JPH02173212A - Sliding material and surface treatment method thereof - Google Patents

Sliding material and surface treatment method thereof

Info

Publication number
JPH02173212A
JPH02173212A JP32585988A JP32585988A JPH02173212A JP H02173212 A JPH02173212 A JP H02173212A JP 32585988 A JP32585988 A JP 32585988A JP 32585988 A JP32585988 A JP 32585988A JP H02173212 A JPH02173212 A JP H02173212A
Authority
JP
Japan
Prior art keywords
sliding
sliding surface
hardened
hardening
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32585988A
Other languages
Japanese (ja)
Inventor
Nobuhiko Tada
多田 信彦
Toshihiro Yamada
山田 俊宏
Akita Iwakura
昭太 岩倉
Yoshihisa Uneyama
宇根山 祥久
Tadashi Iizuka
飯塚 董
Eiji Yonetani
栄二 米谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd, Hitachi Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP32585988A priority Critical patent/JPH02173212A/en
Publication of JPH02173212A publication Critical patent/JPH02173212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve wear resistance of a sliding material with simple treatment by locally quench-hardening the sliding face with a converged high density heat, selectively removing non-hardening part and forming the hardened projecting part and the non-hardened recessing part. CONSTITUTION:The sliding surface in the sliding material 1 is locally and quickly heated with the converged high density heat of condensed laser beam, etc., and rapidly cooled to execute the quench-hardening. This sliding surface is treated with the shot blast, etc., and only non-hardening part is selectively cut off to make the projecting and recessed shapes. The sliding surface mingling the projecting part 3 of the quench-hardened part and the recessed part 2 of the non-hardened part, is formed. By this method, wearing quantity under friction condition lubricated with lubricant, is reduced and the service life of a machine using this sliding material can be extended.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、表面焼入れ硬化処理が施された鉄系合金の摺
動材及びその表面処理方法に係り、特に潤滑条件下で使
用される自動車エンジン、油圧機器、空調機器及び圧縮
機器などの摺動面の耐摩耗性を向上するに好適な摺動材
及びその表面処理方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a sliding material made of iron-based alloy subjected to surface quench hardening treatment and a surface treatment method for the same, and particularly for automobiles used under lubricated conditions. The present invention relates to a sliding material suitable for improving the wear resistance of sliding surfaces of engines, hydraulic equipment, air conditioning equipment, compression equipment, etc., and a surface treatment method thereof.

〔従来の技術〕[Conventional technology]

摺動材の表面処理方法の従来技術としては、特開昭60
−3431号公報及び特開昭62−77421号公報に
それぞれ記載された提案が公知である。前者はロータリ
ピストンエンジンのロータハウジングの内面の摺動面に
硬質メツキ被膜を形成した後、この摺動面をフォトエツ
チング処理により凹部を刻設して油溜りを形成したもの
である。また後者は鉄系合金製軸部材を高密度エネルギ
の照射により、ら旋状かつ断続的に再溶融チル化処理を
施して耐摩耗性や酎がじり性を向上させたものである。
As a conventional technique for the surface treatment method of sliding materials, there is
The proposals described in Japanese Patent Laid-open No. 3431 and Japanese Patent Application Laid-Open No. 62-77421 are known. The former method involves forming a hard plating film on the sliding surface of the inner surface of the rotor housing of a rotary piston engine, and then photo-etching the sliding surface to form recesses to form oil reservoirs. In the latter case, a shaft member made of an iron-based alloy is subjected to a spiral and intermittent re-melting and chilling treatment by irradiation with high-density energy to improve wear resistance and hardness.

〔発明が解決しようとする課題〕 上記公報によって開示された従来技術のうち、前者は摺
動面を硬質メツキするため、摩擦に耐えるためのメツキ
膜厚を得るためには長時間のメツキ処理が必要である。
[Problems to be Solved by the Invention] Among the conventional techniques disclosed in the above-mentioned publications, the former involves hard plating of the sliding surface, which requires a long plating process in order to obtain a plating film thickness that can withstand friction. is necessary.

しかも−皮形成した硬質メツキ皮膜を再度フォトエツチ
ングにより凹部を刻設する必要があるため、硬質メツキ
部の膜厚はさらに厚くしなければならない。この結果処
理時間が極めて長くなり、かつ処理コストが高くなるた
め、高級な摺動材にしか適用できないという問題があっ
た。
Moreover, since it is necessary to again photoetch the formed hard plating film to form recesses, the film thickness of the hard plating part must be made even thicker. As a result, the processing time becomes extremely long and the processing cost becomes high, so there is a problem that it can only be applied to high-grade sliding materials.

一方、後者は鉄系合金製軸部材を高密度エネルギの照射
によりら旋状の再溶融処理して、これを凝固チル化処理
するためには、摺動面を再溶融する必要がある。しかし
鉄系合金製軸部材表面を再溶融すると、軸部材表面は不
規則な凹凸状となり摺動面としては使用できない。従っ
てこの提案による場合は表面処理後表面を再度機械加工
しなければならない。またこの提案は硬化チル層の硬度
増大による耐久性の向上を目的としているが、摺動面の
硬度差を利用して硬質部分を凸状とし、軟質部分を凹状
とするとともに、この凹部を潤滑油の油溜りとして利用
することは開示されていない。
On the other hand, in the latter case, it is necessary to re-melt the iron-based alloy shaft member into a spiral shape by irradiating it with high-density energy, and then re-melt the sliding surface in order to solidify and chill it. However, when the surface of the iron-based alloy shaft member is remelted, the surface of the shaft member becomes irregularly uneven and cannot be used as a sliding surface. Therefore, according to this proposal, the surface must be machined again after surface treatment. In addition, this proposal aims to improve durability by increasing the hardness of the hardened chill layer, but by making use of the difference in hardness of the sliding surface, the hard part is made convex and the soft part is concave, and this concave part is lubricated. Utilization as an oil sump is not disclosed.

本発明は上記事情に鑑みてなされたものであり、摺動材
の耐摩耗性を確実に向上することのできる簡単で安価な
摺動材の表面処理方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a simple and inexpensive surface treatment method for a sliding material that can reliably improve the wear resistance of the sliding material.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、鉄系合金からなる
部材の摺動面の少なくとも一部に、硬質の凸部と硬質の
凹部とからなる凹凸部を形成したことを特徴としている
。またこのような凹凸部を形成するために、少なくとも
摺動面が金属合金からなる摺動材の表面処理方法におい
て、該摺動材の摺動面を収束された高密度熱源により局
部的に急速加熱することにより焼入れ硬化する第1の工
程と、前記摺動面の非硬化部のみを選択的に除去する第
2の工程とからなり、硬化された凸部と非硬化の凹部と
を形成することを特徴としている。
In order to achieve the above object, the present invention is characterized in that an uneven portion consisting of a hard convex portion and a hard concave portion is formed on at least a portion of the sliding surface of a member made of an iron-based alloy. In addition, in order to form such uneven portions, at least in a surface treatment method for a sliding material whose sliding surface is made of a metal alloy, the sliding surface of the sliding material is locally rapidly heated using a concentrated high-density heat source. It consists of a first step of quenching and hardening by heating, and a second step of selectively removing only the non-hardened portions of the sliding surface to form hardened convex portions and non-hardened concave portions. It is characterized by

