JP2016081158A - 温度制御システム及び温度制御方法。 - Google Patents

温度制御システム及び温度制御方法。 Download PDF

Info

Publication number
JP2016081158A
JP2016081158A JP2014209699A JP2014209699A JP2016081158A JP 2016081158 A JP2016081158 A JP 2016081158A JP 2014209699 A JP2014209699 A JP 2014209699A JP 2014209699 A JP2014209699 A JP 2014209699A JP 2016081158 A JP2016081158 A JP 2016081158A
Authority
JP
Japan
Prior art keywords
heat exchange
exchange medium
valve
temperature
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014209699A
Other languages
English (en)
Other versions
JP5970040B2 (ja
Inventor
勤 廣木
Tsutomu Hiroki
勤 廣木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2014209699A priority Critical patent/JP5970040B2/ja
Priority to KR1020150140559A priority patent/KR102548633B1/ko
Priority to US14/879,438 priority patent/US10312062B2/en
Publication of JP2016081158A publication Critical patent/JP2016081158A/ja
Application granted granted Critical
Publication of JP5970040B2 publication Critical patent/JP5970040B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)
  • Control Of Temperature (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】簡易な構成でステージの温度を制御する。
【解決手段】熱交換媒体を流通させる熱交換媒体流路がその内部に形成されたステージSTと、第1のバルブと、第2のバルブと、第1のバルブを介して熱交換媒体流路に接続される第1の熱交換媒体供給装置100aと、第2のバルブを介して熱交換媒体流路に接続される第2の熱交換媒体供給装置100bと、第1の熱交換媒体及び第2の熱交換媒体が熱交換媒体流路の一端に交互に供給されるように第1のバルブ及び第2のバルブを制御する制御装置Cntと、を備える。制御装置は、ステージの温度を目標温度にするために必要な熱量を取得する熱量取得部と、第1の熱交換媒体及び第2の熱交換媒体の供給時間をそれぞれ算出する供給時間算出部と、当該供給時間で、第1の熱交換媒体及び第2の熱交換媒体が熱交換媒体流路の一端に交互に供給されるように、第1のバルブ及び第2のバルブを制御するバルブ制御部とを含む。
【選択図】図1

