JP2016009594A - Fuel battery power generation device - Google Patents

Fuel battery power generation device Download PDF

Info

Publication number
JP2016009594A
JP2016009594A JP2014129526A JP2014129526A JP2016009594A JP 2016009594 A JP2016009594 A JP 2016009594A JP 2014129526 A JP2014129526 A JP 2014129526A JP 2014129526 A JP2014129526 A JP 2014129526A JP 2016009594 A JP2016009594 A JP 2016009594A
Authority
JP
Japan
Prior art keywords
desulfurization
fuel gas
gas supply
passage
supply passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014129526A
Other languages
Japanese (ja)
Inventor
哲 ▲吉▼田
哲 ▲吉▼田
Satoru Yoshida
*** 新井
Ryuki Arai
*** 新井
原 人志
Hitoshi Hara
人志 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2014129526A priority Critical patent/JP2016009594A/en
Publication of JP2016009594A publication Critical patent/JP2016009594A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a fuel battery power generation device that can supply reductant from the outside of equipment and reproduce desulfurization in the equipment at low cost with a simple construction.SOLUTION: A fuel battery power generation device 1 has a first branch passage 21 which is branched from an upstream-side fuel gas supply passage 15a and intercommunicates with a connection port 23 for connecting reductant supply means 40 which can supply reductant agent from the outside of an apparatus to a desulfurization unit 12, a second branch passage 22 which is branched from a downstream-side fuel gas supply passage 15b and intercommunicates with an exhaust port 24 for exhausting discharged gas from the desulfurization unit 12 to the outside of the apparatus, a first opening/closing valve 31 provided at the upstream side of the branch portion of the upstream-side fuel gas supply passage 15a, and a second opening/closing valve 32 provided to the downstream side of the branch portion of the downstream-side fuel gas supply passage 15b. The opening/closing valves 21, 22 are set to a valve-closed state when the desulfurization unit 12 is reproduced. The reductant supply means 40 is connected to the connection port 23, and the reductant is supplied to the desulfurization unit 12 while the discharged gas from the desulfurization unit 12 is exhausted from the exhaust port 24, thereby reducing and reproducing the desulfurization unit 12.

Description

本発明は燃料電池発電装置に関し、特に燃料ガスの脱硫を行う脱硫部の再生を行うものに関する。   The present invention relates to a fuel cell power generation device, and more particularly to a device that regenerates a desulfurization section that desulfurizes fuel gas.

従来から、空気と改質燃料ガス(水素含有ガス)との酸化還元反応によって化学エネルギーを電気エネルギーに変換することで電力を発生させ、この発電の際に副次的に発生する排熱を湯水として回収する燃料電池コージェネレーションシステムが実用に供されている。この燃料電池コージェネレーションシステムは、発電を行なう燃料電池発電装置、排熱回収による熱交換後の湯水を貯湯する貯湯給湯装置、燃料電池発電装置と貯湯給湯装置との間に湯水を循環させる排熱回収循環回路等を備えている。   Conventionally, electric power is generated by converting chemical energy into electrical energy through an oxidation-reduction reaction between air and reformed fuel gas (hydrogen-containing gas), and the waste heat generated as a result of this power generation is generated as hot water. The fuel cell cogeneration system to be recovered as is being put into practical use. This fuel cell cogeneration system includes a fuel cell power generation device that generates power, a hot water hot water supply device that stores hot water after heat exchange by exhaust heat recovery, and exhaust heat that circulates hot water between the fuel cell power generation device and the hot water storage hot water supply device. A recovery circuit is provided.

上記の燃料電池発電装置は、空気と改質燃料ガスとで発電を行なう燃料電池セルスタックとこの燃料電池セルスタックに供給する改質燃料ガスを純水(水蒸気)と燃料ガスから生成する燃料改質器及び蒸発器を有する燃料電池発電部、この燃料電池発電部からの排気ガスを外部に排出する排気通路、この排気通路に設置され且つ燃料電池発電部からの排気ガスと貯湯給湯装置の貯湯タンクに蓄えられた湯水との間で熱交換する排熱回収熱交換器等を備えている。   The fuel cell power generator described above is a fuel cell stack that generates power with air and reformed fuel gas, and a fuel reformer that generates reformed fuel gas to be supplied to the fuel cell stack from pure water (steam) and fuel gas. A fuel cell power generation unit having a gas generator and an evaporator, an exhaust passage for exhausting exhaust gas from the fuel cell power generation unit to the outside, an exhaust gas installed in the exhaust passage and the hot water storage hot water storage device An exhaust heat recovery heat exchanger that exchanges heat with hot water stored in the tank is provided.

ところで、上記の燃料改質器に供給される燃料ガスには、付臭材として硫黄化合物が混合されている都市ガスやLPG等が使用されている。このため、燃料改質器に硫黄化合物を含んだ燃料ガスが直接供給されると、燃料改質器の触媒が硫黄化合物によって劣化してしまうという問題がある。そこで、従来では、燃料ガス中の硫黄化合物を除去する為に、燃料ガス供給通路の途中部に脱硫部が設けられている。   By the way, the city gas, LPG, etc. in which the sulfur compound is mixed as an odorant are used for the fuel gas supplied to said fuel reformer. For this reason, when the fuel gas containing a sulfur compound is directly supplied to the fuel reformer, there is a problem that the catalyst of the fuel reformer is deteriorated by the sulfur compound. Therefore, conventionally, in order to remove sulfur compounds in the fuel gas, a desulfurization section is provided in the middle of the fuel gas supply passage.

上記の脱硫部には、一般的に、燃料ガス中の硫黄化合物を吸着するゼオライトやシリカゲル、活性炭等の常温で機能を発揮する吸着型の常温脱硫剤や、脱硫前の燃料ガスに水素を添加してから高温環境下で脱硫を行なう超高次脱硫剤(水素添加型脱硫剤)等が搭載されている。   In the above desulfurization section, an adsorption-type room temperature desulfurization agent that functions at room temperature, such as zeolite, silica gel, activated carbon, etc., that adsorbs sulfur compounds in fuel gas, or hydrogen is added to the fuel gas before desulfurization Then, an ultra-high order desulfurization agent (hydrogenation type desulfurization agent) that performs desulfurization in a high temperature environment is mounted.

ところで、脱硫部に搭載された脱硫剤の脱硫性能が低下した場合に、脱硫剤の交換を行わずに脱硫性能を回復する技術が一般に知られている。例えば、特許文献1の脱硫剤回復方法においては、脱硫器の下流側に設置された開閉弁を閉弁状態に設定し、燃料ガス供給通路から分岐してバーナに連なる配管の遮蔽弁を開弁状態に設定し、脱硫器の上流側の燃料ガス昇圧器を逆回転させて脱硫器内に負圧を発生させることで、脱硫器内の常温脱硫剤に吸着された硫黄分を脱離させ、この脱離された硫黄分を配管を通してバーナに送って燃焼処理することで、脱硫剤の脱硫性能を回復する技術が開示されている。   By the way, when the desulfurization performance of the desulfurization agent mounted in the desulfurization part falls, the technique which recovers desulfurization performance without replacing | exchanging a desulfurization agent is generally known. For example, in the desulfurization agent recovery method of Patent Document 1, an on-off valve installed on the downstream side of the desulfurizer is set to a closed state, and a shielding valve for a pipe branched from the fuel gas supply passage and connected to the burner is opened. Set the state, reverse rotation of the fuel gas booster upstream of the desulfurizer to generate a negative pressure in the desulfurizer, desorb the sulfur adsorbed by the room temperature desulfurization agent in the desulfurizer, A technique for recovering the desulfurization performance of a desulfurizing agent by sending the desorbed sulfur content to a burner through a pipe and performing combustion treatment is disclosed.

また、特許文献2の脱硫剤回復方法においては、並列状態に配置された2つの脱硫器のうちの一方の脱硫器を燃料脱硫用とし、他方の脱硫器を脱硫剤再生用となるように交互に切換え、脱硫剤再生用の脱硫器において、セルスタックで発生したアノードオフガスを、アノードオフガス用管路を通して脱硫器に供給して脱硫剤から硫黄分を除去し、硫黄分を含むアノードオフガスを、再生用ガス管路を流して硫化水素トラップで硫黄分を除去した後にバーナに送って燃焼処理することで、脱硫剤の脱硫性能を回復する技術が開示されている。   Further, in the desulfurization agent recovery method of Patent Document 2, one of the two desulfurizers arranged in parallel is used for fuel desulfurization, and the other desulfurizer is alternately used for desulfurization agent regeneration. In the desulfurizer for regeneration of the desulfurizing agent, the anode offgas generated in the cell stack is supplied to the desulfurizer through the anode offgas conduit to remove sulfur from the desulfurizing agent, and the anode offgas containing sulfur is A technique for recovering the desulfurization performance of a desulfurizing agent by flowing through a regeneration gas line and removing sulfur with a hydrogen sulfide trap and then sending it to a burner for combustion treatment is disclosed.

