JP2015229932A - エンジンの回転制御装置 - Google Patents

エンジンの回転制御装置 Download PDF

Info

Publication number
JP2015229932A
JP2015229932A JP2014114906A JP2014114906A JP2015229932A JP 2015229932 A JP2015229932 A JP 2015229932A JP 2014114906 A JP2014114906 A JP 2014114906A JP 2014114906 A JP2014114906 A JP 2014114906A JP 2015229932 A JP2015229932 A JP 2015229932A
Authority
JP
Japan
Prior art keywords
rotation
engine
ignition
thinning
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014114906A
Other languages
English (en)
Inventor
悠一 馬場
Yuichi Baba
悠一 馬場
由祐 菊池
Yusuke Kikuchi
由祐 菊池
高橋 晃
Akira Takahashi
晃 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2014114906A priority Critical patent/JP2015229932A/ja
Priority to PCT/JP2015/066107 priority patent/WO2015186764A1/ja
Publication of JP2015229932A publication Critical patent/JP2015229932A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P11/00Safety means for electric spark ignition, not otherwise provided for
    • F02P11/02Preventing damage to engines or engine-driven gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

【課題】エンジン回転速度が上昇して所定の制限回転速度でエンジンの回転上昇を制限する必要が生じたときに、トルクショックを生じることなく的確に回転上昇を制限できるエンジンの回転制御装置を提供する。
【解決手段】単気筒エンジン1のエンジン回転速度Neが上昇して7000rpm以上になると燃料噴射を1/3間引き(燃焼サイクル3回に1回を間引きにより中止)、7250rpm以上になると点火を1/3間引き、7500rpm以上になると燃料噴射を1/2間引き、7750rpm以上になると点火を1/2間引き、8000rpm以上になると燃料噴射を完全中止し、8250rpm以上になると点火を完全中止する。これによりエンジン出力を段階的に抑制して、トルクショック無くエンジン1の過回転を防止する。
【選択図】図2

