JP2006260843A - Fuel cell power generator - Google Patents

Fuel cell power generator Download PDF

Info

Publication number
JP2006260843A
JP2006260843A JP2005073695A JP2005073695A JP2006260843A JP 2006260843 A JP2006260843 A JP 2006260843A JP 2005073695 A JP2005073695 A JP 2005073695A JP 2005073695 A JP2005073695 A JP 2005073695A JP 2006260843 A JP2006260843 A JP 2006260843A
Authority
JP
Japan
Prior art keywords
fuel cell
desulfurizer
cell power
fuel gas
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005073695A
Other languages
Japanese (ja)
Inventor
Toru Kiyota
透 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005073695A priority Critical patent/JP2006260843A/en
Publication of JP2006260843A publication Critical patent/JP2006260843A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To reproduce a cold-absorption desulfurizing agent filled in a desulfurizer. <P>SOLUTION: The fuel cell power generator equipped with a desulfurizer 2 with a cold-absorption desulfurizing agent filled for absorbing and removing a sulfur content in fuel gas at room temperature is provided with a fuel gas booster 1 for boosting fuel gas and supplying it to the desulfurizer 2, and a motor of the fuel gas booster 1 is reversely rotated at stoppage of the fuel cell power generating device. To be exact, gas inside the desulfurizer 2 is absorbed to decrease pressure inside it by the fuel gas booster 1. With that, a sulfur content physically absorbed in the cold-absorption desulfurizing agent is made separated (desorbed) to regenerate the cold-absorption desulfurizing agent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料ガス中の硫黄分を常温で吸着除去するための常温吸着脱硫剤が充填された脱硫器を具備する燃料電池発電装置に関し、特には、常温吸着脱硫剤を再生することができる燃料電池発電装置に関する。   The present invention relates to a fuel cell power generator including a desulfurizer filled with a room temperature adsorption desulfurization agent for adsorbing and removing sulfur content in fuel gas at room temperature, and in particular, the room temperature adsorption desulfurization agent can be regenerated. The present invention relates to a fuel cell power generator.

一般に、燃料ガス中の硫黄分を常温で吸着除去するための常温吸着脱硫剤として、内部に無数の微細孔を有する多孔質で表面積の大きな活性炭やゼオライト系吸着剤等が用いられている。これらの常温吸着脱硫剤の反応温度は常温であり、また、物理吸着が支配的であるため、これらの常温吸着脱硫剤の吸着量は一般的にあまり多くない。そこで、寿命が長時間になるように脱硫器を設計しようとすると、例えば水添脱硫法(Ni−Mo系またはCo−Mo系触媒の存在下、350〜400℃にて燃料ガス中の有機硫黄を水添分解した後、生成するHSを350〜400℃にてZnOに化学的に吸着させて除去する脱硫法)などのような他の化学吸着脱硫法と比較すると、非常に多くの脱硫剤が必要になってしまう。一方、燃料電池発電装置のスペース的な制約から、脱硫器にはある限られた量しか常温吸着脱硫剤を充填することができず、そのため、従来の燃料電池発電装置では、一定の短い期間毎に常温吸着脱硫剤を交換するという運転方法がとられていた。 In general, as a room temperature adsorption desulfurization agent for adsorbing and removing sulfur content in fuel gas at room temperature, porous activated carbon having a large number of fine pores and a large surface area, a zeolite-based adsorbent, and the like are used. Since the reaction temperature of these room temperature adsorption desulfurization agents is room temperature and physical adsorption is dominant, the adsorption amount of these room temperature adsorption desulfurization agents is generally not so large. Therefore, if an attempt is made to design a desulfurizer so that the lifetime is long, for example, a hydrodesulfurization method (organic sulfur in fuel gas at 350 to 400 ° C. in the presence of a Ni—Mo or Co—Mo catalyst). Compared with other chemisorption desulfurization methods such as desulfurization method in which H 2 S produced after hydrogenolysis is removed by chemical adsorption to ZnO at 350 to 400 ° C. A desulfurizing agent is required. On the other hand, due to space limitations of the fuel cell power generation device, the desulfurizer can be filled with a limited amount of room temperature adsorption desulfurization agent. Therefore, in the conventional fuel cell power generation device, every certain short period of time is used. The operation method of replacing the room temperature adsorption desulfurization agent was taken.

図2は従来の燃料電池発電装置の概略構成図である。図2において、1は燃料ガス昇圧器、2は脱硫器、3は改質器、4は変成器、5はCO除去器、6は燃料電池本体、7は改質器バーナ、8は空気予熱器、9は蒸気発生器、10は燃焼空気ブロアを示している。11は選択酸化反応用空気ブロア、12は改質用水ポンプ、13は電池冷却水ポンプ、14は反応空気ブロア、15は冷却水タンク、16は第1燃料遮断弁を示している。   FIG. 2 is a schematic configuration diagram of a conventional fuel cell power generator. In FIG. 2, 1 is a fuel gas booster, 2 is a desulfurizer, 3 is a reformer, 4 is a transformer, 5 is a CO remover, 6 is a fuel cell body, 7 is a reformer burner, and 8 is an air preheater. , 9 is a steam generator, and 10 is a combustion air blower. 11 is a selective oxidation reaction air blower, 12 is a reforming water pump, 13 is a battery cooling water pump, 14 is a reaction air blower, 15 is a cooling water tank, and 16 is a first fuel cutoff valve.

図2に示すように、従来の燃料電池発電装置では、第1燃料遮断弁16を通過せしめられた例えば都市ガスのような燃料ガスが、燃料ガス昇圧器1へ導入され、所定の圧力に昇圧される。昇圧された燃料ガスは、次いで、常温吸着脱硫剤が充填された脱硫器2へと導かれ、脱硫器2において燃料ガス中の硫黄分が吸着除去される。次いで、燃料ガスは、改質用蒸気と合流せしめられ、改質器3、変成器4、およびCO除去器5を通過せしめられる間に改質されて水素リッチなガスとなり、燃料電池本体6へと導かれる。また、改質ガスは、CO除去器5へ導入される前に、選択酸化反応用空気ブロア11から送り出された空気と混合せしめられる。   As shown in FIG. 2, in the conventional fuel cell power generator, fuel gas such as city gas passed through the first fuel cutoff valve 16 is introduced into the fuel gas booster 1 and boosted to a predetermined pressure. Is done. The pressurized fuel gas is then led to the desulfurizer 2 filled with the normal temperature adsorbing desulfurizing agent, and the sulfur content in the fuel gas is adsorbed and removed in the desulfurizer 2. Next, the fuel gas is merged with the reforming steam and reformed while being passed through the reformer 3, the transformer 4, and the CO remover 5, to become a hydrogen-rich gas, and to the fuel cell body 6. It is guided. Further, the reformed gas is mixed with the air sent out from the selective oxidation reaction air blower 11 before being introduced into the CO remover 5.

