JP2016092958A - 電源回路装置 - Google Patents

電源回路装置 Download PDF

Info

Publication number
JP2016092958A
JP2016092958A JP2014224473A JP2014224473A JP2016092958A JP 2016092958 A JP2016092958 A JP 2016092958A JP 2014224473 A JP2014224473 A JP 2014224473A JP 2014224473 A JP2014224473 A JP 2014224473A JP 2016092958 A JP2016092958 A JP 2016092958A
Authority
JP
Japan
Prior art keywords
voltage
battery
circuit
power supply
backup capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014224473A
Other languages
English (en)
Inventor
俊 坂井
Takashi Sakai
俊 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014224473A priority Critical patent/JP2016092958A/ja
Publication of JP2016092958A publication Critical patent/JP2016092958A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】実装面積の低減および省コスト化を実現しつつ、バックアップに必要な電荷量を確保することのできる電源回路装置を提供する。【解決手段】この電源回路装置は、バッテリからの入力電圧を所定の出力電圧に変換する第1昇降圧回路と、バッテリとバックアップコンデンサとを仲介する定電圧回路と、第1昇降圧回路とバックアップコンデンサとの間に介在して互いの接続をオンオフするスイッチと、入力電圧を検出する電圧検出部と、を備えている。定電圧回路は、バッテリからの入力電圧を、バックアップコンデンサの耐圧未満の定電圧に変換してバックアップコンデンサに印加するように構成される。電圧検出部は、バッテリの電圧が所定の閾値以下に低下した場合において、定電圧回路の動作を停止するとともに、スイッチをオンしてバックアップコンデンサに蓄積された電荷を第1昇降圧回路に供給する。【選択図】図1