Description

本発明は、エンジンの回転制御装置に係り、詳しくはエンジンの過回転防止や二輪車の速度制限等を目的として所定の制限回転速度でエンジンの回転上昇を制限するエンジンの回転制御装置に関する。
この種のエンジンの回転制御装置は、従来から種々の目的でエンジンの回転上昇を制限する役割を奏している。例えばエンジンには機構的な回転限界があり、上限回転速度を超えた過回転はエンジン破損等の重篤なトラブルを引き起こしてしまう。また二輪車等には速度制限のために上限車速が課せられることがあるため、その場合には上限車速に制限するための何らかの対策が必要である。
これらの要求に対応すべく従来からの回転制御装置では、車両の走行中にエンジン回転速度が上昇して上限回転速度に到達した時点、或いは車両の上限車速に対応して予め設定された制限回転速度に到達した時点で、エンジンの回転に伴って繰り返される各燃焼サイクルで連続的に燃料噴射や点火を中止して、エンジンの回転上昇を制限している。この回転上昇の制限によりエンジンの過回転防止や車両の速度制限等が行われるのであるが、エンジン出力が急減するため、トルクショックにより走行フィーリングが悪化するという問題がある。
その対策として、例えば特許文献1の技術では、エンジン回転速度が上昇して上限回転速度に到達すると、エンジンの点火を完全に停止させることなく周期的に間引くことによってトルクショックの防止を図っている。
特開平6−17738号公報
しかしながら、エンジンの過回転防止は重篤なエンジン破損の回避のために確実に実行する必要があり、車両の速度制限についても同様である。そのために特許文献1の技術の場合には、エンジン回転速度が上限回転速度に到達した時点で点火を大きく間引く(点火中止の燃焼サイクルの割合を増加させる)必要があるが、このような設定であったとしても、ある燃焼サイクルでは点火が実行されて筒内燃焼によりトルクを生じるため、上記エンジンの過回転防止を確実に達成できる保証はない。
しかも、上限回転速度で点火を大きく間引けばエンジン出力が急減してトルクショックに直結してしまう。即ち上限回転速度を境界として、その直前の各燃焼サイクルで連続的に点火を実行している運転状態と、点火を大きく間引いた運転状態との間でエンジン出力に大きな格差が生じることから、トルクショックが避けられないのである。結果として特許文献1の技術によれば、エンジンの過回転防止を確実に達成できないばかりか、トルクショックの発生により走行フィーリングを悪化させるという問題があり、当該技術を車両の速度制限に応用した場合にも同様の問題が発生してしまう。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、エンジン回転速度が上昇して所定の制限回転速度でエンジンの回転上昇を制限する必要が生じたときに、トルクショックを生じることなく的確に回転上昇を制限でき、もってエンジンの過回転防止や車両の速度制限等の要求を確実に達成することができるエンジンの回転制御装置を提供することにある。
上記の目的を達成するため、本発明のエンジンの回転制御装置は、エンジンの燃料噴射を制御する燃料噴射制御手段と、エンジンの回転速度を検出する回転速度検出手段と、回転速度検出手段により検出されたエンジン回転速度が予め設定された制限回転速度に達したときにエンジンの回転に伴って繰り返される各燃焼サイクルで燃料噴射を連続的に中止する第1の回転抑制手段と、制限回転速度の低回転側を複数に区分する各噴射間引き回転域にそれぞれ対応し、各燃焼サイクルの中で燃料噴射を実行する燃焼サイクルを間引くために高回転側の噴射間引き回転域ほど増加するように予め設定された噴射間引き率を記憶する記憶手段と、回転速度検出手段により検出されたエンジン回転速度が増減に伴って各噴射間引き回転域に突入する毎に、噴射間引き回転域に対応する噴射間引き率を記憶手段から読み出して噴射間引き率に従って各燃焼サイクルで燃料噴射を間欠的に実行する第2の回転抑制手段とを具備したことを特徴とする。
このように構成したエンジンの回転制御装置によれば、エンジン回転速度が上昇して各噴射間引き回転域に突入する毎に、それらの噴射間引き回転域に対応する噴射間引き率に従ってエンジンの各燃焼サイクルで燃料噴射が間欠的に実行される。高回転側の噴射間引き回転域ほど噴射間引き率が増加するため、エンジンの回転上昇に伴ってエンジン出力が次第に抑制される。従って、その後にエンジン回転速度が制限回転速度に達すると各燃焼サイクルで燃料噴射が連続的に中止されるが、その際のエンジン出力の格差が少なくなりトルクショックが抑制される。そして、このように最終的には燃料噴射が連続的に中止されるため、エンジンの回転上昇が確実に防止される。
また別の本発明のエンジンの回転制御装置は、エンジンの点火を制御する点火制御手段と、エンジンの回転速度を検出する回転速度検出手段と、回転速度検出手段により検出されたエンジン回転速度が予め設定された制限回転速度に達したときにエンジンの回転に伴って繰り返される各燃焼サイクルで点火を連続的に中止する第1の回転抑制手段と、制限回転速度の低回転側を複数に区分する各点火間引き回転域にそれぞれ対応し、各燃焼サイクルの中で点火を実行する燃焼サイクルを間引くために高回転側の点火間引き回転域ほど増加するように予め設定された点火間引き率を記憶する記憶手段と、回転速度検出手段により検出されたエンジン回転速度が増減に伴って各点火間引き回転域に突入する毎に、点火間引き回転域に対応する点火間引き率を記憶手段から読み出して点火間引き率に従って各燃焼サイクルで点火を間欠的に実行する第2の回転抑制手段とを具備したことを特徴とする。
このように構成したエンジンの回転制御装置によれば、エンジン回転速度が上昇して各点火間引き回転域に突入する毎に、それらの点火間引き回転域に対応する点火間引き率に従ってエンジンの各燃焼サイクルで点火が間欠的に実行される。高回転側の点火間引き回転域ほど点火間引き率が増加するため、エンジンの回転上昇に伴ってエンジン出力が次第に抑制される。従って、その後にエンジン回転速度が制限回転速度に達すると各燃焼サイクルで点火が連続的に中止されるが、その際のエンジン出力の格差が少なくなりトルクショックが抑制される。そして、このように最終的には点火が連続的に中止されるため、エンジンの回転上昇が確実に防止される。
その他の態様として、エンジンの点火を制御する点火制御手段を備え、記憶手段が、各燃焼サイクルの中で点火を実行する燃焼サイクルを間引くために高回転側の点火間引き回転域ほど増加するように各点火間引き回転域に対応して予め設定された点火間引き率を噴射間引き率と共に記憶し、第2の回転抑制手段が、エンジン回転速度が増減に伴って各点火間引き回転域に突入する毎に、点火間引き回転域に対応する点火間引き率を記憶手段から読み出して点火間引き率に従って各燃焼サイクルで点火を間欠的に実行するように構成することが望ましい。
このように構成した場合には、燃料噴射と同様に点火も各燃焼サイクルで間欠的に実行されることから、エンジンの回転上昇に伴ってエンジン出力が次第に抑制されて、トルクショックの抑制作用が奏される。
その他の態様として、制限回転速度が、エンジンの上限回転速度として予め設定されていることが望ましい。
このように構成した場合には、トルクショックを抑制しながら過回転によりエンジンが破損する事態を確実に防止可能となる。
その他の態様として、最も低回転側の噴射間引き回転域及び/または点火間引き回転域が、エンジンの最大出力回転速度を含む常用回転域よりも高回転側に設定されていることが望ましい。