燃料電池本体6では、改質ガス中の水素が消費され、電気化学反応によって電気が作り出される。電気化学反応に寄与しなかった残りの改質ガスは、改質器バーナ7へと導かれる。一方、燃焼用空気は、燃焼空気ブロア10から導入され、空気予熱器8で予熱され、改質器バーナ7へと導かれ、燃焼反応に寄与する。改質器バーナ7で燃焼された燃焼ガスは、その燃焼熱の一部を改質器3の反応熱として与えた後、改質器3から導出される。燃焼ガスは、残りのエネルギーを空気予熱器8で燃焼空気ブロア10からの燃焼用空気に与え、続いて、蒸気発生器9で改質用水ポンプ12から供給された改質用水に熱エネルギーを与えて蒸発させ、最終的に大気中に排気される。   In the fuel cell main body 6, hydrogen in the reformed gas is consumed, and electricity is produced by an electrochemical reaction. The remaining reformed gas that has not contributed to the electrochemical reaction is led to the reformer burner 7. On the other hand, combustion air is introduced from the combustion air blower 10, preheated by the air preheater 8, guided to the reformer burner 7, and contributes to the combustion reaction. The combustion gas burned by the reformer burner 7 is led out from the reformer 3 after giving a part of the combustion heat as reaction heat of the reformer 3. The combustion gas gives the remaining energy to the combustion air from the combustion air blower 10 by the air preheater 8, and then gives the heat energy to the reforming water supplied from the reforming water pump 12 by the steam generator 9. It is evaporated and finally exhausted to the atmosphere.

電池冷却水系統においては、冷却水タンク15に保有された冷却水が、電池冷却水ポンプ13によって循環せしめられ、燃料電池本体6へ送り込まれ、燃料電池本体6の排熱を回収し、燃料電池本体6の運転温度を一定に制御する。   In the battery cooling water system, the cooling water held in the cooling water tank 15 is circulated by the battery cooling water pump 13 and sent to the fuel cell main body 6 to recover the exhaust heat of the fuel cell main body 6, The operating temperature of the main body 6 is controlled to be constant.

また、燃料電池本体6での電気化学反応に必要な空気は、反応空気ブロア14によって燃料電池本体6に送り込まれる。   Air necessary for the electrochemical reaction in the fuel cell body 6 is sent to the fuel cell body 6 by the reaction air blower 14.

図2に示した従来の燃料電池発電装置のように、常温吸着脱硫剤を採用して脱硫を行う場合には、上述したように比較的頻繁な脱硫剤の交換が必要になってしまう。にもかかわらず、常温吸着脱硫剤は値段が一般的に高価であり、また、交換のための工賃が発生してしまうため、燃料電池発電装置の使用者に金銭的な負担がかかってしまうという問題が生じていた。   In the case where desulfurization is performed using a room temperature adsorption desulfurization agent as in the conventional fuel cell power generator shown in FIG. 2, relatively frequent desulfurization agent replacement is required as described above. Nevertheless, the temperature adsorption desulfurizing agent is generally expensive, and a labor for replacement is generated, which imposes a financial burden on the user of the fuel cell power generator. There was a problem.

また、従来から、燃料ガス中の硫黄分を常温で吸着除去するための常温吸着脱硫剤が充填された脱硫器を具備する燃料電池発電装置が知られている。この種の燃料電池発電装置の例としては、例えば特開平6−342669号公報、特開2001−31402号公報などに記載されたものがある。   Conventionally, there has been known a fuel cell power generator including a desulfurizer filled with a room temperature adsorption desulfurization agent for adsorbing and removing sulfur in fuel gas at room temperature. Examples of this type of fuel cell power generator include those described in, for example, JP-A-6-342669 and JP-A-2001-31402.

特開平6−342669号公報JP-A-6-342669 特開2001−31402号公報JP 2001-31402 A

特開平6−342669号公報および特開2001−31402号公報に記載された燃料電池発電装置では、常温吸着脱硫剤を再生することが試みられているものの、それらの公報に記載された燃料電池発電装置では、常温吸着脱硫剤を再生するために、常温吸着脱硫剤に対してガスを加熱して供給しなければならない。   In the fuel cell power generation devices described in JP-A-6-342669 and JP-A-2001-31402, attempts have been made to regenerate the room temperature adsorption desulfurization agent, but the fuel cell power generation described in those publications. In the apparatus, in order to regenerate the room temperature adsorption desulfurization agent, the gas must be heated and supplied to the room temperature adsorption desulfurization agent.

詳細には、特開平6−342669号公報に記載された燃料電池発電装置では、常温吸着脱硫剤を再生するために、燃料電池発電装置内の未反応の燃料ガスを熱交換しなければならず、更に、常温吸着脱硫剤に供給される再生用ガスを、その熱交換により得られた熱によって加熱しなければならない。また、特開2001−31402号公報に記載された燃料電池発電装置では、常温吸着脱硫剤を再生するために常温吸着脱硫剤に供給される再生用ガスを、改質器の運転または空冷の際に生じる熱によって加熱しなければならない。すなわち、特開平6−342669号公報および特開2001−31402号公報に記載された燃料電池発電装置では、常温吸着脱硫剤に対して再生用ガスを加熱して供給するための加熱機構および断熱機構を追加して設けなければならず、燃料電池発電装置全体のコストが上昇してしまう。   Specifically, in the fuel cell power generator described in JP-A-6-342669, in order to regenerate the room temperature adsorptive desulfurization agent, the unreacted fuel gas in the fuel cell power generator must be heat exchanged. Furthermore, the regeneration gas supplied to the room temperature adsorptive desulfurization agent must be heated by the heat obtained by the heat exchange. Further, in the fuel cell power generation apparatus described in Japanese Patent Application Laid-Open No. 2001-31402, the regeneration gas supplied to the room temperature adsorption desulfurization agent to regenerate the room temperature adsorption desulfurization agent is used when the reformer is operated or air-cooled. Must be heated by the heat generated. That is, in the fuel cell power generator described in JP-A-6-342669 and JP-A-2001-31402, a heating mechanism and a heat-insulating mechanism for heating and supplying the regeneration gas to the room temperature adsorptive desulfurization agent Must be additionally provided, which increases the cost of the entire fuel cell power generator.