Description

本発明の実施形態は、温度制御システム及び温度制御方法に関する。
電子デバイスの製造においては、被処理体に対してプラズマエッチングやプラズマCVDといったプラズマ処理が施される。このようなプラズマ処理を行うためのプラズマ処理装置としては、例えば特許文献1に記載の装置が知られている。
特許文献1に記載の装置は、処理容器と、処理容器内で被処理体を支持するステージと、このステージの温度を制御する温度制御システムとを備えている。このステージの内部には、当該ステージの周方向に沿って形成された調温部が設けられている。温度制御システムは、バイパス流路、低温流路及び高温流路を有している。バイパス流路は、温調部の入口及び出口に接続され、当該入口と出口との間で流体を循環させる。低温流路は、バイパス流路に接続して低温温調ユニットからの低温流体をバイパス流路に供給する。高温流路は、バイパス流路に接続して高温温調ユニットからの高温流体をバイパス流路に供給する。バイパス流路、低温流路、及び高温流路には、互いに弁開度が連動して変化するバルブがそれぞれ接続されている。この温度制御システムは、これらのバルブの弁開度をそれぞれ制御することにより、調温部に供給される流体流量を一定にしつつ調温部に供給される流体の温度を制御している。
また、特許文献2には、反応器内の温度を目標温度に制御する装置が記載されている。この装置は、循環配管、温水供給配管及び冷水供給配管を有している。循環配管は、反応器の冷却ジャケットに供給される水を循環させる。温水供給配管は、その内部に温水を循環させる。冷水供給配管は、その内部に冷水を循環させる。温水供給配管及び冷水供給配管は、開度を調整可能なコントロール弁を介して冷却水循環配管に接続されている。この装置では、制御装置が反応器の内部温度を一定に制御するための熱交換量を算出し、コントロール弁の開度を調整することよって算出された熱交換量を達成できるような混合比で循環配管内の水と、温水供給配管内の温水、或いは、冷水循環配管内の冷水とを混合する。そして、混合した水を一定の流量で反応器に供給することによって反応器内の温度が目標温度になるように制御している。
特開2014−21828号公報 特開平10−296075号公報
特許文献1及び2では、異なる温度の熱交換媒体を混合することで目標温度に設定された熱交換媒体を温度制御対象物に供給している。よって、これらの装置では、異なる温度の熱交換媒体を所望の混合比で混合するために高温の熱交換媒体及び低温の熱交換媒体の流量を制御する機構が必要となる。したがって、特許文献1及び2に記載の装置では、温度制御のために必要な部品数が増加し、システムの構成が複雑になるという問題が生じていた。
したがって、本技術分野では、簡易な構成でステージの温度を制御することできる温度制御システム及び温度制御方法を提供することが要請されている。
一側面に係る温度制御システムは、被処理体を支持するステージであり、一端及び他端を有し、該一端から該他端に熱交換媒体を流通させる熱交換媒体流路がその内部に形成された該ステージと、第1のバルブと、第2のバルブと、第1の温度に調整された第1の熱交換媒体を供給する供給口及び回収口を有する第1の熱交換媒体供給装置であり、供給口が第1のバルブを介して熱交換媒体流路の一端に接続される、該第1の熱交換媒体供給装置と、第1の温度よりも高い第2の温度に調整された第2の熱交換媒体を供給する供給口及び回収口を有する第2の熱交換媒体供給装置であり、供給口が第2のバルブを介して熱交換媒体流路の一端に接続される、該第2の熱交換媒体供給装置と、第1の熱交換媒体及び第2の熱交換媒体が熱交換媒体流路の一端に交互に供給されるように第1のバルブ及び第2のバルブを制御する制御装置と、を備える。この制御装置は、ステージの温度を目標温度にするために必要な熱量を取得する熱量取得部と、必要な熱量に基づいて、熱交換媒体流路に対して交互に供給される第1の熱交換媒体及び第2の熱交換媒体の供給時間をそれぞれ算出する供給時間算出部と、供給時間算出部によって算出された供給時間で、第1の熱交換媒体及び第2の熱交換媒体が熱交換媒体流路の一端に交互に供給されるように、第1のバルブ及び第2のバルブを制御するバルブ制御部と、を含む。
一側面に係る温度制御システムでは、ステージの温度を目標温度にするために必要な熱量に基づいて、熱交換媒体流路に対して交互に供給される第1の熱交換媒体及び第2の熱交換媒体の供給時間がそれぞれ算出される。そして、算出された供給時間で第1の熱交換媒体及び第2の熱交換媒体が熱交換媒体流路に交互に供給されるように、第1のバルブ及び第2のバルブが制御される。すなわち、この温度制御システムでは、第1のバルブ及び第2のバルブの開放時間を制御することによって、ステージの温度を制御している。したがって、本温度制御システムによれば、熱交換媒体の流量調整機構を用いることなくステージの温度を制御することができる。よって、一側面に係る温度制御システムでは、簡易な構成でステージの温度を制御することが可能となる。
一形態では、第1の熱交換媒体供給装置の回収口は、開閉自在の第3のバルブを介して熱交換媒体流路の他端に接続されており、第2の熱交換媒体供給装置の回収口は、開閉自在の第4のバルブを介して熱交換媒体流路の他端に接続されていてもよい。このような形態によれば、第3のバルブ及び第4のバルブを制御することで、熱交換媒体流路の他端から排出された熱交換媒体を第1の熱交換媒体供給装置及び第2の熱交換媒体供給装置のどちらに導入するかを選択することが可能となる。また、一形態では、熱交換媒体流路の他端から排出された熱交換媒体の温度を計測する温度センサを更に備えていてもよい。
一形態では、熱交換媒体流路の他端から排出された熱交換媒体を熱交換媒体流路の一端に導入するための循環流路を更に備え、バルブ制御部は、目標温度と温度センサによって計測された熱交換媒体の温度との差異が所定の閾値よりも小さい場合には、熱交換媒体流路の他端から排出された熱交換媒体が循環流路を介して熱交換媒体流路の一端に再び導入されるように、第1のバルブ、第2のバルブ、第3のバルブ、及び第4のバルブを制御してもよい。本形態によれば、熱交換媒体流路の他端から排出された熱交換媒体が熱交換媒体流路の一端に導入されるので、熱交換媒体流路に新たに熱交換媒体を供給することなく、ステージの温度を略一定に維持することができる。
一形態では、バルブ制御部は、温度センサによって計測された熱交換媒体の温度に基づいて、熱交換媒体流路の一端から供給された第1の熱交換媒体が熱交換媒体流路の他端を介して第1の熱交換媒体供給装置の回収口に導入され、且つ、熱交換媒体流路の一端から供給された第2の熱交換媒体が熱交換媒体流路の他端を介して第2の熱交換媒体供給装置の回収口に導入されるように、第3のバルブ及び第4のバルブを制御してもよい。このような形態によれば、第1の熱交換媒体を第1の熱交換媒体供給装置で回収し、第2の熱交換媒体を第2の熱交換媒体供給装置で回収することができるので、第1の熱交換媒体供給装置及び第2の熱交換媒体供給装置の温度調整のための負荷を低減することが可能となる。
一形態では、バルブ制御部は、第1の熱交換媒体及び第2の熱交換媒体が熱交換媒体流路に交互に供給されるように、第1のバルブ及び第2のバルブの開閉を制御するよりも前に、第1の熱交換媒体及び第2の熱交換媒体のうち、ステージの温度を目標温度に近づけるための一方の熱交換媒体が熱交換媒体流路の一端に連続的に供給されるように、第1のバルブ及び第2のバルブを制御し、且つ、一方の熱交換媒体の供給によってステージの温度と目標温度との差異が所定の範囲内になった後に、第1の熱交換媒体及び第2の熱交換媒体のうち他方の熱交換媒体が熱交換媒体流路の一端に供給されるように、第1のバルブ及び第2のバルブを制御してもよい。この形態によれば、一方の熱交換媒体が熱交換媒体流路に連続的に供給されることでステージ温度を目標温度に急速に近づけることができる。また、ステージの温度と目標温度との差異が所定の範囲内になった後には、他方の熱交換媒体が供給されるので、ステージが過剰に冷却又は加熱されることを防止することができる。
一側面においては、被処理体を支持するステージであり、一端及び他端を有し、該一端から該他端に熱交換媒体を流通させる熱交換媒体流路がその内部に形成された該ステージと、第1のバルブと、第2のバルブと、第1の温度に調整された第1の熱交換媒体を供給する供給口及び回収口を有する第1の熱交換媒体供給装置であり、供給口が第1のバルブを介して熱交換媒体流路の一端に接続される、該第1の熱交換媒体供給装置と、第1の温度よりも高い第2の温度に調整された第2の熱交換媒体を供給する供給口及び回収口を有する第2の熱交換媒体供給装置であり、供給口が第2のバルブを介して熱交換媒体流路の一端に接続される、該第2の熱交換媒体供給装置と、第1の熱交換媒体及び第2の熱交換媒体が熱交換媒体流路の一端に交互に供給されるように第1のバルブ及び第2のバルブを制御する制御装置と、を備える温度制御システムを用いた温度制御方法が提供される。この方法は、ステージの温度を目標温度にするために必要な熱量を取得する工程と、必要な熱量に基づいて、熱交換媒体流路に対して交互に供給される第1の熱交換媒体及び第2の熱交換媒体の供給時間をそれぞれ算出する工程と、第1の熱交換媒体及び第2の熱交換媒体の供給時間をそれぞれ算出する工程において算出された供給時間で、第1の熱交換媒体及び第2の熱交換媒体が熱交換媒体流路の一端に交互に供給されるように、第1のバルブ及び第2のバルブを制御する工程と、を含む。
一側面に係る温度制御方法では、ステージの温度を目標温度にするために必要な熱量に基づいて、熱交換媒体流路に対して交互に供給される第1の熱交換媒体及び第2の熱交換媒体の供給時間をそれぞれ算出する。そして、算出された供給時間で第1の熱交換媒体及び第2の熱交換媒体が熱交換媒体流路に交互に供給されるように、第1のバルブ及び第2のバルブを制御する。すなわち、上記温度制御方法では、第1のバルブ及び第2のバルブの開放時間を制御することによって、ステージの温度を制御している。したがって、上記温度制御方法によれば、熱交換媒体の流量調整機構を用いることなくステージの温度を制御することができる。よって、一側面に係る温度制御方法では、簡易な構成でステージの温度を制御することが可能となる。
本発明の一側面及び実施形態によれば、簡易な構成でステージの温度を制御することができる。
一実施形態に係るプラズマ処理装置を概略的に示す断面図である。 一実施形態に係るステージの分解斜視図である。 一実施形態に係る熱交換器の斜視図である。 (a)は複数のセル部のうち1つのセル部の平面図であり、(b)は複数のセル部のうち1つのセル部の上方からの斜視図であり、(c)は複数のセル部のうち1つのセル部の下方からの斜視図である。 一実施形態に係る熱交換器の平面図である。 流路部の斜視図である。 バルブユニット群の斜視図である。 熱交換器内の熱交換媒体の流れを模式的に示す断面図である。 バルブユニット群の内部構成を概略的に示す図である。 制御装置の機能構成を示すブロック図である。 一実施形態の温度制御方法を示すフローチャートである。 第1のバルブ及び第2のバルブの開閉状態、及び、熱交換媒体流路に供給される熱交換媒体の経時的変化を示す図である。 第1のバルブ及び第2のバルブの開閉状態、及び、熱交換媒体流路に供給される熱交換媒体の経時的変化を示す図である。 第1のバルブ及び第2のバルブの開閉状態、及び、熱交換媒体流路に供給される熱交換媒体の経時的変化を示す図である。 別の一実施形態の温度制御方法を示すフローチャートである。 第1のバルブ及び第2のバルブの開閉状態、及び、熱交換媒体流路に供給される熱交換媒体の経時的変化を示す図である。
以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととし、同一又は相当の部分に対する重複した説明は省略する。また、各図面の寸法比率は、必ずしも実際の寸法比率とは一致していない。
まず、一実施形態のシステムを備えるプラズマ処理装置について説明する。なお、後述するステージST、バルブユニット群VU、第1の熱交換媒体供給装置100a及び第2の熱交換媒体供給装置100bは、一実施形態の温度制御システムとして利用される。
図1は、一実施形態に係るプラズマ処理装置50を概略的に示す断面図である。プラズマ処理装置50は、容量結合型平行平板プラズマエッチング装置であり、略円筒状の処理容器52を備えている。処理容器52は、例えば、その表面に陽極酸化処理がされたアルミニウムから構成されている。この処理容器52は接地されている。
処理容器52の底部上には、一例に係るステージSTが配置されている。図1に示すように、このステージSTは、プレート2、ケース4、熱交換器6及び流路部8を備えている。図2を参照して、ステージSTについて詳細に説明する。図2は、ステージSTの分解斜視図である。図2に示すステージSTは、処理容器52内で被処理体(以下、「基板」という。)を支持可能であり、熱交換媒体を流通させる熱交換媒体流路がその内部に形成されている。
プレート2は、円盤形状を有しており、例えばアルミニウムといった金属によって構成されている。プレート2は、表面側2aと裏面側2bを有している。プレート2の表面側2aの上には、基板Wが載置され得る。
ケース4は、例えばステンレスといった金属によって構成されており、側壁4aと底壁4bとを有している。側壁4aは、円筒形状を有しており、その内部に収容空間ASを画成している。側壁4aは、円筒軸線方向に沿って延びており、その上端面4cにおいてプレート2を下方から支持する。底壁4bは、側壁4aの下端部に接続されている。側壁4aの上端面4cには、該上端面4cに沿って環状に延在するOリング10が設けられ得る。この上端面4cには、例えばねじ止めによってOリング10を介してプレート2が気密に固定される。これにより、収容空間ASがステージよって上方から画成される。
側壁4aには、複数の供給管12a、12b、12c、12d、12e、及び、複数の回収管14a、14b、14c、14d、14eが設けられている。複数の供給管12a〜12eは、側壁4aの径方向に沿って延びており、それぞれ第1の開口16a、16b、16c、16d、16e(特に区別する必要がないときには、単に「第1の開口16」という))を介して収容空間ASに連通している。回収管14a〜14eは、側壁4aの径方向に沿って延びており、それぞれ第2の開口18a、18b、18c、18d、18e(特に区別する必要がないときには、単に「第2の開口18」という))を介して収容空間ASに連通している。