特開2006−260843号公報JP 2006-260843 A 特開2007−103078号公報JP 2007-103078 A

しかし、特許文献1の脱硫剤回復方法は、燃料ガス昇圧器を逆回転させて発生する負圧を利用することで、常温脱硫剤の表面に吸着した硫黄分を物理的に脱離する技術ではあるが、高温環境下における化学反応を介して脱硫剤に取り込んだ硫黄分を脱離する技術ではない。つまり、脱硫剤に化学反応を介して取り込んだ硫黄分を除去する為に、一般的には、水素還元を行う必要があるので、特許文献1のような硫黄分を物理的に除去する技術を採用することができない。   However, the desulfurization agent recovery method of Patent Document 1 uses a negative pressure generated by reversing the fuel gas booster to physically desorb sulfur adsorbed on the surface of the room temperature desulfurization agent. However, it is not a technique for desorbing sulfur contained in a desulfurizing agent through a chemical reaction in a high temperature environment. In other words, in order to remove the sulfur content taken into the desulfurization agent through a chemical reaction, it is generally necessary to perform hydrogen reduction, so a technique for physically removing the sulfur content as in Patent Document 1 is required. It cannot be adopted.

また、特許文献2の脱硫剤回復方法は、改質燃料ガスに含まれる水素を再利用して脱硫剤の再生を行っているが、2つの脱硫器間で燃料脱硫と脱硫剤再生とを交互に繰り返すため、脱硫剤の必要量が増え、さらに、アノードオフガス用管路や再生用ガス管路、これら管路に設置された各種弁類、硫化水素トラップ等の多数の脱硫回復用の器具を他の発電用の器具と共に1つの装置として一体的に組み立てる必要があるので、部品点数が増加する上、システムが複雑化し、結果的にコスト高となる問題がある。   Further, in the desulfurization agent recovery method of Patent Document 2, hydrogen contained in the reformed fuel gas is reused to regenerate the desulfurization agent. However, fuel desulfurization and desulfurization agent regeneration are alternately performed between the two desulfurizers. Therefore, the required amount of desulfurizing agent is increased, and further, a number of desulfurization recovery devices such as anode off-gas pipelines, regeneration gas pipelines, various valves installed in these pipelines, and hydrogen sulfide traps are installed. Since it is necessary to assemble it as one device together with other power generation devices, the number of parts increases and the system becomes complicated, resulting in high costs.

本発明の目的は、燃料電池発電装置において、簡単な構造で且つ低コストで脱硫剤の再生が可能なもの、器具外から還元剤を供給して器具内の脱硫剤の再生が可能なもの、等を提供することである。   An object of the present invention is a fuel cell power generation device that has a simple structure and is capable of regenerating a desulfurizing agent at a low cost, a device that can supply a reducing agent from outside the instrument and regenerate the desulfurizing agent in the instrument, Etc. is to provide.

請求項1の燃料電池発電装置は、セルスタックと、燃料ガス中の硫黄化合物を吸着除去する脱硫剤を有する脱硫部と、この脱硫部において脱硫された燃料ガスを改質して前記セルスタックに供給する改質部と、前記脱硫部に燃料ガスを供給する上流側燃料ガス供給通路と、前記脱硫部と前記改質部とを接続する下流側燃料ガス供給通路とを備えた燃料電池発電装置において、前記上流側燃料ガス供給通路から分岐して、器具外から前記脱硫部に還元剤を供給可能な還元剤供給手段を接続する為の接続口に連通する第1分岐通路と、前記下流側燃料ガス供給通路から分岐して、器具外へ前記脱硫部からの排気を排出する為の排出口に連通する第2分岐通路と、前記上流側燃料ガス供給通路の分岐部より上流側に設けられた第1開閉弁と、前記下流側燃料ガス供給通路の分岐部より下流側に設けられた第2開閉弁とを備え、前記脱硫部の再生時には、前記第1,第2開閉弁を閉弁状態に設定し、前記還元剤供給手段を前記接続口に接続し、前記還元剤供給手段から前記脱硫部へ還元剤を供給すると共に前記脱硫部からの排気を排出口から排出することで、前記脱硫部の還元・再生を行うことを特徴としている。   The fuel cell power generator according to claim 1 is a cell stack, a desulfurization section having a desulfurizing agent that adsorbs and removes sulfur compounds in the fuel gas, and reforms the fuel gas desulfurized in the desulfurization section to form the cell stack. A fuel cell power generator comprising: a reforming section to be supplied; an upstream fuel gas supply passage for supplying fuel gas to the desulfurization section; and a downstream fuel gas supply passage for connecting the desulfurization section and the reforming section A first branch passage that branches from the upstream fuel gas supply passage and communicates with a connection port for connecting a reducing agent supply means capable of supplying a reducing agent from outside the instrument to the desulfurization section; and the downstream side A second branch passage that branches off from the fuel gas supply passage and communicates with a discharge port for discharging exhaust gas from the desulfurization section to the outside of the instrument; and provided upstream of the branch portion of the upstream fuel gas supply passage. The first on-off valve and the lower A second on-off valve provided on the downstream side of the branch part of the side fuel gas supply passage, and when the desulfurization part is regenerated, the first and second on-off valves are set in a closed state, and the reducing agent supply A means is connected to the connection port, the reducing agent is supplied from the reducing agent supply means to the desulfurization unit, and exhaust from the desulfurization unit is discharged from the discharge port, thereby reducing and regenerating the desulfurization unit. It is characterized by.

請求項2の燃料電池発電装置は、請求項1の発明において、前記脱硫部をバイパスして前記上流側燃料ガス供給通路と前記下流側燃料ガス供給通路とを接続するバイパス通路を備え、前記脱硫部の再生時には、前記バイパス通路を通して燃料ガスを前記改質部へ供給することで、発電運転を行うことを特徴としている。   According to a second aspect of the present invention, there is provided the fuel cell power generation device according to the first aspect of the invention, further comprising a bypass passage that bypasses the desulfurization section and connects the upstream fuel gas supply passage and the downstream fuel gas supply passage. At the time of regeneration, the power generation operation is performed by supplying fuel gas to the reforming section through the bypass passage.

請求項3の燃料電池発電装置は、請求項2の発明において、前記バイパス通路を含む燃料ガス供給通路には、常温脱硫剤を有する脱硫手段が設けられていることを特徴としている。   According to a third aspect of the present invention, there is provided the fuel cell power generator according to the second aspect, wherein the fuel gas supply passage including the bypass passage is provided with a desulfurization means having a room temperature desulfurization agent.

請求項1の発明によれば、燃料電池発電装置は、上流側燃料ガス供給通路から分岐して、器具外から脱硫部に還元剤を供給可能な還元剤供給手段を接続する為の接続口に連通する第1分岐通路と、下流側燃料ガス供給通路から分岐して、器具外へ脱硫部からの排気を排出する為の排出口に連通する第2分岐通路と、上流側燃料ガス供給通路の分岐部より上流側に設けられた第1開閉弁と、下流側燃料ガス供給通路の分岐部より下流側に設けられた第2開閉弁とを備え、脱硫部の再生時には、第1,第2開閉弁を閉弁状態に設定し、還元剤供給手段を接続口に接続し、還元剤供給手段から脱硫部へ還元剤を供給すると共に脱硫部からの排気を排出口から排出することで、脱硫部の還元・再生を行うので、脱硫部の再生を行う場合には、器具外から還元剤を供給して器具内の脱硫部(脱硫剤)の還元・再生を行うことができる。   According to the first aspect of the present invention, the fuel cell power generator branches from the upstream fuel gas supply passage and is connected to a connection port for connecting a reducing agent supply means capable of supplying a reducing agent from the outside of the instrument to the desulfurization section. A first branch passage that communicates, a second branch passage that branches off from the downstream fuel gas supply passage and communicates with an exhaust port for discharging exhaust gas from the desulfurization unit to the outside of the instrument, and an upstream fuel gas supply passage A first on-off valve provided on the upstream side of the branch portion; and a second on-off valve provided on the downstream side of the branch portion of the downstream fuel gas supply passage. By setting the on-off valve to the closed state, connecting the reducing agent supply means to the connection port, supplying the reducing agent from the reducing agent supply means to the desulfurization unit, and exhausting the exhaust from the desulfurization unit through the discharge port, desulfurization When the desulfurization part is regenerated, it must be removed from the equipment. By supplying the reducing agent can be carried out reduction and regeneration of the desulfurization unit in the instrument (desulfurizing agent).