Description

本発明は、バッテリからの入力電圧に対して要求される出力電圧を生成するための電源回路装置に関する。
近年、アイドリングストップ車の需要が増加傾向にある。これに伴って、バッテリの電圧低下(クランキング)や瞬断に対するフェールセーフ要請がある。
例えば、車両に搭載される電源回路装置には、バッテリによる入力電圧12Vに対して、出力電圧を5Vに降圧するよう動作するとともに、クランキングや瞬断に対して昇圧により出力電圧を一定に保持するように動作するものがある。特許文献1に記載の電源装置は昇降圧チョッパ回路を有し、高電圧バッテリから供給される電圧を降圧して出力するとともに、出力電圧の低下時には、補機バッテリから供給される電圧を昇圧して出力するように構成されている。
また、特許文献2に記載の昇圧回路は乗員保護用のエアバッグの電源として用いられるものである。この昇圧回路はバックアップコンデンサを有しており、バッテリからDC−DCコンバータへの電力の供給が遮断された場合などに、バックアップコンデンサから点火装置に電力を供給するようになっている。
近年では、バッテリから入力される電圧を昇降圧DC−DCコンバータを介して降圧する電源回路において、昇降圧DC−DCコンバータの入力側にバックアップコンデンサを設ける電源回路が知られている。バックアップコンデンサは、クランキング時や瞬断時において、予め蓄積された電荷によって昇降圧DC−DCコンバータに電圧を供給する。これにより、電源回路は、クランキング時や瞬断時においても、負荷への電力の供給を維持することができる。
特開2010−119257号公報 特開2005−229713号公報
バックアップコンデンサは、バッテリのクランキングや瞬断の継続時間が長くなった場合のバックアップに対応するため、蓄積される電荷量は大きいほど良い。
一方、バッテリからの入力電圧にはロードダンプパルスなどのサージが発生する場合があり、バックアップコンデンサには、サージに対応する耐圧マージンを確保しておかなければならない。
以上のように、バックアップコンデンサとしては、蓄積電荷量が大きく、且つ、サージに対しても耐圧が確保可能なものが好ましい。
ところで、上記のように、バックアップコンデンサの耐圧の最大値はロードダンプパルスなどの大きな電圧に対応するように設定される。このため、入力電圧の標準値は、耐圧の最大値に比べて十分に小さいことが殆どである。換言すれば、電荷の蓄積という観点では、バックアップコンデンサの性能を十分に活かすことができない。なお、従来構成では、要求される電荷量に合わせて、バックアップコンデンサの数を増加させる必要があり、実装面積やコストの増大の虞がある。
本発明は、上記問題点を鑑みてなされたものであり、実装面積の低減および省コスト化を実現しつつ、バックアップに必要な電荷量を確保することのできる電源回路装置を提供することを目的とする。
ここに開示される発明は、上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。
上記目的を達成するために、本発明は、バッテリ(20)と負荷との間に設けられ、負荷に定電圧を供給する電源回路装置であって、バッテリからの入力電圧(Vin)を所定の出力電圧(Vout)に変換して安定化させる第1昇降圧回路(11)と、バッテリに対して、第1昇降圧回路に並列に接続され、バッテリとバックアップコンデンサ(C1,C2)とを仲介する定電圧回路(12)と、バッテリに対して、第1昇降圧回路に並列に接続され、第1昇降圧回路の入力端子とバックアップコンデンサとの間に介在して互いの接続をオンオフするスイッチ(13)と、入力電圧を検出する電圧検出部(14)と、を備え、定電圧回路は、バッテリからの入力電圧を、バックアップコンデンサの耐圧(Vw)未満の定電圧に変換してバックアップコンデンサに印加するように構成され、電圧検出部は、バッテリの電圧が所定の閾値以下に低下した場合において、定電圧回路とバックアップコンデンサとの接続を切り離すとともに、スイッチをオンしてバックアップコンデンサに蓄積された電荷を第1昇降圧回路の入力端子に供給することを特徴としている。
これによれば、定電圧回路は、バッテリの電圧が変動しても、一定の電圧をバックアップコンデンサに印加する。このため、定電圧回路の出力電圧をバックアップコンデンサの耐圧(Vw)と略同一に設定することによって、バックアップコンデンサの性能を十分に発揮させることができる。
本発明によれば、バッテリの電圧が所定の閾値以下に低下した場合、例えば第1昇降圧回路で昇圧しても規定の出力電圧に達しない程度にバッテリの電圧が低下した場合において、第1昇降圧回路への電荷の供給元をバッテリからバックアップコンデンサに切り替えるように構成されている。
例えば、定電圧回路の出力電圧をバッテリの出力電圧の標準値より大きく設定すれば、従来の構成に較べて多くの電荷を蓄積することができる。換言すれば、従来の構成に較べて、バックアップコンデンサの個数を減らすことができる。
一方、定電圧回路の出力電圧をバッテリの出力電圧の標準値より小さく設定してもよい。バックアップコンデンサに印加される電圧は定電圧回路により一定に制御されているため、ロードダンプパルスに対応する必要がない。すなわち、バックアップコンデンサの耐圧を従来構成よりも小さくすることができる。よって、バックアップコンデンサとして体格の小さなものを採用することができる。