このように構成した場合には、通常のエンジン運転状態で噴射間引き率や点火間引き率に従ってエンジン出力が抑制される可能性がなくなり、これに起因する走行フィーリングの悪化が防止される。
その他の態様として、エンジンが走行用動力源として二輪車に搭載されており、制限回転速度が、速度制限のために二輪車に課せられた上限車速に対応するエンジン回転速度として設定されていることが望ましい。
このように構成した場合には、トルクショックを抑制しながら上限車速で二輪車の速度を制限可能になると共に、上限車速付近でエンジン出力が急に抑制されたときの走行フィーリングの悪化が防止される。
その他の態様として、噴射間引き回転域と点火間引き回転域とを異なる回転域として設定することが望ましい。
このように構成した場合には、燃料噴射のみ或いは点火のみを間引いた場合に比較して、より多段階でエンジン出力を抑制可能となる。
その他の態様として、第1の回転抑制手段が、燃料噴射の連続的な中止と点火の連続的な中止とを異なる制限回転速度に基づき実行するように構成することが望ましい。
このように構成した場合には、燃料噴射の連続的な中止と点火の連続的な中止とが段階的に行われるため、これらが同時に行われた場合に比較してトルクショックが抑制される。
その他の態様として、エンジンの行程を判別する行程判別手段をさらに備え、第2の回転抑制手段が、行程判別手段が行程を判別不能になったときに作動を停止するように構成することが望ましい。
このように構成した場合には、エンジンの行程を判別不能になると、第2の回転抑制手段により燃料噴射や点火を適切に間引くことができなくなるが、第2の回転抑制手段の作動が停止されて第1の回転抑制手段だけでエンジンの回転上昇が抑制されるため、不適切な間引きによってエンジン回転上昇の抑制に支障をきたす事態が防止される。
その他の態様として、エンジンを単気筒として構成することが望ましい。
このように構成した場合には、単気筒エンジンであっても回転上昇に伴って段階的にエンジン出力を抑制可能となる。
本発明によれば、エンジン回転速度が上昇して所定の制限回転速度でエンジンの回転上昇を制限する必要が生じたときに、トルクショックを生じることなく的確に回転上昇を制限でき、もってエンジンの過回転防止や車両の速度制限等の要求を確実に達成することができる。
実施形態のエンジンの回転制御装置を示すシステム構成図である。 燃料噴射及び点火を実行する燃焼サイクルを間引くための間引き率を設定する制御マップを示す模式図である。 ECUが実行するエンジン過回転防止ルーチンを示すフローチャートである。 エンジン過回転防止ルーチンに基づく燃料噴射と点火の間引き及び完全中止の実行状況を示すタイムチャートである。
以下、本発明を二輪車に搭載されるエンジンの過回転を防止する回転制御装置に具体化した一実施形態を説明する。
図1は本実施形態のエンジンの回転制御装置を示すシステム構成図である。
本実施形態のエンジン1は、排気量50ccの4サイクル単気筒ガソリンエンジンとして構成されており、走行用動力源として二輪車に搭載されている。但し、エンジン1の仕様については、これに限定されるものではなく任意に変更可能であり、例えば大排気量の多気筒エンジンに適用してもよい。
エンジン1のシリンダブロック2に形成されたシリンダ3内にはピストン4が摺動可能に配設され、ピストン4はコンロッド5を介してクランク軸6に連結されてピストン4の往復動に連動してクランク軸6が回転するようになっている。クランク軸6の後端(図示しない変速機側)にはフライホイール7が取り付けられ、フライホイール7の外周上の所定の角度領域にはクランク角を検出するための磁性体からなるリラクタ突起7aが形成されている。
シリンダブロック2上に固定されたシリンダヘッド9には吸気ポート9a及び排気ポート9bが形成されると共に、先端を筒内に臨ませた姿勢で点火プラグ10が配設されている。吸気ポート9aに接続された吸気通路11には、上流側よりエアクリーナ12、運転者のスロットル操作に応じて開閉されるスロットルバルブ13、ISCV(アイドルスピードコントロールバルブ)14を備えたバイパス通路15、及び吸気ポート9aに向けて燃料を噴射するインジェクタ16が設けられている。また排気ポート9bに接続された排気通路17には、排ガスを浄化するための三元触媒18(触媒装置)及び図示しない消音器が設けられている。
吸気ポート9aには吸気バルブ20が配設され、排気ポート9bには排気バルブ21が配設されている。これらの吸排気バルブ20,21はバルブスプリング22により閉弁側に付勢されると共に、シリンダヘッド9上でクランク軸6に同期して回転駆動される吸気カム軸23及び排気カム軸24により開弁される。これによりピストン4の往復動に同期した所定のタイミングで吸気バルブ20及び排気バルブ21が開閉し、吸気、圧縮、膨張、排気の4つの行程からなるエンジン1の燃焼サイクルがクランク角で720°CA毎に繰り返される。
上記インジェクタ16には、燃料タンク25内に貯留された燃料(ガソリン)が燃料ポンプ26により供給される。燃料ポンプ26はインジェクタ16と一体化され、供給ホース27及びリターンホース28を介してそれぞれ燃料タンク25に対して接続されている。
燃料ポンプ26が作動すると燃料タンク25内の燃料が供給ホース27を介して燃料ポンプ26内に導かれて所定圧に加圧され、加圧後の燃料がインジェクタ16に供給されると共に、余剰燃料がリターンホース28を介して燃料タンク25に回収される。これによりインジェクタ16には常に所定圧の燃料が供給され、インジェクタ16の開弁に応じて所定の噴射時期及び噴射量で吸気ポート9aに向けて燃料が噴射される。
エンジン1の運転中には、吸気行程でピストン4の下降に伴って発生した負圧によりエアクリーナ12を介して吸気通路11内に外気が吸入され、吸入空気はスロットルバルブ13の開度に応じて流量調整された後、インジェクタ16からの噴射燃料と混合しながら吸気バルブ20の開弁中にエンジン1の筒内に流入する。続く圧縮行程での圧縮を経て混合気は圧縮上死点の近傍で点火プラグ10により点火され、膨張行程中に燃焼してピストン4を介してクランク軸6に回転力を付与する。続く排気行程では燃焼後の排ガスが排気バルブ21の開弁中に筒内より排出され、排気通路17を流通しながら三元触媒18及び消音器を経て外部に排出される。
以上のエンジン1の燃焼サイクルは、ECU31(エンジン制御ユニット)の制御に基づき実行される。そのためにECU31の入力側には、上記フライホイール7に対向配置されてリラクタ突起7aに同期した検出信号を出力する電磁ピックアップ32、スロットルバルブ13の開度を検出するスロットルセンサ33、排気通路17に配設されてストイキ(理論空燃比)を中心とした排気空燃比の変動に応じて出力VSをステップ状に変動させるO2センサ34、エンジン1の冷却水温Twを検出する水温センサ35等の各種センサ類が接続されている。また、ECU31の出力側には、上記ISCV14、インジェクタ16(制御機器)、燃料ポンプ26、点火プラグ10(制御機器)を駆動するイグナイタ36等の各種デバイス類が接続されている。
これらのセンサ情報に基づきECU31は、点火プラグ10を駆動するための点火制御、インジェクタ16を駆動するための燃料噴射制御等の各種制御を実行してエンジン1を運転する(点火制御手段、燃料噴射制御手段)。
