load as shown in FIG. 2 (JIS R 1613). In this test example, the load was 1500 gf, the rotation speed was 200 min −1 , the rotation diameter was 5 mm, and SUJ2 (diameter 6 mm) was used as the ball material.

ボール材と試料との摺動部には,動粘度VG10である比較的低動粘度の潤滑油を給油している。   A sliding portion between the ball material and the sample is supplied with a lubricating oil having a relatively low kinematic viscosity of kinetic viscosity VG10.

(3-2) 検査事項と検査方法
動摩擦係数の測定
試験片毎に,時間の経過毎の動摩擦係数の変化を測定した。摩擦係数の変化の測定は,摩擦係数μが0.7以上になるまで,又は,試験開始後24時間経過する迄行った。
(3-2) Inspection Items and Inspection Method Measurement of Dynamic Friction Coefficient For each specimen, the change in dynamic friction coefficient over time was measured. The change in the coefficient of friction was measured until the coefficient of friction μ was 0.7 or more, or until 24 hours had elapsed after the start of the test.

(4)試験結果
摩擦係数の変化確認
本発明の方法で摺動部の表面処理を行ったSKD11製の試験片(実施例1)と,摺動部を鏡面とした試験片(比較例1),及び摺動部にマイクロディンプルを形成した試験片(比較例2)それぞれの経時に対する摩擦係数の変化の状態を表1に示す。
(4) Test results Confirmation of change in coefficient of friction SKD11 test piece (Example 1) that was subjected to surface treatment of the sliding part by the method of the present invention, and test piece with the sliding part as a mirror surface (Comparative Example 1) Table 1 shows the change of the friction coefficient with time for each of the test pieces (Comparative Example 2) in which micro dimples are formed on the sliding part.

表1より明らかなように,実施例1の試験片では,24時間の摩擦摩耗試験によっても摩擦係数が0.7以上に上昇することがなく,また,24時間経過後も摩擦係数は測定開始後1時間の摩擦係数に対し1.4倍程度の上昇しか示しておらず,安定的,且つ長期間に亘り低摩擦性を発揮しており,1500gfの荷重をかけた状態においても,少なくとも24時間以上の油膜保持力を有することが確認された。   As is clear from Table 1, in the test piece of Example 1, the friction coefficient did not rise to 0.7 or more even after 24 hours of friction and wear test, and the friction coefficient was measured after 24 hours. Only an increase of about 1.4 times the coefficient of friction for the next hour is shown, it is stable and exhibits low friction over a long period, and even at a load of 1500 gf, at least 24 It was confirmed to have an oil film holding power over time.

これに対し,比較例1の試験片(鏡面)では,測定開始後,15時間で摩擦係数が0.7を超えており,比較的短時間で油膜保持力が失われていることが判る。   On the other hand, in the test piece (mirror surface) of Comparative Example 1, the friction coefficient exceeds 0.7 in 15 hours after the start of measurement, and it can be seen that the oil film holding power is lost in a relatively short time.

一方,比較例2の試験片(マイクロディンプル)では,24時間の経過後においても摩擦係数が0.7を超えることは無く,0.46程度に止まっていることから,ある程度の油膜保持力は維持されているものと考えられる。   On the other hand, in the test piece (micro dimple) of Comparative Example 2, the friction coefficient does not exceed 0.7 after 24 hours, and remains at about 0.46. It is thought that it is maintained.

しかし,比較例2の試験片では,測定開始後5時間で,測定後1時間の摩擦係数に対し,約3.4倍まで摩擦係数が上昇しており,比較的短時間で油膜保持力が大幅に低下していることが確認できた。   However, in the test piece of Comparative Example 2, the coefficient of friction increased to about 3.4 times the coefficient of friction for 1 hour after the measurement in 5 hours after the start of the measurement, and the oil film holding force was relatively short. It has confirmed that it has fallen significantly.