上記したように、本発明を採用すると、バックアップコンデンサの数を減らす、あるいはバックアップコンデンサの体格を小さくすることができるから、実装面積の低減および省コスト化を実現しつつ、バックアップに必要な電荷量を確保することができる。
第1実施形態に係る電源回路装置の概略構成を示す回路図である。 昇降圧回路の具体的な構成を示す回路図である。 電源回路装置の動作を示すタイミングチャートである。
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下の各図相互において、互いに同一もしくは均等である部分に、同一符号を付与する。
(第1実施形態)
最初に、図1および図2を参照して、本実施形態に係る電源回路装置の概略構成について説明する。
この電源回路装置は、例えば車両に搭載されるボデーコントロールECUの電源回路に適用されるものである。図1に示すように、電源回路装置10は、第1昇降圧回路11と、第2昇降圧回路12と、スイッチ13と、電圧検出部14と、を備えている。
第1昇降圧回路11は、整流用のダイオードDiを介してバッテリ20から入力電圧Vinが入力され、出力電圧Voutを出力するDC−DCコンバータである。第1昇降圧回路11は、一般的に知られた昇降圧DC−DCコンバータであり、例えば図2に示すような4スイッチ方式の昇降圧DC−DCコンバータを採用することができる。
4スイッチ方式の昇降圧DC−DCコンバータは、図2に示すように、4つのスイッチSW1〜SW4と、2つのコンデンサC3,C4と、1つのインダクタLとを有している。なお、図1および図2には、スイッチSW1〜SW4を制御する制御部を図示していない。
スイッチSW1、インダクタL、スイッチSW4は、この順で入力端子から出力端子に向かって直列接続されている。そして、コンデンサC3は入力端子とスイッチSW1との間の接点と、基準電位(グランド電位)と、の間に設けられている。スイッチSW2はスイッチSW1とインダクタLとの間の接点と、基準電位と、の間に設けられている。スイッチSW3はインダクタLとスイッチSW4との間の接点と、基準電位と、の間に設けられている。コンデンサC4はスイッチSW4と出力端子との間の接点と、基準電位と、の間に設けられている。
入力電圧に対して出力電圧が低くなる降圧モードは、スイッチSW3をオフとし、スイッチSW4をオンにした状態とする。そして、スイッチSW1とスイッチSW2とを交互にオンオフしてPWM動作する。この場合、コンデンサC3,C4はよく知られた降圧レギュレータの容量成分として作用し、インダクタLはインダクタンス成分として作用する。
一方、入力電圧に対して出力電圧が高くなる昇圧モードは、スイッチSW2をオフとし、スイッチSW1をオンにした状態とする。そして、スイッチSW3とスイッチSW4とを交互にオンオフしてPWM動作する。この場合、コンデンサC3,C4はよく知られた昇圧レギュレータの容量成分として作用し、インダクタLはインダクタンス成分として作用する。
例えばVin>Voutの場合、第1昇降圧回路11は、バッテリ20のクランキングや瞬断が発生していない通常駆動時には、入力電圧Vinを規定の出力電圧Voutに降圧する降圧モードで動作する。一方、クランキングにより入力電圧Vinが低下すると、入力電圧Vinを出力電圧Voutに昇圧する昇圧モードで動作する。
第2昇降圧回路12は、特許請求の範囲における定電圧回路に相当し、バッテリ20に対して、第1昇降圧回路11に並列に接続されている。第2昇降圧回路12も一般的に知られた昇降圧DC−DCコンバータであり、例えば、第1昇降圧回路11と同様に、4スイッチ方式の昇降圧DC−DCコンバータを採用することができる。ただし、コンデンサC3,C4の静電容量やインダクタLのインダクタンスは適宜変更されるものであって、必ずしも第1昇降圧回路11と同一ではなくて良い。
第2昇降圧回路12は、その入力端子にバッテリ20が接続されている。そして、出力端子には、バックアップコンデンサC1,C2が互いに並列に接続されている。第2昇降圧回路12は、バッテリ20からの入力電圧Vinを、昇圧あるいは降圧してバックアップコンデンサC1,C2に印加するようになっている。なお、図1ではバックアップコンデンサは、一例として、符号C1に該当するものと符号C2に該当するものの2つを図示したが、2つに限定されるものではない。バックアップコンデンサC1,C2はバッテリ20のクランキング時や瞬断時にバックアップに用いられる電源であるから、想定される瞬断の継続時間において出力電圧Voutの著しい低下が生じない程度の電荷を蓄積できるように数が決定される。
以降、バッテリ20が出力する電圧Vbatについて、標準値をVtypと称し、ロードダンプパルス電圧を含めた最大値をVmaxと称する。また、バックアップコンデンサC1,C2の耐圧Vwと称する。なお、回路等にノイズやその他異常がない場合は、第1昇降圧回路11への入力電圧Vinはバッテリ20の電圧の標準値Vtypに略等しく、Vin≒Vtypである。一方、ロードダンプパルス等が発生するとVin≒Vmaxとなり、クランキングや瞬断時が発生するとVin≒0となる。