一方、本発明者は、常温脱硫が物理吸着反応であるという点に着目した。物理吸着は、ファンデルワールス力(分子間力)によって被吸着物質を引き付ける反応であり、例えば都市ガスのような燃料ガス中には、およそ数ppm程度の有機硫黄が含まれており、そのような希薄濃度の物質の吸着は、一般的にヘンリーの式q=Hx(q:吸着量、H:ヘンリー定数、x:圧力)で表される。   On the other hand, the present inventor has paid attention to the point that room temperature desulfurization is a physical adsorption reaction. Physical adsorption is a reaction that attracts an adsorbed substance by van der Waals force (intermolecular force). For example, a fuel gas such as city gas contains about several ppm of organic sulfur. Adsorption of a dilute substance is generally expressed by Henry's formula q = Hx (q: adsorption amount, H: Henry constant, x: pressure).

つまり、本発明者は、吸着量が圧力依存性を有し、圧力が低いほど吸着量が減少する点に着目し、この特性を常温吸着脱硫剤の再生に利用できると考えた。   That is, the present inventor paid attention to the fact that the adsorption amount is pressure-dependent, and the adsorption amount decreases as the pressure decreases, and thought that this characteristic can be used for regeneration of the room temperature adsorption desulfurization agent.

詳細には、例えば燃料電池発電装置の停止時に、正逆回転制御機能付きモータを有する燃料ガス昇圧器を逆回転させることにより、燃料ガス昇圧器の下流側に位置する常温脱硫器内に滞留している燃料ガスを上流側に逆流させ、この時、脱硫器の出口に配置された遮断弁を同時に閉弁しておくことにより、脱硫器の内部が徐々に減圧され、最終的には大気圧よりも低い圧力にまで低下する。この圧力変化に伴って常温吸着脱硫剤に物理吸着していた有機硫黄が常温吸着脱硫剤から脱離(脱着)し、常温吸着脱硫剤の性能が回復していくと、本発明者は考えた。   Specifically, for example, when the fuel cell power generation device is stopped, the fuel gas booster having the motor with the forward / reverse rotation control function is reversely rotated to stay in the room temperature desulfurizer located downstream of the fuel gas booster. The internal flow of the fuel gas is allowed to flow back to the upstream side, and at this time, the shutoff valve disposed at the outlet of the desulfurizer is closed at the same time, so that the inside of the desulfurizer is gradually depressurized, and finally the atmospheric pressure To a lower pressure. The present inventor considered that the organic sulfur physically adsorbed on the room temperature adsorption desulfurization agent is desorbed (desorbed) from the room temperature adsorption desulfurization agent along with the pressure change, and the performance of the room temperature adsorption desulfurization agent is restored. .

また、例えば逆流してきた有機硫黄を含む燃料ガスは、燃料電池発電装置の入口に配置された遮断弁を閉弁し、同時に、改質器バーナへつながる配管上に配置された遮断弁を開弁することにより、改質器バーナへ導入され、そこで燃焼され処理され得ると、本発明者は考えた。   In addition, for example, the fuel gas containing organic sulfur that has flowed backwards closes the shut-off valve arranged at the inlet of the fuel cell power generator, and at the same time opens the shut-off valve arranged on the pipe connected to the reformer burner. The present inventors thought that by doing so, it could be introduced into the reformer burner where it could be combusted and processed.

上述したような運転方法を採用することにより、常温吸着脱硫剤の寿命を著しく向上させることが可能となり、特に、起動停止を頻繁に繰り返す運転モードを採用する燃料電池発電装置においては、その効果が非常に大きくなると、本発明者は考えた。   By adopting the operation method as described above, it becomes possible to remarkably improve the life of the room temperature adsorptive desulfurization agent, and in particular, in the fuel cell power generation apparatus adopting the operation mode in which the start and stop are repeated frequently, the effect is obtained. The inventor thought that it would be very large.

詳細には、DDS(daily start & shut down:1日1回起動停止を繰り返す運転モード)運転の場合には、1日1回常温吸着脱硫剤の回復操作が行われ、特に長寿命化が達成できる。その長寿命化の度合いは、採用する常温吸着脱硫剤の種類と、脱硫器内の圧力をどこまで低下させるかによって異なってくる。例えばあるゼオライト系の常温吸着脱硫剤を用いて減圧後の圧力を680Torr(90644Pa)(ちなみに大気圧は760Torr(101308Pa))まで下げた場合に従来の3倍以上に長寿命化できることを実験によって確認した。   Specifically, in the case of DDS (daily start & shut down: operation mode in which start and stop are repeated once a day), the operation of recovering the normal temperature adsorbing desulfurization agent is performed once a day, and in particular, a longer life is achieved. it can. The degree of extension of the life varies depending on the type of the room temperature adsorption desulfurization agent to be employed and the extent to which the pressure in the desulfurizer is reduced. For example, it has been confirmed by experiments that the service life can be extended to more than three times the conventional one when the pressure after depressurization is reduced to 680 Torr (90644 Pa) (by the way, atmospheric pressure is 760 Torr (101308 Pa)) using a certain zeolite-based room temperature adsorption desulfurization agent. did.

換言すれば、本発明は、常温吸着脱硫剤を再生することができる燃料電池発電装置を提供することを目的とする。   In other words, an object of the present invention is to provide a fuel cell power generation apparatus that can regenerate a room temperature adsorption desulfurization agent.

詳細には、本発明は、特開平6−342669号公報、特開2001−31402号公報などに記載された従来の燃料電池発電装置のようにガスを加熱して常温吸着脱硫剤に供給する必要なく、常温吸着脱硫剤を再生することができるを提供することを目的とする。   Specifically, in the present invention, it is necessary to heat the gas and supply it to the room temperature adsorption desulfurization agent as in the conventional fuel cell power generator described in JP-A-6-342669 and JP-A-2001-31402. An object of the present invention is to provide a room temperature adsorptive desulfurization agent that can be regenerated.