以上の結果から,摺動部を鏡面とした比較例1の試験片では,摺動部の凹凸がRa0.02μmと微少であるために,摺動部の表面に対する油膜の保持力が元々小さく,面圧がかかると摺接面より潤滑油が排出されて相手方部材(ボール)と直接接触する結果,試験初期において点接触していたボールと試料が,摩耗の進行と共に面接触に変化して摩擦係数が増大することで,大幅な摩擦抵抗の上昇を示したものと考えられる。   From the above results, in the test piece of Comparative Example 1 in which the sliding portion is a mirror surface, since the unevenness of the sliding portion is as small as Ra 0.02 μm, the holding force of the oil film on the surface of the sliding portion is originally small, When surface pressure is applied, the lubricating oil is discharged from the sliding contact surface and comes into direct contact with the mating member (ball). As a result, the ball and sample that were in point contact at the beginning of the test changed to surface contact as the wear progressed, causing friction. It is considered that the frictional resistance increased significantly as the coefficient increased.

これに対し,摺動部にマイクロディンプルが形成された比較例2の試験片では,ディンプル内に潤滑油が保持されることにより,摺動部を鏡面とした比較例1の試験片に比較して油膜保持効果を長時間維持し,その結果,試験開始後24時間を経過した後においても摩擦係数を0.7未満に維持することができているものと考えられる。   In contrast, the test piece of Comparative Example 2 in which micro dimples are formed in the sliding portion is compared with the test piece of Comparative Example 1 in which the sliding portion is a mirror surface by retaining lubricating oil in the dimple. Thus, it is considered that the oil film retention effect is maintained for a long time, and as a result, the friction coefficient can be maintained below 0.7 even after 24 hours have elapsed since the start of the test.

しかし,比較例2の摺動部に形成されたマイクロディンプルの形成によって生じた凹凸は,凸部が高硬度の材料によって形成されたものではないため,試験開始後,比較的短時間で凸部が相手方部材(ボール)との接触によって摩耗してしまい,凸部間に潤滑油の保持が行われているものの,試験開始当初に比較して保持できる潤滑油量が減少したことで,測定開始後,5時間程度の比較的短時間で摩擦係数の大幅な増大が生じたものと推測できる。   However, the unevenness caused by the formation of the micro dimples formed on the sliding portion of Comparative Example 2 is not formed by a material having a high hardness because the convex portion is not formed by a material with high hardness. Wears due to contact with the mating member (ball) and the lubricant is retained between the convex parts, but the amount of lubricant that can be retained is reduced compared to the beginning of the test, so measurement starts. Later, it can be inferred that the friction coefficient significantly increased in a relatively short time of about 5 hours.

これに対し,本発明の方法で凹凸が形成された実施例1の試験片では,摺動部に形成された凹凸の凸部は,高硬度な炭化物或いは金属間化合物によって形成されたものであることから,相手方部材(ボール)との接触によっても摩耗し難く,長期にわたり初期の凹凸形状が維持されることで,潤滑油の高い保持力が長期間にわたり維持される結果,長時間,安定して低摩擦係数を示したものと考えられる。   On the other hand, in the test piece of Example 1 in which unevenness was formed by the method of the present invention, the uneven protrusion formed on the sliding portion was formed of a high hardness carbide or intermetallic compound. Therefore, it is hard to be worn by contact with the counterpart member (ball), and the initial uneven shape is maintained over a long period of time. As a result, the high retention force of the lubricating oil is maintained over a long period of time. This is considered to indicate a low coefficient of friction.

〔凸部高さと摩擦係数の関係の確認試験〕
試験片(SKD11)に対するブラスト加工条件を変化させて,摺動部に形成する凸部の高さを0.1〜4μmの範囲で変化させたものと,鏡面(凸部高さ0)の摩擦係数の変化状態を測定した結果を図3に示す。このとき,鏡面の凸部高さは0とする。
[Confirmation test of the relationship between the height of the protrusion and the friction coefficient]
Friction between mirror surface (projection height 0) and the height of projection formed on the sliding part by changing the blasting conditions for the test piece (SKD11) in the range of 0.1 to 4 μm The result of measuring the coefficient change state is shown in FIG. At this time, the height of the convex part of the mirror surface is zero.

凸部高さが0.05〜3.0μmの範囲では摩擦係数0.3以下という比較的低い値が実現されているが,特に0.1〜2.0μm以下の範囲においては摩擦係数0.2以下と非常に低い範囲で安定していることが確認された。   A relatively low value of a friction coefficient of 0.3 or less is realized when the height of the convex portion is in the range of 0.05 to 3.0 μm. It was confirmed that it was stable in a very low range of 2 or less.

したがって,凸部高さは,より好ましくは0.1〜2.0μmであることが確認された。   Therefore, it was confirmed that the height of the convex portion is more preferably 0.1 to 2.0 μm.

