JP2015197955A - Conductive particle - Google Patents

Conductive particle Download PDF

Info

Publication number
JP2015197955A
JP2015197955A JP2014073721A JP2014073721A JP2015197955A JP 2015197955 A JP2015197955 A JP 2015197955A JP 2014073721 A JP2014073721 A JP 2014073721A JP 2014073721 A JP2014073721 A JP 2014073721A JP 2015197955 A JP2015197955 A JP 2015197955A
Authority
JP
Japan
Prior art keywords
particles
layer
conductive
conductive particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014073721A
Other languages
Japanese (ja)
Other versions
JP6340876B2 (en
Inventor
邦彦 赤井
Kunihiko Akai
邦彦 赤井
有福 征宏
Masahiro Arifuku
征宏 有福
芳則 江尻
Yoshinori Ejiri
芳則 江尻
昌之 中川
Masayuki Nakagawa
昌之 中川
渡辺 靖
Yasushi Watanabe
靖 渡辺
奈々 榎本
Nana Enomoto
奈々 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014073721A priority Critical patent/JP6340876B2/en
Publication of JP2015197955A publication Critical patent/JP2015197955A/en
Application granted granted Critical
Publication of JP6340876B2 publication Critical patent/JP6340876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductive particle which, when used in anisotropic conductive adhesive, can obtain stable connection resistance, and can also improve insulation reliability.SOLUTION: A conductive particle 10 comprises a core particle 2, and a conductive outermost layer 5 surrounding the core particle 2. The outermost layer 5 is formed by sputtering method. The outermost layer 5 has a plurality of protrusions 5a formed on its outer surface.

Description

本発明は、異方性導電接着剤に好適に用いられる導電粒子に関する。   The present invention relates to a conductive particle suitably used for an anisotropic conductive adhesive.

液晶やOLED(Organic Light-Emitting Diode)表示用ガラスパネルに駆動用ICを実装する方式は、COG(Chip−on−Glass)実装とCOF(Chip−on−Flex)実装の2種類に大別することができる。COG実装では、導電粒子を含む異方性導電接着剤を用いて駆動用ICを直接ガラスパネル上に接合する。一方、COF実装では、金属配線を有するフレキシブルテープに駆動用ICを接合し、導電粒子を含む異方性導電接着剤を用いてそれらをガラスパネルに接合する。ここでいう異方性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。   The method of mounting a driving IC on a liquid crystal or OLED (Organic Light-Emitting Diode) display glass panel is roughly divided into two types: COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting. be able to. In the COG mounting, the driving IC is directly bonded onto the glass panel using an anisotropic conductive adhesive containing conductive particles. On the other hand, in COF mounting, a driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. Anisotropy here means conducting in the pressurizing direction and maintaining insulation in the non-pressurizing direction.

これまでは、ガラスパネル上の配線はITO(Indium Tin Oxide)配線が主流であったが、生産性や平滑性を改善する目的でIZO(Indium Zinc Oxide)に置き換わりつつある。さらに近年、ガラスパネル上にCu、Al、Tiなどを複数積層して形成された電極や、さらに最表面にITOやIZOを形成した複合多層電極などが開発されている。このような平坦性が高く、Tiなどの高硬度な材料を用いた電極に対して、安定した接続抵抗を得る必要があった。   Until now, ITO (Indium Tin Oxide) wiring has been the mainstream on the glass panel, but IZO (Indium Zinc Oxide) is being replaced for the purpose of improving productivity and smoothness. In recent years, an electrode formed by laminating a plurality of Cu, Al, Ti and the like on a glass panel, and a composite multilayer electrode having ITO or IZO formed on the outermost surface have been developed. It was necessary to obtain a stable connection resistance for an electrode using such a material having high flatness and high hardness such as Ti.

加えて近年は、スマートフォンやタブレット端末などに搭載されるディスプレイの高精細化にともない、駆動ICの電極間隔の狭ピッチ化が進んでおり、隣接電極間の絶縁性をさらに高めた異方導電性接着剤が求められている。このような要求に対し、隣接電極間のショートを防止する導電粒子が開示されている。   In addition, in recent years, with the increase in the definition of displays mounted on smartphones and tablet devices, the pitch between electrode intervals of drive ICs has been reduced, and anisotropic conductivity has further improved insulation between adjacent electrodes. There is a need for adhesives. In response to such a requirement, conductive particles that prevent a short circuit between adjacent electrodes are disclosed.

特許文献2は有機系防錆剤処理を施して溶出を抑える方法、特許文献3は最表面に貴金属層を設けて下地導電層の溶出を抑える方法、特許文献4は溶出が少ない貴金属のみで導電層を形成する方法を開示している。   Patent Document 2 is a method for suppressing elution by applying an organic anticorrosive agent, Patent Document 3 is a method for suppressing the elution of the underlying conductive layer by providing a noble metal layer on the outermost surface, and Patent Document 4 is conductive only by a noble metal with little elution A method of forming a layer is disclosed.