請求項1に記載の発明によれば、燃料ガス中の硫黄分を常温で吸着除去するための常温吸着脱硫剤が充填された脱硫器を具備する燃料電池発電装置において、燃料ガスを昇圧して前記脱硫器に供給するための燃料ガス昇圧器を設け、燃料電池発電装置の停止時に前記燃料ガス昇圧器を逆回転させることを特徴とする燃料電池発電装置が提供される。   According to the first aspect of the present invention, in the fuel cell power generator including the desulfurizer filled with the room temperature adsorption desulfurization agent for adsorbing and removing the sulfur content in the fuel gas at room temperature, the fuel gas is pressurized. A fuel cell booster is provided for supplying to the desulfurizer, and the fuel gas booster is reversely rotated when the fuel cell generator is stopped.

請求項2に記載の発明によれば、前記燃料ガス昇圧器の下流側に前記脱硫器を配置したことを特徴とする請求項1に記載の燃料電池発電装置が提供される。   According to a second aspect of the present invention, there is provided the fuel cell power generator according to the first aspect, wherein the desulfurizer is disposed downstream of the fuel gas booster.

請求項3に記載の発明によれば、前記脱硫器の出口配管に遮断弁を配置したことを特徴とする請求項1又は2に記載の燃料電池発電装置が提供される。   According to a third aspect of the present invention, there is provided the fuel cell power generator according to the first or second aspect, wherein a shut-off valve is disposed in an outlet pipe of the desulfurizer.

請求項4に記載の発明によれば、前記燃料ガス昇圧器によって逆流せしめられた硫黄分を含む燃料ガスを改質器バーナで燃焼させるの逆回転ことを特徴とする請求項1〜3のいずれか一項に記載の燃料電池発電装置が提供される。   According to a fourth aspect of the present invention, any one of the first to third aspects is characterized in that the fuel gas containing the sulfur component backflowed by the fuel gas pressure booster is burned in the reformer burner in reverse rotation. A fuel cell power generator according to claim 1 is provided.

請求項5に記載の発明によれば、燃料ガス中の硫黄分を常温で吸着除去するための常温吸着脱硫剤が充填された脱硫器を具備する燃料電池発電装置において、常温吸着脱硫剤の再生時に、前記脱硫器内のガスを吸引し、前記脱硫器内の圧力を減圧することを特徴とする燃料電池発電装置が提供される。   According to the fifth aspect of the present invention, in the fuel cell power generator equipped with a desulfurizer filled with a normal temperature adsorptive desulfurization agent for adsorbing and removing sulfur content in the fuel gas at normal temperature, the regeneration of the normal temperature adsorbent desulfurization agent is performed. In some cases, a fuel cell power generator is provided that sucks the gas in the desulfurizer and reduces the pressure in the desulfurizer.

請求項6に記載の発明によれば、燃料電池発電装置の通常運転時に燃料ガスを昇圧して前記脱硫器に供給するための燃料ガス昇圧器を設け、燃料電池発電装置の非通常運転時である常温吸着脱硫剤の再生時に、前記燃料ガス昇圧器により、前記脱硫器内のガスを吸引し、前記脱硫器内の圧力を減圧することを特徴とする請求項5に記載の燃料電池発電装置が提供される。   According to the sixth aspect of the present invention, a fuel gas booster is provided for boosting the fuel gas during normal operation of the fuel cell power generator and supplying the fuel gas to the desulfurizer, and during non-normal operation of the fuel cell power generator. 6. The fuel cell power generator according to claim 5, wherein during regeneration of a room temperature adsorptive desulfurizing agent, the fuel gas booster sucks the gas in the desulfurizer and reduces the pressure in the desulfurizer. Is provided.

請求項1及び2に記載の燃料電池発電装置では、燃料ガス中の硫黄分を常温で吸着除去するための常温吸着脱硫剤が充填された脱硫器に対して燃料ガスを昇圧して供給するための燃料ガス昇圧器が、脱硫器の上流側に配置されており、燃料電池発電装置の停止時には、燃料ガス昇圧器が逆回転せしめられる。詳細には、燃料ガス昇圧器が逆回転せしめられ、それにより、脱硫器内のガスが吸引せしめられ、脱硫器内の圧力が減圧される。その結果、常温吸着脱硫剤に物理吸着せしめられていた硫黄分が脱離(脱着)せしめられ、常温吸着脱硫剤を再生することができる。詳細には、特開平6−342669号公報、特開2001−31402号公報などに記載された従来の燃料電池発電装置のようにガスを加熱して常温吸着脱硫剤に供給する必要なく、常温吸着脱硫剤を再生することができる。   In the fuel cell power generation device according to claim 1 and 2, in order to pressurize and supply the fuel gas to a desulfurizer filled with a room temperature adsorption desulfurization agent for adsorbing and removing sulfur content in the fuel gas at room temperature. The fuel gas booster is arranged on the upstream side of the desulfurizer, and the fuel gas booster is rotated in the reverse direction when the fuel cell power generator is stopped. Specifically, the fuel gas booster is rotated in the reverse direction, whereby the gas in the desulfurizer is sucked and the pressure in the desulfurizer is reduced. As a result, the sulfur component physically adsorbed on the room temperature adsorption desulfurization agent is desorbed (desorbed), and the room temperature adsorption desulfurization agent can be regenerated. In detail, it is not necessary to heat the gas and supply it to the room temperature adsorption desulfurization agent as in the conventional fuel cell power generator described in JP-A-6-342669, JP-A-2001-31402, etc. The desulfurizing agent can be regenerated.

請求項3に記載の燃料電池発電装置では、脱硫器の出口配管に遮断弁が配置されている。詳細には、燃料ガス昇圧器が逆回転せしめられる時には、脱硫器の出口配管に配置されている遮断弁が閉弁せしめられる。そのため、遮断弁が設けられていない場合よりも効率的に脱硫器内の圧力を減圧することができる。   In the fuel cell power generator according to claim 3, a shutoff valve is arranged in the outlet pipe of the desulfurizer. Specifically, when the fuel gas booster is rotated in the reverse direction, the shut-off valve arranged in the outlet pipe of the desulfurizer is closed. Therefore, the pressure in the desulfurizer can be reduced more efficiently than when no shutoff valve is provided.

請求項4に記載の燃料電池発電装置では、燃料ガス昇圧器の逆回転によって逆流せしめられた硫黄分を含む燃料ガスが、改質器バーナによって燃焼せしめられる。そのため、燃料ガス昇圧器の逆回転によって逆流せしめられた硫黄分を含む燃料ガスを処理するための手段を改質器バーナとは別個に設ける場合よりも燃料電池発電装置全体のコストを低減ことができる。   In the fuel cell power generator according to the fourth aspect, the fuel gas containing the sulfur component caused to flow backward by the reverse rotation of the fuel gas booster is burned by the reformer burner. Therefore, the cost of the entire fuel cell power generator can be reduced as compared with the case where a means for treating the fuel gas containing the sulfur component caused to flow backward by the reverse rotation of the fuel gas booster is provided separately from the reformer burner. it can.