〔軸受の耐久性試験〕
(1)SUS440製軸受
(1-1) 試験方法
SUS440(焼入れ焼き戻し鋼)製のニードルベアリング(外径52mm,内径25mm,長さ25mmの円筒形)を複数準備し,各ニードルベアリングの摺動部に対し,本発明の表面処理を施すことにより,未処理品に対し,どの程度の耐久性の向上(寿命の延長)が得られるかを確認する試験を行った。
[Durability test of bearing]
(1) SUS440 bearing
(1-1) Test method A plurality of needle bearings (cylindrical shape with outer diameter 52 mm, inner diameter 25 mm, length 25 mm) made of SUS440 (quenched and tempered steel) are prepared, and the present invention is applied to the sliding part of each needle bearing. A test was conducted to confirm how much durability improvement (life extension) was obtained for untreated products.

表面処理は,各ベアリングの摺動面(Ra0.1μm)に対し,エア式のブラスト加工装置(不二製作所製「FDDSR−4」;直圧式)を使用して,噴射圧力0.2MPa,ノズル内径φ7mm,ノズル距離50mm,噴射角度30°としてブラスト加工を行うことで,炭化物(CrC)乃至は金属間化合物の凸部を形成した。   The surface treatment uses a pneumatic blasting machine (“FDDSR-4” manufactured by Fuji Seisakusho; direct pressure type) on the sliding surface (Ra 0.1 μm) of each bearing. By carrying out blasting with an inner diameter of 7 mm, a nozzle distance of 50 mm, and an injection angle of 30 °, carbide (CrC) or convex portions of intermetallic compounds were formed.

研磨材として使用した前述の弾性研磨材(平均粒径650μm)は,SiC砥粒(♯8000/D50:2μm)を弾性体に含有させたものを使用し,これを噴射量4kg/minで噴射した。   The above-mentioned elastic abrasive (average particle size 650 μm) used as an abrasive is a material containing SiC abrasive grains (# 8000 / D50: 2 μm) in an elastic body, and this is injected at an injection amount of 4 kg / min. did.

ブラスト加工後のSUS440材の表面電子顕微鏡写真(SEM像)を図4に示す。図4中,僅かに白っぽく表れている部分(図4中に○印を付けた部分)が,SUS440に含まれるクロム系の炭化物(CrC)であり,上記加工によって突出して凸部となった部分である。   FIG. 4 shows a surface electron micrograph (SEM image) of the SUS440 material after blasting. In FIG. 4, the portion that appears slightly whitish (the portion marked with a circle in FIG. 4) is a chromium-based carbide (CrC) included in SUS440, and the portion that protrudes and becomes a convex portion by the above processing It is.

凸部高さは0.4μm。また,SEM像中に表れた凸部の面積は,摺動部の総面積に対し4%であった。
摺動部の表面状態の測定条件は,表2に示す通りである。
The height of the convex part is 0.4 μm. Moreover, the area of the convex part which appeared in the SEM image was 4% with respect to the total area of a sliding part.
Table 2 shows the measurement conditions of the surface state of the sliding part.

耐久性(寿命)評価は,下記の3パターンの組み合わせから成る実施例に対して実施した。
実施例2:内輪,外輪及び転動体の摺動部全てに本発明の表面処理を実施。
実施例3:内輪及び外輪の摺動部に対してのみ本発明の表面処理を実施。
実施例4:転動体の摺動部に対してのみ本発明の表面処理を実施。
比較例3:表面処理を行っていない(購入したままの状態)。
Durability (lifetime) evaluation was carried out on an example consisting of a combination of the following three patterns.
Example 2: The surface treatment of the present invention was applied to all the sliding parts of the inner ring, outer ring and rolling elements.
Example 3: The surface treatment of the present invention was performed only on the sliding portions of the inner ring and the outer ring.
Example 4: The surface treatment of the present invention was performed only on the sliding portion of the rolling element.
Comparative Example 3: No surface treatment was performed (as purchased).