また前記第1の工程を、硬化元素の拡散滲透を防止する
拡散防止膜を局部的に形成し、しかるのちに金属を硬化
することのできる硬化元素を前記拡散防止膜で被覆され
た部分以外の摺動材の摺動面に拡散滲透させて、硬化部
と非硬化部とを形成してもよい、また前記第1の工程を
、硬質物質の被覆を妨げる保護膜を局部的に形成し、し
かるのちに該保護膜で被覆された部分以外の摺動材の摺
動面に硬質物質を被覆して硬質被膜を形成してもよい。
Alternatively, the first step may be performed by locally forming a diffusion prevention film that prevents diffusion and percolation of the hardening element, and then applying a hardening element capable of hardening the metal to areas other than the areas covered with the diffusion prevention film. A hardened portion and a non-hardened portion may be formed by diffusing and penetrating the sliding surface of the sliding material, and the first step may be performed by locally forming a protective film that prevents the hard material from being coated. Thereafter, a hard coating may be formed by coating the sliding surface of the sliding material other than the portion covered with the protective film with a hard substance.

さらにまた前記第1の工程を、摺動材の摺動面を収束さ
れた高密度熱源により局部的に加熱し、かつ該加熱部分
に金属硬化元素を含む気体を吹きつけるか、または前記
高密度熱源の周囲を金属硬化元素でシールドして、前記
加熱部分を局部的に加熱硬化してもよい。
Furthermore, the first step may be carried out by heating the sliding surface of the sliding material locally with a focused high-density heat source and blowing a gas containing a metal hardening element onto the heated portion, or The heated portion may be locally heated and hardened by shielding the heat source with a metal hardening element.

〔作用〕[Effect]

鉄系合金は、0.2%以上の炭素を含有しておれば、マ
ルテンサイト変態により焼入れ硬化することができる。
If the iron-based alloy contains 0.2% or more of carbon, it can be quenched and hardened by martensitic transformation.

高密度エネルギ熱源としてレーザビーム、電子ビーム、
TIGアーク、プラズマアークなどの中から適当なもの
を選び、前記鉄系合金表面を局部的に急速加熱すれば、
加熱部周囲への熱伝導現象により急速冷却が生じ、加熱
部分が焼入れ硬化する。このときの加熱部分への入熱量
は極めて少量であり、かつ短時間で加熱部分が冷却する
ため、加熱部表面の熱損傷や熱変形の発生を最小限に抑
えて焼入れ硬さを硬くすることができる。さらに熱源を
不連続に動かすか、入熱量を増減させることにより、焼
入れ硬化部分を断続状に形成することができる。
Laser beam, electron beam, as a high-density energy heat source
If an appropriate one is selected from TIG arc, plasma arc, etc., and the surface of the iron-based alloy is locally rapidly heated,
Rapid cooling occurs due to the heat conduction phenomenon around the heated part, and the heated part is quenched and hardened. At this time, the amount of heat input to the heated part is extremely small, and the heated part is cooled down in a short period of time. Therefore, the occurrence of thermal damage and thermal deformation on the surface of the heated part can be minimized and the quenching hardness can be increased. Can be done. Furthermore, by discontinuously moving the heat source or increasing or decreasing the amount of heat input, the quench-hardened portion can be formed intermittently.

次に上記焼入れ硬化表面を例えばショツトブラスト処理
などにより、未硬化部すなわち軟質部分を選択的に削り
取って凹状とすることにより、凹凸表面が形成される。
Next, an uneven surface is formed by selectively scraping off unhardened portions, that is, soft portions, of the hardened surface by, for example, shot blasting to form a concave shape.

特にショツトブラストで使用するショット(鉄粒子)の
硬さを、焼入れ硬化部分の硬さと未硬化部分の硬さの中
間の硬さとすることにより、ショットよりも軟かい部分
のみが選択的に削り取られる。従ってショツトブラスト
処理により焼入れ硬化部分は全く損傷を受けない。
In particular, by setting the hardness of the shot (iron particles) used in shot blasting to be between the hardness of the quenched hardened part and the hardness of the unhardened part, only the parts that are softer than the shot are selectively removed. . Therefore, the hardened parts are not damaged at all by shot blasting.

さらに焼入れ硬化は高密度熱源による急熱急冷によって
行なわれるため、焼入れ硬化時の表面の損傷や変形の発
生も極めて僅かである。
Furthermore, since quench hardening is performed by rapid heating and cooling using a high-density heat source, there is very little damage or deformation on the surface during quench hardening.

上記のように摺動材の摺動面に形成された硬い凸部が相
手摺動材に当接することにより、摺動面の摩耗を防止す
ることができる。また凹部に潤滑油などを保持させ、こ
の潤滑油を前記凸部に迅速かつ確実に補給することがで
きるので、凸部の摺動性能を著しく向上させることがで
きる。
As described above, the hard convex portion formed on the sliding surface of the sliding material comes into contact with the mating sliding material, thereby making it possible to prevent wear of the sliding surface. Further, since lubricating oil or the like can be held in the concave portion and this lubricating oil can be quickly and reliably supplied to the convex portion, the sliding performance of the convex portion can be significantly improved.

また、前記摺動材の摺動面に硬化部と非硬化部を局部的
に形成する手段として、摺動面に拡散防止膜を局部的に
形成し、他の部分の表面に硬化元素を拡散滲透させる方
法、また摺動面に保護膜を局部的に形成し、他の部分の
表面に硬質被膜を形成する方法、さらにまた摺動面を局
部的に加熱するときに、加熱部分に金属硬化元素を含む
気体を吹きつけるか、熱源の周囲を金属硬化元素でシー
ルドして加熱する方法のいずれの方法によっても前記第
1の方法と同様な作用、効果を得ることができる。
In addition, as a means of locally forming hardened parts and non-hardened parts on the sliding surface of the sliding material, a diffusion prevention film is locally formed on the sliding surface to diffuse the hardening element to the surface of other parts. There is also a method of forming a protective film locally on the sliding surface and forming a hard film on the surface of other parts.Furthermore, when heating the sliding surface locally, metal hardening is applied to the heated part. The same functions and effects as the first method can be obtained by either blowing a gas containing the element or heating the heat source by shielding the area around the heat source with a metal hardening element.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明の第1の発明の一実施例による摺動材の
断面構造を示す。図において、1は摺動材、2は凹部、
3は凸部、4は硬化部であり、摺動材1の摺動面は0.
2%以上の炭素元素を含む鉄系合金からなっている。そ
してこの摺動材1の摺動面を凹凸状とし、凸部3が硬く
、凹部2が軟かい構造となっている。
FIG. 1 shows a cross-sectional structure of a sliding material according to an embodiment of the first aspect of the present invention. In the figure, 1 is a sliding material, 2 is a recess,
3 is a convex portion, 4 is a hardened portion, and the sliding surface of the sliding material 1 is 0.
It is made of an iron-based alloy containing 2% or more of carbon element. The sliding surface of this sliding material 1 has an uneven structure, with the convex portions 3 being hard and the concave portions 2 being soft.