即ち、第1,第2開閉弁を閉弁状態に設定することで、第1,第2分岐通路からなる脱硫剤再生用の通路が構成され、還元剤供給手段を接続口に接続するだけで、脱硫部への還元剤の供給が可能となるので、簡単な構造でもって脱硫部の再生を行うことができ、脱硫剤の再生を容易に行えるので、器具の寿命相当分の脱硫剤を搭載する必要がなくなり、脱硫剤量を低減することができる。また、器具内に還元剤供給手段や排気処理手段等を予め組み込む必要がないので、部品点数が減少し、システムが簡略化し、燃料電池発電装置の全体のコストが低減する。   That is, by setting the first and second on-off valves to the closed state, a desulfurization agent regeneration passage composed of the first and second branch passages is formed, and the reductant supply means is simply connected to the connection port. Since the reducing agent can be supplied to the desulfurization section, the desulfurization section can be regenerated with a simple structure, and the desulfurization agent can be easily regenerated. Therefore, the amount of the desulfurizing agent can be reduced. Further, since it is not necessary to previously incorporate a reducing agent supply means, an exhaust treatment means, etc. in the instrument, the number of parts is reduced, the system is simplified, and the overall cost of the fuel cell power generator is reduced.

請求項2の発明によれば、脱硫部をバイパスして上流側燃料ガス供給通路と下流側燃料ガス供給通路とを接続するバイパス通路を備え、脱硫部の再生時には、バイパス通路を通して燃料ガスを改質部へ供給することで、発電運転を行うので、発電運転に伴い発生する熱を利用して脱硫部を加熱した状態で脱硫部の再生を行うことができる   According to the second aspect of the present invention, the desulfurization section is bypassed to connect the upstream side fuel gas supply path and the downstream side fuel gas supply path, and the fuel gas is modified through the bypass path when the desulfurization section is regenerated. Since the power generation operation is performed by supplying to the mass part, the desulfurization part can be regenerated in a state where the desulfurization part is heated using the heat generated during the power generation operation.

請求項3の発明によれば、バイパス通路を含む燃料ガス供給通路には、常温脱硫剤を有する脱硫手段が設けられているので、脱硫部の再生時に発電運転を停止せずに行う際には、脱硫手段によって燃料ガス供給通路を流れる燃料ガスを脱硫することができる。   According to the invention of claim 3, since the fuel gas supply passage including the bypass passage is provided with the desulfurization means having the room temperature desulfurization agent, when performing the power generation operation without stopping during the regeneration of the desulfurization section, The fuel gas flowing through the fuel gas supply passage can be desulfurized by the desulfurization means.

本発明の実施例1に係る脱硫部の再生時における燃料電池発電装置の概略構成図である。It is a schematic block diagram of the fuel cell power generator at the time of regeneration of a desulfurization part concerning Example 1 of the present invention. 通常の発電運転時の燃料電池発電装置の概略構成図である。It is a schematic block diagram of the fuel cell power generation device at the time of normal power generation operation. 実施例2に係る脱硫部の再生時における燃料電池発電装置の概略構成図である。FIG. 3 is a schematic configuration diagram of a fuel cell power generation device during regeneration of a desulfurization unit according to a second embodiment. 通常の発電運転時の燃料電池発電装置の概略構成図である。It is a schematic block diagram of the fuel cell power generation device at the time of normal power generation operation.

以下、本発明を実施するための形態について実施例に基づいて説明する。   Hereinafter, modes for carrying out the present invention will be described based on examples.

先ず、燃料電池発電装置1の全体構成について説明する。
図1,図2に示すように、燃料電池発電装置1は、燃料電池発電モジュール2、カソード空気供給手段3、燃料改質用空気供給手段4、排熱回収手段(図示略)、純水供給手段5、水素再利用手段6、燃料ガス供給手段7、脱硫部再生手段8、制御ユニット9、外装ケース10等を備え、燃料電池発電モジュール2にて発電された直流電力がインバータを介して交流電力に変換されて外部に出力される。
First, the overall configuration of the fuel cell power generator 1 will be described.
As shown in FIGS. 1 and 2, the fuel cell power generation apparatus 1 includes a fuel cell power generation module 2, a cathode air supply means 3, a fuel reforming air supply means 4, an exhaust heat recovery means (not shown), and pure water supply. Means 5, hydrogen recycling means 6, fuel gas supply means 7, desulfurization section regeneration means 8, control unit 9, exterior case 10, etc., and the DC power generated by the fuel cell power generation module 2 is exchanged via an inverter. It is converted into electric power and output to the outside.

尚、この燃料電池発電装置1は、例えば、排熱回収手段の熱交換器による熱交換後の湯水を貯湯する貯湯給湯装置と、この貯湯給湯装置と燃料電池発電装置1とに亙って湯水を循環させる為の排熱回収循環回路等と組み合わせることで燃料電池コージェネレーションシステムを構成することができるが、燃料電池発電装置1以外の構成の詳細な説明は省略する。   The fuel cell power generation apparatus 1 includes, for example, a hot water storage and hot water storage apparatus that stores hot water after heat exchange by the heat exchanger of the exhaust heat recovery means, and the hot water storage apparatus and the fuel cell power generation apparatus 1. The fuel cell cogeneration system can be configured by combining with an exhaust heat recovery circuit for circulating the fuel, but detailed description of the configuration other than the fuel cell power generator 1 is omitted.

次に、燃料電池発電モジュール2について説明する。
図1に示すように、燃料電池発電モジュール2は、燃料電池発電部11、燃料ガス中の硫黄化合物を吸着除去する超高次脱硫剤12bを有する脱硫部12、燃料電池発電部11と脱硫部12等を収納した薄鋼板製の直方体状のケース部材13等を備えている。ケース部材13の内部には、燃料電池発電部11と脱硫部12の周囲を覆うように石膏ボードからなる断熱材が収納されている。
Next, the fuel cell power generation module 2 will be described.
As shown in FIG. 1, the fuel cell power generation module 2 includes a fuel cell power generation unit 11, a desulfurization unit 12 having an ultrahigh-order desulfurization agent 12 b that adsorbs and removes sulfur compounds in fuel gas, a fuel cell power generation unit 11 and a desulfurization unit. A rectangular parallelepiped case member 13 or the like made of a thin steel plate containing 12 or the like is provided. Inside the case member 13, a heat insulating material made of gypsum board is accommodated so as to cover the periphery of the fuel cell power generation unit 11 and the desulfurization unit 12.

燃料電池発電部11は、複数の燃料電池セルで構成された燃料電池セルスタック11a11a、燃料ガスに混合する為の水蒸気を生成する蒸発器11b、脱硫部12において脱硫された燃料ガスと空気と水蒸気とを混合して反応(所謂、水蒸気改質)させて改質燃料ガスを生成して燃料電池セルスタック11aに供給する燃料改質器11c(改質部に相当する)、燃料電池セルスタック11aによる発電に伴い生じる残余燃料ガスを燃焼処理するオフガス燃焼室11d、このオフガス燃焼室11dの燃焼ガスによって加熱される空気用熱交換器11e等を備え、燃料改質器11cによって改質された改質燃料ガス及び酸化剤としての空気を燃料電池セルスタック11aで高温の環境下で化学反応させることで発電を行うものである。   The fuel cell power generation unit 11 includes a fuel cell stack 11a11a composed of a plurality of fuel cells, an evaporator 11b that generates water vapor for mixing with fuel gas, and fuel gas, air, and water vapor desulfurized in the desulfurization unit 12. And a fuel reformer 11c (corresponding to a reforming unit) that generates a reformed fuel gas and reacts (so-called steam reforming) and supplies it to the fuel cell stack 11a, and the fuel cell stack 11a The off-gas combustion chamber 11d that combusts the remaining fuel gas generated by the power generation by the air, the air heat exchanger 11e that is heated by the combustion gas in the off-gas combustion chamber 11d, and the like are reformed by the fuel reformer 11c. Electricity is generated by chemically reacting the fuel gas and air as an oxidant in a high temperature environment in the fuel cell stack 11a.

燃料電池発電部11から排出される排気ガスは、排気通路14に設けられた排熱回収手段の熱交換器にて排熱回収循環回路を循環する湯水との間で熱交換され温度が低下した後に外部に排出される。蒸発器11bは、燃料ガスに混合する為の水蒸気を生成して燃料改質器11cに供給するものである。燃料改質器11cは、ニッケルや白金等の改質触媒を有し、脱硫された燃料ガスと空気と水蒸気とを混合して反応させて改質燃料ガスを生成する。尚、本実施例では、蒸発器11bと燃料改質器11cとを別体に構成しているが、一体的に構成しても良い。   The exhaust gas discharged from the fuel cell power generation unit 11 is heat-exchanged with the hot water circulating in the exhaust heat recovery circuit in the heat exchanger of the exhaust heat recovery means provided in the exhaust passage 14, and the temperature decreases. Later it is discharged outside. The evaporator 11b produces | generates the water vapor | steam for mixing with fuel gas, and supplies it to the fuel reformer 11c. The fuel reformer 11c has a reforming catalyst such as nickel or platinum, and generates a reformed fuel gas by mixing and reacting the desulfurized fuel gas, air, and water vapor. In this embodiment, the evaporator 11b and the fuel reformer 11c are configured separately, but may be configured integrally.