例えばECU31は点火制御として、電磁ピックアップ32の検出信号から算出したエンジン回転速度Ne(回転速度検出手段)及びスロットルセンサ33により検出されたスロットル開度θth等に基づき目標点火時期を決定する。これと並行してECU31は、電磁ピックアップ32の検出信号を波形整形してリラクタ7a(換言するとクランク角)に同期した矩形波状のクランク角信号を生成し、そのクランク角信号に基づき目標点火時期に対応するタイミングを特定した上で、イグナイタ36を駆動して点火プラグ10を点火させる。
またECU31は燃料噴射制御として、エンジン回転速度Ne及びスロットル開度θth等に基づき燃料噴射量(実際にはインジェクタ16の開弁時間)を決定し、吸気行程の所定タイミングでインジェクタ16を駆動して燃料噴射を実行する。
一方、ECU31はエンジン1の過回転を防止する過回転防止機能を備えている。エンジン1の過回転を防止する対策としては特許文献1の技術が提案されているが、エンジン回転速度Neが上限回転速度に到達した時点でエンジン1の点火を間引くだけのため、エンジン1の過回転を確実に防止できないばかりかトルクショックが発生するという問題がある。
このような問題点を鑑みて本実施形態では、エンジン1の過回転の防止のために、エンジン1の各燃焼サイクルで連続的に点火を中止する従来からの過回転防止機能(特許文献以前の技術)を備えた上で、エンジン回転速度Neが上限回転速度に到達する以前において、エンジン1の回転上昇に応じて点火を実行する燃焼サイクルを段階的に間引く新たな対策を講じている。加えて、このような点火の段階的な間引きと同じく燃料噴射についても段階的な間引きを実行しており、以下、この対策のためにECU31が実行する処理を説明する。
図2は燃料噴射及び点火を実行する燃焼サイクルを間引くための間引き率を設定する制御マップを示す模式図であり、この制御マップが予めECU31に記憶されている(記憶手段)。以下の説明では、燃料噴射の間引き率を噴射間引き率Rfiと称し、点火の間引き率を点火間引き率Rigと称する。
噴射間引き率Rfiに関しては、エンジン回転速度Ne=7000rpm未満の回転域で燃料噴射の完全実行を(間引きの中止)を意味する0が設定され、7000〜7500rpmの回転域で1/3が設定され、7500〜8000rpmの回転域で1/2が設定され、8000rpm以上の回転域で燃料噴射の完全中止を意味する1が設定されている。例えば噴射間引き率Rfi=1/3とは、エンジン1の回転に伴って繰り返される各燃焼サイクルの中で3回に1回の燃料噴射が間引きの対象となって中止されることを意味し、この点は点火間引き率Rigに関しても同様である。
従って、7000rpm未満の回転域では、エンジン1の各燃焼サイクルで通常通りに燃料噴射が連続的に実行され、7000〜8000rpmの回転域では、2段階に増加する噴射間引き率Rfiにそれぞれ従って各燃焼サイクルで間欠的に燃料噴射が実行され(第2の回転抑制手段)、8000rpm以上の回転域では、各燃焼サイクルで燃料噴射が連続的に中止される(第1の回転抑制手段)。以下、このような燃料噴射の間引きによりエンジン出力が抑制される7000rpm以上の各回転域を噴射間引き回転域と称する。
また、点火間引き率Rigに関しては、エンジン回転速度Ne=7250rpm未満の回転域で点火の完全実行(間引きの中止)を意味する0が設定され、7250〜7750rpmの回転域で1/3が設定され、7750〜8250rpmの回転域で1/2が設定され、8250rpm以上の回転域で点火の完全中止を意味する1が設定されている。
従って、7250rpm未満の回転域では、エンジン1の各燃焼サイクルで通常通りに点火が連続的に実行され、7250〜8250rpmの回転域では、2段階に増加する点火間引き率Rigにそれぞれ従って各燃焼サイクルで間欠的に点火噴射が実行され(第2の回転抑制手段)、8250rpm以上の回転域では、各燃焼サイクルで点火が連続的に中止される(第1の回転抑制手段)。以下、このような点火の間引きによりエンジン出力が抑制される7250rpm以上の各回転域を点火間引き回転域と称する。
そして本実施形態では、燃料噴射が連続的に中止される8000rpm、及び点火が連続的に中止される8250rpmがエンジン1の上限回転速度(制限回転速度)として機能する。
以上の説明から明らかなように、噴射間引き回転域と点火間引き回転域とは異なる回転域として設定されている。詳しくは、隣接する噴射間引き回転域の境界に対し点火間引き回転域の中央が一致し、同様に、隣接する点火間引き回転域の境界に対し噴射間引き回転域の中央が一致するように設定されている。
そして詳細は後述するが、エンジン1の回転上昇に伴うエンジン出力の抑制は、1/3の噴射間引き率Rfiが適用される7000rpmから開始されるが、この回転速度はエンジン1の最大出力回転速度を含む常用回転域よりも高回転側である。
即ち、周知のようにエンジン出力は回転上昇と共に増加してピークの最大出力回転速度を経た後に低下に転じることから、最大出力回転速度をある程度超えた回転域を上限としてエンジン1の常用回転域が定まり、通常はこの常用回転域内でエンジン1が運転される。このような常用回転域に対して高回転側に、噴射間引き率Rfi=1/3の噴射間引き回転域(詳しくは、その下限の7000rpm)が設定されている。
次に、以上のように設定された制御マップに基づきECU31により実行されるエンジン過回転防止ルーチンを図3のフローチャート、及び図4のタイムチャートに従って説明する。
ECU31は図3の過回転防止ルーチンをエンジン1の運転中に所定の制御インターバルで実行する。以下、図4に示すように、エンジン1がアイドル運転からアクセル全開により回転上昇した場合の過回転の抑制状況を説明する。なお、このときのエンジン1の回転上昇は、車両の加速を伴うものであっても停車中のエンジン1の空吹かしによるものであっても相違なく、同様の手順を追ってエンジン1の過回転が抑制される。
まず、ステップS2でエンジン回転速度Neが7000rpm未満であるか否かを判定し、判定がYes(肯定)のときにはステップS4に移行して、図2の制御マップから噴射間引き率Rfi及び点火間引き率Rigとして0を読み出す。従って、燃料噴射制御及び点火制御では、それぞれの間引き率Rfi,Rig=0に従ってエンジン1の各燃焼サイクルで燃料噴射及び点火が連続的に実行され、エンジン1は出力を抑制されることなく通常通りに運転される。エンジン1の常用回転域が7000rpm未満であることから、このように通常時には燃料噴射や点火の間引きによる出力抑制を受けずにエンジン1が運転され、エンジン出力の抑制に起因する走行フィーリングの悪化を防止することができる。
アイドル運転よりエンジン回転速度Neが上昇して7000rpm以上になると、ECU31はステップS2でNo(否定)の判定を下してステップS6に移行し、エンジン回転速度Neが8250rpm以上であるか否かを判定する。判定がNoのときにはステップS8に移行し、エンジン1の行程判別処理が正常に行われているか否かを判定する。
行程判別処理とは、エンジン1の燃焼サイクルを構成する各行程(吸気、圧縮、膨張、排気)をECU31が認識する処理である(行程判別手段)。即ち、エンジン1の燃焼サイクルが720°CAを1周期としているのに対し、クランク角信号は360°CAを1周期としているため、例えば現在のクランク角信号のON期間が圧縮上死点の直前のものか排気上死点の直前のものかをECU31は判別できない。