測定は,軸受耐久試験機を使用して行い,潤滑剤としてグリースを使用し,実施例2〜4及び比較例3の軸受共に,いずれも一定のラジアル荷重,スラスト荷重を加えた状態で,且つ,いずれも軸受に取り付けた軸を一定の回転速度で継続的に回転させ,軸受の軌道面や転動体の表面にうろこ状の剥離が発生した時点を「寿命」と評価した。   The measurement was performed using a bearing durability tester, grease was used as a lubricant, and both the bearings of Examples 2 to 4 and Comparative Example 3 were subjected to a certain radial load and thrust load, and In both cases, the shaft attached to the bearing was continuously rotated at a constant rotational speed, and the point of time when scaly peeling occurred on the raceway surface of the bearing or the surface of the rolling element was evaluated as “life”.

(1-2) 試験結果
未処理の軸受(比較例3)が寿命を迎える迄に要した時間を「1」とし,これに対し,各実施例(実施例2〜4)の軸受が寿命を迎える迄の時間が何倍に延長されているかを評価した結果を,表3に示す。
(1-2) Test results The time required for the untreated bearing (Comparative Example 3) to reach the end of its service life is set to “1”, whereas the bearings of each of the Examples (Examples 2 to 4) have a longer life. Table 3 shows the results of evaluating how many times the time until arrival is extended.

以上の結果,本発明の方法で表面処理を行うことで,いずれの組合せにおいて耐久性の向上が得られることが確認された。   As a result, it was confirmed that the durability was improved in any combination by performing the surface treatment by the method of the present invention.

特に,内輪,外輪,及び転動体の全ての摺動部に本発明の表面処理を施した場合(実施例2)には,未処理の場合(比較例3)に対し,3倍という大幅な耐久性の向上が得られており,本発明の表面処理方法が摺動部の低摩擦性及び耐摩耗性を実現する上で極めて有効な手段であることが確認された。   In particular, when the surface treatment of the present invention is applied to all the sliding portions of the inner ring, outer ring, and rolling element (Example 2), it is three times as large as that of the untreated case (Comparative Example 3). Durability has been improved, and it was confirmed that the surface treatment method of the present invention is an extremely effective means for realizing low friction and wear resistance of the sliding portion.

(2)SUJ2製軸受
(2-1) 試験方法
SUJ2製の玉軸受(外径52mm,内径25mm,長さ12mmの円筒形)を複数準備し,各ベアリングの摺動部に対し,本発明の表面処理を施すことにより,未処理品に対し,どの程度の寿命の延長が得られるかを確認した。
(2) SUJ2 bearing
(2-1) Test method By preparing multiple SUJ2 ball bearings (cylindrical shape with an outer diameter of 52 mm, an inner diameter of 25 mm, and a length of 12 mm), and applying the surface treatment of the present invention to the sliding parts of each bearing Therefore, it was confirmed how much longer life could be obtained for untreated products.

表面処理は,各ベアリングの摺動面(Ra0.2μm)に対し,エア式のブラスト加工装置(不二製作所製「SFSR−2」;サクション式)を使用して,噴射圧力0.15MPa,ノズル内径φ7mm,ノズル距離100mm,噴射角度40°としてブラスト加工を行うことで,炭化物(CrC)乃至は金属間化合物の凸部を形成した。凸部高さは0.3μm。   The surface treatment uses an air-type blasting machine (“SFSR-2” manufactured by Fuji Seisakusho; suction type) on the sliding surface of each bearing (Ra 0.2 μm), nozzle pressure 0.15 MPa, nozzle By performing blasting with an inner diameter of 7 mm, a nozzle distance of 100 mm, and an injection angle of 40 °, a convex portion of carbide (CrC) or an intermetallic compound was formed. The height of the convex part is 0.3 μm.

研磨材として使用した前述の弾性研磨材(平均粒径1000μm)は,ダイヤモンド砥粒(♯10000/D50:1μm)をゼラチン製の核体に付着させたものを使用し,これを噴射量1kg/minで噴射した。   The above-mentioned elastic abrasive (average particle size 1000 μm) used as an abrasive is a material in which diamond abrasive grains (# 10000 / D50: 1 μm) are adhered to a core made of gelatin, and the injection amount is 1 kg / kg. Injected with min.