熱交換器6及び流路部8は、ケース4の収容空間AS内に収容される。図3〜5を参照して、熱交換器6について詳細に説明する。図3は、熱交換器6の斜視図である。図3に示すように、熱交換器6は、隔壁20、複数の第1の管22及び複数の第2の管24を含んでいる。熱交換器6は、プレート2の裏面側2bに2次元的に配列される複数の領域であり、プレート2の裏面側2bにおいて複数の同心円によって境界付けられる複数のゾーンの各々を周方向に分割してなる複数の領域に対して個別に熱交換媒体を供給して、供給された熱交換媒体を個別に回収するように構成されている。
隔壁20は、全体として円盤形状又は円柱形状の外郭を有しており、複数のセル部Cが形成されている。複数のセル部Cは、熱交換器6の径方向及び周方向に沿って2次元的に配列されている。複数のセル部Cの各々は、上方からの平面視において熱交換器6の外側に向かうにつれて幅が広くなる略矩形状の平面形状を有している。複数のセル部Cは、断面が略四角形状の複数の空間Sをそれぞれ画成している。即ち、隔壁20は、プレート2の下方において2次元的に配列され、且つ互いに内包しない複数の空間Sを形成する。複数のセル部Cのうち1つのセル部Cを図4に示す。図4(a)はセル部Cの平面図であり、図4(b)はセル部の上方からの斜視図であり、図4(c)はセル部の下方からの斜視図である。これらのセル部Cは、上方からの平面視においてハニカム構造を形成するように互いに結合されていてもよい。
複数の第1の管22はそれぞれ、平面視において対応の空間Sの略中心位置を通って延在している。これら複数の第1の管22は、プレート2の裏面側2b(図2)に向けて互いに略平行に延びている。複数の第1の管22の各々は、その周囲の空間を画成する隔壁20によって囲まれている。複数の第1の管22の各々は、第1の開口端22a及び第2の開口端22bを有している。第1の開口端22aは、プレート2の裏面側2bに対面するように配置されている。第2の開口端22bは、第1の開口端22aの反対側に位置しており、空間Sの下方に位置している。複数の第1の管22は、後述する第1の熱交換媒体供給装置100a又は第2の熱交換媒体供給装置100bから熱交換媒体を受けて第1の開口端22aからプレート2の裏面側2bに向けて吐出する管として機能する。
複数の第2の管24は、複数の空間Sにそれぞれ連通するよう隔壁20に接続されている。複数の第2の管24の各々の下端部には、開口24aが設けられている。複数の第2の管24は、複数の第1の管22の第1の開口端22aから吐出され当該第1の管22を囲む空間S内に回収された熱交換媒体を外部に排出される管として機能する。かかる熱交換器6においては、第1の管22、当該第1の管を囲む空間Sを画成する隔壁20、及び、当該空間Sに連通する第2の管24は、ステージST内において一端から他端に熱交換媒体を流通させる熱交換媒体流路を提供している。第1の管22の第2の開口端22bは熱交換媒体流路の一端を構成し、第2の管24の開口24aは熱交換媒体流路の他端を構成している。
一実施形態では、熱交換器6は、樹脂、セラミック、又は金属を主成分として構成され得る。なお、隣り合うセル部Cの影響を抑制するため熱伝導率が低い材料、例えば、セラミックや樹脂を用いることが望ましく、特に樹脂であることが好ましい。なお、強度や熱伝導率を変更するために熱交換器6を構成する材料を部分的に変更してもよい。例えば、複数の第1の管22の第1の開口端22aが炭素、セラミック粉、ガラス繊維、金属粉などを含有する樹脂によって構成されてもよい。これにより、第1の開口端22aの強度を局所的に高めることができる。また、熱交換器6は、例えば3Dプリンタを用いて形成することができる。
図5は、熱交換器6の平面図を示している。熱交換器6は、その中心軸線を中心とした複数の同心円によって境界付けられる複数のゾーンZ1、Z2、Z3、Z4、及びZ5に分割されている。即ち、複数のゾーンZ1、Z2、Z3、Z4、及びZ5は、それぞれ複数の同心円状の境界B1、B2、B3、B4によって互いに区画されている。ゾーンZ1は、熱交換器6の中心軸線を中心とする環状の領域であり、熱交換器6の外縁部に位置している。ゾーンZ2、Z3、Z4は、ゾーンZ1と同心の環状の領域であり、それぞれゾーンZ1、Z2、Z3の内側に位置している。ゾーンZ5は、ゾーンZ4の内側に位置する円形の領域であり、熱交換器6の中心部に位置している。これらのゾーンZ1〜Z5の各々の内部には、複数のセル部Cが周方向に沿って配列されている。また、境界B3上において四方のセル部Cの隔壁20が交差する位置には、熱交換器6の中心軸線方向に沿って延びる3つの孔HLが形成されている。これらの孔HLは、基板を被載置面から持ち上げるために利用されるリフトアップピンを挿通するための孔として利用される。
次に、流路部8について説明する。図6は、流路部8の斜視図である。流路部8は、熱交換器6の下方に配置されており、熱交換器6に熱交換媒体を供給するための流路、及び、熱交換器6から熱交換媒体を回収するための流路を提供する。
図6に示すように、流路部8は、略円柱形のブロック体であり、上面8a及び側面8bを有している。流路部8には、その内部を貫通する複数の供給流路26a、26b、26c、26d、26e(特に区別する必要がないときには、単に「供給流路26」という)、及び、複数の回収流路28a、28b、28c、28d、28e(特に区別する必要がないときには、単に「回収流路28」という)が形成されている。流路部8には、その側面8bから上面8aに向けて流路部8の内部を貫通する小径の空洞が複数形成されており、これらの空洞が複数の供給流路26及び複数の回収流路28を構成している。
供給流路26aは、その途中位置で分岐されており、複数の一端部26a1及び1つの他端部26a2を有している。複数の一端部26a1は、流路部8の上面8aにおいて、ゾーンZ1内に配列される複数の第1の管22にそれぞれ対応する位置に形成されており、ゾーンZ1内に配列される複数の第1の管22における第2の開口端22bにそれぞれ接続される。他端部26a2は、流路部8の側面8bに形成されている。他端部26a2は、ケース4の第1の開口16aに対応する位置に形成されており、流路部8がケース4内に収容された状態において第1の開口16aに対面する。供給流路26aは、第1の開口16aを介して流入した熱交換媒体を、熱交換器6のゾーンZ1内に配列された複数の第1の管22に供給するための流路として利用される。
回収流路28aは、その途中位置で分岐されており、複数の一端部28a1及び1つの他端部28a2を有している。複数の一端部28a1は、流路部8の上面8aにおいて、ゾーンZ1内に配列される複数の第2の管24にそれぞれ対応する位置に形成されており、ゾーンZ1内に配列される複数の第2の管24における開口24aにそれぞれ接続される。他端部28a2は、流路部8の側面8bに形成されている。他端部28a2は、ケース4の第2の開口18aに対応する位置に形成されており、流路部8がケース4内に収容された状態において第2の開口18aに対面する。回収流路28aは、熱交換器6のゾーンZ1内に配列された複数の第2の管24を介して熱交換器6から回収された熱交換媒体を、第2の開口18aを介してステージSTの外部に排出するための流路として利用される。
供給流路26aと同様に、供給流路26b、26c、26d、26eは、それぞれ複数の一端部26b1、26c1、26d1、26e1、及び、1つの他端部26b2、26c2、26d2、26e2を有している。複数の一端部26b1、26c1、26d1、26e1は、流路部8の上面8aにおいて、それぞれゾーンZ2、Z3、Z4、Z5内に配列される複数の第1の管22に対応する位置に形成されており、それぞれゾーンZ2、Z3、Z4、Z5内に配列される複数の第1の管22における第2の開口端22bに接続される。他端部26b2、26c2、26d2、26e2は、流路部8の側面8bに形成されている。他端部26b2、26c2、26d2、26e2は、ケース4の第1の開口16b、16c、16d、16eに対応する位置にそれぞれ形成されており、流路部8がケース4内に収容された状態において第1の開口16b、16c、16d、16eに対面する。供給流路26b、26c、26d、26eは、それぞれ第1の開口16b、16c、16d、16eを介して流入した熱交換媒体を、それぞれ熱交換器6のゾーンZ2、Z3、Z4、Z5内に配列された複数の第1の管22に供給するための流路として利用される。
また、回収流路28aと同様に、回収流路28b、28c、28d、28eは、それぞれ複数の一端部28b1、28c1、28d1、28e1、及び、1つの他端部28b2、28c2、28d2、28e2を有している。複数の一端部28b1、28c1、28d1、28e1は、流路部8の上面8aにおいて、それぞれゾーンZ2、Z3、Z4、Z5内に配列される複数の第2の管24に対応する位置に形成されており、それぞれゾーンZ2、Z3、Z4、Z5内に配列される第2の管24における開口24aに接続される。他端部28a2は、流路部8の側面8bに形成されている。他端部28b2、28c2、28d2、28e2は、ケース4の第2の開口18b、18c、18d、18eに対応する位置に形成されており、ケース4内に収容された状態において第2の開口18b、18c、18d、18eに対面する。回収流路28b、28c、28d、28eは、それぞれ熱交換器6のゾーンZ2、Z3、Z4、Z5内に配列された複数の第2の管24を介して熱交換器6から回収された熱交換媒体を、それぞれ第2の開口18b、18c、18d、18eを介してステージSTの外部に排出するための流路として利用される。
これらの複数の供給流路26及び複数の回収流路28は、互いに連通しない独立した流路として形成されている。一実施形態では、複数の供給流路26は互いに等しいコンダクタンスを有しており、複数の回収流路28は互いに等しいコンダクタンスを有している。ここで、コンダクタンスとは、流体の流れやすさを示す指標であり、流路の径、長さ及び屈曲率によって定まる値である。例えば、複数の供給流路26及び複数の回収流路28は、流路の長さに応じて流路の径及び屈曲率を調整することにより、互いのコンダクタンスが均一化される。なお、一実施形態では、流路部8は、隣り合う流路間の影響を抑制するために熱伝導率が低い材料、例えば、セラミックや樹脂を主成分として構成され得る。特に樹脂であることが好ましい。このような流路部8は、例えば3Dプリンタを用いて形成することができる。特に、100〜1000本の多数の流路を設ける際には、3Dプリンタを用いて形成することにより、流路の配置を三次元的に配置することが可能となるため、設計の自由度が増し、コンダクタンスの均一化に有効である。
図1の説明に戻り、プラズマ処理装置50について説明する。ステージSTのプレート2の表面側2aには、静電チャック54が設けられている。静電チャック54は、導電膜である電極56を一対の絶縁層又は絶縁シート間に配置した構造を有している。電極56には、直流電源58が電気的に接続されている。この静電チャック54は、直流電源58からの直流電圧により生じたクーロン力等の静電力により基板Wを静電吸着保持することができる。
プラズマ処理装置50は、処理容器52の外部に配置されるバルブユニット群VUを更に備えている。バルブユニット群VUは、熱交換器6に対する熱交換媒体の供給又は遮断を、ゾーン毎に制御可能に構成されている。バルブユニット群VUは、バルブユニットVU1、VU2、VU3、VU4、VU5を含んでいる(図7)。なお、熱交換媒体とは、プレート2との熱の交換を目的としてステージST内を流通する流体であり、プレート2から熱を吸収する冷媒、及び、プレート2に熱を与える熱媒を含む概念である。熱交換媒体としては、例えば水、フッ素系液体等が用いられる。
バルブユニット群VUは、低温流体供給路44を介して第1の熱交換媒体供給装置100aの供給口P1に接続されている。また、バルブユニット群VUは、低温流体回収路45を介して第1の熱交換媒体供給装置100aの回収口R1に接続されている。低温流体供給路44は、一端部と他端部を有しており、当該一端部と他端部との間で分岐端44a、44b、44c、44d、44eに分岐されている。図7に示すように、これらの分岐端44a〜44eは、バルブユニットVU1〜VU5にそれぞれ接続されている。また、低温流体回収路45は、一端部と他端部を有しており、当該一端部と他端部との間で分岐端45a、45b、45c、45d、45eに分岐されている。これらの分岐端45a〜45eは、バルブユニットVU1〜VU5にそれぞれ接続されている。
第1の熱交換媒体供給装置100aは、第1の温度に調整された熱交換媒体(以下、「低温流体」ともいう)を循環供給する装置である。第1の熱交換媒体供給装置100aは、低温流体回収路45を介して複数のバルブユニットVU1〜VU5からの熱交換媒体を回収口R1で回収し、回収した熱交換媒体を第1の温度に冷却する。そして、供給口P1から、第1の温度の熱交換媒体を低温流体供給路44を介して複数のバルブユニットVU1〜VU5のそれぞれに供給する。第1の温度は、例えば摂氏30度とすることができる。
更に、バルブユニット群VUは、高温流体供給路46を介して第2の熱交換媒体供給装置100bの供給口P2に接続されている。また、バルブユニット群VUは、高温流体回収路47を介して第2の熱交換媒体供給装置100bの回収口R2に接続されている。高温流体供給路46は、一端部と他端部を有しており、当該一端部と他端部との間で分岐端46a、46b、46c、46d、46eに分岐されている。図7に示すように、これらの分岐端46a〜46eは、バルブユニットVU1〜VU5にそれぞれ接続されている。また、高温流体回収路47は、一端部と他端部を有しており、当該一端部と他端部との間で分岐端47a、47b、47c、47d、47eに分岐されている。これらの分岐端47a〜47eは、バルブユニットVU1〜VU5にそれぞれ接続されている。
第2の熱交換媒体供給装置100bは、第1の温度よりも高い第2の温度に調整された熱交換媒体(以下、「高温流体」ともいう)を循環供給する装置である。第2の熱交換媒体供給装置100bは、例えば、高温流体回収路47を介して複数のバルブユニットVU1〜VU5からの熱交換媒体を回収口R2で回収し、回収した熱交換媒体を第2の温度に加熱する。第2の温度の熱交換媒体を高温流体供給路46を介して複数のバルブユニットVU1〜VU5のそれぞれに供給する。第2の温度は、目標温度よりも高い温度であり、例えば摂氏90度とすることができる。