そこで、エンジン1を始動する際に、クランク角信号に基づき燃料噴射及び点火を360°CA毎にそれぞれ実行して暫定的にエンジン1を運転させた上で、360°CA間隔で発生するクランク角信号のON期間の所要時間を計測し、行程判別処理として相前後する2つのON期間の計測値を比較する。排気行程に比較して圧縮行程ではピストン4の上昇が妨げられてクランク軸6の角速度が低下するため、ON期間が長い側を圧縮行程と見なし、ON期間が短い側を排気行程と見なす。
以降のエンジン1の運転中には、行程判別処理の結果に従って720°CA毎に吸気行程で燃料噴射を実行し、圧縮上死点の直前で点火を実行するのであるが、電磁ピックアップ32の故障等の要因でECU31が行程判別できなくなる場合がある。上記ステップS8は、このような事態を想定した処理であり、ECU31は正常に行程判別処理を実行しているときにはステップS8でYesの判定を下し、ステップS10以降の処理によりエンジン回転速度Neに応じて燃料噴射及び点火を間引きながらエンジン1を運転させる。
まずステップS10では、エンジン回転速度Neが7250rpm未満であるか否かを判定する。判定がYesのとき(エンジン回転速度Neが7000〜7250rpmの回転域に突入したことを意味し、以下の他の回転域でも同様である)にはステップS12に移行して、制御マップから噴射間引き率Rfiとして1/3を読み出し、点火間引き率Rigとして0を読み出す。従って燃料噴射制御では、噴射間引き率Rfi=1/3に従って燃料噴射が間引かれてエンジン1の各燃焼サイクルで間欠的に燃料噴射が実行され(第2の回転抑制手段)、点火制御では、点火間引き率Rig=0に従って各燃焼サイクルで点火が連続的に実行される。
さらにエンジン回転速度Neが上昇して7250rpm以上になると、ECU31はステップS10でNoの判定を下してステップS14に移行し、エンジン回転速度Neが7500rpm未満であるか否かを判定する。判定がYesのときにはステップS16に移行して、制御マップから噴射間引き率Rfi及び点火間引き率Rigとして1/3を読み出す。従って燃料噴射制御及び点火制御では、それぞれの間引き率Rfi,Rig=1/3に従って燃料噴射及び点火が間引かれてエンジン1の各燃焼サイクルで間欠的に燃料噴射や点火が実行される(第2の回転抑制手段)。
なお、本実施形態では、このときの燃料噴射及び点火に対する間引きのタイミングを同期させているが(同一燃焼サイクルで燃料噴射及び点火を共に中止する)、本発明はこれに限定されるものではなく、双方の間引きのタイミングが相違する場合も含むものとする。
さらにエンジン回転速度Neが上昇して7500rpm以上になると、ECU31はステップS14でNoの判定を下してステップS18に移行し、エンジン回転速度Neが7750rpm未満であるか否かを判定する。判定がYesのときにはステップS20に移行して、制御マップから噴射間引き率Rfiとして1/2を読み出し、点火間引き率Rigとして1/3を読み出す。従って燃料噴射制御では、噴射間引き率Rfi=1/2に従って燃料噴射が間引かれてエンジン1の各燃焼サイクルで間欠的に燃料噴射が実行され(第2の回転抑制手段)、点火制御では、点火間引き率Rig=1/3に従って点火が間引かれて各燃焼サイクルで間欠的に点火が実行される(第2の回転抑制手段)。
さらにエンジン回転速度Neが上昇して7750rpm以上になると、ECU31はステップS18でNoの判定を下してステップS22に移行し、エンジン回転速度Neが8000rpm未満であるか否かを判定する。判定がYesのときにはステップS24に移行して、制御マップから噴射間引き率Rfi及び点火間引き率Rigとして1/2を読み出す。従って燃料噴射制御及び点火制御では、それぞれの間引き率Rfi,Rig=1/2に従って燃料噴射及び点火が間引かれてエンジン1の各燃焼サイクルで間欠的に燃料噴射や点火が実行される(第2の回転抑制手段)。
さらにエンジン回転速度Neが上昇して8000rpm以上になると、ECU31はステップS22でNoの判定を下してステップS26に移行し、エンジン回転速度Neが8250rpm未満であるか否かを判定する。判定がYesのときにはステップS28に移行して、制御マップから噴射間引き率Rfiとして1を読み出し、点火間引き率Rigとして1/2を読み出す。従って燃料噴射制御では、噴射間引き率Rfi=1に従ってエンジン1の各燃焼サイクルで燃料噴射が連続的に中止され(第1の回転抑制手段)、点火制御では、点火間引き率Rig=1/2に従って点火が間引かれて各燃焼サイクルで間欠的に点火が実行される(第2の回転抑制手段)。
さらにエンジン回転速度Neが上昇して8250rpm以上になるとステップS26でNoの判定を下し、再度本ルーチンを開始したときにステップS2からステップS6を経てステップS30に移行する。ステップS30では、制御マップから噴射間引き率Rfi及び点火間引き率Rigとして1を読み出す。従って燃料噴射制御及び点火制御では、それぞれの間引き率Rfi,Rig=1に従って各燃焼サイクルで燃料噴射及び点火が連続的に中止される(第1の回転抑制手段)。
本実施形態のエンジン1はポート噴射型であるため、筒内噴射型エンジンのように同一燃焼サイクル内で燃料噴射と点火とが実行された場合のみ筒内での燃焼が成立するわけではない。例えば吸気ポート9a内に噴射されたものの直後の同一燃焼サイクル内で点火が実行されなかった場合であっても、次回以降の燃焼サイクルで点火が実行されれば噴射燃料は筒内で燃焼してエンジン出力に貢献する。このため、図2の制御マップ及び図3のルーチンに基づき、7000〜8250rpmの回転域では、噴射間引き率Rfi或いは点火間引き率Rigの何れかが増加する毎にエンジン出力が抑制される。
より具体的には、エンジン回転速度Neが7000rpm未満の燃料噴射及び点火を連続的に実行する通常回転域に対して、7000rpm以上では燃料噴射が1/3間引かれ、7250rpm以上では点火が1/3間引かれ、7500rpm以上では燃料噴射が1/2間引かれ、7750rpm以上では点火が1/2間引かれる。
そして、以上のように燃料噴射及び点火が段階的に間引かれることにより、エンジン1の回転上昇に応じてエンジン出力が段階的に抑制され、それに応じて図4に示すようにエンジン1の回転上昇が次第に鈍くなる。従って、燃料噴射及び点火の間引き運転(Ne<8000rpm)から燃料噴射及び点火の完全中止(Ne≧8000rpm)に移行する時点では既にエンジン出力が十分に抑制されているため、移行する際のエンジン出力の格差が非常に少ない。
しかも、燃料噴射及び点火の完全中止もエンジン1の回転上昇に応じて段階的に行われる(8000rpm、8250rpm)。このため、例えば燃料噴射及び点火が同時に完全中止された場合に比較して、エンジン出力の縮小が2回に分割されて個々のエンジン出力の格差が少なくなる。
以上の一連のECU31の処理により、エンジン1が回転上昇して7000rpm以上になると燃料噴射及び点火が段階的に間引かれ、さらに8000rpm以上になると燃料噴射及び点火が段階的に完全中止され、それに伴ってエンジン出力が段階的に抑制される。よって、エンジン1の過回転を防止する際のトルクショックを抑制でき、もって良好な走行フィーリングを継続することができる。しかも、最終的には8250rpm以上の回転域で燃料噴射及び点火を共に完全中止するため、良好な走行フィーリングを確保した上でエンジン1の回転上昇を的確に制限でき、これにより過回転によるエンジン破損を確実に防止することができる。