請求項5に記載の燃料電池発電装置では、燃料ガス中の硫黄分を常温で吸着除去するための常温吸着脱硫剤の再生時に、その常温吸着脱硫剤が充填されている脱硫器内のガスが吸引せしめられ、脱硫器内の圧力が減圧される。それにより、常温吸着脱硫剤に物理吸着せしめられていた硫黄分が脱離(脱着)せしめられ、常温吸着脱硫剤を再生することができる。詳細には、特開平6−342669号公報、特開2001−31402号公報などに記載された従来の燃料電池発電装置のようにガスを加熱して常温吸着脱硫剤に供給する必要なく、常温吸着脱硫剤を再生することができる。   In the fuel cell power generation device according to claim 5, the gas in the desulfurizer filled with the normal temperature adsorbing desulfurizing agent is regenerated at the time of regeneration of the normal temperature adsorbing desulfurizing agent for adsorbing and removing the sulfur content in the fuel gas at normal temperature. Suction is applied to reduce the pressure in the desulfurizer. Thereby, the sulfur component physically adsorbed on the room temperature adsorption desulfurization agent is desorbed (desorbed), and the room temperature adsorption desulfurization agent can be regenerated. Specifically, it is not necessary to heat the gas and supply it to the room temperature adsorption desulfurization agent as in the conventional fuel cell power generator described in JP-A-6-342669, JP-A-2001-31402, etc. The desulfurizing agent can be regenerated.

請求項6に記載の燃料電池発電装置では、燃料電池発電装置の非通常運転時である常温吸着脱硫剤の再生時には、燃料電池発電装置の通常運転時に燃料ガスを昇圧して脱硫器に供給するための燃料ガス昇圧器によって、脱硫器内のガスが吸引せしめられ、脱硫器内の圧力が減圧される。そのため、脱硫器内のガスを吸引して脱硫器内の圧力を減圧するための手段を燃料ガス昇圧器とは別個に設ける場合よりも燃料電池発電装置全体のコストを低減ことができる。   In the fuel cell power generator according to claim 6, when regenerating the room temperature adsorbing desulfurization agent during the non-normal operation of the fuel cell power generator, the fuel gas is boosted and supplied to the desulfurizer during the normal operation of the fuel cell power generator. The gas in the desulfurizer is sucked by the fuel gas booster for reducing the pressure in the desulfurizer. Therefore, the cost of the entire fuel cell power generator can be reduced as compared with the case where a means for sucking the gas in the desulfurizer and reducing the pressure in the desulfurizer is provided separately from the fuel gas booster.

請求項1〜6に記載の燃料電池発電装置では、高価な常温吸着脱硫剤の寿命を従来よりも長くすることができる。条件によっては、同じ充填量で3倍以上の寿命を確保することができる。それにより、燃料電池発電装置の使用者のコストメリットを導き出すことができる。   In the fuel cell power generator according to any one of claims 1 to 6, the lifetime of the expensive room temperature adsorptive desulfurization agent can be made longer than before. Depending on the conditions, it is possible to ensure a life of three times or more with the same filling amount. Thereby, the cost merit of the user of the fuel cell power generator can be derived.

図1は本発明の燃料電池発電装置の第1の実施形態の概略構成図である。図1において、図2に示した参照番号と同一の参照番号は、図2に示した部品と同一の部品を示しており、17は第2燃料遮断弁、18は第3燃料遮断弁、19は燃料ガス昇圧器1の上流側の配管と改質器バーナ7とを連通する配管を示している。   FIG. 1 is a schematic configuration diagram of a first embodiment of a fuel cell power generator according to the present invention. 1, the same reference numerals as those shown in FIG. 2 indicate the same parts as those shown in FIG. 2, 17 is a second fuel cutoff valve, 18 is a third fuel cutoff valve, 19 Indicates a pipe communicating the upstream side pipe of the fuel gas booster 1 and the reformer burner 7.

図1に示すように、第1の実施形態の燃料電池発電装置は、図2に示した従来の燃料電池発電装置と同様に構成されているが、後述する点で図2に示した従来の燃料電池発電装置とは異なっている。詳細には、第1の実施形態の燃料電池発電装置では、脱硫器2の下流側の配管、つまり、脱硫器2の出口配管に第2燃料遮断弁17が設けられている。更に、燃料ガス昇圧器1の上流側の配管と、改質器バーナ7とが、配管19によって連通せしめられ、その配管19に第3燃料遮断弁18が設けられている。   As shown in FIG. 1, the fuel cell power generator of the first embodiment is configured in the same manner as the conventional fuel cell power generator shown in FIG. 2, but the conventional fuel cell power generator shown in FIG. It is different from the fuel cell power generator. Specifically, in the fuel cell power generator according to the first embodiment, the second fuel cutoff valve 17 is provided in the downstream pipe of the desulfurizer 2, that is, in the outlet pipe of the desulfurizer 2. Further, the upstream pipe of the fuel gas booster 1 and the reformer burner 7 are communicated by a pipe 19, and a third fuel cutoff valve 18 is provided in the pipe 19.

第1の実施形態の燃料電池発電装置の通常運転時には、図2に示した従来の燃料電池発電装置の通常運転時と同様に、第1燃料遮断弁16を通過せしめられた例えば都市ガスのような燃料ガスが、燃料ガス昇圧器1へ導入され、所定の圧力に昇圧される。この時、燃料ガス昇圧器1の上流側の配管と改質器バーナ7とを連通する配管19上に配置された第3燃料遮断弁18は閉弁せしめられている。   During normal operation of the fuel cell power generator of the first embodiment, as in normal operation of the conventional fuel cell power generator shown in FIG. 2, for example, city gas passed through the first fuel cutoff valve 16 A fresh fuel gas is introduced into the fuel gas booster 1 and boosted to a predetermined pressure. At this time, the third fuel cutoff valve 18 disposed on the pipe 19 that communicates the upstream pipe of the fuel gas booster 1 and the reformer burner 7 is closed.