次に第2の発明の一実施例による表面処理方法を以下に
説明する。摺動材1の摺動面は鉄系合金からなっており
、かつ焼入れ硬化処理が可能な程度、例えば0.2%乃
至1.5%の炭素元素を含有している。この摺動材1の
摺動面をまず収束した高密度エネルギ熱源、例えば0.
5m乃至1.0閣径に集光されたレーザビームにより局
部的かつ急速度に加熱する。この加熱部の温度がマルテ
ンサイト変態温度以上、例えば900℃以上になると、
この加熱部分が周辺への熱伝導によって急速に冷却して
焼入れ硬化される。このときレーザビームの発熱量を増
減させるか、レーザビームを不連続に移動させることに
より、前記焼入れ硬化部分を断続状またはまだら状に形
成することができる。
Next, a surface treatment method according to an embodiment of the second invention will be described below. The sliding surface of the sliding material 1 is made of an iron-based alloy, and contains carbon element to the extent that it can be hardened by quenching, for example, 0.2% to 1.5%. First, a high-density energy heat source focused on the sliding surface of the sliding material 1, for example 0.
Localized and rapid heating is performed using a laser beam focused to a diameter of 5 m to 1.0 m. When the temperature of this heating section exceeds the martensitic transformation temperature, for example 900°C or higher,
This heated portion is rapidly cooled and hardened by heat conduction to the surrounding area. At this time, by increasing or decreasing the amount of heat generated by the laser beam or by discontinuously moving the laser beam, the quench-hardened portion can be formed in an intermittent or spotty manner.

またレーザビームを蛇行状、ら旋状、うず巻状。The laser beam can also be shaped into a meandering, spiral, or spiral shape.

波形状などに移動させることにより、摺動線上で前記焼
入れ硬化部分が断続状となるように形成することもでき
る。また、レーザビームを揺動させて各加熱線の間隔が
レーザビーム径以上に離れていれば、前記の場合と同様
に摺動線上で硬化部分が断続状となる。また、レーザビ
ームを断続的に動かすか、格子状または網目状に動かし
て焼入れ硬化部を点状または格子状に形成することもで
きる。以上のいずれかの形状に摺動面を焼入れ硬化した
後、この摺動面をショツトブラスト処理して、非焼入れ
硬化部分のみを選択的に削り取って凹凸形状とする。こ
こでショツトブラスト処理に用いるショット、すなわち
鉄粒子の硬さを焼入れ硬化部の硬さと非焼入れ硬化部の
硬さの中間の硬さに選ぶことにより、非焼入れ部が選択
的に削られるため、焼入れ硬化部が凸部3となり、非焼
入れ硬化部が凹部2となる。すなわち本実施例によれば
、硬化した凸部3と非硬化の凹部2とが混在する摺動面
を形成することができる。
By moving it in a wave shape or the like, the quench-hardened portion can be formed intermittently on the sliding line. Furthermore, if the laser beam is oscillated so that the distance between the heating lines is greater than the diameter of the laser beam, the hardened portion will be discontinuous on the sliding line as in the case described above. Furthermore, the hardened portions can be formed in dots or grids by moving the laser beam intermittently or in a grid or mesh pattern. After the sliding surface is quenched and hardened into any of the above shapes, this sliding surface is subjected to shot blasting to selectively shave off only the non-quenched and hardened portions to form an uneven shape. By selecting the hardness of the shot, or iron particles, used for shot blasting to be between the hardness of the quench-hardened part and the hardness of the non-quench-hardened part, the non-hardened part is selectively shaved. The quench-hardened portion becomes the convex portion 3, and the non-quench-hardened portion becomes the concave portion 2. That is, according to this embodiment, it is possible to form a sliding surface in which hardened convex portions 3 and unhardened concave portions 2 coexist.

上記の方法で形成された摺動面は、焼入れ硬化処理やシ
ョツトブラスト処理により、熱変形4表面の乱れ、寸法
精度不良などが生じる場合があるが、これらの変形は少
ないので、摺動面を研削加工などにより僅かに追加工す
ることにより容易に除去することができる。
The sliding surface formed by the above method may undergo thermal deformation4 surface disturbance or poor dimensional accuracy due to quench hardening treatment or shot blasting treatment, but since these deformations are small, the sliding surface It can be easily removed by performing a slight additional process such as grinding.

第2図に上記実施例によって表面処理された摺動部材の
構造を示す。図において、5はすベリ軸、6はすべり軸
受、7はすベリ軸受6の表面に形成した表面硬化部であ
る。また第3図は第2図のA−A線断面図、第4図は第
3図のB部詳細図である。すべり軸受部材を構成するす
ベリ軸5を概略の最終形状に機械加工した後、該すベリ
*l!15の軸方向と平行に前述した方法によって多数
の焼入れ硬化された凸部8と軟質の凹部9とを形成する
FIG. 2 shows the structure of a sliding member whose surface has been treated according to the above embodiment. In the figure, 5 is a sliding shaft, 6 is a sliding bearing, and 7 is a hardened surface portion formed on the surface of the sliding bearing 6. 3 is a sectional view taken along the line A--A in FIG. 2, and FIG. 4 is a detailed view of section B in FIG. 3. After machining the sliding shaft 5 constituting the sliding bearing member into the approximate final shape, the corresponding fitting *l! A large number of quench-hardened convex portions 8 and soft concave portions 9 are formed in parallel to the axial direction of 15 by the method described above.

この凸部8の上面はすベリ軸受6の内周面に当接してお
り、この凸部8の摺動性能を向上するための潤滑油また
は潤滑用物体、例えば鉛、亜鉛、黒鉛などの粉または固
体を、前記凸部8や速やかにかつ確実に供給するための
補強部として前記凹部9が適宜に分配配設されている。
The upper surface of this convex portion 8 is in contact with the inner circumferential surface of the helical bearing 6, and lubricating oil or a lubricating substance, such as lead, zinc, graphite powder, etc., is used to improve the sliding performance of this convex portion 8. Alternatively, the concave portions 9 are appropriately distributed as reinforcing portions for supplying the solid to the convex portions 8 and quickly and reliably.

従って、すベリ軸5には摺動面として利用される凸部8
と、潤滑剤補給部として利用される凹部9とが形成され
ているので、荷重を支持する受圧面積、すなわち凸部8
の上面の面積は摺動面全体の面積より小さくなり、凸部
8が受ける面圧は高くなる。しかしながら、凹部9から
潤滑剤が速やかにかつ確実に供給されるため、凸部8の
摺動特性は著しく向上する。
Therefore, the sliding shaft 5 has a convex portion 8 which is used as a sliding surface.
Since the concave portion 9 used as a lubricant supply portion is formed, the pressure receiving area that supports the load, that is, the convex portion 8 is formed.
The area of the upper surface becomes smaller than the area of the entire sliding surface, and the surface pressure that the convex portion 8 receives becomes higher. However, since the lubricant is quickly and reliably supplied from the recesses 9, the sliding characteristics of the protrusions 8 are significantly improved.