特に本実施形態では、噴射間引き回転域と点火間引き回転域とが異なる回転域として設定され、エンジン回転上昇時には燃料間引き率Rfiと点火間引き率Rigとが交互に増加される。このため燃料噴射のみ或いは点火のみを間引いた場合に比較して、より多段階でエンジン出力を抑制でき、一層良好な走行フィーリングを実現することができる。
また、例えば多気筒エンジンにおいては、回転上昇時に燃料噴射や点火を中止する気筒を徐々に増加させれば、本実施形態と同じく段階的にエンジン出力を抑制できるが、この手法は本実施形態のような単気筒エンジン1には適用できない。本実施形態は単気筒エンジン1であっても同様の作用効果が得られることから、特に単気筒エンジン1に対して好適なものと見なせる。
なお、上記のようにポート噴射型エンジン1では、吸気ポート9a内への噴射燃料が次回以降の燃焼サイクルで燃焼されるため、燃料噴射と点火とが相前後して完全中止されたとき(8000rpm、8250rpm)の筒内燃焼の推移を詳細には断定できない。例えば図4に示すようにエンジン回転速度Neは8000rpm以上になっても燃焼の継続により上昇し続け、8250rpmを超えて下降に転じる場合が考えられる。その後エンジン回転速度Neは、8000rpm未満まで低下して1/2間引きの燃料噴射の再開により筒内燃焼が再開された時点で再び上昇に転じ、運転者がスロットル全開に保っている限りは以上の変動を繰り返す。
エンジン回転速度Neの変動状況は図示したものに限らないが、何れにしてもエンジン回転速度Neが低下から上昇に転じたときの筒内燃焼は、連続的な燃料噴射及び点火で一気に再開されることなく、1/2間引きの燃料噴射及び点火により緩やかに再開される。結果としてスロットル全開が継続されている場合のエンジン1の燃料噴射及び点火は、1/2間引きされた運転状態と連続的に中止された運転状態との間で交互に繰り返される。
このような状況において、従来からの間引き無しの過回転防止制御では燃料噴射や点火の連続的な実行と中止とが交互に繰り返されるが、これに対して本実施形態ではエンジン出力の変動が大幅に縮小される。よって、エンジン1の回転上昇を制限する際だけでなく、その後にスロットル全開が継続されている状況においても、エンジン出力の変動を縮小してトルクショックを抑制することができる。
以上がECU31により正常な行程判別処理が実行されているときのエンジン1の過回転防止処理である。次に、ECU31の行程判別処理に異常が生じた場合について図3に戻って説明を続ける。
エンジン回転速度Neが8250rpm未満の場合、ECU31は図3のステップS2からステップS6を経てステップS8に移行する。行程判別処理が正常でないことからステップS8でNoの判定を下してステップS4に移行し、噴射間引き率Rfi及び点火間引き率Rigとして0を読み出す。また、エンジン回転速度Neが上昇して8250rpm以上になるとステップS30に移行して、噴射間引き率Rfi及び点火間引き率Rigとして1を読み出す。
従って、エンジン回転速度Neが8250rpm未満の回転域では、燃料噴射や点火の間引きによる出力抑制を受けずにエンジン1が運転され、8250rpm以上になると燃料噴射及び点火が完全中止されてエンジン1の過回転が防止される。このときのECU31の制御内容は、従来からの間引き無しの過回転防止制御に相当するものであり、行程判別処理の異常時にこのように制御内容を切り換えるのは、以下の知見に基づく。
ECU31は行程判別処理に異常が生じた場合、上記した行程判別前であるエンジン始動時と同様に、燃料噴射及び点火を360°CA毎にそれぞれ実行する。この制御モードは車両の走行不能を回避する所謂リンプホームを想定したものであるが、燃料噴射及び点火の頻度が2倍になるため、正常時と同一の間引き率Rfi,Rigを適用しても目的の間引きを実現できない。また、例えば排気上死点の直前で実行される点火は意味のない点火(所謂捨て火)であるにも拘わらず、ECU31が燃焼サイクルの各行程を認識不能な故に、捨て火の点火が間引きの対象となる場合もあり、この点も目的の間引きを実現できない要因となる。
そこで、行程判別処理の異常時には燃料噴射及び点火を適切に間引くことが不可能と見なし、従来からの間引き無しの過回転防止制御に切り換えているのである。これにより不適切な間引きの実施で肝心のエンジン1の過回転防止に支障をきたす事態を未然に防止することができる。
ところで、本実施形態ではエンジン1の上限回転速度を制限回転速度として設定してエンジン1の過回転による破損を防止したが、本発明はこれに限るものではない。例えば、二輪車等には速度制限のために上限車速が課せられることがあり、このような場合には、車両の走行中に上限車速未満に車速を制限(所謂スピードリミッタ)する必要が生じる。そこで、上限車速に対応するエンジン回転速度Neを制限回転速度として設定し、車両走行中にエンジン回転速度Neが上昇して制限回転速度に達した時点でエンジン1の燃料噴射や点火を中止する対策が講じられる。
そして、このような場合にも本実施形態と同じく、エンジン回転速度Ne(=車速)の上昇に伴って燃料噴射や点火を実行する燃焼サイクルを段階的に間引くようにしてもよい。このときにも制限回転速度の設定が相違するだけで、噴射間引き率Rfiや点火間引き率Rig等に関しては実施形態と同様の設定を適用することができる。よって、重複する説明はしないが、車速が上限車速に接近するほどエンジン出力が段階的に抑制されることから、トルクショックを抑制しながら上限車速で二輪車を速度制限できると共に、上限車速付近でエンジン出力が急に抑制されたときの走行フィーリングの悪化を未然に防止することができる。
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、二輪車に搭載された単気筒エンジン1の回転制御装置として具体化したが、これに限るものではなく多気筒エンジンに適用したり、三輪車用のエンジンに適用したりしてもよい。また上記実施形態で述べた噴射及び点火間引き回転域及び各間引き回転域の数、各間引き回転域の間引き率Rfi,Rig、上限回転速度等の諸要件は一例に過ぎず、これに限定されるものではない。当然であるが、エンジン1の仕様等が相違すればそれに応じて各要件を任意に変更することができる。
また上記実施形態では、噴射間引き回転域と点火間引き回転域とを異なる回転域として設定し、エンジン1の回転上昇に応じて燃料間引き率Rfiと点火間引き率Rigとを交互に増加させたが、これに限るものではない。例えば燃料噴射及び点火の間引き率Rfi,Rigを同一の間引き回転域で設定し、両間引き率Rfi,Rigを同一タイミングで増加させるようにしてもよい。また、エンジン1の過回転防止のために必ずしも燃料噴射及び点火の双方を中止する必要はなく、例えばエンジン1の回転上昇に応じて燃料噴射のみの間引き及び完全中止、或いは点火のみの間引き及び完全中止を実行するようにしてもよい。
また上記実施形態では、燃料噴射及び点火の完全中止を異なるエンジン回転速度Ne(8000rpm、8250rpm)で行ったが、同一回転速度、例えば8000rpm或いは8250rpmで同時に実行するようにしてもよい。
1 エンジン
31 ECU(回転速度検出手段、燃料噴射制御手段、点火制御手段、記憶手段、
行程判別手段)
32 電磁ピックアップ(回転速度検出手段)