次に、バルブユニット群VUのバルブユニットVU1〜VU5について説明する。図7に示すように、バルブユニットVU1は、第1の配管40aを介して供給流路26aに接続されている。更に、バルブユニットVU1は第2の配管42aを介して回収流路28aに接続されている。一例では、第1の配管40a及び第2の配管42aは、それぞれケース4の供給管12a及び回収管14aに挿入されることにより、供給流路26a及び回収流路28aに接続され得る。バルブユニットVU1は、第1の熱交換媒体供給装置100a又は第2の熱交換媒体供給装置100bからゾーンZ1内に配列される複数の第1の管22に対する熱交換媒体の供給を許容又は遮断する機能を有する。また、バルブユニットVU1は、低温流体供給路44を介して供給される低温流体と高温流体供給路46を介して供給される高温流体とから、ゾーンZ1内に配列される複数の第1の管22に供給される熱交換媒体を選択的に切り替える機能を有している。
バルブユニットVU1と同様に、バルブユニットVU2、VU3、VU4、及びVU5は、第1の配管40b、40c、40d、40eを介して供給流路26b、26c、26d、26eにそれぞれ接続されている。バルブユニットVU2、VU3、VU4、及びVU5は、第2の配管42b、42c、42d、42eを介して回収流路28b、28c、28d、28eにそれぞれ接続されている。バルブユニットVU2、VU3、VU4、及びVU5は、第1の熱交換媒体供給装置100a又は第2の熱交換媒体供給装置100bから、それぞれゾーンZ2、Z3、Z4、Z5内に配列される複数の第1の管22に対する熱交換媒体の供給を許容又は遮断する機能を有する。また、バルブユニットVU2、VU3、VU4、及びVU5は、低温流体供給路44を介して供給される低温流体と高温流体供給路46を介して供給される高温流体とから、ゾーンZ2、Z3、Z4、Z5内に配列される複数の第1の管22に供給される熱交換媒体をそれぞれ選択的に切り替える機能を有している。
また、一実施形態では、温度制御システム1は、熱交換媒体流路の他端、即ち、第2の管24の開口24aから排出された熱交換媒体の温度を計測する温度センサを更に備え得る。一実施形態では、第2の配管42a〜42eに、その内部を流通する熱交換媒体の温度を計測する温度センサTSを設けてもよい(図9参照)。この温度センサTSによれば、第2の管24を介して排出された熱交換媒体の温度を計測することにより、ステージSTの温度を算出することができる。
再び図1に戻り、処理容器52内には、上部電極60が設けられている。この上部電極60は、下部電極として機能するプレート2の上方において、当該プレート2と対向配置されており、プレート2と上部電極60とは、互いに略平行に設けられている。これら上部電極60とプレート2との間には、例えば基板Wにプラズマエッチングを行うための処理空間PSが画成されている。
上部電極60は、絶縁性遮蔽部材62を介して、処理容器52の上部に支持されている。上部電極60は、電極板64及び電極支持体66を含み得る。電極板64は、処理空間PSに面しており、複数のガス吐出孔64aを画成している。この電極板64は、ジュール熱の少ない低抵抗の導電体又は半導体から構成され得る。電極板64は、接地されている。
電極支持体66は、電極板64を着脱自在に支持するものであり、例えばアルミニウムといった導電性材料から構成され得る。この電極支持体66は、水冷構造を有し得る。電極支持体66の内部には、ガス拡散室66aが設けられている。このガス拡散室66aからは、ガス吐出孔64aに連通する複数のガス通流孔66bが下方に延びている。また、電極支持体66にはガス拡散室66aに処理ガスを導くガス導入口66cが形成されており、このガス導入口66cには、ガス供給管68が接続されている。
ガス供給管68には、バルブ72及びマスフローコントローラ(MFC)74を介して、ガス源70が接続されている。なお、MFCの代わりにFCSが設けられていてもよい。ガス源70は、処理ガスのガス源である。このガス源70からの処理ガスは、ガス供給管68からガス拡散室66aに至り、ガス通流孔66b及びガス吐出孔64aを介して処理空間PSに吐出される。
また、プラズマ処理装置50は、接地導体52aを更に備え得る。接地導体52aは、略円筒状の接地導体であり、処理容器52の側壁から上部電極60の高さ位置よりも上方に延びるように設けられている。
また、プラズマ処理装置50では、処理容器52の内壁に沿ってデポシールド76が着脱自在に設けられている。また、デポシールド76は、ステージSTの外周にも設けられている。デポシールド76は、処理容器52にエッチング副生物(デポ)が付着することを防止するものであり、アルミニウム材にY等のセラミックスを被覆することにより構成され得る。
処理容器52の底部側においては、ステージSTと処理容器52の内壁との間に排気プレート78が設けられている。排気プレート78は、例えば、アルミニウム材にY等のセラミックスを被覆することにより構成され得る。この排気プレート78の下方において処理容器52には、排気口52eが設けられている。排気口52eには、排気管53を介して排気装置80が接続されている。排気装置80は、ターボ分子ポンプなどの真空ポンプを有しており、処理容器52内を所望の真空度まで減圧することができる。また、処理容器52の側壁には基板Wの搬入出口52gが設けられており、この搬入出口52gはゲートバルブ81により開閉可能となっている。
一実施形態においては、プラズマ処理装置50は、高周波電源HFG、高周波電源LFG、整合器MU1、及び、整合器MU2を更に備えている。高周波電源HFGは、プラズマ生成用の高周波電力を発生するものであり、27MHz以上の周波数、例えば、40MHzの高周波電力を整合器MU1を介して、プレート2に供給する。整合器MU1は、高周波電源HFGの内部(又は出力)インピーダンスを負荷インピーダンスに整合させる回路を有している。また、高周波電源LFGは、イオン引き込み用の高周波バイアス電力を発生するものであり、13.56MHz以下の周波数、例えば、3MHzの高周波バイアス電力を、整合器MU2を介してプレート2に供給する。整合器MU2は、高周波電源LFGの内部(又は出力)インピーダンスを負荷インピーダンスに整合させる回路を有している。なお、下部電極はプレート2と別体として設けられても良い。
また、一実施形態においては、プラズマ処理装置50は、制御装置Cntを更に備えている。この制御装置Cntは、プロセッサ、記憶部、入力装置、表示装置等を備えるコンピュータであり、プラズマ処理装置50の各部、例えば電源系やガス供給系、駆動系等を制御する。また、制御装置Cntは、複数のバルブユニットVUを個別に制御可能である。この制御装置Cntでは、入力装置を用いて、オペレータがプラズマ処理装置50を管理するためにコマンドの入力操作等を行うことができ、また、表示装置により、プラズマ処理装置50の稼働状況を可視化して表示すことができる。さらに、制御装置Cntの記憶部には、プラズマ処理装置50で実行される各種処理をプロセッサにより制御するための制御プログラムや、処理条件に応じてプラズマ処理装置50の各構成部に処理を実行させるためのプログラム、即ち、処理レシピが格納される。
次に、ステージST内部の熱交換媒体の流れについて説明する。図8は、熱交換器6内の熱交換媒体の流れを模式的に示す断面図である。
第1の熱交換媒体供給装置100a又は第2の熱交換媒体供給装置100bによって第1の開口16からステージST内に供給された熱交換媒体は、流路部8の複数の供給流路26を通過し、第2の開口端22bを介して複数の第1の管22にそれぞれ流入する。第2の開口端22bから流入した熱交換媒体は、複数の第1の管22に沿って上方に移動し、第1の開口端22aからプレート2の裏面側2bに向けて吐出される。第1の開口端22aから吐出された熱交換媒体は、第1の開口端22aに対面するプレート2の裏面側2bに接触することでプレート2との間で熱交換を行う。熱交換を行った熱交換媒体は、隔壁20に沿って下方に移動し、複数の第2の管24の開口24aから空間Sの外部に排出される。空間Sから排出された熱交換媒体は、開口24aに接続された複数の回収流路28、第2の配管42a〜42e、第2の開口18を介して第1の熱交換媒体供給装置100a又は第2の熱交換媒体供給装置100bに戻される。
上記のように、熱交換器6は、複数の第1の管22から個別に熱交換媒体が吐出され、吐出された熱交換媒体が対応の空間Sを介して第2の管24によって回収されるように構成されている。即ち、複数の第1の管22、複数の空間Sを画成する隔壁20、及び複数の第2の管24は、ステージSTの内部において熱交換媒体を流通させる複数の熱交換媒体流路FCをそれぞれ提供している。これらの熱交換媒体流路FCは、互いに独立した熱交換媒体の流路であり、上方からの平面視において2次元的に並ぶように設けられている。かかる複数の熱交換媒体流路FCによれば、プレート2の裏面側2bに2次元的に配列される複数の領域に対して個別に熱交換媒体が供給される。したがって、複数の第1の管22からプレート2の裏面側2bに2次元状に配列された複数の領域に供給される熱交換媒体の温度に差異が生じることが抑制される。
次に、図9を参照して複数のバルブユニットVU1〜VU5について詳細に説明する。図9に示すように、複数のバルブユニットVU1〜VU5は、互いに同じ構成を有しているので、以下では、主にバルブユニットVU1について説明する。バルブユニットVU1は、第1の熱交換媒体供給装置100a及び第2の熱交換媒体供給装置100bと熱交換器6との間に配置される。
バルブユニットVU1は、第1のバルブ102及び第2のバルブ104を備えている。第1のバルブ102は、第1ポート102a、第2ポート102b、第3ポート102cを有する三方弁である。第2のバルブ104は、第1ポート104a、第2ポート104b、第3ポート104cを有する三方弁である。第1のバルブ102及び第2のバルブ104は、互いに独立して各弁を開閉可能に構成されている。
第1のバルブ102の第1ポート102aには、第1の供給ライン106の一端が接続されている。第1の供給ライン106の他端は、低温流体供給路44の分岐端44aを介して第1の熱交換媒体供給装置100aの供給口P1に接続されている。第1のバルブ102の第2ポート102bには、第1の回収ライン108の一端が接続されている。第1の回収ライン108の他端は、低温流体回収路45の分岐端45aを介して第1の熱交換媒体供給装置100aの回収口R1に接続されている。
また、第2のバルブ104の第1ポート104aには、第2の供給ライン110の一端が接続されている。第2の供給ライン110の他端は、高温流体供給路46の分岐端46aを介して第2の熱交換媒体供給装置100bの供給口P2に接続されている。第2のバルブ104の第2ポート104bには、第2の回収ライン112の一端が接続されている。第2の回収ライン112の他端は、高温流体回収路47の分岐端47aを介して第2の熱交換媒体供給装置100bの回収口R2に接続されている。
また、第1の回収ライン108の途中位置には、第2の回収ライン112に並列に接続された第1のバイパスライン114が接続されている。第1のバイパスライン114上には第3のバルブ116及び第4のバルブ118が直列に接続されている。第3のバルブ116及び第4のバルブ118は、互いに独立して開閉を制御可能な二方弁である。
第1のバルブ102の第3ポート102c及び第2のバルブ104の第3ポート104cは、それぞれ第1のライン120a及び第2のライン120bを介して共通ライン120に接続されている。共通ライン120の他端部は、第1のライン120a及び第2のライン120bに接続されている。第1のライン120aは第1のバルブ102の第3ポート102cに接続され、第2のライン120bは第2のバルブ104の第3ポート104cに接続されている。共通ライン120の一端部は、第1の配管40a、供給流路26aを介して熱交換器6のゾーンZ1内に配列された複数の第1の管22に接続されている。
また、バルブユニットVU1には、一端が第2の配管42aに接続され、他端が第1のバイパスライン114における第3のバルブ116及び第4のバルブ118の間の位置に接続される帰還ライン122が設けられている。帰還ライン122の途中位置及び共通ライン120の途中位置に設けられる接続点CPには、第2のバイパスライン124の両端がそれぞれ接続されている。第2のバイパスライン124上にはポンプP及び逆止弁CVが接続されている。この第2のバイパスライン124は、第2の管24を介して排出された熱交換媒体を第1の管22に再び導入するための循環流路の一部を構成する。
上記のように、第1の熱交換媒体供給装置100aの供給口P1は、第1のバルブ102を介して熱交換媒体流路の一端、即ち、第1の管22の第2の開口端22bに接続されており、第1の熱交換媒体供給装置100aの回収口R1は、第3のバルブ116を介して熱交換媒体流路の他端、即ち、第2の管24の開口24aに接続されている。また、第2の熱交換媒体供給装置100bの供給口P2は、第2のバルブ104を介して熱交換媒体流路の一端、即ち、第1の管22の第2の開口端22bに接続されており、第2の熱交換媒体供給装置100bの回収口R2は、第4のバルブ118を介して熱交換媒体流路の他端、即ち、第2の管24の開口24aに接続されている。
バルブユニットVU2〜VU5は、バルブユニットVU1と同様の構成を有しているが、バルブユニットVU2〜VU5の共通ライン120の一端部は、供給流路26b〜26eを介して、それぞれゾーンZ2〜Z5内に配列された複数の第1の管22に接続されている。なお、バルブユニットVU1〜VU5の第1のバルブ102、第2のバルブ104は、第3のバルブ116及び第4のバルブ118は、互いに独立して開閉を制御可能に構成されている。
次に、熱交換媒体の流通経路について説明する。一実施形態のシステムは、制御装置Cntからの制御信号を用いてバルブユニットVU1〜VU5内の各バルブの開閉を制御することにより、熱交換媒体の流通状態を第1の流通状態、第2の流通状態、第3の流通状態に切り替えることが可能である。第1の流通状態では、低温流体が熱交換器6の各ゾーンに供給される。第2の流通状態では、高温流体が熱交換器6の各ゾーンに供給される。第3の流通状態では、熱交換器6に対する低温流体および高温流体の供給が遮断され、第2の管24の開口24aから排出された熱供給媒体が第2のバイパスライン124を介して第1の管22の第2の開口端22bに循環供給される。
[第1の流通状態]
まず、第1の流通状態について説明する。第1の流通状態とする場合には、第1のバルブ102は、第1ポート102aと第2ポート102bとの接続が遮断され、第1ポート102aと第3ポート102cと接続が許容されるように制御される。第2のバルブ104は、第1ポート104aと第2ポート104bとの接続が許容され、第1ポート102aと第3ポート102cと接続が遮断されるように制御される。また、第3のバルブ116は開放され、第4のバルブ118は閉鎖される。