次に本実施例による摺動部材の摩耗試験を行なった結果
について説明する。この摩耗試験は、円筒リングと平板
とを潤滑油が入った容器内に浸漬した状態で1円筒リン
グの端面を平板に当接させてこの円筒リングに荷重と回
転を与えて摩擦させて行なった。この円筒リングは炭素
fi845Gを焼入れ後十分滑らかに仕上げたものであ
る。また平板は炭素鋼545Gを焼入れ後十分に滑らか
に仕上げたものと、前記実施例に示した表面処理方法で
仕上げたものとの2種類を用いた。本試験に用いた表面
処理方法は、100A乃至200Aの収束したプラズマ
アークで摺動面を3m/l1in乃至7m/winの高
速で移動し、加熱して焼入れ硬化したものである。この
加熱線を3−乃至6IIImピッチの間隔で繰返し加熱
焼入れすれば、摺動面には加熱ピッチの硬度分布が形成
できる。上記の加熱焼入れにより、加熱焼入れ部分の硬
さはHV500乃至900、非加熱焼入れ部分がHVl
oo乃至300となる。この硬さの差を利用して凹凸部
分を形成すればよい。具体的な凹凸部形成法としては、
粒径0.05mmφ乃至1mφ、硬さHV300乃至6
00程度の鋼球を圧力3 kg f /aJ乃至7kg
f/cdの空気流とともに10分間吹きつけると、深さ
が5μ乃至1゜Oμ程度の凹凸部分が形成される。また
凸部と凹部の割合は0.2乃至0.7.凸部のピッチは
3m乃至6瞭である。−方、従来の摺動面は平板を高周
波焼入れして、全面をほぼ均一にHV600乃至800
に焼入れ硬化したのち、表面を研削加工して鏡面仕上げ
した。
Next, the results of a wear test on the sliding member according to this example will be explained. This wear test was performed by placing the end face of one cylindrical ring in contact with the flat plate while the cylindrical ring and flat plate were immersed in a container containing lubricating oil, and applying a load and rotation to the cylindrical ring to cause friction. . This cylindrical ring is made of carbon fi845G which has been hardened and finished sufficiently smooth. Two types of flat plates were used: one made of carbon steel 545G and finished sufficiently smooth after quenching, and the other finished by the surface treatment method shown in the previous example. The surface treatment method used in this test was to move the sliding surface at a high speed of 3m/l1in to 7m/win with a converged plasma arc of 100A to 200A, and heat it to harden it by quenching. If this heating wire is repeatedly heated and hardened at intervals of 3- to 6IIIm pitches, a hardness distribution of heating pitches can be formed on the sliding surface. Due to the heat quenching described above, the hardness of the heat quenched part is HV500 to 900, and the hardness of the non-heat quenched part is HV1.
oo to 300. This difference in hardness may be used to form uneven portions. As a specific method for forming uneven parts,
Particle size 0.05mmφ to 1mφ, hardness HV300 to 6
00 steel ball at a pressure of 3 kg f /aJ to 7 kg
When blowing with an air flow of f/cd for 10 minutes, uneven portions with a depth of about 5μ to 1°Oμ are formed. The ratio of convex portions to concave portions is 0.2 to 0.7. The pitch of the convex portions is 3 m to 6 m. - On the other hand, the conventional sliding surface is made by induction hardening a flat plate, so that the entire surface is almost uniformly heated to HV600 to 800.
After being quenched and hardened, the surface was ground to a mirror finish.

上記の各試験片を用いて各種の荷重と摺動速度の摩擦条
件において摩擦試験を行なったところ、摩擦係数は従来
品が0602乃至o、05、本実施例により表面処理さ
れた平板が0.04乃至0.08と若干大きかったが、
摩耗量は従来品を1とすると本実施例では0.5乃至0
.05と大幅に減少した。すなわち、同一摩擦条件にお
いては摩耗寿命は2倍乃至20倍となることがわかった
。また、前記従来技術で示した特開昭60−3431号
公報に記載された提案では、凹部のピッチは0.1乃至
0.2fl!l、凸部の表面粗さは0.3μであるが、
これに対して本実施例では、摺動面の凹部のピッチは3
m乃至6m、凸部の表面粗さは3μ乃至5μであった。
Friction tests were conducted using each of the above test pieces under various friction conditions of loads and sliding speeds, and the friction coefficient was 0.602 to 0.05 for the conventional product, and 0.05 for the flat plate surface-treated according to this example. Although it was slightly large at 04 to 0.08,
The amount of wear is 0.5 to 0 in this example, when the conventional product is 1.
.. 05, a significant decrease. In other words, it was found that the wear life is 2 to 20 times longer under the same friction conditions. Furthermore, in the proposal described in Japanese Patent Application Laid-Open No. 60-3431, which is referred to as the prior art, the pitch of the concave portions is 0.1 to 0.2 fl! l, the surface roughness of the convex portion is 0.3μ,
In contrast, in this embodiment, the pitch of the recesses on the sliding surface is 3.
m to 6 m, and the surface roughness of the convex portion was 3 μ to 5 μ.

すなわち、前記提案に比べて本実施例では摺動面の表面
粗さはかなり粗く、かつ凹部のピッチもかなり大きいの
で、表面処理コストも安くできる。
That is, compared to the above proposal, in this embodiment, the surface roughness of the sliding surface is considerably rougher, and the pitch of the recesses is also considerably larger, so that the surface treatment cost can be reduced.

上記摩耗試験では高密度熱源としてプラズマアークを用
いたが、このプラズマアークは一般的な熱源、例えばT
IGアークやガス炎などに比べると高密度熱源ではある
が、プラズマアーク発生の原理からアーク径を上述した
ようにllff1lφ乃至5■φ程度よりも細く、例え
ば0.05mmφ乃至0.2■φ 程度にすることは困
難である。しかしながら高密度熱源としてレーザビーム
を用い十分に収束すれば、0.02m++φ乃至0.5
nmφ程度に熱源を絞ることができる。また電子ビーム
を用いれば熱源の分布をさらに細く絞ることも可能であ
る。これらの熱源を用いれば凹部ピッチを0.1m乃至
0.5m、凹部の溝幅または径を0.05+m乃至0.
4mm程度とすることができ、前記特開昭60−343
1号公報に記載された提案と同等の摺動面を得ることが
できる。
In the above wear test, a plasma arc was used as a high-density heat source, but this plasma arc can be used as a general heat source such as T
Although it is a high-density heat source compared to an IG arc or a gas flame, the arc diameter is smaller than llff1lφ to 5■φ, for example, about 0.05mmφ to 0.2■φ, based on the principle of plasma arc generation. It is difficult to do so. However, if a laser beam is used as a high-density heat source and is sufficiently focused, the range will be 0.02m++φ to 0.5m.
The heat source can be narrowed down to about nmφ. Furthermore, by using an electron beam, it is possible to further narrow down the distribution of the heat source. If these heat sources are used, the recess pitch can be set from 0.1m to 0.5m, and the groove width or diameter of the recess can be set from 0.05+m to 0.5m.
The thickness can be approximately 4 mm, as disclosed in the above-mentioned Japanese Patent Application Laid-open No. 60-343.
A sliding surface equivalent to that proposed in Publication No. 1 can be obtained.