昇圧された燃料ガスは、次いで、常温吸着脱硫剤が充填された脱硫器2へと導かれ、脱硫器2において燃料ガス中の硫黄分が吸着除去される。この時、脱硫器2の下流側の配管上に配置された第2燃料遮断弁17は開弁せしめられている。次いで、燃料ガスは、改質用蒸気と合流せしめられ、改質器3、変成器4、およびCO除去器5を通過せしめられる間に改質されて水素リッチなガスとなり、燃料電池本体6へと導かれる。また、改質ガスは、CO除去器5へ導入される前に、選択酸化反応用空気ブロア11から送り出された空気と混合せしめられる。   The pressurized fuel gas is then led to the desulfurizer 2 filled with the normal temperature adsorbing desulfurizing agent, and the sulfur content in the fuel gas is adsorbed and removed in the desulfurizer 2. At this time, the second fuel cutoff valve 17 disposed on the pipe on the downstream side of the desulfurizer 2 is opened. Next, the fuel gas is merged with the reforming steam and reformed while being passed through the reformer 3, the transformer 4, and the CO remover 5, to become a hydrogen-rich gas, and to the fuel cell body 6. It is guided. Further, the reformed gas is mixed with the air sent out from the selective oxidation reaction air blower 11 before being introduced into the CO remover 5.

燃料電池本体6では、改質ガス中の水素が消費され、電気化学反応によって電気が作り出される。電気化学反応に寄与しなかった残りの改質ガスは、改質器バーナ7へと導かれる。一方、燃焼用空気は、燃焼空気ブロア10から導入され、空気予熱器8で予熱され、改質器バーナ7へと導かれ、燃焼反応に寄与する。改質器バーナ7で燃焼された燃焼ガスは、その燃焼熱の一部を改質器3の反応熱として与えた後、改質器3から導出される。燃焼ガスは、残りのエネルギーを空気予熱器8で燃焼空気ブロア10からの燃焼用空気に与え、続いて、蒸気発生器9で改質用水ポンプ12から供給された改質用水に熱エネルギーを与えて蒸発させ、最終的に大気中に排気される。   In the fuel cell main body 6, hydrogen in the reformed gas is consumed, and electricity is produced by an electrochemical reaction. The remaining reformed gas that has not contributed to the electrochemical reaction is led to the reformer burner 7. On the other hand, combustion air is introduced from the combustion air blower 10, preheated by the air preheater 8, guided to the reformer burner 7, and contributes to the combustion reaction. The combustion gas burned by the reformer burner 7 is led out from the reformer 3 after giving a part of the combustion heat as reaction heat of the reformer 3. The combustion gas gives the remaining energy to the combustion air from the combustion air blower 10 by the air preheater 8, and then gives the heat energy to the reforming water supplied from the reforming water pump 12 by the steam generator 9. It is evaporated and finally exhausted to the atmosphere.

電池冷却水系統においては、冷却水タンク15に保有された冷却水が、電池冷却水ポンプ13によって循環せしめられ、燃料電池本体6へ送り込まれ、燃料電池本体6の排熱を回収し、燃料電池本体6の運転温度を一定に制御する。   In the battery cooling water system, the cooling water held in the cooling water tank 15 is circulated by the battery cooling water pump 13 and sent to the fuel cell main body 6 to recover the exhaust heat of the fuel cell main body 6, The operating temperature of the main body 6 is controlled to be constant.

また、燃料電池本体6での電気化学反応に必要な空気は、反応空気ブロア14によって燃料電池本体6に送り込まれる。   Air necessary for the electrochemical reaction in the fuel cell body 6 is sent to the fuel cell body 6 by the reaction air blower 14.

一方、第1の実施形態の燃料電池発電装置の停止時には、後述するように、脱硫器2に充填された常温吸着脱硫剤の再生が行われる。具体的には、第1燃料遮断弁16および第2燃料遮断弁17が閉弁せしめられ、第3燃料遮断弁18が開弁せしめられる。更に、燃料ガス昇圧器1のモータが逆回転せしめられ、脱硫器2内のガスが吸引せしめられ、脱硫器2内の圧力が減圧される。それに伴って、燃料ガスと共に、常温吸着脱硫剤から脱離した有機硫黄が、脱硫器2内から流出せしめられる。次いで、脱硫器2内から流出せしめられた燃料ガスおよび有機硫黄は、第3燃料遮断弁18を通過せしめられ、改質器バーナ7へと導かれ、改質器バーナ7において、燃焼され、処理される。   On the other hand, when the fuel cell power generator of the first embodiment is stopped, regeneration of the room temperature adsorbing desulfurization agent filled in the desulfurizer 2 is performed as described later. Specifically, the first fuel cutoff valve 16 and the second fuel cutoff valve 17 are closed, and the third fuel cutoff valve 18 is opened. Further, the motor of the fuel gas booster 1 is rotated in the reverse direction, the gas in the desulfurizer 2 is sucked, and the pressure in the desulfurizer 2 is reduced. Along with this, the organic sulfur desorbed from the room temperature adsorbing desulfurizing agent is discharged from the desulfurizer 2 together with the fuel gas. Next, the fuel gas and organic sulfur discharged from the desulfurizer 2 are passed through the third fuel cutoff valve 18, led to the reformer burner 7, burned in the reformer burner 7, and processed. Is done.

第1の実施形態の燃料電池発電装置では、上述したように燃料電池発電装置の停止時に常温吸着脱硫剤の再生が行われるが、例えば脱硫器2に対して燃料ガスが間欠的に供給されるような第2の実施形態の燃料電池発電装置では、代わりに、燃料電池発電装置の通常運転時のうち、脱硫器2に対して燃料ガスが供給されない時に、常温吸着脱硫剤の再生を行うことも可能である。   In the fuel cell power generator of the first embodiment, as described above, the room temperature adsorption desulfurization agent is regenerated when the fuel cell power generator is stopped. For example, fuel gas is intermittently supplied to the desulfurizer 2. In such a fuel cell power generator of the second embodiment, instead, during normal operation of the fuel cell power generator, when the fuel gas is not supplied to the desulfurizer 2, the room temperature adsorptive desulfurization agent is regenerated. Is also possible.