なお,摺動部の表面状態の測定条件は,表2に示した通りである。
耐久性(寿命)の評価は,下記の3パターンの実施例に対して実施した。
実施例5:内輪,外輪及び転動体の摺動部全てに本発明の表面処理を実施。
実施例6:内輪及び外輪の摺動部に対してのみ本発明の表面処理を実施。
実施例7:転動体の摺動部に対してのみ本発明の表面処理を実施。
比較例4:表面処理を行っていない(購入したままの状態)。
The measurement conditions of the surface state of the sliding part are as shown in Table 2.
The durability (lifetime) was evaluated for the following three patterns of examples.
Example 5: The surface treatment of the present invention was applied to all the sliding parts of the inner ring, outer ring and rolling elements.
Example 6: The surface treatment of the present invention was performed only on the sliding portions of the inner ring and the outer ring.
Example 7: The surface treatment of the present invention was carried out only on the sliding part of the rolling element.
Comparative Example 4: No surface treatment was performed (as purchased).

測定は,軸受耐久試験機を使用して行い,潤滑剤としてグリースを使用し,実施例5〜7及び比較例4の軸受共に,いずれも一定のラジアル荷重,スラスト荷重を加えた状態で,且つ,いずれも軸受に取り付けた軸を一定の回転速度で継続的に回転させ,軸受の軌道面や転動体の表面にうろこ状の剥離が発生した時点を「寿命」と評価した。   The measurement was performed using a bearing durability tester, grease was used as a lubricant, and both the bearings of Examples 5 to 7 and Comparative Example 4 were subjected to a certain radial load and thrust load, and In both cases, the shaft attached to the bearing was continuously rotated at a constant rotational speed, and the point of time when scaly peeling occurred on the raceway surface of the bearing or the surface of the rolling element was evaluated as “life”.

(2-2) 試験結果
未処理の軸受(比較例4)が寿命を迎える迄に要した時間を「1」とし,これに対し,各実施例(実施例5〜7)の軸受が寿命を迎える迄の時間が何倍に延長されているかを評価した結果を,表4に示す。
(2-2) Test results The time required for the untreated bearing (Comparative Example 4) to reach the end of its service life is set to “1”, whereas the bearings of the respective examples (Examples 5 to 7) Table 4 shows the result of evaluating how many times the time until arrival is extended.

以上の結果,本発明の方法で表面処理を行うことで,いずれの組合せにおいて耐久性の向上が得られることが確認された。   As a result, it was confirmed that the durability was improved in any combination by performing the surface treatment by the method of the present invention.

特に,内輪,外輪,及び転動体の全ての摺動部に本発明の表面処理を施した場合(実施例5)には,未処理の場合(比較例4)に対し,2.7倍という大幅な耐久性の向上が得られており,本発明の表面処理方法が摺動部の低摩擦性及び耐摩耗性を実現する上で極めて有効な手段であることが確認された。   In particular, when the surface treatment of the present invention is applied to all the sliding portions of the inner ring, the outer ring, and the rolling element (Example 5), it is 2.7 times that of the untreated case (Comparative Example 4). Significant improvement in durability was obtained, and it was confirmed that the surface treatment method of the present invention is an extremely effective means for realizing low friction and wear resistance of the sliding portion.

(3)CAC603製軸受
(3-1) 試験方法
CAC603製のメタル軸受(すべり軸受:外径31mm,内径25mm,長さ22mmの円筒形)を複数準備し,各軸受の摺動部(内周面)に対し,本発明の表面処理を施すことにより,未処理品に対し,どの程度の耐久性の向上(寿命の延長)が得られるかを確認した。
(3) CAC603 bearing
(3-1) Test method Prepare a plurality of CAC603 metal bearings (slide bearings: cylindrical shape with an outer diameter of 31 mm, an inner diameter of 25 mm, and a length of 22 mm). By applying the surface treatment of the invention, it was confirmed how much durability improvement (life extension) can be obtained for untreated products.

表面処理は,各軸受の摺動面(Ra0.1μm)に対し,エア式のブラスト加工装置(不二製作所製「SFSR−2」;サクション式)を使用して,噴射圧力0.1MPa,ノズル内径φ9mm,ノズル距離50mm,噴射角度30°としてブラスト加工を行うことで,銅合金中のスズ系金属間化合物(CuSn)の凸部を形成した。凸部の高さは0.3μmである。   Surface treatment uses an air-type blasting machine (“SFSR-2” manufactured by Fuji Seisakusho; suction type) for the sliding surface (Ra 0.1 μm) of each bearing. By performing blasting with an inner diameter of 9 mm, a nozzle distance of 50 mm, and an injection angle of 30 °, a convex portion of a tin-based intermetallic compound (CuSn) in the copper alloy was formed. The height of the convex portion is 0.3 μm.