本実施例による摺動体の表面処理方法によると、硬化処
理前の表面形状及び表面粗さの変化を最小限にして、表
面を局部的に硬化して凹凸部を形成することができる。
According to the surface treatment method for a sliding body according to this embodiment, it is possible to locally harden the surface and form uneven portions while minimizing changes in the surface shape and surface roughness before hardening treatment.

しかも再溶融チル化のための再溶融をしないでも、十分
焼入れ硬化を行なうことができる。従って硬化処理後の
後加工も少なくてすみ、処理が容易でコストを低減する
ことができるとともに、摺動部材の耐摩耗性を向上する
ことができる。特に潤滑油によって潤滑される摺動部材
においては、摩耗量を大幅に減少して寿命を伸ばし保守
を容易にすることができる。
Furthermore, sufficient quenching and hardening can be achieved without remelting for remelting and chilling. Therefore, post-processing after the hardening treatment can be reduced, the treatment is easy, the cost can be reduced, and the wear resistance of the sliding member can be improved. Particularly in sliding members that are lubricated with lubricating oil, the amount of wear can be significantly reduced, extending the service life and making maintenance easier.

第5図に本発明の第3の発明による摺動体の表面処理方
法の一実施例により処理した摺動面の断面構造を示す。
FIG. 5 shows a cross-sectional structure of a sliding surface treated by an embodiment of the sliding body surface treatment method according to the third aspect of the present invention.

金属製の摺動面を有する摺動部材1の摺動面の表面に、
硬化元素の拡散、滲透を防止する拡散防止膜11を断続
的に形成する。この拡散防止膜11は塗装、メツキまた
は穴あき金属薄板の巻回などの手段によって形成する。
On the surface of the sliding surface of the sliding member 1 having a metal sliding surface,
A diffusion prevention film 11 is intermittently formed to prevent diffusion and penetration of the hardening element. The diffusion prevention film 11 is formed by painting, plating, or winding a perforated thin metal plate.

次にこの表面に硬化元素を拡散、浸透させて、拡散防止
1111.1が形成された部分以外の部分の表面を硬化
する。この表面硬化手段としては、低炭素鋼表面から炭
素元素を拡散、浸透させて焼入れ硬化する浸炭処理方法
、またはTi合金表面から窒素元素を拡散、浸透させて
窒化化合物の形成することにより硬化する窒化処理方法
、または鉄鋼表面からホウ素元素を拡散、浸透させて硬
化するホウ化処理方法などがある。上記のようにして摺
動面に硬化部と非硬化部とを断続的に形成した後、拡散
防止膜11とこの拡散防止膜11で被覆されていた非硬
化部とを、例えばショツトブラスト処理などで選択的に
切削除去する。そして硬化部が凸部10となり、非硬化
部が凹部となって摺動面に凹凸形状が形成される。
Next, a hardening element is diffused and permeated into this surface to harden the surface other than the portion where the diffusion prevention layer 1111.1 is formed. This surface hardening method includes a carburizing treatment method in which carbon elements are diffused and infiltrated from the surface of low carbon steel to harden by quenching, or nitriding, which is hardened by diffusing and infiltrating nitrogen elements from the surface of a Ti alloy to form a nitride compound. There are two methods: a boriding method, which hardens the steel by diffusing and penetrating the boron element from the surface of the steel. After the hardened portions and non-hardened portions are intermittently formed on the sliding surface as described above, the diffusion prevention film 11 and the unhardened portions covered with this diffusion prevention film 11 are treated by, for example, shot blasting. Selectively cut and remove. The hardened portion becomes the convex portion 10, and the non-hardened portion becomes the concave portion, thereby forming an uneven shape on the sliding surface.

第6図に本発明の第4の発明の一実施例による表面処理
方法で処理した摺動材の断面構造を示す。
FIG. 6 shows a cross-sectional structure of a sliding material treated by a surface treatment method according to an embodiment of the fourth aspect of the present invention.

金属製の摺動材1の表面に硬質皮膜12が付着すること
を防止する保護膜13を断続状、格子状または網目状に
形成した後、保護膜13が付着していない摺動面に硬質
皮膜12を被覆して、この硬質皮膜12を断続状などに
形成する。次に保護膜13を選択的に除去して、硬質皮
膜12が凸部、硬質皮膜12がない部分が凹部となる凹
凸状の摺動面を形成する。上記の硬質皮膜としては、硬
質クロムメツキ膜、セラミックなどの硬質金属の溶射皮
膜、無電解メツキ膜などが適用でき、保護膜としては、
塗料、プラスチック皮膜、無8!質皮膜などが適用でき
る。また、保護膜13の除去を容易にし、硬質皮膜12
と金属との密着強度を改善するために、高温熱処理や拡
散処理が有効な材料もある。また、保護膜13とし7て
金網を用い、この金網を摺動面に巻回した後該摺動面に
セラミック、タングステン、モリブデン、超硬合金など
の微粒子を高温に加熱しながら吹きつけて、これらの硬
質皮膜を摺動面上に断続的に被覆した後、前記の金網を
取り除くことにより、硬質皮膜が凸部。
After forming the protective film 13 in an intermittent, lattice, or mesh shape to prevent the hard coating 12 from adhering to the surface of the metal sliding material 1, a hard coating is applied to the sliding surface to which the protective film 13 is not attached. The hard coating 12 is coated with a coating 12, and the hard coating 12 is formed in a discontinuous manner. Next, the protective film 13 is selectively removed to form an uneven sliding surface in which the hard coating 12 forms convex portions and the portions where the hard coating 12 is not present form concave portions. As the above-mentioned hard coating, a hard chrome plating film, a thermally sprayed coating of hard metal such as ceramic, an electroless plating film, etc. can be applied, and as a protective film,
No paint, no plastic film, no 8! A quality membrane etc. can be applied. In addition, the protective film 13 can be easily removed, and the hard film 12 can be easily removed.
For some materials, high-temperature heat treatment or diffusion treatment is effective in improving the adhesion strength between the metal and the metal. Further, a wire mesh is used as the protective film 13 7, and after the wire mesh is wound around the sliding surface, fine particles of ceramic, tungsten, molybdenum, cemented carbide, etc. are sprayed onto the sliding surface while heating it to a high temperature. After coating these hard coatings intermittently on the sliding surface, the wire mesh is removed, and the hard coating forms convex portions.

硬質皮膜がない部分が凹部となる凹凸状の摺動面が形成
できる。
It is possible to form an uneven sliding surface with concave portions where there is no hard coating.

第7図に本発明の第5の発明の一実施例による表面処理
方法で処理した摺動体の断面構造を示す。
FIG. 7 shows a cross-sectional structure of a sliding body treated by a surface treatment method according to an embodiment of the fifth aspect of the present invention.