バックアップコンデンサC1,C2は、バッテリ20のクランキング時や瞬断時の緊急用電源となるから、バックアップコンデンサC1,C2への電荷の蓄積によって生じる電圧Vcは、第1昇降圧回路11の出力電圧Vout以上に設定されている。なお、本実施形態における電圧Vcは、バッテリ20の電圧の標準値Vtyp以上に設定されている。すなわち、Vtyp≦Vc<Vwの関係を満たすように選択されている。第2昇降圧回路12は、入力電圧Vinを一定の電圧Vcに変換する定電圧回路として作用する。具体的には、回路等にノイズやその他異常がない通常駆動時は、入力電圧Vin(≒Vtyp)を電圧Vcに昇圧する。一方、ロードダンプ発生時などは、Vin(≒Vmax)を電圧Vcに降圧する。
スイッチ13は、バッテリ20に対して、第1昇降圧回路11に並列に接続され、第1昇降圧回路11の入力端子とバックアップコンデンサC1,C2との間に介在している。スイッチ13は、後述の電圧検出部14からの信号に基づいてオンオフが切り替わるようになっている。通常駆動時においてスイッチ13はオフであるが、バッテリ20の電圧が所定の閾値以下に低下した場合にオンされて、バックアップコンデンサC1,C2に蓄積された電荷が第1昇降圧回路11に供給されるようになっている。
電圧検出部14は、バッテリ20から第1昇降圧回路11へ入力される入力電圧Vinが所定の閾値以下に低下したことを検出して第2昇降圧回路12とスイッチ13とを制御する。本実施形態における電圧検出部14は、コンパレータ14aと参照電源14bとを有している。コンパレータ14aには、入力電圧Vinを抵抗器R1および抵抗器R2により抵抗分割した電圧が入力され、その電圧を参照電源14bの電位と比較する。そして、電圧検出部14は、抵抗分割した電圧が参照電源14bの電位以下の場合に、第2昇降圧回路12の動作を停止してバックアップコンデンサC1,C2とバッテリ20との接続を切り離す。さらに、電圧検出部14はスイッチ13をオンするようになっている。特許請求の範囲における所定の閾値は、本実施形態においては参照電源14bの電位により規定される。
なお、図1に示すように、バッテリ20に対して電源回路装置10と並列に平滑コンデンサC5を設けることが好ましい。これにより、電源回路装置10、ひいては、第1昇降圧回路11および第2昇降圧回路12、への入力電圧Vinを平滑化することができる。
次に、図3を参照して、本実施形態に係る電源回路装置10の動作について時系列的に説明する。なお、図3では、バッテリ20の電圧をVbat、第1昇降圧回路11に入力される直前の電圧を入力電圧Vinと表記している。また、バックアップコンデンサC1,C2の電荷量については、正極と負極との間の端子間電位として表現している。
一例として、バッテリ20により出力される電圧について、Vtyp≒12V、Vmax=35Vとする。また、負荷を駆動するための電圧をVout=5Vとする。さらに、バックアップコンデンサC1,C2は、その耐圧をVw=35Vとし、通常駆動時に印加される電圧をVc=30Vとする。
図3に示すように、時刻t0において、電源回路装置10がバッテリ20に接続されたとする。入力電圧Vinは0Vから上昇して12Vに達する。このときスイッチ13はオフされている。Vinが12Vに到達した後は、第2昇降圧回路12にはVinの12Vが入力されており、Vcとして規定された30Vが出力される。これにより、バックアップコンデンサC1,C2には所定の時定数をもって電荷が蓄積され、端子間の電圧がVc、すなわち30Vに到達する。出力電圧Voutは、Vinの上昇に伴って上昇して、第1昇降圧回路11により規定される5Vに達する。
時刻t1において、バッテリ20に瞬断が発生したと仮定する。バッテリ20からの出力は0Vまで低下する。これに伴って、Vinが低下を開始する。Voutは第1昇降圧回路11の作用によって5Vを維持する。時刻t1の段階では、スイッチ13はオフであり、第2昇降圧回路12も動作を継続している。
時刻t2において、入力電圧Vbatが閾値以下になると、電圧検出部14は、第2昇降圧回路12の動作を停止してバッテリ20とバックアップコンデンサC1,C2との間の接続を切断する。そして、電圧検出部14は、スイッチ13をオフからオンに遷移させる。これにより、時刻t2以前の期間においてバックアップコンデンサC1,C2に蓄積された電荷が第1昇降圧回路11に供給される。第1昇降圧回路11に入力される入力電圧Vinは30Vまで上昇した後に、放電の影響によって徐々に低下するような挙動を示す。出力電圧Voutは、バックアップコンデンサC1,C2からの電荷の供給を受けて5Vを維持する。
時刻t3においてバッテリ20の瞬断が終了したと仮定する。上記したように、時刻t2から時刻t3にかけてVinは徐々に低下する。一方、スイッチ13はオンの状態であるから、第1昇降圧回路11にはバックアップコンデンサC1,C2から電荷が供給されており、Voutは略5Vを維持している。時刻t3において、電源回路装置10が再度バッテリ20に接続された状態となってVbatは上昇を開始する。