第1の流通状態では、第1の熱交換媒体供給装置100aの供給口P1から低温流体供給路44の分岐端44aを介して流入した低温流体が、第1の供給ライン106、第1のライン120a、及び共通ライン120を経由し、第1の配管40a及び供給流路26aを介して、ゾーンZ1内に配列された複数の第1の管22に供給される。ゾーンZ1内に配列された複数の第2の管24からそれぞれ回収された熱交換媒体は、回収流路28a及び第2の配管42aを介してバルブユニットVU1に流入する。バルブユニットVU1に流入した熱交換媒体は、帰還ライン122、第1のバイパスライン114上の第3のバルブ116、第1の回収ライン108を経由し、低温流体回収路45の分岐端45aを介して第1の熱交換媒体供給装置100aの回収口R1に戻される。
一方、第2の熱交換媒体供給装置100bの供給口P2から高温流体供給路46の分岐端46aを介して流入した高温流体は、第2の供給ライン110及び第2の回収ライン112を経由し、共通ライン120に流入することなく、第2の熱交換媒体供給装置100bの回収口R2に戻される。このように、第1の流通状態では、熱交換器6のゾーンZ1内に配列された複数の第1の管22に対して低温流体が供給され、熱交換器6のゾーンZ1内に配列された複数の第1の管22に対する高温流体の供給が遮断される。
[第2の流通状態]
次に、第2の流通状態について説明する。第2の流通状態とする場合には、第1のバルブ102は、第1ポート102aと第2ポート102bとの接続が許容され、第1ポート102aと第3ポート102cと接続が遮断されるように制御される。第2のバルブ104は、第1ポート104aと第2ポート104bとの接続が遮断され、第1ポート102aと第3ポート102cと接続が許容されるように制御される。また、第3のバルブ116は閉鎖され、第4のバルブ118は開放される。
第2の流通状態においては、第1の熱交換媒体供給装置100aの供給口P1から低温流体供給路44の分岐端44aを介して流入した低温流体は、第1の供給ライン106及び第1の回収ライン108を経由し、共通ライン120に流入することなく、第1の熱交換媒体供給装置100aの回収口R1に戻される。
一方、第2の熱交換媒体供給装置100bの供給口P2から高温流体供給路46の分岐端46aを介して流入した高温流体は、第2の供給ライン110、第2のライン120b及び共通ライン120を経由し、第1の配管40a及び供給流路26を介してゾーンZ1内の複数の第1の管22に供給される。ゾーンZ1内の複数の第2の管24から回収された熱交換媒体は、回収流路28及び第2の配管42aを介してバルブユニットVU1に流入する。バルブユニットVU1に流入した熱交換媒体は、帰還ライン122、第1のバイパスライン114上の第4のバルブ118、第2の回収ライン112を経由し、高温流体回収路47の分岐端47aを介して第2の熱交換媒体供給装置100bの回収口R2に戻される。このように、第2の流通状態では、熱交換器6のゾーンZ1内の複数の第1の管22に対して高温流体が供給され、当該複数の第1の管22に対する低温流体の供給が遮断される。
[第3の流通状態]
次に、第3の流通状態について説明する。第3の流通状態とする場合には、第1のバルブ102は、第1ポート102aと第2ポート102bとの接続が許容され、第1ポート102aと第3ポート102cと接続が遮断されるように制御される。第2のバルブ104は、第1ポート104aと第2ポート104bとの接続が許容され、第1ポート104aと第3ポート104cと接続が遮断されるように制御される。また、第3のバルブ116及び第4のバルブ118は閉鎖される。
第3の流通状態においては、第1の熱交換媒体供給装置100aの供給口P1から低温流体供給路44の分岐端44aを介して流入した低温流体は、第1の供給ライン106及び第1の回収ライン108を流通し、共通ライン120に流入することなく、第1の熱交換媒体供給装置100aの回収口R1に戻される。第2の熱交換媒体供給装置100bの供給口P2から高温流体供給路46の分岐端46aを介して流入した高温流体は、第2の供給ライン110及び第2の回収ライン112を流通し、共通ライン120に流入することなく、第2の熱交換媒体供給装置100bの回収口R2に戻される。即ち、第3の流通状態では、熱交換器6に対する低温流体および高温流体の供給が停止される。
また、過去に第1の流通状態又は第2の流通状態とされることで、熱交換器6の内部に熱交換媒体が残されている場合には、第2のバイパスライン124に設けられたポンプPの動作により、当該熱交換媒体は流路内を循環する。具体的に、熱交換器6の内部の熱交換媒体は、回収流路28及び第2の配管42aを介してバルブユニットVU1に流入し、帰還ライン122の一部、第2のバイパスライン124、共通ライン120の一部を経由し、第1の配管40a及び供給流路26を介してゾーンZ1内に配列された複数の第1の管22に循環供給される。以下では、この流路、即ち、帰還ライン122の一部、第2のバイパスライン124、共通ライン120の一部、第1の配管40a、供給流路26、第1の管22、空間Sを画成する隔壁20、第2の管24、回収流路28及び第2の配管42aによって構成される流路を「循環流路」と称する。かかる第3の流通状態によれば、第1の熱交換媒体供給装置100aからの低温流体、及び、第2の熱交換媒体供給装置100bからの高温流体の熱交換器6に対する供給が停止されると共に、第2の管24の開口24aから排出された熱供給媒体が循環流路を介して第1の管22の第2の開口端22bに循環供給される。
上記のように、バルブユニットVU1は、各ポートの開閉を独立して制御することにより、低温流体及び高温流体を、互いに混合することなく複数の領域に対して供給可能に構成されている。すなわち、バルブユニットVU1によれば、ゾーンZ1内の複数の第1の管22に供給される熱交換媒体を、低温流体又は高温流体に瞬時に切り替えることができる。なお、バルブユニットVU2、VU3、VU4、VU5においても、複数の第1の管22に供給される熱交換媒体を、低温流体又は高温流体に瞬時に切り替えることができる。
次に、制御装置Cntについて詳細に説明する。この制御装置Cntは、低温流体及び高温流体が熱交換媒体流路の一端に交互に供給されるように第1のバルブ102及び第2のバルブ104を制御する。図10は、制御装置Cntの機能構成を示すブロック図である。図10に示すように、制御装置Cntは、熱量取得部202、供給時間算出部204及びバルブ制御部206を有している。熱量取得部202は、ステージSTの温度を目標温度にするために必要な熱量を取得する機能要素である。供給時間算出部204は、熱量取得部202によって取得された必要熱量に基づいて、熱交換媒体流路に対して交互に供給される低温流体及び高温流体の供給時間をそれぞれ算出する機能要素である。バルブ制御部206は、低温流体及び高温流体が熱交換媒体流路の一端に交互に供給されるように第1のバルブ及び第2のバルブを制御する機能要素である。
図11は、一実施形態の温度制御方法を示すフローチャートである。図12は、第1のバルブ102及び第2のバルブ104の開閉状態、及び、熱交換媒体流路に供給される熱交換媒体の温度の経時的変化を示す図である。以下では、図11及び図12を参照して、制御装置Cntの制御内容について説明すると共に、一実施形態の温度制御方法について説明する。
まず工程ST10では、制御装置Cntが、温度センサTSの測定値からステージSTの温度を取得し、ステージSTの温度と目標温度とを比較する。ステージSTの温度は、例えば第2の配管42a〜42eに設けられた温度センサTSによって第2の管24の開口24aから排出された熱交換媒体の温度を計測することによって間接的に取得される。例えば、制御装置Cntは、第1の管22に供給された熱交換媒体の温度と第2の管24の開口24aから排出された熱交換媒体の温度との差異からステージST内で奪われた熱量を算出し、算出された当該熱量に基づいてステージSTの温度を取得してもよい。また、目標温度は、制御装置Cntの記憶部に記憶されている制御レシピから取得される。次いで、工程ST12では、バルブ制御部206が、低温流体及び高温流体のうち一方の熱交換媒体が熱交換媒体流路の一端、即ち、第1の管22の第2の開口端22bに連続的に供給されるように、第1のバルブ102及び第2のバルブ104を制御する。この一方の熱交換媒体とは、低温流体及び高温流体のうちステージSTの温度を目標温度に近づけるための熱交換媒体である。例えば、ステージSTの目標温度が60℃であり、ステージSTの温度が25℃である場合には、バルブ制御部206は、例えば90°に設定された高温流体が第1の管22に連続的に供給されるように、第1のバルブ102の第3ポート102cを閉鎖させ、第2のバルブ104の第3ポート104cを開放させる。この工程ST10により、図12の期間τに示すようにステージSTの温度が目標温度に向かって急速に上昇する。
次いで、工程ST14では、制御装置Cntが、ステージSTの温度と目標温度との差異が所定の範囲内になったか否かを判定する。ステージSTの温度と目標温度との差異が所定の範囲内ではない場合には、ステージSTの温度と目標温度との差異が所定の範囲内になるまで工程ST14の判定が繰り返される。ステージの温度と目標温度との差異が所定の範囲内となった場合には、工程ST16が行われる。工程ST16では、バルブ制御部206が、低温流体及び高温流体のうち工程ST12で供給された熱交換媒体とは異なる他方の熱交換媒体が熱交換媒体流路の一端、即ち、第1の管22の第2の開口端22bに供給されるように、第1のバルブ102及び第2のバルブ104を制御する。例えば、第1の管22に対する高温流体の供給によってステージSTの温度が目標温度に近づくと、バルブ制御部206は、第1のバルブ102の第3ポート102cを開放し、第2のバルブ104の第3ポート104cを閉鎖する。これにより、低温流体が第1の管22から吐出される。その結果、図12の期間τに示すように、ステージSTの温度上昇が停止し、ステージSTが過剰に加熱されることが防止される。
次いで、工程ST18では、熱量取得部202が、ステージSTの温度を目標温度にするために必要な熱量を取得する。一実施形態では、制御装置Cntの記憶部には、ステージSTの目標温度と、この目標温度にするために必要な熱量とが関連付けられたテーブルが予め記憶されている。この目標温度と当該目標温度にするために必要な熱量との関係は、ステージSTの熱伝導率、放熱量等のステージSTの仕様によって定まるものであり、予めステージSTを用いた実測値から求められる。熱量取得部202は、記憶部に記憶された当該テーブルを参照することで目標温度にするために必要な熱量を取得する。
次いで、工程ST20では、供給時間算出部204が、熱量取得部202によって取得された必要な熱量に基づいて、熱交換媒体流路に対して交互に供給される低温流体及び高温流体の供給時間をそれぞれ算出する。ここで、交互に供給される低温流体及び高温流体の供給時間とは、熱交換媒体が循環流路内を一周するのに掛かる時間(以下、「循環周期」という。)当たりの低温流体の供給時間、及び、循環周期当たりの低温流体の供給時間をそれぞれ示している。言い換えれば、交互に供給される低温流体及び高温流体の供給時間とは、低温流体及び高温流体が交互に、且つ、循環周期で周期的に熱交換媒体流路FCに供給されるとした場合に、1周期当たりの低温流体の供給時間、及び、1周期当たりの高温流体の供給時間であるともいえる。以下、交互に供給される低温流体及び高温流体の供給時間の算出手法の一例について説明するが、低温流体及び高温流体の供給時間の算出手法は、以下の手法に限定されるものではない。
[低温流体及び高温流体の供給時間の算出手法の一例]
以下では、循環流路の流路長L、循環流路の径D、循環流路内を流通する熱交換媒体の流量F、高温流体の温度T、低温流体の温度T、高温流体及び低温流体の比熱C、及び、ステージSTの目標温度を次のように仮定して低温流体及び高温流体の供給時間の算出手法を説明する。
・循環流路の流路長L:6[m]
・循環流路の径D:6.35[mm]
・熱交換媒体の流量F:3[l/min]
・高温流体の温度T:90[℃]
・低温流体の温度T:30[℃]
・高温流体及び低温流体の比熱C:1[J/g・K]
・目標温度:60[℃]
まず供給時間算出部204は、循環流路の流路長L及び循環流路の径Dに基づいて、循環流路内を流通する熱交換媒体の総量Mを算出する。熱交換媒体の総量Mは、下記式(1)により算出される。
M=π/4・D・L=0.19(l)≒0.20(l) ・・・(1)
次いで、供給時間算出部204は、循環流路内を熱交換媒体が一周するのに掛かる時間、即ち循環周期Pを算出する。循環周期Pは、下記式(2)により算出される。
P=M/F・60=3.8(s)≒4.0(s) ・・・(2)
次いで、供給時間算出部204は、下記式(3)に示す関係式から循環周期P当たりの高温流体の供給量mを算出する。ここで、熱量取得部202によって取得されたステージSTを目標温度である60℃にするために必要な熱量Qが7[cal]であるとすると、高温流体の供給量mは、下記式(4)のように算出される。
Q=m・C・(T―T)+m・C・(T−T)=60m+1 ・・・(3)
=0.1[l] ・・・(4)
次いで、下記式(5)により、低温流体の供給量mが算出される。
=M−m=0.1[l] ・・・(5)
次いで、供給時間算出部204は、循環周期P当たりの高温流体の供給量m及び低温流体の供給量mに基づいて、循環周期P当たりの高温流体の供給時間t及び循環周期P当たりの低温流体の供給時間tを算出する。上記の例では、高温流体の供給量mと低温流体の供給量mとの比は1:1であるので、供給時間算出部204は、循環周期Pを高温流体の供給時間t、及び、低温流体の供給時間tに1:1で配分する。即ち、供給時間算出部204は、高温流体の供給時間tを2.0[s]と算出し、低温流体の供給時間tを2.0[s]と算出する。