上述したように、第1の実施形態の燃料電池発電装置では、燃料ガス中の硫黄分を常温で吸着除去するための常温吸着脱硫剤が充填された脱硫器2に対して燃料ガスを昇圧して供給するための燃料ガス昇圧器1が、脱硫器2の上流側に配置されており、燃料電池発電装置の停止時には、燃料ガス昇圧器1のモータが逆回転せしめられ、それにより、脱硫器2内のガスが吸引せしめられ、脱硫器2内の圧力が減圧される。その結果、常温吸着脱硫剤に物理吸着せしめられていた硫黄分が脱離(脱着)せしめられ、常温吸着脱硫剤を再生することができる。   As described above, in the fuel cell power generator according to the first embodiment, the fuel gas is pressurized with respect to the desulfurizer 2 filled with the normal temperature adsorbing desulfurization agent for adsorbing and removing the sulfur content in the fuel gas at normal temperature. The fuel gas booster 1 is supplied on the upstream side of the desulfurizer 2, and when the fuel cell power generator is stopped, the motor of the fuel gas booster 1 is reversely rotated, whereby the desulfurizer The gas in 2 is sucked and the pressure in the desulfurizer 2 is reduced. As a result, the sulfur component physically adsorbed on the room temperature adsorption desulfurization agent is desorbed (desorbed), and the room temperature adsorption desulfurization agent can be regenerated.

あるいは、第3の実施形態の燃料電池発電装置では、常温吸着脱硫剤の再生時に、燃料ガス昇圧器1以外の手段によって脱硫器2内のガスを吸引し、脱硫器2内の圧力を減圧することも可能である。詳細には、燃料ガス昇圧器1とは別個に、脱硫器2内のガスを吸引するためのガス吸引ポンプを設けることも可能である。第3の実施形態の燃料電池発電装置によっても、常温吸着脱硫剤に物理吸着せしめられていた硫黄分を脱離(脱着)させ、常温吸着脱硫剤を再生することができる。   Alternatively, in the fuel cell power generator of the third embodiment, when the room temperature adsorptive desulfurizing agent is regenerated, the gas in the desulfurizer 2 is sucked by means other than the fuel gas booster 1 to reduce the pressure in the desulfurizer 2. It is also possible. Specifically, it is possible to provide a gas suction pump for sucking the gas in the desulfurizer 2 separately from the fuel gas booster 1. Also by the fuel cell power generation apparatus of the third embodiment, the sulfur component physically adsorbed on the room temperature adsorption desulfurization agent can be desorbed (desorbed), and the room temperature adsorption desulfurization agent can be regenerated.

また、第1の実施形態の燃料電池発電装置では、図1に示したように、脱硫器2の出口配管に第2燃料遮断弁17が配置されており、上述したように、燃料ガス昇圧器1が逆回転せしめられる時には、第2燃料遮断弁17が閉弁せしめられる。そのため、第2燃料遮断弁17が設けられていない図2に示した従来の燃料電池発電装置よりも効率的に、燃料ガス昇圧器1のモータを逆回転させることによって脱硫器2内の圧力を減圧することができる。   Further, in the fuel cell power generation device of the first embodiment, as shown in FIG. 1, the second fuel cutoff valve 17 is arranged in the outlet pipe of the desulfurizer 2, and as described above, the fuel gas booster When 1 is rotated in the reverse direction, the second fuel cutoff valve 17 is closed. Therefore, the pressure in the desulfurizer 2 is reduced by rotating the motor of the fuel gas booster 1 in the reverse direction more efficiently than the conventional fuel cell power generator shown in FIG. 2 in which the second fuel cutoff valve 17 is not provided. The pressure can be reduced.

更に、第1の実施形態の燃料電池発電装置では、上述したように、燃料ガス昇圧器1によって逆流せしめられた硫黄分を含む燃料ガスが、改質器バーナ7によって燃焼せしめられる。そのため、燃料ガス昇圧器1によって逆流せしめられた硫黄分を含む燃料ガスを処理するための手段を改質器バーナ7とは別個に設ける場合よりも燃料電池発電装置全体のコストを低減ことができる。   Furthermore, in the fuel cell power generator according to the first embodiment, as described above, the fuel gas containing the sulfur component caused to flow backward by the fuel gas booster 1 is combusted by the reformer burner 7. Therefore, the cost of the entire fuel cell power generation device can be reduced as compared with the case where a means for treating the fuel gas containing the sulfur content that has been caused to flow backward by the fuel gas booster 1 is provided separately from the reformer burner 7. .

第4の実施形態の燃料電池発電装置では、代わりに、燃料ガス昇圧器1によって逆流せしめられた硫黄分を含む燃料ガスを処理するための手段を改質器バーナ7とは別個に設けることも可能である。   In the fuel cell power generator according to the fourth embodiment, instead of the reformer burner 7, a means for treating the fuel gas containing the sulfur component that has flowed back by the fuel gas booster 1 may be provided. Is possible.

第5の実施形態では、上述した第1から第4の実施形態を適宜組合わせることも可能である。   In the fifth embodiment, the above-described first to fourth embodiments can be appropriately combined.

本発明の燃料電池発電装置の第1の実施形態の概略構成図である。1 is a schematic configuration diagram of a first embodiment of a fuel cell power generator of the present invention. 従来の燃料電池発電装置の概略構成図である。It is a schematic block diagram of the conventional fuel cell power generator.

符号の説明Explanation of symbols

1 燃料ガス昇圧器
2 脱硫器
3 改質器
4 変成器
5 CO除去器
6 燃料電池本体
7 改質器バーナ
8 空気予熱器
9 蒸気発生器
10 燃焼空気ブロア
11 選択酸化反応用空気ブロア
12 改質用水ポンプ
13 電池冷却水ポンプ
14 反応空気ブロア
15 冷却水タンク
16 第1燃料遮断弁
17 第2燃料遮断弁
18 第3燃料遮断弁
19 配管
DESCRIPTION OF SYMBOLS 1 Fuel gas booster 2 Desulfurizer 3 Reformer 4 Transformer 5 CO remover 6 Fuel cell main body 7 Reformer burner 8 Air preheater 9 Steam generator 10 Combustion air blower 11 Selective oxidation reaction air blower 12 Reformation Water pump 13 Battery cooling water pump 14 Reaction air blower 15 Cooling water tank 16 First fuel cutoff valve 17 Second fuel cutoff valve 18 Third fuel cutoff valve 19 Piping

Claims (6)