特許第4387175号公報Japanese Patent No. 4387175 特開2013−175453号公報JP 2013-175453 A 特許第4398665号公報Japanese Patent No. 4398665 特許第04715969号公報Japanese Patent No. 0471596 特開平9−1434411号公報Japanese Patent Laid-Open No. 9-1434411 特開2007-103222号公報JP 2007-103222 A 特開2012-164454号公報JP 2012-164454 A

しかし、特許文献2は未だ絶縁性と接続抵抗の両立には改善が必要である。また、特許文献3の場合は、最表面に貴金属層と下地導電層との密着性を確保するために、置換めっきを用いる。置換めっきは、下地金属層の溶解により得た電子を使って、貴金属イオンを還元・析出させるため、どうしても貴金属層にピンホールが発生し、下地の溶出を抑えるには課題があった。置換めっきを用いた貴金属層の表面にさらに自己触媒性の還元めっきを行い、ピンホールの無い貴金属層を設ける方法もあるが、貴金属使用量が増えて、コストが高くなる弊害があった。さらに、特許文献4は、貴金属の自己触媒性の還元めっきは、安定性に乏しく、均一なめっき膜を得られない場合も多い。さらに、溶出の少ない金属、たとえば貴金属類のみを用いた導電層は、樹脂粒子への密着性を確保するのが難しく、また十分な導電性を得るための連続層を得るには導電層の厚さが必要になり、コストが高くなる弊害があった。   However, Patent Document 2 still needs improvement to achieve both insulation and connection resistance. In the case of Patent Document 3, displacement plating is used to ensure adhesion between the noble metal layer and the base conductive layer on the outermost surface. In displacement plating, noble metal ions are reduced and deposited using electrons obtained by dissolving the underlying metal layer, so pinholes are inevitably generated in the noble metal layer, and there is a problem in suppressing the elution of the underlying layer. There is also a method of providing a noble metal layer without pinholes by further performing autocatalytic reduction plating on the surface of the noble metal layer using displacement plating, but there is a problem that the amount of noble metal used increases and the cost increases. Further, in Patent Document 4, noble metal autocatalytic reduction plating is poor in stability and often cannot obtain a uniform plating film. Furthermore, a conductive layer using only a metal with low elution, such as noble metals, is difficult to ensure adhesion to resin particles, and the thickness of the conductive layer is not sufficient to obtain a continuous layer for obtaining sufficient conductivity. Is necessary, and the cost is high.

そこで、下地金属の溶出を抑える十分なバリア性を有する連続膜を形成させる方法として、スパッタ法を用いることが考えられる。スパッタ法を用いた導電粒子の例として特許文献5、6、7が開示されている。   Therefore, it is conceivable to use a sputtering method as a method of forming a continuous film having a sufficient barrier property to suppress elution of the base metal. Patent Documents 5, 6, and 7 are disclosed as examples of conductive particles using a sputtering method.

しかしながら、特許文献5、特許文献6では絶縁性についてはなんら開示されていない。また、開示されている導電粒子は、粒子表面にスパッタによる導電層が形成しているのみであり、圧着時に電極表面に十分にめり込まないため、接続抵抗は良好とはいえない。特許文献7には、プラスチック粒子の表面に設けた無電解めっき層の表面にスパッタによる金属層を設けた導電粒子が開示されており、ビッカーズ硬度の高い金属をスパッタによって製膜することで、導電層の電極への食い込みを改善し、接続抵抗の低抵抗化が可能としている。しかし、発明者が鋭意検討した結果、特許文献7記載の導電粒子は絶縁性の改善が必要であることが分かった。すなわち、特許文献7記載のスパッタ法では、隣接電極間のショート不良を発生させる懸念があった。また、導電層が平滑であるため、満足する接続抵抗も得られない不具合があった。   However, Patent Document 5 and Patent Document 6 do not disclose any insulation. Further, the disclosed conductive particles only have a conductive layer formed by sputtering on the particle surface and do not sufficiently sink into the electrode surface at the time of pressure bonding, so the connection resistance is not good. Patent Document 7 discloses conductive particles in which a metal layer by sputtering is provided on the surface of an electroless plating layer provided on the surface of a plastic particle. By forming a metal having a high Vickers hardness by sputtering, the conductive particles are electrically conductive. The penetration of the layer into the electrode is improved, and the connection resistance can be lowered. However, as a result of intensive studies by the inventors, it has been found that the conductive particles described in Patent Document 7 need to be improved in insulation. That is, in the sputtering method described in Patent Document 7, there is a concern that a short-circuit defect between adjacent electrodes may occur. Further, since the conductive layer is smooth, there is a problem that a satisfactory connection resistance cannot be obtained.