次いで、工程ST22では、バルブ制御部206が、供給時間算出部204によって算出された高温流体の供給時間t及び低温流体の供給時間tで、低温流体及び高温流体が熱交換媒体流路の一端に交互に供給されるように、第1のバルブ102及び第2のバルブ104を制御する。具体的に、供給時間算出部204は、図12の期間τで示すように、循環周期Pの間に第1のバルブ102の第3ポート102cを低温流体の供給時間tだけ開放すると共に、第2のバルブ104の第3ポート104cを高温流体の供給時間tだけ開放する制御を繰り返す。上記の例では、4秒のうち、第1のバルブ102の第3ポート102cを2秒間開放し、第2のバルブ104の第3ポート104cを2秒間開放する制御を繰り返す。なお、バルブ制御部206は、第1のバルブ102の第3ポート102cを1秒間開放し、第2のバルブ104の第3ポート104cを1秒間開放する制御を、循環周期中に2回繰り返してもよい。このような制御により、高温流体及び低温流体は互いに混ざることなく、プレート2の裏面側2bに向けて第1の管22から交互に吐出される。交互に吐出される高温流体及び低温流体がプレート2に与える熱量は、熱量取得部202によって取得されたステージSTの温度を目標温度にするために必要な熱量である。したがって、かかる制御により、ステージSTの温度が目標温度に安定的に維持される。
なお、バルブ制御部206は、上述した第1〜第3の流通状態とは異なる流通態様となるように、バルブユニットVU1〜VU5の各バルブを制御することも可能である。例えば、バルブ制御部206は、第1の管22に対して低温流体を供給しつつ、第2の管を介して回収された熱交換媒体を第2の熱交換媒体供給装置100bに戻すように各バルブを制御することができる。更に、バルブ制御部206は、第1の管22に対して高温流体を供給しつつ第2の管を介して回収された熱交換媒体を第1の熱交換媒体供給装置100aに戻すように、各バルブを制御することもできる。一例では、バルブ制御部206は、第2の管24から回収された熱交換後の低温流体が第1の熱交換媒体供給装置100aの回収口R1に導入され、第2の管24から回収された熱交換後の高温流体が第2の熱交換媒体供給装置100bの回収口R2に導入されるように第3のバルブ116及び第4のバルブ118を制御してもよい。これにより、熱交換後の低温流体が第1の熱交換媒体供給装置100aで回収され、熱交換後の高温流体が第2の熱交換媒体供給装置100bで回収されることになる。よって、供給される熱交換媒体と回収される熱交換媒体との温度差を小さくすることができるので、第1の熱交換媒体供給装置100a及び第2の熱交換媒体供給装置100bの負荷を低減することが可能となる。
以上説明した温度制御システムでは、ステージSTの温度を目標温度にするために必要な熱量Qに基づいて、熱交換媒体流路FCに対して交互に供給される第1の熱交換媒体及び第2の熱交換媒体の供給時間をそれぞれ算出する。そして、算出された供給時間で第1の熱交換媒体及び第2の熱交換媒体が熱交換媒体流路に交互に供給されるように、第1のバルブ102及び第2のバルブ104の開閉を制御する。すなわち、温度制御システム1では、第1のバルブ102及び第2のバルブ104の開放時間を制御することによって、ステージの温度を制御している。したがって、温度制御システム1によれば、熱交換媒体の流量調整機構を用いることなくステージの温度を制御することができる。また、本温度制御システムでは、設定温度の異なる二つの熱交換媒体を予め混合して一定の目標温度にするためのタンクや攪拌部を設ける必要がない。よって、温度制御システム1では、簡易な構成でステージの温度を制御することが可能となる。
次に、別の実施形態に係る温度制御方法について説明する。図15は、別の実施形態に係る温度制御方法を示すフローチャートである。図15に示す温度制御方法では、ステージの温度を第1の目標温度にする制御、及び、ステージの温度を第2の目標温度にする制御が交互に行われる。第1の目標温度は、第2の目標温度よりも高い温度であり、例えば150℃である。第2の目標温度は、第1の目標温度よりも低い温度であり、例えば25℃である。図15に示す温度制御方法では、高温流体の温度が第1の目標温度よりも高い温度に調整され、低温流体の温度が第2の目標温度よりも低い温度に調整される。
図15に示す温度制御方法では、まずステージSTの温度が第1の温度になるように制御される。このために、工程ST30では、高温流体が熱交換媒体流路の一端、即ち、第1の管22の第2の開口端22bに連続的に供給されるように、第1のバルブ102及び第2のバルブ104が制御される。具体的には、第1のバルブ102の第3ポート102cが閉鎖され、第2のバルブ104の第3ポート104cが開放される。この工程ST30により、図16の期間τに示すようにステージSTの温度が第1の目標温度に向かって急速に上昇する。
次いで、工程ST31では、制御装置Cntが、ステージSTの温度と第1の目標温度との差異が所定の範囲内になったか否かを判定する。ステージSTの温度と第1の目標温度との差異が所定の範囲内ではない場合には、ステージSTの温度と第1の目標温度との差異が所定の範囲内になるまで工程ST31の判定が繰り返される。ステージSTの温度と第1の目標温度との差異が所定の範囲内となった場合には、工程ST32が行われる。
工程ST32では、バルブ制御部206が、低温流体が熱交換媒体流路の一端、即ち、第1の管22の第2の開口端22bに供給されるように、第1のバルブ102及び第2のバルブ104を制御する。具体的には、高温流体の供給によってステージSTの温度が第1の目標温度に近づくと、バルブ制御部206は、第1のバルブ102の第3ポート102cを開放し、第2のバルブ104の第3ポート104cを閉鎖する。これにより、低温流体が第1の管22から吐出される。その結果、図15の期間τに示すように、ステージSTの温度上昇が停止し、ステージSTが過剰に加熱されることが防止される。
次いで、工程ST33では、熱量取得部202が、ステージSTの温度を第1の目標温度にするために必要な熱量を取得する。次いで、工程ST34では、供給時間算出部204が、熱量取得部202によって取得された必要な熱量に基づいて、熱交換媒体流路に対して交互に供給される低温流体及び高温流体の供給時間をそれぞれ算出する。次いで、工程ST35では、バルブ制御部206が、供給時間算出部204によって算出された高温流体の供給時間及び低温流体の供給時間で、低温流体及び高温流体が熱交換媒体流路の一端に交互に供給されるように、第1のバルブ102及び第2のバルブ104を制御する。これら工程ST33、ST34、ST35において行われる演算及び制御は、図11に示す工程ST18、ST20、ST22において行われる演算及び制御と同様であるので、ここでは詳細な説明は省略する。このように低温流体及び高温流体が交互に供給されることによって、図15の期間τに示すように、ステージSTの温度が第1の目標温度に安定的に維持される。
次いで、ステージSTの温度を第2の目標温度にするために工程ST36が行われる。工程ST36では、低温流体が熱交換媒体流路の一端、即ち、第1の管22の第2の開口端22bに連続的に供給されるように、第1のバルブ102及び第2のバルブ104が制御される。具体的には、第1のバルブ102の第3ポート102cが開放され、第2のバルブ104の第3ポート104cが閉鎖される。この工程ST36により、図15の期間τに示すようにステージSTの温度が第2の目標温度に向かって急速に低下する。
次いで、工程ST37では、制御装置Cntが、ステージSTの温度と第2の目標温度との差異が所定の範囲内になったか否かを判定する。ステージSTの温度と第2の目標温度との差異が所定の範囲内ではない場合には、ステージSTの温度と第2の目標温度との差異が所定の範囲内になるまで工程ST37の判定が繰り返される。ステージSTの温度と第2の目標温度との差異が所定の範囲内となった場合には、工程ST38が行われる。
工程ST38では、バルブ制御部206が、高温流体が熱交換媒体流路の一端、即ち、第1の管22の第2の開口端22bに供給されるように、第1のバルブ102及び第2のバルブ104を制御する。具体的には、バルブ制御部206は、第1のバルブ102の第3ポート102cを閉鎖し、第2のバルブ104の第3ポート104cを開放する。これにより、高温流体が第1の管22から吐出される。その結果、図15の期間τに示すように、ステージSTの温度低下が停止し、ステージSTが過剰に冷却されることが防止される。
次いで、工程ST39では、熱量取得部202が、ステージSTの温度を第2の目標温度にするために必要な熱量を取得する。次いで、工程ST40では、供給時間算出部204が、熱量取得部202によって取得された必要な熱量に基づいて、熱交換媒体流路に対して交互に供給される低温流体及び高温流体の供給時間をそれぞれ算出する。次いで、工程ST41では、バルブ制御部206が、供給時間算出部204によって算出された高温流体の供給時間及び低温流体の供給時間で、低温流体及び高温流体が熱交換媒体流路の一端に交互に供給されるように、第1のバルブ102及び第2のバルブ104を制御する。これら工程ST39、ST40、ST41において行われる演算及び制御は、図11に示す工程ST18、ST20、ST22において行われる演算及び制御と同様であるので、ここでは詳細な説明は省略する。このように低温流体及び高温流体が交互に供給されることによって、図12の期間τで示すように、ステージSTの温度が第2の目標温度に安定的に維持される。
次いで、工程ST42が行われる。工程ST42では、終了条件を満たすか否かが判定される。終了条件を満たすか否かは、例えばステージSTの温度を第1の目標温度及び第2の目標温度に切り替えた回数が予め設定された回数に達したか否かによって判断されてもよい。工程ST42において終了条件を満たすと判定された場合には、図15に示す温度制御方法を終了する。一方、工程ST42において終了条件を満たさないと判定された場合には、終了条件を満たすまで工程ST30〜工程41が繰り返し行われる。
図15に示す温度制御方法では、第1のバルブ102の第3ポート102c及び第2のバルブ104の第3ポート104cの開放時間を制御することによって、ステージSTの温度を目標温度に維持している。よって、かかる方法では、熱交換媒体の流量調整機構を用いることなくステージSTの温度を安定させることができる。また、図15に示す温度制御方法では、ステージSTの目標温度が第1の目標温度から第2の目標温度に切り替わる際に、第2の目標温度よりも低温の低温流体を連続的に熱交換媒体流路に供給している。したがって、ステージの温度を第2の目標温度に短時間で近づけることができる。このように図15に示す方法によれば、温度制御の応答性を向上することができる。
以上、実施形態について説明してきたが、上述した実施形態に限定されることなく種々の変形態様を構成可能である。例えば、基板Wの処理中にステージSTに対して外部から熱が加えられる期間がある場合には、外部から熱が加えられる期間中は外部から加えられる熱を考慮した熱量Qを用いて、高温流体の供給時間t及び低温流体の供給時間tを算出してもよい。例えば、ステージSTに対してプラズマによる熱が加えられる場合には、テーブルに記憶されている必要熱量からプラズマによってステージSTに加えられる熱量を減算したものを必要な熱量Qとしてもよい。かかる構成では、図13に示すように、プラズマが発生する期間τ中は高温流体の供給時間tが短くなり、低温流体の供給時間tが長くなる。これにより、プラズマによってステージSTに入力される熱量の分だけ、熱交換媒体からステージSTに供給される熱量を減らすことができる。故に、ステージSTに外部から熱が入力された場合であっても、ステージSTの温度を目標温度に安定的に維持することが可能となる。
また、一実施形態では、バルブ制御部206は、目標温度と温度センサTSによって計測された熱交換媒体の温度との差異が所定の閾値よりも小さい場合には、熱交換媒体流路の他端、即ち、第2の管24の開口24aから排出された熱交換媒体が循環流路を介して第1の管22の第2の開口端22bに再び導入されるように、第1のバルブ102、第2のバルブ104、第3のバルブ116、第4のバルブ118の開閉を制御してもよい。これにより、図14に示すように、熱交換媒体流路内に新たな熱交換媒体を供給することなく、ステージの温度を略一定に維持することができる。また、熱交換媒体流路に熱交換媒体の供給を停止している間は、第1のバルブ102、第2のバルブ104、第3のバルブ116、第4のバルブ118の開閉を行う必要がないので、各種バルブの寿命を長期化することができる。なお、熱交換媒体を循環流路中で循環させ続けると、循環流路中に設けられた駆動部の動作によるエネルギー交換や循環流路中の熱損失等により、ステージSTの温度と目標温度との間にずれ(差異)が生じる場合がある。目標温度と熱交換媒体による温調温度との差異が所定の閾値よりも大きくなった場合には、再び低温流体及び高温流体を交互にステージSTに供給することで、ステージSTの温度を目標温度に維持することも可能である。
なお、上述の実施形態では、熱交換器6の第1の管22、当該第1の管を囲む空間Sを画成する隔壁20、及び、当該空間Sに連通する第2の管24が熱交換流路を提供するステージSTの温度を制御するシステムについて説明したが、温度制御システム1が提供されるステージは上述のステージSTに限定されない。例えば、周方向に沿って1以上の熱交換媒体流路が形成されたステージにおいて、当該熱交換媒体流路に対して低温流体及び高温流体を交互に供給することによって、当該ステージの温度を制御してもよい。また、上述の実施形態では、温度センサTSにおいて第2の管24の開口24aから排出された熱交換媒体の温度を計測することによってステージSTの温度を間接的に取得しているが、ステージSTの温度を測定する温度センサをステージSTに設けることによって、直接的にステージSTの温度を測定してもよい。
2…プレート、4…ケース、6…熱交換器、8…流路部、20…隔壁、22…第1の管、22a…第1の開口端、22b…第2の開口端、24…第2の管、26a,26b,26c,26d,26e…供給流路、28a,28b,28c,28d,28e…回収流路、40a,40b,40c,40d,40e…第1の配管、42a,42b,42c,42d,42e…第2の配管、44…低温流体供給路、45…低温流体回収路、46…高温流体供給路、47…高温流体回収路、50…プラズマ処理装置、52…処理容器、100a…第1の熱交換媒体供給装置、100b…第2の熱交換媒体供給装置、102…第1のバルブ、104…第2のバルブ、106…第1の供給ライン、108…第1の回収ライン、110…第2の供給ライン、112…第2の回収ライン、114…第1のバイパスライン、116…第3のバルブ、118…第4のバルブ、120…共通ライン、120a…第1のライン、120b…第2のライン、122…帰還ライン、124…第2のバイパスライン、202…熱量取得部、204…供給時間算出部、206…バルブ制御部、AS…収容空間、Cnt…制御装置、PS…処理空間、S…空間、ST…ステージ、TS…温度センサ、VU1,VU2,VU3,VU4,VU5…バルブユニット、W…基板。