金属製の摺動面14を有する摺動材1の摺動面14をほ
ぼ最終的に機械加工した後、この摺動面14を表面から
適宜の手段により局部的かつ断続状に表面硬化すると、
第7図に示すように摺動面14上に硬化部15と非硬化
部すなわち除去部16とが混在して形成される。前記摺
動面14の表面を硬化する手段は、この表面に硬化成分
を拡散滲透させることであり、この方法としてはレーザ
ガス浸炭法、レーザガス窒化法、プラズマガス浸炭法、
プラズマガス窒化法、イオンビーム打込み法などが適用
できる。例えば、プラズマガス浸炭法について説明する
。50A乃至100A程度でかつ細く絞られたプラズマ
アークにより、プラズマアークを高速で動かしなから摺
動面14を局部的に急速加熱する。このときプラズマア
ーク中央に銅パイプで外部からメタン(CHa)ガスを
吹きつけると、メタンガスは超高速のプラズマアークに
より炭素イオンと水素イオンとに分解された後、活性化
された炭素イオンが摺動面14から金属中に拡散、滲透
することにより加熱部分の炭素濃度が増加する。一方、
プラズマアークは高速で動かされているため、加熱部分
は急速冷却する。
After almost final machining of the sliding surface 14 of the sliding material 1 having the metal sliding surface 14, this sliding surface 14 is locally and intermittently hardened from the surface by an appropriate means.
As shown in FIG. 7, a hardened portion 15 and a non-hardened portion, that is, a removed portion 16 are formed on the sliding surface 14 in a mixed manner. The means for hardening the surface of the sliding surface 14 is to diffuse and permeate the surface with a hardening component, and examples of this method include laser gas carburizing, laser gas nitriding, plasma gas carburizing,
Plasma gas nitriding method, ion beam implantation method, etc. can be applied. For example, a plasma gas carburizing method will be explained. The sliding surface 14 is heated locally and rapidly using a narrowly focused plasma arc of about 50A to 100A without moving the plasma arc at high speed. At this time, when methane (CHa) gas is blown into the center of the plasma arc from the outside through a copper pipe, the methane gas is decomposed into carbon ions and hydrogen ions by the ultra-high-speed plasma arc, and then the activated carbon ions slide. By diffusing and penetrating into the metal from the surface 14, the carbon concentration in the heated portion increases. on the other hand,
Because the plasma arc is moving at high speed, the heated part cools quickly.

このためプラズマアークで加熱された部分はマルテンサ
イト変態を生じて焼入れ硬化する。このプラズマガス浸
炭法によると、炭酸ガスを表面から拡散、浸透すると同
時に焼入れ硬化処理を実施することができる上に、処理
が短時間ですみ入熱量も少ないので、熱変形が少なく表
面形状もほとんど変化しない。
Therefore, the portion heated by the plasma arc undergoes martensitic transformation and is quenched and hardened. According to this plasma gas carburizing method, carbon dioxide gas can be diffused and permeated from the surface and quench hardening treatment can be performed at the same time.The treatment is short and the amount of heat input is small, so there is little thermal deformation and the surface shape is almost the same. It does not change.

上記のように摺動面14上に混在して形成された硬化部
15と除去部16とを、前述した各発明の実施例の場合
と同様にショツトブラスト処理することにより、凹凸状
の摺動面を得ることができる。
By subjecting the hardened portions 15 and removed portions 16, which are mixedly formed on the sliding surface 14 as described above, to shot blasting in the same manner as in the embodiments of each of the inventions described above, uneven sliding can be achieved. You can get a face.

上記第3.第4及び第5の発明の実施例においても、前
記第2の発明の実施例の場合と同様に、硬い凸部が摺動
面となり、軟かい凹部潤滑剤の補給部となって、同様の
効果を得ることができる。
3 above. In the embodiments of the fourth and fifth inventions, similarly to the embodiment of the second invention, the hard convex portions serve as sliding surfaces, and the soft concave portions serve as lubricant replenishment parts, so that similar effect can be obtained.

第8図に本発明に係る摺動材の他の実施例を示す。本実
施例による軸受部は軸5と軸受6とから構成されたラジ
アル軸受である。図において、円筒状の軸5の外周面に
はほぼ最終寸法に機械加工された後、前述した表面処理
方法のうちいずれかにより凹凸部が形成されている。そ
してこの凸部すなわち硬化部7は、軸5の軸方向に波形
状に形成されている。第9図は第8図に示す摺動材の摺
動面を展開して示したものである。
FIG. 8 shows another embodiment of the sliding material according to the present invention. The bearing section according to this embodiment is a radial bearing composed of a shaft 5 and a bearing 6. In the figure, the outer circumferential surface of a cylindrical shaft 5 is machined to approximately the final dimensions, and then uneven portions are formed by one of the surface treatment methods described above. The convex portion, that is, the hardened portion 7 is formed in a wave shape in the axial direction of the shaft 5. FIG. 9 is an expanded view of the sliding surface of the sliding material shown in FIG. 8.

本実施例によると、軸5の表面に形成された波形状の硬
化部7は、軸5が矢印C方向に回転することにより隣接
する硬化部7間に形成された波形状の溝部に潤滑剤17
を巻き込むとともに、−度巻き込んだ潤滑剤17を軸方
向から漏れないようにとじ込める。従って軸5は確実に
潤滑剤17を補給されながら回転するため、摺動性能が
向上する。
According to the present embodiment, the wavy hardened portions 7 formed on the surface of the shaft 5 apply lubricant to the wavy grooves formed between adjacent hardened portions 7 when the shaft 5 rotates in the direction of arrow C. 17
At the same time, the lubricant 17 that has been drawn in by - degree can be contained so as not to leak from the axial direction. Therefore, since the shaft 5 rotates while being reliably supplied with the lubricant 17, the sliding performance is improved.