時刻t4において、Vbatが閾値を上回ると、電圧検出部14はスイッチ13をオンからオフに遷移させ、さらに、第2昇降圧回路12の動作を再開させる。これにより、Voutは、バッテリ20からの電荷供給を受けつつ第1昇降圧回路11の作用により5Vを維持する。また、バックアップコンデンサC1,C2は、第2昇降圧回路12を介してバッテリ20に接続されるので、バックアップコンデンサC1,C2への充電が再開される。
以上、バッテリ20の瞬断を例に挙げて説明したが、本実施形態における電源回路装置10は、クランキング時でも同様の動作を行う。
次に、本実施形態に係る電源回路装置10の作用効果について説明する。
ところで、従来構成におけるバックアップコンデンサは、本実施形態における第2昇降圧回路12を介することなく、バッテリ20から出力される電圧の標準値Vtypが印加されることによって電荷の蓄積が行われていた。なお、バックアップコンデンサの耐圧Vwは、ロードダンプパルスに対応しなければならないからVw≒Vmaxとする必要がある。上記例では、バックアップコンデンサの耐圧Vwは35Vであるものの、電荷の蓄積のためにこのバックアップコンデンサに印加される電圧VcはVc=Vtyp=12Vである。
一方、本実施形態に係る電源回路装置10では、バッテリ20からバックアップコンデンサC1,C2に供給される電圧が第2昇降圧回路12により昇圧されている。上記例では、Vc=30Vである。このため、従来構成と本実施形態とでバックアップコンデンサの静電容量が同一であれば、バックアップコンデンサに蓄積する電荷の量を、略2倍(正確には30/12≒2.5倍)にすることができる。換言すれば、バックアップコンデンサ全体として蓄積される電荷の量を従来構成と同等とするために必要なバックアップコンデンサの素子の数を略1/2にすることができる。
このように、本実施形態に係る電源回路装置10を採用すれば、実装面積の低減および省コスト化を実現しつつ、バックアップに必要な電荷量を確保することができる。
(その他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
上記した実施形態では、定電圧回路として、入力電圧に対して出力電圧の昇圧および降圧のいずれもが可能な第2昇降圧回路12を用いる例を示した。しかしながら、上記した実施形態のように、耐圧Vw(=35V)がバッテリ20の電圧の最大値Vmax(=35V)以上である場合には、万一、バックアップコンデンサC1,C2にVmaxが印加された場合でも、バックアップコンデンサC1,C2の故障は生じにくい。このような条件であれば、定電圧回路として降圧モードを有さない昇圧回路を採用することもできる。ただし、耐圧Vwの大きなコンデンサはコスト面で不利となる場合があるため、Vtyp≦Vc<Vwを満たしつつも、耐圧Vwの小さいものを採用すると良い。
また、上記した実施形態では、バックアップコンデンサC1,C2に印加する電圧Vcを、バッテリ20の電圧の標準値Vtypより大きく設定する例を示したが、Vcは、要求されるVout以上の電圧に設定されてさえいれば良い。すなわち、必ずしもVtyp≦Vcを満足している必要はない。第1実施形態に示した例であれば、Vc≧5Vに設定されていれば良い。例えば、Vc=6Vに設定してもよい。このような例では、バッテリ20においてロードダンプパルスが発生したとしても、第2昇降圧回路12によってVc=6Vまで降圧される。このため、採用すべきバックアップコンデンサC1,C2の耐圧VwはVmax(=35V)を想定しなくてもよく、Vc(=6V)程度に抑制できる。このように、バックアップコンデンサC1,C2の耐圧Vwを、従来の構成では35Vが必要だったのに対し、上記例を採用すれば6Vに抑制することができるから、バックアップコンデンサC1,C2の素子サイズとして、従来に較べて小さいものを採用することができる。
また、スイッチ13や、例示した4スイッチ方式の昇降圧DC−DCコンバータに包含されるスイッチSW1〜SW4は、消費電力の観点からMOSFETなどの半導体スイッチング素子を用いることが好ましいが、機械的なリレーなどを採用することもできる。
また、上記した実施形態では、電圧検出部14について、コンパレータ14aを利用して入力電圧Vinと閾値とを比較する構成について示したが、これに限定されるものではない。電圧検出部14は、入力電圧Vinを検出可能であり、Vinが所定の閾値以下になった場合に、定電圧回路(第1実施形態では第2昇降圧回路12に相当)の動作停止と、スイッチ13のオフからオンへの遷移と、を制御可能な構成となっていれば良い。
また、電源回路装置10は、第1昇降圧回路11、定電圧回路、スイッチ13、および、電圧検出部14が、それぞれ別体の素子を絶縁基板上などに実装するように構成しても良いし、これらを構成する素子全体を一つの素子としてパッケージ化された状態としても良い。電源回路装置10を一つの素子としてパッケージ化された構成とすれば、それぞれ別体として実装される場合に較べて、実装を容易にすることができる。
10・・・電源回路装置,11・・・第1昇降圧回路,12・・・定電圧回路(第2昇降圧回路),13・・・スイッチ,14・・・電圧検出部,20・・・バッテリ,C1・・・バックアップコンデンサ,C2・・・バックアップコンデンサ