Claims (7)

  1. 被処理体を支持するステージであり、一端及び他端を有し、該一端から該他端に熱交換媒体を流通させる熱交換媒体流路がその内部に形成された該ステージと、
    第1のバルブと、
    第2のバルブと、
    第1の温度に調整された第1の熱交換媒体を供給する供給口及び回収口を有する第1の熱交換媒体供給装置であり、前記供給口が前記第1のバルブを介して前記熱交換媒体流路の一端に接続される、該第1の熱交換媒体供給装置と、
    前記第1の温度よりも高い第2の温度に調整された第2の熱交換媒体を供給する供給口及び回収口を有する第2の熱交換媒体供給装置であり、前記供給口が前記第2のバルブを介して前記熱交換媒体流路の一端に接続される、該第2の熱交換媒体供給装置と、
    前記第1の熱交換媒体及び前記第2の熱交換媒体が前記熱交換媒体流路の一端に交互に供給されるように前記第1のバルブ及び前記第2のバルブを制御する制御装置と、
    を備え、
    前記制御装置は、
    前記ステージの温度を目標温度にするために必要な熱量を取得する熱量取得部と、
    前記必要な熱量に基づいて、前記熱交換媒体流路に対して交互に供給される第1の熱交換媒体及び第2の熱交換媒体の供給時間をそれぞれ算出する供給時間算出部と、
    前記供給時間算出部によって算出された前記供給時間で、前記第1の熱交換媒体及び前記第2の熱交換媒体が前記熱交換媒体流路の一端に交互に供給されるように、前記第1のバルブ及び前記第2のバルブを制御するバルブ制御部と、
    を含む、
    温度制御システム。
  2. 前記第1の熱交換媒体供給装置の回収口は、第3のバルブを介して前記熱交換媒体流路の他端に接続されており、
    前記第2の熱交換媒体供給装置の回収口は、第4のバルブを介して前記熱交換媒体流路の他端に接続されている、
    請求項1に記載の温度制御システム。
  3. 前記熱交換媒体流路の他端から排出された前記熱交換媒体の温度を計測する温度センサを更に備える、
    請求項2に記載の温度制御システム。
  4. 前記熱交換媒体流路の他端から排出された前記熱交換媒体を前記熱交換媒体流路の一端に導入するための循環流路を更に備え、
    前記バルブ制御部は、前記目標温度と前記温度センサによって計測された前記熱交換媒体の温度との差異が所定の閾値よりも小さい場合には、前記熱交換媒体流路の他端から排出された前記熱交換媒体が前記循環流路を介して前記熱交換媒体流路の一端に再び導入されるように、前記第1のバルブ、前記第2のバルブ、前記第3のバルブ、及び前記第4のバルブを制御する、
    請求項3に記載の温度制御システム。
  5. 前記バルブ制御部は、前記温度センサによって計測された前記熱交換媒体の温度に基づいて、前記熱交換媒体流路の一端から供給された前記第1の熱交換媒体が前記熱交換媒体流路の他端を介して前記第1の熱交換媒体供給装置の回収口に導入され、且つ、前記熱交換媒体流路の一端から供給された前記第2の熱交換媒体が前記熱交換媒体流路の他端を介して前記第2の熱交換媒体供給装置の回収口に導入されるように、前記第3のバルブ及び前記第4のバルブを制御する、
    請求項3又は4に記載の温度制御システム。
  6. 前記バルブ制御部は、
    前記第1の熱交換媒体及び前記第2の熱交換媒体が前記熱交換媒体流路に交互に供給されるように、前記第1のバルブ及び前記第2のバルブの開閉を制御するよりも前に、
    前記第1の熱交換媒体及び前記第2の熱交換媒体のうち、前記ステージの温度を前記目標温度に近づけるための一方の熱交換媒体が前記熱交換媒体流路の一端に連続的に供給されるように、前記第1のバルブ及び前記第2のバルブを制御し、且つ、
    前記一方の熱交換媒体の供給によって前記ステージの温度と前記目標温度との差異が所定の範囲内になった後に、前記第1の熱交換媒体及び前記第2の熱交換媒体のうち他方の熱交換媒体が前記熱交換媒体流路の一端に供給されるように、前記第1のバルブ及び前記第2のバルブを制御する、
    請求項1〜5の何れか一項に記載の温度制御システム。
  7. 被処理体を支持するステージであり、一端及び他端を有し、該一端から該他端に熱交換媒体を流通させる熱交換媒体流路がその内部に形成された該ステージと、
    第1のバルブと、
    第2のバルブと、
    第1の温度に調整された第1の熱交換媒体を供給する供給口及び回収口を有する第1の熱交換媒体供給装置であり、前記供給口が前記第1のバルブを介して前記熱交換媒体流路の一端に接続される、該第1の熱交換媒体供給装置と、
    前記第1の温度よりも高い第2の温度に調整された第2の熱交換媒体を供給する供給口及び回収口を有する第2の熱交換媒体供給装置であり、前記供給口が前記第2のバルブを介して前記熱交換媒体流路の一端に接続される、該第2の熱交換媒体供給装置と、
    前記第1の熱交換媒体及び前記第2の熱交換媒体が前記熱交換媒体流路の一端に交互に供給されるように前記第1のバルブ及び前記第2のバルブを制御する制御装置と、
    を備える温度制御システムを用いた温度制御方法であって、
    前記ステージの温度を目標温度にするために必要な熱量を取得する工程と、
    前記必要な熱量に基づいて、前記熱交換媒体流路に対して交互に供給される前記第1の熱交換媒体及び前記第2の熱交換媒体の供給時間をそれぞれ算出する工程と、
    前記第1の熱交換媒体及び前記第2の熱交換媒体の供給時間をそれぞれ算出する工程において算出された前記供給時間で、前記第1の熱交換媒体及び前記第2の熱交換媒体が前記熱交換媒体流路の一端に交互に供給されるように、前記第1のバルブ及び前記第2のバルブを制御する工程と、
    を含む、
    温度制御方法。
JP2014209699A 2014-10-14 2014-10-14 温度制御システム及び温度制御方法 Active JP5970040B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014209699A JP5970040B2 (ja) 2014-10-14 2014-10-14 温度制御システム及び温度制御方法
KR1020150140559A KR102548633B1 (ko) 2014-10-14 2015-10-06 온도 제어 시스템 및 온도 제어 방법
US14/879,438 US10312062B2 (en) 2014-10-14 2015-10-09 Temperature control system and temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014209699A JP5970040B2 (ja) 2014-10-14 2014-10-14 温度制御システム及び温度制御方法