研磨材として使用した前述の弾性研磨材(平均粒径650μm)は,Al砥粒(♯6000/D50:3μm)を弾性体中に練り込んだものを使用し,これを噴射量1kg/minで噴射した。摺動部の表面状態の測定条件は,表2に示す通りである。 As the above-mentioned elastic abrasive (average particle size 650 μm) used as the abrasive, Al 2 O 3 abrasive grains (# 6000 / D50: 3 μm) were kneaded into the elastic body, and this was injected at an amount of 1 kg. Injected at / min. Table 2 shows the measurement conditions of the surface state of the sliding part.

耐久性(寿命)の評価は,摺動部(内周面)に上記方法で表面処理を施したメタル軸受(実施例8)と,本発明の表面処理を行っていない,購入したままの状態のメタル軸受(比較例5)に対して実施した。   Durability (lifetime) was evaluated based on the metal bearing (Example 8) whose surface was treated by the above method on the sliding part (inner peripheral surface) and the state as purchased without the surface treatment of the present invention. This was carried out for the metal bearing (Comparative Example 5).

測定は,軸受耐久試験機を使用して行い,潤滑剤としてグリースを使用し,実施例8及び比較例5の軸受共に,いずれも一定のラジアル荷重,スラスト荷重を加えた状態で,且つ,いずれも軸受に支承した軸を一定の回転速度で継続的に回転させ,軸受の軌道面の表面にうろこ状の剥離が発生した時点を「寿命」と評価した。   The measurement was performed using a bearing endurance tester, grease was used as a lubricant, both the bearings of Example 8 and Comparative Example 5 were subjected to a constant radial load and a thrust load, and either In addition, when the shaft supported on the bearing was continuously rotated at a constant rotational speed, the point of time when scaly peeling occurred on the surface of the bearing raceway was evaluated as “life”.

(3-2) 試験結果
未処理の軸受(比較例5)が寿命を迎える迄に要した時間を「1」とし,これに対し,実施例8の軸受が寿命を迎える迄の時間が何倍に延長されているかを評価した結果を,表5に示す。
(3-2) Test results The time required for the untreated bearing (Comparative Example 5) to reach the end of its life is set to “1”. Table 5 shows the results of evaluating whether the length is extended.

以上の結果,本発明の方法で表面処理を行うことで,銅合金(CAC603)製の軸受についても耐久性の向上が得られることが確認され,本発明の表面処理方法が,炭素鋼のみならず,非鉄系の合金の摺動部材に対しても有効に利用できる表面処理方法であることが確認できた。   As a result of the above, it is confirmed that the surface treatment by the method of the present invention can improve the durability of the bearing made of copper alloy (CAC603). If the surface treatment method of the present invention is only carbon steel, It was also confirmed that the surface treatment method can be used effectively for non-ferrous alloy sliding members.

〔その他の材質に対する適用例〕
本発明の方法で表面処理を行った粉末ハイス鋼(SKH51)製の試験片の表面電子顕微鏡写真を図5に,Al−Si系合金(AC8A)製の試験片の表面電子顕微鏡写真を図6にそれぞれ示す。○で囲んだ部分が,炭化物である。
[Application examples for other materials]
FIG. 5 shows a surface electron micrograph of a test piece made of powdered high-speed steel (SKH51) surface-treated by the method of the present invention, and FIG. 6 shows a surface electron micrograph of a test piece made of an Al—Si alloy (AC8A). Respectively. The part surrounded by ○ is carbide.

いずれの試験片共に,炭化物あるいは金属間化合物からなる凸部の***を確認することができ,本発明の表面処理が,通常の炭素鋼のみならず,粉末ハイス鋼のような粉末冶金によって製造された鋼や,Al−Si系合金等の非鉄系合金に対しても適用できることが確認された。   Both specimens can confirm the protrusions of carbides or intermetallic compounds, and the surface treatment according to the present invention is manufactured not only by ordinary carbon steel but also by powder metallurgy such as powdered high-speed steel. It was also confirmed that it can be applied to non-ferrous alloys such as steel and Al-Si alloys.

このように,本発明の表面処理方法は,素地中に炭化物や金属間化合物が散在している合金によって少なくとも摺動部が形成されている摺動部材に対し広く適用可能である。   As described above, the surface treatment method of the present invention can be widely applied to a sliding member in which at least a sliding portion is formed of an alloy in which carbides and intermetallic compounds are scattered in the substrate.