Claims (4)

  1. バッテリ(20)と負荷との間に設けられ、前記負荷に定電圧を供給する電源回路装置であって、
    前記バッテリからの入力電圧(Vin)を所定の出力電圧(Vout)に変換して安定化させる第1昇降圧回路(11)と、
    前記バッテリに対して、前記第1昇降圧回路に並列に接続され、前記バッテリとバックアップコンデンサ(C1,C2)とを仲介する定電圧回路(12)と、
    前記バッテリに対して、前記第1昇降圧回路に並列に接続され、前記第1昇降圧回路の入力端子と前記バックアップコンデンサとの間に介在して互いの接続をオンオフするスイッチ(13)と、
    前記入力電圧を検出する電圧検出部(14)と、を備え、
    前記定電圧回路は、前記バッテリからの入力電圧を、前記バックアップコンデンサの耐圧(Vw)未満の定電圧に変換して前記バックアップコンデンサに印加するように構成され、
    前記電圧検出部は、前記バッテリの電圧が所定の閾値以下に低下した場合において、前記定電圧回路と前記バックアップコンデンサとの接続を切り離すとともに、前記スイッチをオンして前記バックアップコンデンサに蓄積された電荷を前記第1昇降圧回路の入力端子に供給することを特徴とする電源回路装置。
  2. 前記定電圧回路は、前記バッテリからの入力電圧を、前記バッテリが出力する電圧の標準値(Vtyp)以上の定電圧に変換することを特徴とする請求項1に記載の電源回路装置。
  3. 前記定電圧回路は、昇降圧いずれも可能な第2昇降圧回路であることを特徴とする請求項1または請求項2に記載の電源回路装置。
  4. 少なくとも、前記第1昇降圧回路、前記定電圧回路、前記スイッチおよび前記電圧検出部が、一つの素子としてパッケージ化されていることを特徴とする請求項1〜3のいずれか1項に記載の電源回路装置。
JP2014224473A 2014-11-04 2014-11-04 電源回路装置 Pending JP2016092958A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014224473A JP2016092958A (ja) 2014-11-04 2014-11-04 電源回路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014224473A JP2016092958A (ja) 2014-11-04 2014-11-04 電源回路装置