なお前記表面処理方法の各実施例において、摺動面を局
部的に硬化した後非硬化部分のみを選択的に除去する手
段として、ショツトブラスト処理法を用いた場合につい
て説明したが、この手段はショツトブラスト処理法に限
定されるものではない。例えば、適当な比重に調整した
液体中に砥粒または金属粉を浮遊状態にした切削液を摺
動面に吹き付けて、軟かい部分を選択的に切削してもよ
い。または前記の切削液を容器に入れてこの切削液中に
被処理材を浸漬して旋回させるか、または被処理材を固
定して切削液を旋回させて切削を行なってもよい。ある
いは、砥粒または金属粉を気体または液体とともに吹き
つけて切削を行なってもよい。これらいずれの方法によ
っても、非硬化部分は硬化部分よりも削られやすいので
、最終的には非硬化部分が凹、硬化部分が凸の凹凸形状
を形成することができる。
In each of the embodiments of the surface treatment method described above, a case was described in which shot blasting was used as a means for selectively removing only the unhardened portion after locally hardening the sliding surface. The method is not limited to shot blasting. For example, soft parts may be selectively cut by spraying a cutting fluid containing abrasive grains or metal powder suspended in a liquid whose specific gravity has been adjusted to an appropriate density onto the sliding surface. Alternatively, cutting may be performed by placing the cutting fluid in a container and immersing the material to be processed in the cutting fluid and swirling the material, or by fixing the material to be processed and swirling the cutting fluid. Alternatively, cutting may be performed by spraying abrasive grains or metal powder together with gas or liquid. In any of these methods, since the unhardened portion is more easily scraped than the hardened portion, it is possible to finally form an uneven shape in which the unhardened portion is concave and the hardened portion is convex.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明に係る摺動材によ
れば、摺動材の摺動面の少なくとも一部に硬質の凸部と
軟質の凹部とからなる凹凸部を形成したので、摺動材の
耐摩耗性を向上することができる。特に潤滑材によって
潤滑される摩擦条件下では摩耗量が大幅に減少し、該摺
動材を用いた機械の寿命を伸ばし、保守を容易にする効
果がある。また本発明に係る摺動材の表面処理方法によ
れば、簡単で安価な表面処理装置により、表面処理に伴
なって発生する変形を最小限に抑え、後加工も殆んど必
要なく、容易でかつ安い処理費用で摺動体の表面処理を
行なうことができる。
As described above in detail, according to the sliding material according to the present invention, since the uneven portion consisting of the hard convex portion and the soft concave portion is formed on at least a portion of the sliding surface of the sliding material, The wear resistance of the sliding material can be improved. Particularly under frictional conditions where the sliding material is lubricated, the amount of wear is significantly reduced, which has the effect of extending the life of machines using the sliding material and facilitating maintenance. In addition, according to the surface treatment method for sliding materials according to the present invention, deformation caused by surface treatment can be minimized using a simple and inexpensive surface treatment device, and post-processing is hardly required and can be easily performed. The surface of the sliding body can be treated at a high cost and at a low processing cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第2の発明に係る摺動体の表面の処理
方法の一実施例によって形成された、第1の発明の一実
施例による摺動体の摺動面を示す横断面図、第2図は本
実施例による摺動体を用いた軸受を示す構造図5第3図
は第2図のA−A線断面図、第4図は第3図のB部拡大
詳細図、第5図、第6図及び第7図はそれぞれ本発明に
係る摺動体の表面処理方法の第2.第3及び第4の発明
の一実施例を説明するための摺動面の横断面図、第8図
は本発明に係る摺動体の他の実施例を用いた軸受を示す
構造図、第9図は第8図の摺動体の摺動面を示す展開図
である。 1・・・摺動材、2,9・・・凹部、3,8・・・凸部
、4゜7.10.15・・・硬化部、5・・・すべり軸
、6・・・すべり軸受、11・・・拡散防止膜、12・
・・硬質皮膜。 13・・・保護膜、14・・・摺動面、16・・・除去
部(非硬化部)、17・・・潤滑剤。 犯 の 5−・軸 卑4図 為 葛 7−−−石慄しス乙9P
FIG. 1 is a cross-sectional view showing a sliding surface of a sliding body according to an embodiment of the first invention, which is formed by an embodiment of the method for treating the surface of a sliding body according to the second invention; Fig. 2 is a structural diagram showing a bearing using a sliding body according to this embodiment. Fig. 3 is a sectional view taken along line A-A in Fig. 2, Fig. 4 is an enlarged detailed view of section B in Fig. 3, and Fig. 6 and 7 respectively show the second example of the surface treatment method for a sliding body according to the present invention. FIG. 8 is a cross-sectional view of a sliding surface for explaining one embodiment of the third and fourth inventions; FIG. 8 is a structural diagram showing a bearing using another embodiment of the sliding body according to the present invention; FIG. The figure is a developed view showing the sliding surface of the sliding body in FIG. 8. 1... Sliding material, 2, 9... Concave portion, 3, 8... Convex portion, 4゜7.10.15... Hardened portion, 5... Sliding shaft, 6... Sliding Bearing, 11... Diffusion prevention film, 12.
・Hard film. DESCRIPTION OF SYMBOLS 13... Protective film, 14... Sliding surface, 16... Removed part (unhardened part), 17... Lubricant. Criminal 5--Chikubei 4 Zumekatsu 7--Ishiki Suotsu 9P

Claims (1)

【特許請求の範囲】 1、鉄系合金からなる部材の摺動面の少なくとも一面に
、硬質の凸部と軟質の凹部とを形成し、前記凸部が水玉
状、格子状、網目状、うず巻状または断続状の形状であ
ることを特徴とする摺動材。 2、凹部に摺動性能を向上させる液体、粉体または固体
を保持し、凸部は摺動面であることを特徴とする請求項
1記載の摺動材。 3、凸部を摺動線上に断継的な形状で配列したことを特
徴とする請求項1又は2記載の摺動材。 4、円筒部材の摺動面に、凸部を前記円筒部材の軸方向
に蛇行状に形成したことを特徴とする請求項1、2又は
3記載の摺動材。 5、請求項1記載の摺動材の表面処理方法において、摺
動面を収束された高密度熱源により局部的に急速加熱し
焼入れ硬化する第1の工程と、前記摺動面の非硬化部の
みを選択的に除去する第1の工程とからなり、前記摺動
面に硬化された凸部と非硬化の凹部とを形成することを
特徴とする表面処理方法。 6、請求項1記載の摺動材の表面処理方法において、摺
動面を硬化する第1の工程と、該第1の工程による硬化
を防止する第2の工程と、該第2の工程と前記第1の工
程とを用いて前記摺動面に硬化部と非硬化部とを形成し
たのち、前記非硬化部を選択的に除去する第3の工程と
からなり、凸部の硬化部と凹部の非硬化部とを形成する
ことを特徴とする表面処理方法。 7、請求項1記載の摺動材の表面処理方法において、摺
動面に硬質物質を被覆させる第1の工程と、該第1の工
程による前記硬質物質の被覆を妨げる第2の工程とを用
いて前記摺動面に硬質皮膜部とを不均一に形成し、該硬
質皮膜部を凸部とするとともに非皮膜部を凹部とするこ
とを特徴とする表面処理方法。
[Scope of Claims] 1. A hard convex part and a soft concave part are formed on at least one sliding surface of a member made of an iron-based alloy, and the convex part has a polka dot shape, a lattice shape, a mesh shape, or a swirl shape. A sliding material characterized by having a coiled or interrupted shape. 2. The sliding material according to claim 1, wherein the concave portion holds a liquid, powder, or solid that improves sliding performance, and the convex portion is a sliding surface. 3. The sliding material according to claim 1 or 2, characterized in that the convex portions are arranged in an interrupted shape on the sliding line. 4. The sliding member according to claim 1, 2 or 3, wherein the sliding surface of the cylindrical member has a convex portion formed in a meandering shape in the axial direction of the cylindrical member. 5. The method for surface treatment of a sliding material according to claim 1, comprising: a first step of locally rapidly heating the sliding surface to harden it by quenching with a focused high-density heat source; and a non-hardened portion of the sliding surface. A surface treatment method comprising a first step of selectively removing only the sliding surface, and forming hardened convex portions and unhardened concave portions on the sliding surface. 6. The method for surface treatment of a sliding material according to claim 1, comprising: a first step of hardening the sliding surface; a second step of preventing hardening caused by the first step; and a second step of curing the sliding surface. a third step of forming a hardened portion and a non-hardened portion on the sliding surface using the first step, and then selectively removing the non-hardened portion; A surface treatment method characterized by forming a recessed portion and a non-hardened portion. 7. The method for surface treatment of sliding materials according to claim 1, comprising: a first step of coating the sliding surface with a hard substance; and a second step of preventing the coating of the hard substance by the first step. A surface treatment method characterized in that a hard coating is formed non-uniformly on the sliding surface using the above-described method, and the hard coating is made into a convex portion and the non-coated portion is made into a concave portion.
JP32585988A 1988-12-26 1988-12-26 Sliding material and surface treatment method thereof Pending JPH02173212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32585988A JPH02173212A (en) 1988-12-26 1988-12-26 Sliding material and surface treatment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32585988A JPH02173212A (en) 1988-12-26 1988-12-26 Sliding material and surface treatment method thereof