カソード空気供給手段3は、外部から空気を発電空気ブロワに取り込み、この取り込まれた空気を、発電空気通路3aを介して燃料電池発電部11の空気用熱交換器11eに供給する。燃料改質用空気供給手段4は、外部から燃料改質用の空気を改質空気ブロワに取り込み、この取り込まれた燃料改質用の空気を、改質空気通路4aを介して燃料電池発電部11の蒸発器11b及び燃料改質器11cに供給する。   The cathode air supply means 3 takes air from the outside into the power generation air blower, and supplies the taken air to the air heat exchanger 11e of the fuel cell power generation unit 11 via the power generation air passage 3a. The fuel reforming air supply means 4 takes in the fuel reforming air from the outside into the reforming air blower, and the fuel reforming air is taken in via the reforming air passage 4a. 11 to the evaporator 11b and the fuel reformer 11c.

排気通路14の途中部に設けられた排熱回収手段は、排熱回収循環回路を流れる湯水を利用して、排気通路14を流れる排気から排熱を回収する。純水供給手段5は、排熱回収手段で凝縮された凝縮水を回収し、凝縮水から不純物を取り除き、凝縮水から生成された純水を貯留した後に純水供給通路5aを介して燃料電池発電部11の蒸発器11b及び燃料改質器11cに供給する。   The exhaust heat recovery means provided in the middle part of the exhaust passage 14 recovers exhaust heat from the exhaust flowing through the exhaust passage 14 using hot water flowing through the exhaust heat recovery circuit. The pure water supply means 5 recovers the condensed water condensed by the exhaust heat recovery means, removes impurities from the condensed water, stores the pure water generated from the condensed water, and then stores the pure water through the pure water supply passage 5a. It supplies to the evaporator 11b and the fuel reformer 11c of the electric power generation part 11.

水素再利用手段6は、水素回収通路6a、気水分離器6b、水素供給通路6c等を備え、燃料改質器11cからの改質燃料ガスの一部を、水素回収通路6aを介して気水分離用の気水分離器6bに送り、水素供給用開閉弁6dの開弁に伴い気水分離器6bから水素供給通路6cを介して改質燃料ガス(水素ガス)を燃料ガス供給通路15に供給する。水素再利用手段6は、例えば、燃料ガス中の水素濃度が0.7〜1.5%程度になるように燃料ガスに水素を添加する。   The hydrogen recycling means 6 includes a hydrogen recovery passage 6a, a steam / water separator 6b, a hydrogen supply passage 6c, and the like, and a part of the reformed fuel gas from the fuel reformer 11c is removed via the hydrogen recovery passage 6a. The fuel gas supply passage 15 is fed with reformed fuel gas (hydrogen gas) through the hydrogen supply passage 6c from the steam / water separator 6b when the hydrogen supply opening / closing valve 6d is opened. To supply. The hydrogen recycling means 6 adds hydrogen to the fuel gas so that the hydrogen concentration in the fuel gas becomes about 0.7 to 1.5%, for example.

次に、燃料ガス供給手段7について説明する。
図1に示すように、燃料ガス供給手段7は、燃料ガス供給通路15、燃料ガス昇圧ブロワ16、脱硫部12、冷却器17、補助脱硫部18(脱硫手段に相当する)等を備え、ガス供給源からの燃料ガスに水素供給通路6cから水素を添加し、この水素が添加された燃料ガスを燃料ガス昇圧ブロワ16に取り込み、この昇圧された燃料ガスを脱硫部12又は補助脱硫部18で脱硫し、この脱硫された燃料ガスを燃料電池発電部11の蒸発器11bを通して燃料改質器11cに供給する。
Next, the fuel gas supply means 7 will be described.
As shown in FIG. 1, the fuel gas supply means 7 includes a fuel gas supply passage 15, a fuel gas booster blower 16, a desulfurization section 12, a cooler 17, an auxiliary desulfurization section 18 (corresponding to a desulfurization means), etc. Hydrogen is added from the hydrogen supply passage 6c to the fuel gas from the supply source, the fuel gas to which this hydrogen has been added is taken into the fuel gas booster blower 16, and the boosted fuel gas is supplied to the desulfurization unit 12 or the auxiliary desulfurization unit 18. The desulfurized fuel gas is supplied to the fuel reformer 11c through the evaporator 11b of the fuel cell power generation unit 11.

燃料ガス供給通路15は、脱硫部12に燃料ガスを供給する上流側燃料ガス供給通路15a、燃料改質器11cに脱硫後の燃料ガスを供給する下流側燃料ガス供給通路15bを有している。上流側燃料ガス供給通路15aの上流端は、ガス供給源に接続され上流側燃料ガス供給通路15aの下流端は、脱硫部12の導入口に接続されている。上流側燃料ガス供給通路15aの途中部には、燃料ガス昇圧ブロワ16と第1開閉弁31とが設けられている。   The fuel gas supply passage 15 has an upstream fuel gas supply passage 15a for supplying fuel gas to the desulfurization section 12, and a downstream fuel gas supply passage 15b for supplying fuel gas after desulfurization to the fuel reformer 11c. . The upstream end of the upstream fuel gas supply passage 15a is connected to a gas supply source, and the downstream end of the upstream fuel gas supply passage 15a is connected to the inlet of the desulfurization unit 12. A fuel gas booster blower 16 and a first on-off valve 31 are provided in the middle of the upstream fuel gas supply passage 15a.

下流側燃料ガス供給通路15bの上流端は、脱硫部12の導出口に接続され、下流側燃料ガス供給通路15bの下流端は、蒸発器11b及び燃料改質器11cに接続されている。下流側燃料ガス供給通路15bの途中部には、上流から下流に向かって、冷却器17と第2開閉弁32と補助脱硫部18と逆止弁19とが設けられている。冷却器17は、第2開閉弁32の耐熱温度以下となるように燃料ガスを冷却するものである。   The upstream end of the downstream fuel gas supply passage 15b is connected to the outlet of the desulfurization section 12, and the downstream end of the downstream fuel gas supply passage 15b is connected to the evaporator 11b and the fuel reformer 11c. A cooler 17, a second on-off valve 32, an auxiliary desulfurization unit 18, and a check valve 19 are provided in the middle of the downstream fuel gas supply passage 15b from upstream to downstream. The cooler 17 cools the fuel gas so as to be equal to or lower than the heat resistant temperature of the second on-off valve 32.

次に、脱硫部12について説明する。
図1に示すように、脱硫部12は、燃料改質器11cに供給される燃料ガスに含まれる硫黄化合物の除去(脱硫)を行う為のものであり、燃料ガス供給通路15の途中部に設けられている。この脱硫部12は、燃料電池発電部11の発電運転中に高温となる燃料電池発電部11の近傍の高温領域(例えば200〜300℃程度)に配置されている。
Next, the desulfurization part 12 is demonstrated.
As shown in FIG. 1, the desulfurization section 12 is for removing sulfur compounds contained in the fuel gas supplied to the fuel reformer 11 c (desulfurization), and is located in the middle of the fuel gas supply passage 15. Is provided. This desulfurization part 12 is arrange | positioned in the high temperature area | region (for example, about 200-300 degreeC) of the vicinity of the fuel cell power generation part 11 which becomes high temperature during the electric power generation operation of the fuel cell power generation part 11.

脱硫部12は、容器12aと、この容器12aに収納され且つ金属酸化物や金属成分担持酸化物等を含有する公知の超高次脱硫剤12bとを備えている。容器12aには、例えば、200ml程度(2年分に相当する)の超高次脱硫剤12bが収納されている。超高次脱硫剤12bは、100〜400℃程度の高温状態で優れた脱硫作用を発揮するものである。即ち、水素が添加された燃料ガスは、100〜400℃の環境下で触媒反応により硫黄化合物と水素とを反応させて硫化水素にし、この硫化水素を超高次脱硫剤12bに吸着させることで脱硫される。   The desulfurization part 12 is equipped with the container 12a and the well-known superhigh-order desulfurization agent 12b which is accommodated in this container 12a and contains a metal oxide, a metal component carrying | support oxide, etc. In the container 12a, for example, about 200 ml (corresponding to two years) of the super high-order desulfurization agent 12b is accommodated. The super high-order desulfurization agent 12b exhibits an excellent desulfurization action at a high temperature of about 100 to 400 ° C. That is, the fuel gas to which hydrogen is added reacts with a sulfur compound and hydrogen by a catalytic reaction in an environment of 100 to 400 ° C. to form hydrogen sulfide, and this hydrogen sulfide is adsorbed on the ultrahigh-order desulfurization agent 12b. Desulfurized.