Claims (10)

  1. エンジンの燃料噴射を制御する燃料噴射制御手段と、
    上記エンジンの回転速度を検出する回転速度検出手段と、
    上記回転速度検出手段により検出されたエンジン回転速度が予め設定された制限回転速度に達したときに上記エンジンの回転に伴って繰り返される各燃焼サイクルで上記燃料噴射を連続的に中止する第1の回転抑制手段と、
    上記制限回転速度の低回転側を複数に区分する各噴射間引き回転域にそれぞれ対応し、上記各燃焼サイクルの中で燃料噴射を実行する燃焼サイクルを間引くために高回転側の噴射間引き回転域ほど増加するように予め設定された噴射間引き率を記憶する記憶手段と、
    上記回転速度検出手段により検出されたエンジン回転速度が増減に伴って上記各噴射間引き回転域に突入する毎に、該噴射間引き回転域に対応する上記噴射間引き率を上記記憶手段から読み出して該噴射間引き率に従って上記各燃焼サイクルで上記燃料噴射を間欠的に実行する第2の回転抑制手段と
    を具備したことを特徴とするエンジンの回転制御装置。
  2. エンジンの点火を制御する点火制御手段と、
    上記エンジンの回転速度を検出する回転速度検出手段と、
    上記回転速度検出手段により検出されたエンジン回転速度が予め設定された制限回転速度に達したときに上記エンジンの回転に伴って繰り返される各燃焼サイクルで上記点火を連続的に中止する第1の回転抑制手段と、
    上記制限回転速度の低回転側を複数に区分する各点火間引き回転域にそれぞれ対応し、上記各燃焼サイクルの中で点火を実行する燃焼サイクルを間引くために高回転側の点火間引き回転域ほど増加するように予め設定された点火間引き率を記憶する記憶手段と、
    上記回転速度検出手段により検出されたエンジン回転速度が増減に伴って上記各点火間引き回転域に突入する毎に、該点火間引き回転域に対応する上記点火間引き率を上記記憶手段から読み出して該点火間引き率に従って上記各燃焼サイクルで上記点火を間欠的に実行する第2の回転抑制手段と
    を具備したことを特徴とするエンジンの回転制御装置。
  3. 上記エンジンの点火を制御する点火制御手段を備え、
    上記記憶手段は、上記各燃焼サイクルの中で点火を実行する燃焼サイクルを間引くために高回転側の点火間引き回転域ほど増加するように上記各点火間引き回転域に対応して予め設定された点火間引き率を上記噴射間引き率と共に記憶し、
    上記第2の回転抑制手段は、上記エンジン回転速度が増減に伴って上記各点火間引き回転域に突入する毎に、該点火間引き回転域に対応する上記点火間引き率を上記記憶手段から読み出して該点火間引き率に従って上記各燃焼サイクルで上記点火を間欠的に実行する
    ことを特徴とする請求項1に記載のエンジンの回転制御装置。
  4. 上記制限回転速度は、上記エンジンの上限回転速度として予め設定されている
    ことを特徴とする請求項1乃至3の何れかに記載のエンジンの回転制御装置。
  5. 最も低回転側の上記噴射間引き回転域及び/または点火間引き回転域は、上記エンジンの最大出力回転速度を含む常用回転域よりも高回転側に設定されている
    ことを特徴とする請求項4に記載のエンジンの回転制御装置。
  6. 上記エンジンは走行用動力源として二輪車に搭載されており、
    上記制限回転速度は、速度制限のために上記二輪車に課せられた上限車速に対応するエンジン回転速度として設定されている
    ことを特徴とする請求項1乃至3の何れかに記載のエンジンの回転制御装置。
  7. 上記噴射間引き回転域と上記点火間引き回転域とが異なる回転域として設定された
    ことを特徴とする請求項3乃至6の何れかに記載のエンジンの回転制御装置。
  8. 上記第1の回転抑制手段は、上記燃料噴射の連続的な中止と上記点火の連続的な中止とを異なる制限回転速度に基づき実行する
    ことを特徴とする請求項3乃至7の何れかに記載のエンジンの回転制御装置。
  9. 上記エンジンの行程を判別する行程判別手段をさらに備え、
    上記第2の回転抑制手段は、上記行程判別手段が行程を判別不能になったときに作動を停止する
    ことを特徴とする請求項1乃至8の何れかに記載のエンジンの回転制御装置。
  10. 上記エンジンは単気筒である
    ことを特徴とする請求項1乃至9の何れかに記載のエンジンの回転制御装置。
JP2014114906A 2014-06-03 2014-06-03 エンジンの回転制御装置 Pending JP2015229932A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014114906A JP2015229932A (ja) 2014-06-03 2014-06-03 エンジンの回転制御装置
PCT/JP2015/066107 WO2015186764A1 (ja) 2014-06-03 2015-06-03 エンジンの回転制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014114906A JP2015229932A (ja) 2014-06-03 2014-06-03 エンジンの回転制御装置