Claims (9)

摺動部材のうち少なくとも他部材と摺接される部分である摺動部を,素地中に炭化物及び/又は金属間化合物が散在した合金により形成し,
前記摺動部の表面付近における前記素地を選択的に除去することにより,前記摺動部の表面に,前記炭化物及び/又は金属間化合物から成る凸部を形成し,前記摺動部の前記凸部の高さを0.05〜3.0μmとしたことを特徴とする摺動部材の表面処理方法。
A sliding part that is at least a part in sliding contact with the other member is formed of an alloy in which carbides and / or intermetallic compounds are dispersed in the substrate,
By selectively removing the substrate in the vicinity of the surface of the sliding portion, a convex portion made of the carbide and / or intermetallic compound is formed on the surface of the sliding portion, and the convex portion of the sliding portion is formed. A surface treatment method for a sliding member, wherein the height of the portion is 0.05 to 3.0 μm.
前記素地の除去を,前記凸部の高さが0.1〜2.0μmとなるよう行うことを特徴とする請求項1記載の摺動部材の表面処理方法。   2. The surface treatment method for a sliding member according to claim 1, wherein the substrate is removed so that the height of the convex portion is 0.1 to 2.0 [mu] m. 前記素地の除去を,前記摺動部の表面を鏡面研磨した後に行うことを特徴とする請求項1又は2記載の摺動部材の表面処理方法。   3. The surface treatment method for a sliding member according to claim 1, wherein the substrate is removed after the surface of the sliding portion is mirror-polished. 平面視における前記凸部の面積が,前記摺動部の面積の4%以上となるよう前記凸部を形成することを特徴とする請求項1〜3いずれか1項記載の摺動部材の表面処理方法。   The surface of the sliding member according to any one of claims 1 to 3, wherein the convex portion is formed so that an area of the convex portion in a plan view is 4% or more of an area of the sliding portion. Processing method. 前記凹凸の形成後,形成された前記凹凸を維持した状態で前記摺動部の表面に耐摩擦性及び/又は耐摩耗性を有する被膜をコーティングすることを特徴とする請求項1〜4いずれか1項記載の摺動部材の表面処理方法。   5. A film having friction resistance and / or wear resistance is coated on the surface of the sliding portion after the formation of the unevenness while maintaining the formed unevenness. 2. A surface treatment method for a sliding member according to item 1. 他部材と摺接される摺動部を備え,
少なくとも前記摺動部が,
素地中に炭化物及び/又は金属間化合物が散在した合金により形成されていると共に,
前記摺動部の表面付近における前記素地を選択的に除去することにより形成された,前記炭化物及び/又は金属間化合物から成る凸部が形成されている,前記凸部の高さが0.05〜3.0μmであることを特徴とする摺動部材。
It has a sliding part that comes into sliding contact with other members,
At least the sliding part is
Formed of an alloy in which carbides and / or intermetallic compounds are scattered in the substrate,
A convex portion made of the carbide and / or an intermetallic compound formed by selectively removing the base material in the vicinity of the surface of the sliding portion is formed, and the height of the convex portion is 0.05. A sliding member characterized by being -3.0 µm.
前記摺動部の凸部の高さが0.1〜2.0μmであることを特徴とする請求項6記載の摺動部材。   The sliding member according to claim 6, wherein the height of the projecting portion of the sliding portion is 0.1 to 2.0 μm. 平面視における前記凸部の面積が,前記摺動部の面積の4%以上であることを特徴とする請求項6又は7記載の摺動部材。   The sliding member according to claim 6 or 7, wherein an area of the convex portion in a plan view is 4% or more of an area of the sliding portion. 前記凹凸が形成された前記摺動部の表面に,前記凹凸を維持した状態で耐摩擦性及び/又は耐摩耗性を有する被膜を形成したことを特徴とする請求項6〜8いずれか1項記載の摺動部材。   9. A film having friction resistance and / or abrasion resistance is formed on the surface of the sliding portion on which the unevenness is formed while maintaining the unevenness. The sliding member as described.
JP2014259453A 2014-12-22 2014-12-22 Surface treatment method for sliding members and sliding members Active JP6783500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014259453A JP6783500B2 (en) 2014-12-22 2014-12-22 Surface treatment method for sliding members and sliding members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014259453A JP6783500B2 (en) 2014-12-22 2014-12-22 Surface treatment method for sliding members and sliding members