補助脱硫部18は、小型容器18aと、この小型容器18aに収納され且つゼオライトやシリカゲル、活性炭等の公知の常温脱硫剤18bとを備えている。小型容器18aには、想定される脱硫部再生回数及び起動回数分通過する燃料ガスに含まれる硫黄化合部を除去する為に必要な量、例えば、100ml程度の常温脱硫剤18bが収納されている。   The auxiliary desulfurization unit 18 includes a small container 18a and a known room temperature desulfurization agent 18b that is housed in the small container 18a and is made of zeolite, silica gel, activated carbon, or the like. The small container 18a contains an amount of room temperature desulfurization agent 18b, for example, about 100 ml, which is necessary for removing the sulfur compounding portion contained in the fuel gas that passes through the estimated number of regeneration times and start-up times of the desulfurization unit. .

次に、脱硫部再生手段8について説明する。
図1に示すように、燃料電池発電装置1は、脱硫部12に充填された超高次脱硫剤12bを器具外から再生可能な脱硫部再生手段8を備えている。即ち、燃料電池発電装置1は、上流側燃料ガス供給通路15aから分岐して接続口23に連通する第1分岐通路21と、下流側燃料ガス供給通路15bから分岐して排出口24に連通する第2分岐通路22と、上流側燃料ガス供給通路15aの分岐部より上流側に設けられた第1開閉弁31と、下流側燃料ガス供給通路15bの分岐部より下流側に設けられた第2開閉弁32と、脱硫部12をバイパスするバイパス通路25等を備えている。
Next, the desulfurization part regeneration means 8 will be described.
As shown in FIG. 1, the fuel cell power generation apparatus 1 includes a desulfurization part regeneration unit 8 that can regenerate the ultrahigh-order desulfurization agent 12 b filled in the desulfurization part 12 from the outside of the instrument. That is, the fuel cell power generator 1 branches from the upstream fuel gas supply passage 15a and communicates with the connection port 23, and branches from the downstream fuel gas supply passage 15b and communicates with the discharge port 24. The second branch passage 22, the first on-off valve 31 provided upstream from the branch portion of the upstream fuel gas supply passage 15a, and the second provided downstream from the branch portion of the downstream fuel gas supply passage 15b. An on-off valve 32 and a bypass passage 25 that bypasses the desulfurization unit 12 are provided.

第1,第2分岐通路21,22は、脱硫部12の再生時に、燃料ガス供給通路15からの燃料ガスの流入を遮断することで、脱硫部再生用の専用通路として構成される。接続口23と排出口24は、外装ケース10に設けられている。接続口23は、器具外から脱硫部12に還元剤を供給可能な還元剤供給手段40を接続するものである。排出口24は、器具外へ脱硫部12からの排気を排出するものである。第1分岐通路21の接続口23の近傍部には、手動式の第3開閉弁33が設けられている。第2分岐通路22の排出口24の近傍部にも、手動式の第4開閉弁34が設けられている。   The first and second branch passages 21 and 22 are configured as dedicated passages for desulfurization unit regeneration by blocking the flow of fuel gas from the fuel gas supply passage 15 when the desulfurization unit 12 is regenerated. The connection port 23 and the discharge port 24 are provided in the outer case 10. The connection port 23 connects a reducing agent supply means 40 that can supply a reducing agent to the desulfurization unit 12 from outside the instrument. The discharge port 24 discharges the exhaust from the desulfurization unit 12 to the outside of the instrument. A manual third on-off valve 33 is provided in the vicinity of the connection port 23 of the first branch passage 21. A manual fourth open / close valve 34 is also provided in the vicinity of the discharge port 24 of the second branch passage 22.

第1,第2開閉弁31,32は、通常の発電運転時には常時開弁状態に設定され、脱硫部12の再生時に、制御ユニット9によって閉弁状態に夫々切り換えられる。第3,第4開閉弁33,34は、通常の発電運転時には常時閉弁状態に設定され、脱硫部12の再生時に手動によって開弁状態に夫々切り換えられる。   The first and second on-off valves 31 and 32 are always set to open during normal power generation operation, and are switched to closed by the control unit 9 when the desulfurization unit 12 is regenerated. The third and fourth on-off valves 33 and 34 are normally closed during normal power generation operation, and are manually switched to open during regeneration of the desulfurization unit 12.

バイパス通路25は、脱硫部12をバイパスするように、上流側燃料ガス供給通路15aの第1開閉弁31の上流側と下流側燃料ガス供給通路15bの第2開閉弁32の下流側とを接続する。バイパス通路25には、第5開閉弁35が設けられ、この第5開閉弁35は、通常の発電運転時には常時閉弁状態に設定され、脱硫部12の再生時に発電運転を継続する際に開弁状態に切り換えられる。即ち、燃料ガスを、バイパス通路25を通して燃料改質器11cへ供給することで、第1,第2開閉弁31,32が閉弁状態に切り換えられても発電運転を継続することができる。   The bypass passage 25 connects the upstream side of the first opening / closing valve 31 of the upstream side fuel gas supply passage 15a and the downstream side of the second opening / closing valve 32 of the downstream side fuel gas supply passage 15b so as to bypass the desulfurization section 12. To do. The bypass passage 25 is provided with a fifth on-off valve 35. The fifth on-off valve 35 is normally closed during normal power generation operation, and is opened when the power generation operation is continued during regeneration of the desulfurization unit 12. Switch to valve status. That is, by supplying the fuel gas to the fuel reformer 11c through the bypass passage 25, the power generation operation can be continued even when the first and second on-off valves 31 and 32 are switched to the closed state.

脱硫部12の再生時に構成されるバイパス通路25を含む燃料ガス供給通路15(バイパス通路25と、上流側燃料ガス供給通路15aのバイパス通路25との接続部より上流側と、下流側燃料ガス供給通路15bのバイパス通路25との接続部より下流側)には、上述した補助脱硫部18が設けられている。   Fuel gas supply passage 15 including a bypass passage 25 configured at the time of regeneration of the desulfurization section 12 (upstream from the connection portion between the bypass passage 25 and the bypass passage 25 of the upstream fuel gas supply passage 15a, and downstream fuel gas supply The auxiliary desulfurization unit 18 described above is provided on the downstream side of the connection portion between the passage 15 b and the bypass passage 25.

還元剤供給手段40は、例えば、還元剤が充填された専用のボンベであるが、接続口23から脱硫部12に還元剤を供給可能なものであれば、専用のスプレー缶等でも良く、適宜変更可能である。還元剤は、脱硫剤を還元する為のものであり、例えば、水素2%と窒素98%の割合で混合された気体であるが、脱硫剤を還元可能なものであれば、適宜変更可能である。   The reducing agent supply means 40 is, for example, a dedicated cylinder filled with a reducing agent. However, as long as the reducing agent can be supplied from the connection port 23 to the desulfurization unit 12, a dedicated spray can or the like may be used. It can be changed. The reducing agent is for reducing the desulfurizing agent. For example, the reducing agent is a gas mixed at a ratio of 2% hydrogen and 98% nitrogen, but can be appropriately changed as long as the desulfurizing agent can be reduced. is there.

このように、この燃料電池発電装置1は、脱硫部12の再生時には、第1,第2開閉弁31,32を閉弁状態に設定し、還元剤供給手段40を接続口23に接続し、還元剤供給手段40から脱硫部12へ還元剤を供給すると共に脱硫部12からの排気を排出口24から排出することで、脱硫部12の還元・再生を行うように構成されている。   Thus, the fuel cell power generator 1 sets the first and second on-off valves 31 and 32 to the closed state when the desulfurization unit 12 is regenerated, connects the reducing agent supply means 40 to the connection port 23, The reducing agent is supplied from the reducing agent supply means 40 to the desulfurization unit 12 and exhausted from the desulfurization unit 12 is discharged from the discharge port 24 so that the desulfurization unit 12 is reduced and regenerated.

図1に示すように、この燃料電池発電装置1は、制御ユニット9によって制御される。各種のセンサの検出信号が制御ユニット9に送信され、この制御ユニット9により、燃料電池発電装置1の動作、各種器具の作動・停止、各種の弁の開閉状態の切り換え及び開度調整等を制御し、各種のモードに基づいて発電運転を実行する。   As shown in FIG. 1, the fuel cell power generator 1 is controlled by a control unit 9. The detection signals of various sensors are transmitted to the control unit 9, and the control unit 9 controls the operation of the fuel cell power generation device 1, the operation / stop of various instruments, the switching of the open / close states of various valves, and the opening adjustment. Then, the power generation operation is executed based on various modes.