燃料ガス中の硫黄分を常温で吸着除去するための常温吸着脱硫剤が充填された脱硫器を具備する燃料電池発電装置において、燃料ガスを昇圧して前記脱硫器に供給するための燃料ガス昇圧器を設け、燃料電池発電装置の停止時に前記燃料ガス昇圧器を逆回転させることを特徴とする燃料電池発電装置。   Fuel gas booster for boosting fuel gas and supplying it to the desulfurizer in a fuel cell power generation apparatus comprising a desulfurizer filled with a normal temperature adsorptive desulfurization agent for adsorbing and removing sulfur content in fuel gas at normal temperature And a fuel cell booster that reversely rotates the fuel gas booster when the fuel cell generator is stopped. 前記燃料ガス昇圧器の下流側に前記脱硫器を配置したことを特徴とする請求項1に記載の燃料電池発電装置。   The fuel cell power generator according to claim 1, wherein the desulfurizer is disposed downstream of the fuel gas booster. 前記脱硫器の出口配管に遮断弁を配置したことを特徴とする請求項1又は2に記載の燃料電池発電装置。   The fuel cell power generator according to claim 1 or 2, wherein a shut-off valve is disposed in an outlet pipe of the desulfurizer. 前記燃料ガス昇圧器の逆回転によって逆流せしめられた硫黄分を含む燃料ガスを改質器バーナで燃焼させることを特徴とする請求項1〜3のいずれか一項に記載の燃料電池発電装置。   The fuel cell power generator according to any one of claims 1 to 3, wherein a fuel gas containing a sulfur component caused to flow backward by reverse rotation of the fuel gas booster is burned by a reformer burner. 燃料ガス中の硫黄分を常温で吸着除去するための常温吸着脱硫剤が充填された脱硫器を具備する燃料電池発電装置において、常温吸着脱硫剤の再生時に、前記脱硫器内のガスを吸引し、前記脱硫器内の圧力を減圧することを特徴とする燃料電池発電装置。   In a fuel cell power generator equipped with a desulfurizer filled with a normal temperature adsorptive desulfurizing agent for adsorbing and removing sulfur content in fuel gas at normal temperature, the gas in the desulfurizer is sucked during regeneration of the normal temperature adsorptive desulfurizing agent. A fuel cell power generator, wherein the pressure in the desulfurizer is reduced. 燃料電池発電装置の通常運転時に燃料ガスを昇圧して前記脱硫器に供給するための燃料ガス昇圧器を設け、燃料電池発電装置の非通常運転時である常温吸着脱硫剤の再生時に、前記燃料ガス昇圧器により、前記脱硫器内のガスを吸引し、前記脱硫器内の圧力を減圧することを特徴とする請求項5に記載の燃料電池発電装置。   A fuel gas booster is provided for boosting fuel gas during normal operation of the fuel cell power generator and supplying the fuel gas to the desulfurizer, and when the normal temperature adsorptive desulfurization agent is regenerated during non-normal operation of the fuel cell power generator, 6. The fuel cell power generator according to claim 5, wherein the gas in the desulfurizer is sucked by a gas booster to reduce the pressure in the desulfurizer.
JP2005073695A 2005-03-15 2005-03-15 Fuel cell power generator Withdrawn JP2006260843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005073695A JP2006260843A (en) 2005-03-15 2005-03-15 Fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005073695A JP2006260843A (en) 2005-03-15 2005-03-15 Fuel cell power generator

Publications (1)

Publication Number Publication Date
JP2006260843A true JP2006260843A (en) 2006-09-28

Family

ID=37099856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005073695A Withdrawn JP2006260843A (en) 2005-03-15 2005-03-15 Fuel cell power generator

Country Status (1)

Country Link
JP (1) JP2006260843A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123865A (en) * 2006-11-13 2008-05-29 Idemitsu Kosan Co Ltd Fuel cell system
JP2008123864A (en) * 2006-11-13 2008-05-29 Idemitsu Kosan Co Ltd Fuel cell system and its operation control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197246A (en) * 2001-12-27 2003-07-11 Aisin Seiki Co Ltd Fuel cell system
JP2004327290A (en) * 2003-04-25 2004-11-18 Fuji Electric Holdings Co Ltd Operation method of fuel cell generating device
JP2004337745A (en) * 2003-05-16 2004-12-02 Mitsubishi Heavy Ind Ltd Gas purification apparatus
JP2005212236A (en) * 2004-01-29 2005-08-11 Dainippon Screen Mfg Co Ltd Printing machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197246A (en) * 2001-12-27 2003-07-11 Aisin Seiki Co Ltd Fuel cell system
JP2004327290A (en) * 2003-04-25 2004-11-18 Fuji Electric Holdings Co Ltd Operation method of fuel cell generating device
JP2004337745A (en) * 2003-05-16 2004-12-02 Mitsubishi Heavy Ind Ltd Gas purification apparatus
JP2005212236A (en) * 2004-01-29 2005-08-11 Dainippon Screen Mfg Co Ltd Printing machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008123865A (en) * 2006-11-13 2008-05-29 Idemitsu Kosan Co Ltd Fuel cell system
JP2008123864A (en) * 2006-11-13 2008-05-29 Idemitsu Kosan Co Ltd Fuel cell system and its operation control method

Similar Documents

Publication Publication Date Title
CN101162785B (en) Stack shutdown purge method
JP4603379B2 (en) Fuel cell operating method and apparatus
WO2003094273A1 (en) Fuel cell power generation system and method for operating the same
WO2019054249A1 (en) Fuel cell system
US7611793B2 (en) Fuel cell system, hydrogen gas supply unit, and method of controlling fuel cell system
JP2016084272A (en) Method for producing hydrogen gas and apparatus for producing hydrogen gas
JP5101615B2 (en) Methane gas treatment system and methane gas treatment method
JP4855174B2 (en) Fuel cell system and operation method thereof
JP6623091B2 (en) Ammonia storage and supply device and ammonia fuel tank
JP2020515005A (en) Fuel cell system and method for thermal regeneration of desulfurized adsorbate
JP2006260843A (en) Fuel cell power generator
JPH08138703A (en) Fuel cell power generating system
JP2007106612A (en) Fuel reforming apparatus and fuel cell power generation system using the same
JPH05114414A (en) Fuel cell power generation system
JP2016009594A (en) Fuel battery power generation device
JP4974562B2 (en) Device desorption method and apparatus in fuel cell system
JP2007103078A (en) Fuel cell system
JP3349802B2 (en) Method and apparatus for regenerating nitrogen gas for fuel cell sealing
JP2005179083A (en) Hydrogen producing apparatus, fuel cell system, and its operatin method
EP2004310B1 (en) Method for removing sulfur from gaseous fuels using a self regenerating desulfurizer
JP4819349B2 (en) Production of hydrogen gas for fuel cells
JP2004288417A (en) Fuel cell power generation system
JP2005285626A (en) Fuel gas manufacturing power generation system
WO2020170491A1 (en) Pretreatment method of desulfurizer, start-up preparation method of hydrogen generation device, and start-up preparation method of fuel cell system
JP5270215B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110908