Publications (1)

Publication Number Publication Date
JP2015229932A true JP2015229932A (ja) 2015-12-21

Family

ID=54766832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014114906A Pending JP2015229932A (ja) 2014-06-03 2014-06-03 エンジンの回転制御装置

Country Status (2)

Country Link
JP (1) JP2015229932A (ja)
WO (1) WO2015186764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042710A (ja) * 2019-09-10 2021-03-18 株式会社やまびこ 作業機用エンジン装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01294965A (ja) * 1988-05-20 1989-11-28 Oki Electric Ind Co Ltd 内燃機関の点火制御方式
JP2627838B2 (ja) * 1991-11-11 1997-07-09 株式会社ユニシアジェックス 内燃機関の電子制御燃料噴射装置
JP3522055B2 (ja) * 1996-02-29 2004-04-26 スズキ株式会社 船外機のエンジン制御装置
JP2008157178A (ja) * 2006-12-26 2008-07-10 Honda Motor Co Ltd エンジン制御装置
JP2011157906A (ja) * 2010-02-02 2011-08-18 Denso Corp 内燃機関の制御装置
JP2013011176A (ja) * 2011-06-28 2013-01-17 Toyota Motor Corp 内燃機関の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042710A (ja) * 2019-09-10 2021-03-18 株式会社やまびこ 作業機用エンジン装置

Also Published As

Publication number Publication date
WO2015186764A1 (ja) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5919697B2 (ja) ディーゼルエンジンの始動制御装置
US20160146127A1 (en) Method for pre-ignition control
JP5229006B2 (ja) 内燃機関の制御装置
RU2703872C2 (ru) Способ и система для управления двигателем
US9057339B2 (en) Stochastic pre-ignition mitigation system
JP5742682B2 (ja) 内燃機関の始動制御装置
JP2009019577A (ja) 内燃機関の制御装置
RU2696660C2 (ru) Система и способ для эксплуатации двигателя
JP6197825B2 (ja) エンジンの制御装置
WO2015186764A1 (ja) エンジンの回転制御装置
JP6107378B2 (ja) 空燃比インバランス判定装置
JP5910176B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP5888041B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP2006132399A (ja) 過給機付エンジンの制御装置および制御方法
JP2010255591A (ja) エンジン制御装置
JP6372552B2 (ja) 圧縮着火式エンジンの制御方法および制御装置
JP2007278174A (ja) 内燃機関の燃料カット制御装置
JP2016050502A (ja) 内燃機関の制御装置
JP6301204B2 (ja) エンジンの始動制御装置
WO2021112221A1 (ja) 内燃機関の駆動制御装置
WO2015186760A1 (ja) エンジンの制御装置
JP7092519B2 (ja) 内燃機関の制御装置
JP6414584B2 (ja) 圧縮着火式エンジンの制御方法および制御装置
JP5857829B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP5935754B2 (ja) 内燃機関の制御装置