Publications (2)

Publication Number Publication Date
JP2016081158A true JP2016081158A (ja) 2016-05-16
JP5970040B2 JP5970040B2 (ja) 2016-08-17

Family

ID=55655944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014209699A Active JP5970040B2 (ja) 2014-10-14 2014-10-14 温度制御システム及び温度制御方法

Country Status (3)

Country Link
US (1) US10312062B2 (ja)
JP (1) JP5970040B2 (ja)
KR (1) KR102548633B1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180051398A (ko) 2016-11-08 2018-05-16 도쿄엘렉트론가부시키가이샤 열교환 매체 공급 장치 및 기판 처리 장치
JP2019194753A (ja) * 2018-05-01 2019-11-07 株式会社ニシヤマ 温度制御システム、温度制御方法、製造装置および検査装置
JP2021002642A (ja) * 2019-06-18 2021-01-07 東京エレクトロン株式会社 基板処理装置
JP2021063273A (ja) * 2019-10-15 2021-04-22 東京エレクトロン株式会社 部材、部材の製造方法及び基板処理装置
WO2024048366A1 (ja) * 2022-09-01 2024-03-07 東京エレクトロン株式会社 温調システム及びプラズマ処理システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180053666A1 (en) * 2016-08-19 2018-02-22 Applied Materials, Inc. Substrate carrier with array of independently controllable heater elements
JP2018125461A (ja) * 2017-02-02 2018-08-09 東京エレクトロン株式会社 被加工物の処理装置
JP7066438B2 (ja) * 2018-02-13 2022-05-13 東京エレクトロン株式会社 冷却システム
JP7232651B2 (ja) * 2019-01-25 2023-03-03 東京エレクトロン株式会社 熱媒体の制御方法および熱媒体制御装置
CN112216585B (zh) * 2019-07-11 2022-12-30 中微半导体设备(上海)股份有限公司 一种等离子体处理器及基座温度控制方法
JP7306195B2 (ja) * 2019-09-27 2023-07-11 東京エレクトロン株式会社 基板を処理する装置及びステージをクリーニングする方法
JP7394668B2 (ja) * 2020-03-13 2023-12-08 東京エレクトロン株式会社 温度制御方法およびプラズマ処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296075A (ja) * 1997-04-23 1998-11-10 Lion Corp バッチ式反応器の温度制御装置、制御方法及び制御プログラムを記録した記録媒体
JP2014021828A (ja) * 2012-07-20 2014-02-03 Tokyo Electron Ltd 温度制御システムへの温調流体供給方法及び記憶媒体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508754B1 (ko) * 2003-12-22 2005-08-17 삼성전자주식회사 온도 컨트롤러 및 이를 갖는 식각 장치
JP5032269B2 (ja) * 2007-11-02 2012-09-26 東京エレクトロン株式会社 被処理基板の温度調節装置及び温度調節方法、並びにこれを備えたプラズマ処理装置
US8916793B2 (en) * 2010-06-08 2014-12-23 Applied Materials, Inc. Temperature control in plasma processing apparatus using pulsed heat transfer fluid flow

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296075A (ja) * 1997-04-23 1998-11-10 Lion Corp バッチ式反応器の温度制御装置、制御方法及び制御プログラムを記録した記録媒体
JP2014021828A (ja) * 2012-07-20 2014-02-03 Tokyo Electron Ltd 温度制御システムへの温調流体供給方法及び記憶媒体

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180051398A (ko) 2016-11-08 2018-05-16 도쿄엘렉트론가부시키가이샤 열교환 매체 공급 장치 및 기판 처리 장치
JP2018078158A (ja) * 2016-11-08 2018-05-17 東京エレクトロン株式会社 供給装置及び基板処理装置
US11004664B2 (en) 2016-11-08 2021-05-11 Tokyo Electron Limited Heat transfer medium supply system and substrate processing apparatus
JP2019194753A (ja) * 2018-05-01 2019-11-07 株式会社ニシヤマ 温度制御システム、温度制御方法、製造装置および検査装置
JP7128023B2 (ja) 2018-05-01 2022-08-30 株式会社ニシヤマ 温度制御システム、製造装置および検査装置
JP2021002642A (ja) * 2019-06-18 2021-01-07 東京エレクトロン株式会社 基板処理装置
JP7374016B2 (ja) 2019-06-18 2023-11-06 東京エレクトロン株式会社 基板処理装置
US11978614B2 (en) 2019-06-18 2024-05-07 Tokyo Electron Limited Substrate processing apparatus
JP2021063273A (ja) * 2019-10-15 2021-04-22 東京エレクトロン株式会社 部材、部材の製造方法及び基板処理装置
JP7467062B2 (ja) 2019-10-15 2024-04-15 東京エレクトロン株式会社 シリコン部材の製造方法及び造形装置
WO2024048366A1 (ja) * 2022-09-01 2024-03-07 東京エレクトロン株式会社 温調システム及びプラズマ処理システム

Also Published As

Publication number Publication date
JP5970040B2 (ja) 2016-08-17
KR102548633B1 (ko) 2023-06-28
KR20160043903A (ko) 2016-04-22
US10312062B2 (en) 2019-06-04
US20160104605A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
JP5970040B2 (ja) 温度制御システム及び温度制御方法
JP6018606B2 (ja) 温度制御可能なステージを含むシステム、半導体製造装置及びステージの温度制御方法
KR100905897B1 (ko) 탑재대의 온도 제어 장치 및 탑재대의 온도 제어 방법 및처리 장치 및 탑재대 온도 제어 프로그램
US8600543B2 (en) Apparatus and method for controlling temperature of semiconductor wafers
US11437259B2 (en) Stage, stage manufacturing method, and heat exchanger
US8410393B2 (en) Apparatus and method for temperature control of a semiconductor substrate support
KR101135746B1 (ko) 온도 제어 방법 및 장치
KR20180133536A (ko) 플라즈마 프로세싱 챔버 내의 웨이퍼 캐리어에 대한 진보된 온도 제어
WO2004079805A1 (ja) 基板処理装置及び温度調節装置
CN101982563A (zh) 等离子体处理装置
TW201318062A (zh) 載置台溫度控制裝置及基板處理裝置
KR20210067929A (ko) 반도체 공정설비용 브라인 공급 온도 제어 시스템
US10957517B2 (en) Substrate treating apparatus and temperature control method for gas distribution plate
JP2018082042A (ja) ステージ及び基板処理装置
US10658160B2 (en) Stage and substrate processing apparatus
US20220403509A1 (en) Vacuum processing apparatus and oxidizing gas removal method
US20220010428A1 (en) Substrate support, apparatus for processing substrate, and method of adjusting temperature of substrate
JP2018078158A (ja) 供給装置及び基板処理装置
KR20220134477A (ko) 온도 제어 장치, 기판 처리 장치 및 압력 제어 방법
JP2023098068A (ja) 温度制御システム、半導体製造装置および温度制御方法
KR101072532B1 (ko) 박막증착장치

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160708

R150 Certificate of patent or registration of utility model

Ref document number: 5970040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250