Publications (1)

Publication Number Publication Date
JPH02173212A true JPH02173212A (en) 1990-07-04

Family

ID=18181416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32585988A Pending JPH02173212A (en) 1988-12-26 1988-12-26 Sliding material and surface treatment method thereof

Country Status (1)

Country Link
JP (1) JPH02173212A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027949A1 (en) * 2004-09-03 2006-03-16 Taiho Kogyo Co., Ltd. Hemispherical shoe and method of manufacturing the same
WO2006027948A1 (en) * 2004-09-03 2006-03-16 Taiho Kogyo Co., Ltd. Sliding surface of sliding member
WO2006075520A1 (en) * 2005-01-17 2006-07-20 Taiho Kogyo Co., Ltd. Method of manufacturing sliding member
JP2007092707A (en) * 2005-09-30 2007-04-12 Kawasaki Precision Machinery Ltd Swash plate type piston pump and motor
EP1835175A1 (en) * 2004-12-28 2007-09-19 Taiho Kogyo Co., Ltd. Shoe
US7892656B2 (en) * 2004-11-11 2011-02-22 Taiho Kogyo Co., Ltd. Sliding device
CN102046962A (en) * 2008-05-30 2011-05-04 罗伯特·博世有限公司 Free-ejecting starter
WO2012014522A1 (en) * 2010-07-27 2012-02-02 大豊工業株式会社 Sliding member and method for producing same
US8118567B2 (en) 2006-12-15 2012-02-21 Kabushiki Kaisha Kawasaki Precision Machinery Swash plate type piston pump motor
CN103182683A (en) * 2011-12-30 2013-07-03 深圳富泰宏精密工业有限公司 Method for manufacturing pattern on metal housing, and manufactured metal housing
JP2016117935A (en) * 2014-12-22 2016-06-30 株式会社不二製作所 Surface treatment method for sliding member, and sliding member

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713610B2 (en) 2004-09-03 2010-05-11 Taiho Kogyo Co., Ltd. Sliding member
WO2006027948A1 (en) * 2004-09-03 2006-03-16 Taiho Kogyo Co., Ltd. Sliding surface of sliding member
WO2006027949A1 (en) * 2004-09-03 2006-03-16 Taiho Kogyo Co., Ltd. Hemispherical shoe and method of manufacturing the same
KR100838191B1 (en) * 2004-09-03 2008-06-16 다이호 고교 가부시키가이샤 Hemispherical shoe and method of manufacturing the same
KR100858098B1 (en) * 2004-09-03 2008-09-10 다이호 고교 가부시키가이샤 Sliding member
US7651273B2 (en) 2004-09-03 2010-01-26 Taiho Kogyo Co., Ltd. Semispherical shoe and manufacturing method therefor
US7892656B2 (en) * 2004-11-11 2011-02-22 Taiho Kogyo Co., Ltd. Sliding device
EP1835175A1 (en) * 2004-12-28 2007-09-19 Taiho Kogyo Co., Ltd. Shoe
EP1835175A4 (en) * 2004-12-28 2010-04-21 Taiho Kogyo Co Ltd Shoe
WO2006075520A1 (en) * 2005-01-17 2006-07-20 Taiho Kogyo Co., Ltd. Method of manufacturing sliding member
US7704337B2 (en) 2005-01-17 2010-04-27 Taiho Kogyo Co., Ltd. Method for making a slide member
JP2007092707A (en) * 2005-09-30 2007-04-12 Kawasaki Precision Machinery Ltd Swash plate type piston pump and motor
US8118567B2 (en) 2006-12-15 2012-02-21 Kabushiki Kaisha Kawasaki Precision Machinery Swash plate type piston pump motor
CN102046962A (en) * 2008-05-30 2011-05-04 罗伯特·博世有限公司 Free-ejecting starter
JP2011522148A (en) * 2008-05-30 2011-07-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Overhang type starter
WO2012014522A1 (en) * 2010-07-27 2012-02-02 大豊工業株式会社 Sliding member and method for producing same
JP2012026538A (en) * 2010-07-27 2012-02-09 Taiho Kogyo Co Ltd Sliding member, and method for producing same
US8770842B2 (en) 2010-07-27 2014-07-08 Taiho Kogyo Co., Ltd. Sliding member and manufacturing method thereof
CN103182683B (en) * 2011-12-30 2017-03-08 广州江瑞机电设备有限公司 The method of pattern-making and metal shell obtained by this method on metal shell
CN103182683A (en) * 2011-12-30 2013-07-03 深圳富泰宏精密工业有限公司 Method for manufacturing pattern on metal housing, and manufactured metal housing
US20130171473A1 (en) * 2011-12-30 2013-07-04 Fih (Hong Kong) Limited Method for making patterns on metal article and the resulting metal article
JP2016117935A (en) * 2014-12-22 2016-06-30 株式会社不二製作所 Surface treatment method for sliding member, and sliding member

Similar Documents

Publication Publication Date Title
CA2550621C (en) Method for carburizing steel components
JPH02173212A (en) Sliding material and surface treatment method thereof
CN105177274A (en) Laser hardening process
EP2628808A1 (en) Localized hardening of metallic surfaces
CN106086344A (en) A kind of metal material roller type method for making Nano surface
Rastkar et al. Surface modification and wear test of carbon steel by plasma electrolytic nitrocarburizing
JPH02285024A (en) Manufacturing roller bearing member from solid-hardened roller bearing steel
JP2926240B2 (en) Sliding material and surface treatment method
Khusainov et al. Local ion nitriding of martensitic structural steel in plasma of glow discharge with hollow cathode
Doyon et al. Induction hardening of crankshafts and camshafts
US9915335B2 (en) Method for treating a component such as a gearwheel
US20160002747A1 (en) Process for treating steel alloys for gears
US11231079B2 (en) Ferrous workpiece and method of manufacture
JP2001279421A (en) Method for producing sliding member
Sui et al. Hardness Difference Effect of Biomimetic Surface with Hard-Soft Structure on Oil-Lubrication Wear Resistance
JPH0313585A (en) Method for surface-hardening metal and method for surface-hardening nonmagnetic bearing parts
JPH0310686B2 (en)
WO2021002179A1 (en) Raceway ring for rolling bearing
RU2068505C1 (en) Method of manufacturing slide bearing
Rudnev Recent inventions and innovations in induction hardening of gears and gear-like components
GB2160227A (en) Heat treatment process
Ricciardi et al. Surface Treatments Of Automobile Parts By RTM
Kapustynskyi et al. Effects of laser cladding and treatment methods on wear resistance in heavy-loaded units
Aggoune et al. Optimization and control of gaseous nitriding of a 33CrMoV12-9 steel
Kovalenko et al. The role of dimensional factors and absorption efficiency in laser surface hardening