Publications (2)

Publication Number Publication Date
JP2016117935A true JP2016117935A (en) 2016-06-30
JP6783500B2 JP6783500B2 (en) 2020-11-11

Family

ID=56243764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014259453A Active JP6783500B2 (en) 2014-12-22 2014-12-22 Surface treatment method for sliding members and sliding members

Country Status (1)

Country Link
JP (1) JP6783500B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207528A (en) * 1987-02-20 1988-08-26 Toyota Motor Corp Method for finish machining of sliding member
JPH02173212A (en) * 1988-12-26 1990-07-04 Hitachi Ltd Sliding material and surface treatment method thereof
JPH03199433A (en) * 1989-12-26 1991-08-30 Kanai Hiroyuki Ring for spinning frame
JPH1036983A (en) * 1996-07-23 1998-02-10 Sumitomo Light Metal Ind Ltd Sliding material
JPH1046366A (en) * 1996-08-02 1998-02-17 Toyota Motor Corp Liquid etchant for aluminum alloy and etching method
JP2001220630A (en) * 2000-02-08 2001-08-14 Daido Metal Co Ltd Copper series sliding material
JP2004068067A (en) * 2002-08-05 2004-03-04 Nippon Parkerizing Co Ltd Copper-based alloy material and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207528A (en) * 1987-02-20 1988-08-26 Toyota Motor Corp Method for finish machining of sliding member
JPH02173212A (en) * 1988-12-26 1990-07-04 Hitachi Ltd Sliding material and surface treatment method thereof
JPH03199433A (en) * 1989-12-26 1991-08-30 Kanai Hiroyuki Ring for spinning frame
JPH1036983A (en) * 1996-07-23 1998-02-10 Sumitomo Light Metal Ind Ltd Sliding material
JPH1046366A (en) * 1996-08-02 1998-02-17 Toyota Motor Corp Liquid etchant for aluminum alloy and etching method
JP2001220630A (en) * 2000-02-08 2001-08-14 Daido Metal Co Ltd Copper series sliding material
JP2004068067A (en) * 2002-08-05 2004-03-04 Nippon Parkerizing Co Ltd Copper-based alloy material and method for manufacturing the same

Also Published As

Publication number Publication date
JP6783500B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
TWI682833B (en) Structure of blade leading edge of machining tool and its surface treatment method
JP4503097B2 (en) DLC-coated sliding member and manufacturing method thereof
TWI396775B (en) Surface-oxide abrasion-resistant lubricant coating and method for forming the same
JP4873617B2 (en) Hard film covering member with low friction characteristics and peel resistance
CN104608046B (en) The superfine processing method on the bearing roller face of cylinder
JP2005001088A (en) Member coated with hard coating film and its manufacturing method
WO2008010901A2 (en) Surface for reduced friction and wear and method of making the same
JP5920221B2 (en) Actuator manufacturing method
CN111660207B (en) Powder contact member and surface treatment method for powder contact member
JP2009202307A (en) Grinding method for rolling and sliding device member and rolling and sliding device member
Adoberg et al. The effect of surface pre-treatment and coating post-treatment to the properties of TiN coatings
JP2004291218A (en) Metal bond wheel
JP2015068396A (en) Slide member and method for manufacturing slide member
JP2004084014A (en) Coating method with diamond-like carbon film and die for plastic working
Micallef et al. Surface finishing and tool wear in single point diamond turning of chemical vapour deposited tungsten carbide hard coatings
CN111542626A (en) Plain bearing element
WO2017150655A1 (en) Steel wire material and method for manufacturing same, and method for manufacturing steel wire
JP4392719B2 (en) Base material surface treatment method and base material and product having a surface treated by this method
JP2008200780A (en) Mixed abrasive grain grinding wheel
JP6783500B2 (en) Surface treatment method for sliding members and sliding members
JPH07190065A (en) Sliding member
WO2020044585A1 (en) Metal product surface member and method for burnishing same
JP2009202308A (en) Grinding method for rolling and sliding device member and rolling and sliding device member
JP2010076094A (en) Metal bond diamond grinding wheel and method of manufacturing the same
Sato et al. Tribological Properties of Bronze Containing Micro Sized Sulfide-Application of Atomic Force Microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201022

R150 Certificate of patent or registration of utility model

Ref document number: 6783500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250