次に、本発明の燃料電池発電装置1の作用及び効果について説明する。
この燃料電池発電装置1は、図2に示す通常の発電運転モードと、脱硫部12に充填された超高次脱硫剤12bの脱硫性能を回復させる際に実行可能な、図1に示す脱硫部再生運転モード等を有する。尚、この脱硫部再生運転モードは、例えば、メンテナンス専用の作業員によってリモコンやスイッチの操作を介して設定される。
Next, the operation and effect of the fuel cell power generator 1 of the present invention will be described.
This fuel cell power generator 1 is capable of performing the normal power generation operation mode shown in FIG. 2 and the desulfurization section shown in FIG. 1 that can be executed when restoring the desulfurization performance of the ultra-high order desulfurization agent 12b filled in the desulfurization section 12. It has a regeneration operation mode. In addition, this desulfurization part reproduction | regeneration operation mode is set through operation of a remote control or a switch by the worker only for maintenance, for example.

図2に示すように、通常の発電運転モードにおいては、制御ユニット9は、第1,第2開閉弁31,32を開弁状態に設定し、第5開閉弁35を閉弁状態に設定し、通常の発電運転を実行する。第3,第4開閉弁33,34は、手動によって閉弁状態に設定されている。この発電運転モードでは、燃料ガスは、水素供給通路6cから水素が添加され、燃料ガス昇圧ブロワ16によって昇圧されて脱硫部12に流入し、脱硫後の燃料ガスは、冷却器17と補助脱硫部18を経て、蒸発器11b及び燃料改質器11cに供給される。   As shown in FIG. 2, in the normal power generation operation mode, the control unit 9 sets the first and second on-off valves 31 and 32 to the open state and sets the fifth on-off valve 35 to the closed state. Execute normal power generation operation. The third and fourth on-off valves 33 and 34 are manually set to a closed state. In this power generation operation mode, the fuel gas is added with hydrogen from the hydrogen supply passage 6c, is pressurized by the fuel gas booster blower 16, and flows into the desulfurization unit 12. The desulfurized fuel gas is supplied to the cooler 17 and the auxiliary desulfurization unit. 18 is supplied to the evaporator 11b and the fuel reformer 11c.

尚、発電運転時には、燃料電池発電部11の発電に伴う熱によって、脱硫部12は高温状態(200〜300℃程度)になるので、燃料ガスは、脱硫部12の超高次脱硫剤12bで脱硫されるが、起動時には、脱硫部12は超高次脱硫剤12bの触媒活性温度以下の可能性があるので、この場合、燃料ガスは補助脱硫部18の常温脱硫剤18bで脱硫される。   During the power generation operation, the desulfurization unit 12 is in a high temperature state (about 200 to 300 ° C.) due to heat generated by the power generation of the fuel cell power generation unit 11, so that the fuel gas is super high-order desulfurization agent 12 b in the desulfurization unit 12. Although it is desulfurized, at the time of start-up, the desulfurization unit 12 may be below the catalyst activation temperature of the super high-order desulfurization agent 12b. In this case, the fuel gas is desulfurized by the room temperature desulfurization agent 18b of the auxiliary desulfurization unit 18.

しかし、燃料電池発電装置1の長時間運転に伴い、超高次脱硫剤12bは硫黄分の吸着によって脱硫性能は徐々に低下してくるので、超高次脱硫剤12bの脱硫剤量が装置寿命未満の場合には定期的(例えば1年に1回程度)に還元して再生する必要がある。そこで、脱硫部12の還元・再生を行う為に、燃料電池発電装置1を脱硫部再生運転モードに設定する。   However, as the fuel cell power generator 1 is operated for a long time, the desulfurization performance of the super high-order desulfurization agent 12b gradually decreases due to the adsorption of the sulfur content. If it is less, it is necessary to reduce and regenerate regularly (for example, about once a year). Therefore, in order to reduce and regenerate the desulfurization unit 12, the fuel cell power generator 1 is set to the desulfurization unit regeneration operation mode.

図1に示すように、脱硫部再生運転モードにおいては、制御ユニット9は、第1,第2開閉弁31,32を閉弁状態に設定し、第5開閉弁35を開弁状態に設定する。この脱硫部再生運転モードでは、燃料ガスは、脱硫部12へは流れずバイパス通路25を流れて補助脱硫部18に流入し、脱硫後の燃料ガスは、蒸発器11b及び燃料改質器11cに供給される。   As shown in FIG. 1, in the desulfurization section regeneration operation mode, the control unit 9 sets the first and second on-off valves 31 and 32 to the closed state and sets the fifth on-off valve 35 to the open state. . In this desulfurization section regeneration operation mode, the fuel gas does not flow to the desulfurization section 12, but flows through the bypass passage 25 and flows into the auxiliary desulfurization section 18, and the fuel gas after desulfurization enters the evaporator 11b and the fuel reformer 11c. Supplied.

つまり、脱硫部再生運転モードに設定して、脱硫部12を燃料ガス供給通路15から切り離しても、燃料電池発電部11へ燃料ガスを供給して発電運転を継続することができ、脱硫部12を還元反応に必要な高温状態に維持しながら、脱硫部12の再生を行うことができる。尚、脱硫部12の再生を開始する前に燃料電池発電部11を一度停止してから、脱硫部12を加熱する為に燃料電池発電部11を再起動しても良い。   That is, even if the desulfurization part regeneration operation mode is set and the desulfurization part 12 is disconnected from the fuel gas supply passage 15, the fuel gas can be supplied to the fuel cell power generation part 11 to continue the power generation operation. The desulfurization part 12 can be regenerated while maintaining a high temperature necessary for the reduction reaction. The fuel cell power generation unit 11 may be stopped once before the regeneration of the desulfurization unit 12 is started, and then the fuel cell power generation unit 11 may be restarted to heat the desulfurization unit 12.

次に、第3,第4開閉弁33,34を手動によって開弁状態に設定し、第1,第2分岐通路21,22を流通可能状態に設定し、還元剤供給手段40を接続口23に接続し、還元剤供給手段40から脱硫部12へ還元剤を供給すると共に脱硫部12からの排気を排出口24から排出することで、脱硫部12の還元・再生を行う。   Next, the third and fourth on-off valves 33 and 34 are manually set to the open state, the first and second branch passages 21 and 22 are set to the flowable state, and the reducing agent supply means 40 is connected to the connection port 23. The desulfurization unit 12 is reduced and regenerated by supplying the reductant from the reductant supply means 40 to the desulfurization unit 12 and exhausting the exhaust from the desulfurization unit 12 through the discharge port 24.

脱硫部12においては、還元剤の水素によって、超高次脱硫剤12bに吸着した硫黄分の水素化を行うことで、硫黄分を硫化水素として超高次脱硫剤12bから脱離し、この硫化水素を含む排気ガスを脱硫部12から排出する。尚、脱硫部12の再生時に、例えば、排出口24にフィルタを設けても良いし、排出口24にホースを接続し、このホースを介して排気ガスを換気ダクト等に誘導しても良い。   In the desulfurization part 12, hydrogen of the sulfur adsorbed on the super high-order desulfurization agent 12b is hydrogenated by the reducing agent hydrogen, so that the sulfur content is desorbed from the super high-order desulfurization agent 12b as hydrogen sulfide. The exhaust gas containing is discharged from the desulfurization section 12. At the time of regeneration of the desulfurization unit 12, for example, a filter may be provided at the discharge port 24, or a hose may be connected to the discharge port 24, and exhaust gas may be guided to a ventilation duct or the like through this hose.

脱硫部12への還元剤の供給を開始してから所定の時間経過した後に、又は、所定の量の還元剤を脱硫部12に供給した後に、第3,第4開閉弁33,34を手動によって閉弁状態に設定し、その後に、制御ユニット9は、第5開閉弁35を閉弁状態に設定し、第1,第2開閉弁31,32を開弁状態に設定して、通常の発電運転に復帰する、又は、発電運転を停止する。   The third and fourth on-off valves 33 and 34 are manually operated after a predetermined time has elapsed since the start of the supply of the reducing agent to the desulfurization unit 12 or after a predetermined amount of reducing agent has been supplied to the desulfurization unit 12. After that, the control unit 9 sets the fifth on-off valve 35 to the closed state, sets the first and second on-off valves 31, 32 to the open state, Return to power generation operation or stop power generation operation.