Publications (1)

Publication Number Publication Date
JP2016092958A true JP2016092958A (ja) 2016-05-23

Family

ID=56018940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014224473A Pending JP2016092958A (ja) 2014-11-04 2014-11-04 電源回路装置

Country Status (1)

Country Link
JP (1) JP2016092958A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180028270A (ko) * 2016-09-08 2018-03-16 엘지이노텍 주식회사 로드덤프 보호 회로
WO2018055935A1 (ja) * 2016-09-21 2018-03-29 日立オートモティブシステムズ株式会社 負荷駆動装置
CN110504728A (zh) * 2019-08-28 2019-11-26 深圳市圭石南方科技发展有限公司 一种电池充电***、方法、装置、计算机设备和存储介质
JP2021005924A (ja) * 2019-06-25 2021-01-14 ローム株式会社 電源回路、電源電圧の供給方法、電源遮断保護コントローラ、データ記憶装置
WO2022144456A1 (en) * 2021-01-04 2022-07-07 Robert Bosch Gmbh Capacitor charging circuit, airbag controller and airbag system
WO2022242037A1 (zh) * 2021-05-17 2022-11-24 北京市商汤科技开发有限公司 供电电路、供电***及智能门锁
WO2023277002A1 (ja) * 2021-06-30 2023-01-05 ミネベアミツミ株式会社 電源装置及び電動装置
WO2023120501A1 (ja) * 2021-12-23 2023-06-29 ミネベアミツミ株式会社 車両用電源装置及びドアラッチ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129725U (ja) * 1978-03-01 1979-09-08
JP2007244109A (ja) * 2006-03-09 2007-09-20 Toshiba Corp 定電圧回路
JP2009225530A (ja) * 2008-03-14 2009-10-01 Toyota Motor Corp 車両用電源装置及びこれに用いる制御装置
JP2012080723A (ja) * 2010-10-05 2012-04-19 Auto Network Gijutsu Kenkyusho:Kk 車両用電源装置
JP2014160377A (ja) * 2013-02-20 2014-09-04 Panasonic Industrial Devices Sunx Co Ltd プログラマブルコントローラ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129725U (ja) * 1978-03-01 1979-09-08
JP2007244109A (ja) * 2006-03-09 2007-09-20 Toshiba Corp 定電圧回路
JP2009225530A (ja) * 2008-03-14 2009-10-01 Toyota Motor Corp 車両用電源装置及びこれに用いる制御装置
JP2012080723A (ja) * 2010-10-05 2012-04-19 Auto Network Gijutsu Kenkyusho:Kk 車両用電源装置
JP2014160377A (ja) * 2013-02-20 2014-09-04 Panasonic Industrial Devices Sunx Co Ltd プログラマブルコントローラ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180028270A (ko) * 2016-09-08 2018-03-16 엘지이노텍 주식회사 로드덤프 보호 회로
KR102620430B1 (ko) 2016-09-08 2024-01-03 엘지이노텍 주식회사 로드덤프 보호 회로
WO2018055935A1 (ja) * 2016-09-21 2018-03-29 日立オートモティブシステムズ株式会社 負荷駆動装置
JP2018050403A (ja) * 2016-09-21 2018-03-29 日立オートモティブシステムズ株式会社 負荷駆動装置
JP2021005924A (ja) * 2019-06-25 2021-01-14 ローム株式会社 電源回路、電源電圧の供給方法、電源遮断保護コントローラ、データ記憶装置
CN110504728A (zh) * 2019-08-28 2019-11-26 深圳市圭石南方科技发展有限公司 一种电池充电***、方法、装置、计算机设备和存储介质
WO2022144456A1 (en) * 2021-01-04 2022-07-07 Robert Bosch Gmbh Capacitor charging circuit, airbag controller and airbag system
WO2022242037A1 (zh) * 2021-05-17 2022-11-24 北京市商汤科技开发有限公司 供电电路、供电***及智能门锁
WO2023277002A1 (ja) * 2021-06-30 2023-01-05 ミネベアミツミ株式会社 電源装置及び電動装置
WO2023120501A1 (ja) * 2021-12-23 2023-06-29 ミネベアミツミ株式会社 車両用電源装置及びドアラッチ装置

Similar Documents

Publication Publication Date Title
JP2016092958A (ja) 電源回路装置
US9728986B2 (en) Inrush current limiting circuit
JP4769694B2 (ja) 電圧出力回路,集積回路,および電子機器
TWI748000B (zh) 電源裝置
US9415732B2 (en) Vehicle power unit
JP5642224B2 (ja) 車両用電源装置
US9762116B2 (en) Voltage conversion apparatus
JP5157603B2 (ja) 昇圧型dc−dcコンバータおよび電源駆動用半導体集積回路
JP2010022077A (ja) 電源装置
CN112218788A (zh) 车载用的电源控制装置和车载用电源***
JP5561610B2 (ja) 昇圧装置
JP6635298B2 (ja) 充放電装置及び電源装置
JP2018191413A (ja) 昇降圧コンバータおよび電源システム
WO2019225397A1 (ja) 車載用の電源装置
JP4872554B2 (ja) 電源装置
JP7276064B2 (ja) Dcdcコンバータ
JP5105098B2 (ja) 電源瞬断対策回路、スイッチング電源装置、及び、制御方法
JP6375977B2 (ja) 電源装置
JP2009296747A (ja) 電源装置
JP6654535B2 (ja) 負荷駆動装置
JP6908002B2 (ja) 車載用電源装置
JP2010220445A (ja) 車両用電源制御装置
JP7340775B2 (ja) 車載電源システム
JP2008167509A (ja) 電源装置
JP2017093242A (ja) Dc/dcコンバータ及び電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904