以上説明したように、燃料電池発電装置1は、上流側燃料ガス供給通路15aから分岐して、器具外から脱硫部12に還元剤を供給可能な還元剤供給手段40を接続する為の接続口23に連通する第1分岐通路21と、下流側燃料ガス供給通路15bから分岐して、器具外へ脱硫部12からの排気を排出する為の排出口24に連通する第2分岐通路22と、上流側燃料ガス供給通路15aの分岐部より上流側に設けられた第1開閉弁31と、下流側燃料ガス供給通路15bの分岐部より下流側に設けられた第2開閉弁32とを備え、脱硫部12の再生時には、第1,第2開閉弁31,32を閉弁状態に設定し、還元剤供給手段40を接続口23に接続し、還元剤供給手段40から脱硫部12へ還元剤を供給すると共に脱硫部12からの排気を排出口24から排出することで、脱硫部12の還元・再生を行うので、脱硫部12の再生を行う場合には、器具外から還元剤を供給して器具内の脱硫部12の還元・再生を行うことができる。   As described above, the fuel cell power generation device 1 branches from the upstream fuel gas supply passage 15a and connects to the reducing agent supply means 40 that can supply the reducing agent to the desulfurization unit 12 from outside the instrument. A second branch passage 21 that communicates with a discharge port 24 that branches from the downstream fuel gas supply passage 15b and exhausts the exhaust from the desulfurization unit 12 to the outside of the instrument, A first on-off valve 31 provided on the upstream side of the branch portion of the upstream fuel gas supply passage 15a, and a second on-off valve 32 provided on the downstream side of the branch portion of the downstream fuel gas supply passage 15b, When the desulfurization unit 12 is regenerated, the first and second on-off valves 31 and 32 are set in a closed state, the reducing agent supply unit 40 is connected to the connection port 23, and the reducing agent is supplied from the reducing agent supply unit 40 to the desulfurization unit 12. And exhaust from the desulfurization section 12 Since the desulfurization section 12 is reduced and regenerated by discharging from the outlet 24, when the desulfurization section 12 is regenerated, a reducing agent is supplied from outside the instrument to reduce and regenerate the desulfurization section 12 in the instrument. It can be carried out.

即ち、第1,第2開閉弁31,32を閉弁状態に設定することで、第1,第2分岐通路21,22からなる脱硫剤再生用の通路が構成され、還元剤供給手段を接続口23に接続するだけで、脱硫部12への還元剤の供給が可能となるので、簡単な構造でもって脱硫部12の再生を行うことができ、超高次脱硫剤12bの再生を容易に行えるので、器具の寿命相当分の超高次脱硫剤12bを搭載する必要がなくなり、脱硫剤量を低減することができる。また、器具内に還元剤供給手段40や排気処理手段等を予め組み込む必要がないので、部品点数が減少し、システムが簡略化し、燃料電池発電装置1の全体のコストが低減する。   That is, by setting the first and second on-off valves 31 and 32 to the closed state, a desulfurization agent regeneration passage composed of the first and second branch passages 21 and 22 is formed, and the reducing agent supply means is connected. Since the reducing agent can be supplied to the desulfurization unit 12 simply by connecting to the port 23, the desulfurization unit 12 can be regenerated with a simple structure, and the ultra-high order desulfurization agent 12b can be easily regenerated. Therefore, it is not necessary to mount the super high-order desulfurization agent 12b corresponding to the life of the appliance, and the amount of the desulfurization agent can be reduced. Further, since it is not necessary to previously incorporate the reducing agent supply means 40, the exhaust treatment means, etc. in the instrument, the number of parts is reduced, the system is simplified, and the overall cost of the fuel cell power generator 1 is reduced.

また、脱硫部12をバイパスして上流側燃料ガス供給通路15aと下流側燃料ガス供給通路15bとを接続するバイパス通路25を備え、脱硫部12の再生時には、バイパス通路25を通して燃料ガスを改質部へ供給することで、発電運転を行うので、発電運転に伴い発生する熱を利用して脱硫部12を加熱した状態で脱硫部12の再生を行うことができる   Further, a bypass passage 25 is provided that bypasses the desulfurization section 12 and connects the upstream fuel gas supply path 15a and the downstream fuel gas supply path 15b. When the desulfurization section 12 is regenerated, the fuel gas is reformed through the bypass passage 25. Since the power generation operation is performed by supplying to the section, the desulfurization section 12 can be regenerated in a state where the desulfurization section 12 is heated using the heat generated during the power generation operation.

さらに、バイパス通路25を含む燃料ガス供給通路15には、常温脱硫剤18bを有する補助脱硫部18(脱硫手段)が設けられているので、脱硫部12の再生時に発電運転を停止せずに行う際には、補助脱硫部18によって燃料ガス供給通路15の燃料ガスを脱硫することができる。   Furthermore, since the fuel gas supply passage 15 including the bypass passage 25 is provided with an auxiliary desulfurization section 18 (desulfurization means) having a room temperature desulfurization agent 18b, the power generation operation is performed without stopping when the desulfurization section 12 is regenerated. At this time, the fuel gas in the fuel gas supply passage 15 can be desulfurized by the auxiliary desulfurization section 18.

次に、実施例1の燃料電池発電装置1を部分的に変更した実施例2の燃料電池発電装置1Aについて説明する。尚、実施例1では、補助脱硫部18は、下流側燃料ガス供給通路15bに予め設けられているが、実施例2では、図3,図4に示すように、実施例1の補助脱硫部18を省略し、脱硫部12の再生時に脱硫部12の再生を行う際に上流側燃料ガス供給通路15aの入口に補助脱硫部18Aを取り付ける。   Next, a fuel cell power generator 1A of Example 2 in which the fuel cell power generator 1 of Example 1 is partially changed will be described. In the first embodiment, the auxiliary desulfurization section 18 is provided in the downstream fuel gas supply passage 15b in advance. In the second embodiment, as shown in FIGS. 3 and 4, the auxiliary desulfurization section of the first embodiment is used. 18 is omitted, and the auxiliary desulfurization section 18A is attached to the inlet of the upstream fuel gas supply passage 15a when the desulfurization section 12 is regenerated when the desulfurization section 12 is regenerated.

図4に示すように、通常の発電運転モードにおいては、制御ユニット9は、第1,第2開閉弁31,32を開弁状態に設定し、第5開閉弁35を閉弁状態に設定して、通常の発電運転を実行する。第3,第4開閉弁33,34は、手動によって閉弁状態に設定されている。この通常の発電運転モードでは、燃料ガスは補助脱硫部18Aを通らない以外、実施例1と同様に蒸発器11b及び燃料改質器11cに供給される。   As shown in FIG. 4, in the normal power generation operation mode, the control unit 9 sets the first and second on-off valves 31 and 32 to the open state and sets the fifth on-off valve 35 to the closed state. Normal power generation operation. The third and fourth on-off valves 33 and 34 are manually set to a closed state. In this normal power generation operation mode, fuel gas is supplied to the evaporator 11b and the fuel reformer 11c in the same manner as in Example 1 except that it does not pass through the auxiliary desulfurization section 18A.

図3に示すように、脱硫部再生運転モードにおいては、制御ユニット9は、第1,第2開閉弁31,32を閉弁状態に設定し、第5開閉弁35を開弁状態に設定し、発電運転を停止する。次に、上流側燃料ガス供給通路15aの入口に補助脱硫部18Aを取り付け、脱硫部12を加熱する為に燃料電池発電部11を再起動する。この脱硫部再生運転モードでは、補助脱硫部18で脱硫された燃料ガスは、脱硫部12へは流れずバイパス通路25を流れて、蒸発器11b及び燃料改質器11cに供給される。   As shown in FIG. 3, in the desulfurization part regeneration operation mode, the control unit 9 sets the first and second on-off valves 31 and 32 to the closed state and sets the fifth on-off valve 35 to the open state. , Stop generating operation. Next, the auxiliary desulfurization unit 18A is attached to the inlet of the upstream fuel gas supply passage 15a, and the fuel cell power generation unit 11 is restarted to heat the desulfurization unit 12. In this desulfurization section regeneration operation mode, the fuel gas desulfurized by the auxiliary desulfurization section 18 does not flow to the desulfurization section 12, but flows through the bypass passage 25 and is supplied to the evaporator 11b and the fuel reformer 11c.

このように、補助脱硫部18Aを、脱硫部12の再生時に上流側燃料ガス供給通路15aの入口に別途取り付けることで、燃料ガス供給通路15に補助脱硫部18Aを予め組み付ける必要がなくなるので、燃料電池発電装置1を小型化することができる。   In this way, by separately attaching the auxiliary desulfurization section 18A to the inlet of the upstream fuel gas supply passage 15a when the desulfurization section 12 is regenerated, it is not necessary to previously assemble the auxiliary desulfurization section 18A in the fuel gas supply passage 15. The battery power generator 1 can be reduced in size.

次に、前記実施例1,2を部分的に変更した形態について説明する。
[1]前記実施例1,2において、脱硫部12の再生時に発電運転を同時に行うことで、発電運転に伴う熱を利用して脱硫部12を高温状態にしているが、特にこの加熱方法に限定する必要はなく、脱硫部12の周囲に電気ヒータを設け、この電気ヒータの加熱によって脱硫部12を高温状態にして脱硫部12の再生を行っても良い。また、燃料電池発電部11を停止した際の余熱を利用しながら脱硫部12の再生を行っても良い。これらの加熱方法の場合、バイパス通路25や第5開閉弁35を省略可能である。
Next, a mode in which the first and second embodiments are partially changed will be described.
[1] In Examples 1 and 2, the power generation operation is performed simultaneously with the regeneration of the desulfurization unit 12 to make the desulfurization unit 12 in a high temperature state using the heat accompanying the power generation operation. The desulfurization unit 12 may be regenerated by providing an electric heater around the desulfurization unit 12 and heating the electric heater to bring the desulfurization unit 12 to a high temperature state. Further, the desulfurization unit 12 may be regenerated while using the remaining heat when the fuel cell power generation unit 11 is stopped. In the case of these heating methods, the bypass passage 25 and the fifth on-off valve 35 can be omitted.

[2]前記実施例1,2において、脱硫部12は、ケース部材13の内部に収納されているが、特にこの箇所に限定する必要はなく、燃料電池発電部11の発電運転中に高温となる高温領域になる箇所であれば、脱硫部12をケース部材13の周囲に配置しても良く、適宜変更可能である。 [2] In Examples 1 and 2, the desulfurization unit 12 is housed inside the case member 13, but is not particularly limited to this location. The desulfurization part 12 may be disposed around the case member 13 as long as it is in a high temperature region that can be changed as appropriate.

[3]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。 [3] In addition, those skilled in the art can implement the present invention in various forms with various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. It is.

1,1A 燃料電池発電装置
11 燃料電池発電部
11a 燃料電池セルスタック
11c 燃料改質器(改質部)
12 脱硫部
12b 超高次脱硫剤
15 燃料ガス供給通路
15a 上流側燃料ガス供給通路
15b 下流側燃料ガス供給通路
18、18A 補助脱硫部(脱硫手段)
21 第1分岐通路
22 第2分岐通路
23 接続口
24 排出口
25 バイパス通路
31 第1開閉弁
32 第2開閉弁
40 還元剤供給手段
1, 1A Fuel cell power generation device 11 Fuel cell power generation unit 11a Fuel cell stack 11c Fuel reformer (reformation unit)
DESCRIPTION OF SYMBOLS 12 Desulfurization part 12b Super high-order desulfurization agent 15 Fuel gas supply path 15a Upstream fuel gas supply path 15b Downstream fuel gas supply path 18, 18A Auxiliary desulfurization part (desulfurization means)
21 first branch passage 22 second branch passage 23 connection port 24 discharge port 25 bypass passage 31 first on-off valve 32 second on-off valve 40 reducing agent supply means

Claims (3)

セルスタックと、燃料ガス中の硫黄化合物を吸着除去する脱硫剤を有する脱硫部と、この脱硫部において脱硫された燃料ガスを改質して前記セルスタックに供給する改質部と、前記脱硫部に燃料ガスを供給する上流側燃料ガス供給通路と、前記脱硫部と前記改質部とを接続する下流側燃料ガス供給通路とを備えた燃料電池発電装置において、
前記上流側燃料ガス供給通路から分岐して、器具外から前記脱硫部に還元剤を供給可能な還元剤供給手段を接続する為の接続口に連通する第1分岐通路と、
前記下流側燃料ガス供給通路から分岐して、器具外へ前記脱硫部からの排気を排出する為の排出口に連通する第2分岐通路と、
前記上流側燃料ガス供給通路の分岐部より上流側に設けられた第1開閉弁と、
前記下流側燃料ガス供給通路の分岐部より下流側に設けられた第2開閉弁とを備え、
前記脱硫部の再生時には、前記第1,第2開閉弁を閉弁状態に設定し、前記還元剤供給手段を前記接続口に接続し、前記還元剤供給手段から前記脱硫部へ還元剤を供給すると共に前記脱硫部からの排気を排出口から排出することで、前記脱硫部の還元・再生を行うことを特徴とする燃料電池発電装置。
A cell stack, a desulfurization section having a desulfurizing agent that adsorbs and removes sulfur compounds in the fuel gas, a reforming section that reforms the fuel gas desulfurized in the desulfurization section and supplies the fuel gas to the cell stack, and the desulfurization section In a fuel cell power generator comprising an upstream fuel gas supply passage for supplying fuel gas to a downstream fuel gas supply passage for connecting the desulfurization section and the reforming section,
A first branch passage branched from the upstream fuel gas supply passage and communicating with a connection port for connecting a reducing agent supply means capable of supplying a reducing agent to the desulfurization unit from outside the instrument;
A second branch passage that branches off from the downstream fuel gas supply passage and communicates with an outlet for discharging exhaust gas from the desulfurization section to the outside of the instrument;
A first on-off valve provided on the upstream side of the branch portion of the upstream fuel gas supply passage;
A second on-off valve provided downstream from the branch portion of the downstream fuel gas supply passage,
During regeneration of the desulfurization section, the first and second on-off valves are set to a closed state, the reducing agent supply means is connected to the connection port, and the reducing agent is supplied from the reducing agent supply means to the desulfurization section. And reducing and regenerating the desulfurization unit by discharging exhaust gas from the desulfurization unit through a discharge port.
前記脱硫部をバイパスして前記上流側燃料ガス供給通路と前記下流側燃料ガス供給通路とを接続するバイパス通路を備え、
前記脱硫部の再生時には、前記バイパス通路を通して燃料ガスを前記改質部へ供給することで、発電運転を行うことを特徴とする請求項1に記載の燃料電池発電装置。
A bypass passage that bypasses the desulfurization section and connects the upstream fuel gas supply passage and the downstream fuel gas supply passage;
2. The fuel cell power generator according to claim 1, wherein during regeneration of the desulfurization unit, a power generation operation is performed by supplying fuel gas to the reforming unit through the bypass passage.
前記バイパス通路を含む燃料ガス供給通路には、常温脱硫剤を有する脱硫手段が設けられていることを特徴とする請求項2に記載の燃料電池発電装置。   3. The fuel cell power generator according to claim 2, wherein the fuel gas supply passage including the bypass passage is provided with desulfurization means having a room temperature desulfurization agent.
JP2014129526A 2014-06-24 2014-06-24 Fuel battery power generation device Pending JP2016009594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014129526A JP2016009594A (en) 2014-06-24 2014-06-24 Fuel battery power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014129526A JP2016009594A (en) 2014-06-24 2014-06-24 Fuel battery power generation device

Publications (1)

Publication Number Publication Date
JP2016009594A true JP2016009594A (en) 2016-01-18

Family

ID=55227020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014129526A Pending JP2016009594A (en) 2014-06-24 2014-06-24 Fuel battery power generation device

Country Status (1)

Country Link
JP (1) JP2016009594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174574A (en) * 2016-03-23 2017-09-28 東邦瓦斯株式会社 Fuel cell system
AT519707A1 (en) * 2017-03-10 2018-09-15 Avl List Gmbh Fuel cell system and method for performing a thermal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174574A (en) * 2016-03-23 2017-09-28 東邦瓦斯株式会社 Fuel cell system
AT519707A1 (en) * 2017-03-10 2018-09-15 Avl List Gmbh Fuel cell system and method for performing a thermal
AT519707B1 (en) * 2017-03-10 2019-02-15 Avl List Gmbh A fuel cell system and method of performing thermal regeneration of desulfurization adsorbates

Similar Documents

Publication Publication Date Title
WO2011077753A1 (en) Hydrogen generator and fuel cell system
JP3686062B2 (en) Fuel cell power generation system and fuel cell power generation stop method
JP4603379B2 (en) Fuel cell operating method and apparatus
WO2019054249A1 (en) Fuel cell system
JP2009117054A (en) Power generation method and system by high temperature operating fuel cell
JP2011146175A (en) Fuel cell system
JP5127395B2 (en) Fuel cell power generation system
JP5103757B2 (en) Fuel cell oxidant gas purification device
US8227120B2 (en) Volatile organic compound abatement with fuel cell power plant
JP2016009594A (en) Fuel battery power generation device
JP2009064784A (en) Fuel cell device
JP2002097001A (en) Fuel gas reformer and fuel-cell system
JP5383667B2 (en) HYDROGEN GENERATOR AND FUEL CELL SYSTEM INCLUDING THE SAME
JPH05114414A (en) Fuel cell power generation system
JP2005206414A (en) Hydrogen producing apparatus
JP4974562B2 (en) Device desorption method and apparatus in fuel cell system
JP5796227B2 (en) Fuel cell power generation system and method for stopping operation of fuel cell power generation system
JP2003317783A (en) Fuel cell power generating system
JP2007103078A (en) Fuel cell system
WO2013128785A1 (en) Hydrogen generation device, fuel cell system, and method for operating hydrogen generation device
JP4041085B2 (en) Fuel gas production system and method for stopping the same
JP2005011554A (en) Fuel cell equipped with hydrogen collecting device
CN116864754B (en) Regeneration desulfurization system for SOFC system and operation method thereof
JP2006260843A (en) Fuel cell power generator
JP7183095B2 (en) fuel cell system