一つの側面において、本発明は、異方導電性接着剤に用いられたときに、安定した接続抵抗を得るとともに、絶縁信頼性の更なる改善を図ることのできる導電粒子を提供するものである。   In one aspect, the present invention provides a conductive particle capable of obtaining a stable connection resistance and further improving insulation reliability when used in an anisotropic conductive adhesive. .

本発明の一つの側面は、コア粒子と、該コア粒子を囲む導電性の最外層とを備える導電粒子に関する。一態様において、前記最外層は、スパッタ法により形成された層である。一態様において、前記最外層は、その外側表面に形成された複数の凸部を有している。   One aspect of the present invention relates to a conductive particle including a core particle and a conductive outermost layer surrounding the core particle. In one aspect, the outermost layer is a layer formed by sputtering. In one aspect, the outermost layer has a plurality of convex portions formed on the outer surface thereof.

導電性の最外層が凸部を有していることにより、安定した接続抵抗が得られる。導電性の最外層は、スパッタ法によって形成されているため、導電粒子の内側部分との密着が良く、不純物の非常に少ない緻密な層として形成されている。そのため、内側部分からのマイグレーションが起こり難い。   Since the conductive outermost layer has a convex portion, a stable connection resistance can be obtained. Since the conductive outermost layer is formed by sputtering, the conductive outermost layer is formed as a dense layer having good adhesion to the inner portion of the conductive particles and having very few impurities. Therefore, migration from the inner part is unlikely to occur.

上記導電粒子は、コア粒子と最外層との間に設けられた1層又は2層以上の内側導電層をさらに備えていてもよい。   The conductive particles may further include one or more inner conductive layers provided between the core particles and the outermost layer.

耐マイグレーションの高い、スパッタ法により形成された最外層が設けられているため、その内側の導電層の形状の自由度が高く、例えば、コア粒子と最外層との間に内側導電層が設けられているとき、その内側導電層の外側の表面は平滑であってもよいし、凸部を有していてもよい。したがって、所望の特性に合わせた導電層を形成できる。平滑な導電層は屈曲点が少ないため、溶解が少なく、耐マイグレーション性をより高めた導電粒子を提供できる。一方で、コア粒子の表面、又は内側導電層が2層以上ある場合はコア粒子側の内側導電層の表面に凸形状の核をあらかじめ形成したのち、所望の内側導電層を形成し、さらに最外層にスパッタ層を形成すると、耐マイグレーション性を実質的に犠牲にすることなく、凸部の形状(高さ等)を選択する自由度が高い。   Since the outermost layer formed by sputtering, which has high migration resistance, is provided, the degree of freedom of the shape of the inner conductive layer is high.For example, the inner conductive layer is provided between the core particle and the outermost layer. The outer surface of the inner conductive layer may be smooth or may have a convex portion. Accordingly, a conductive layer having desired characteristics can be formed. Since a smooth conductive layer has few bending points, it is possible to provide conductive particles with less dissolution and higher migration resistance. On the other hand, if there are two or more core particle surfaces or inner conductive layers, a convex core is formed in advance on the core particle side inner conductive layer, and then a desired inner conductive layer is formed. When a sputter layer is formed on the outer layer, there is a high degree of freedom in selecting the shape (height, etc.) of the protrusions without substantially sacrificing migration resistance.

例えば、凸部の高さが、コア粒子の直径の0.005倍以上0.1倍以下であってもよい。これにより、導電層が電極に接触した際に、導電粒子が電極に十分にめり込むことができ、より安定した接続信頼性を確保できる。   For example, the height of the convex portion may be 0.005 to 0.1 times the diameter of the core particle. Thereby, when a conductive layer contacts an electrode, a conductive particle can fully sunk into an electrode, and can secure more stable connection reliability.

上記内側導電層は、ニッケル、銅又はこれらの合金を含有していてもよい。これら金属を含有する導電層の電気比抵抗は低いことから、圧着の際に対向する電極間に接続抵抗が低く、より一層良好な接続信頼性を得やすい。   The inner conductive layer may contain nickel, copper, or an alloy thereof. Since the electrical resistivity of the conductive layer containing these metals is low, the connection resistance is low between the electrodes facing each other at the time of pressure bonding, and it is easy to obtain even better connection reliability.

当該導電粒子の中心点を通る断面において中心点から内角45度で放射状に伸ばした8本の線を引き、これらの8本の線が最外層と交わる部分の長さを最外層の厚みとして測定して、8個の当該厚みの値を得たときに、それらの平均値が5nm以上であり、標準偏差が5.0以下であってもよい。これにより、最外層がその下地の層の表面上にバラツキの少ない均一な厚みで形成された導電粒子を提供できる。   In the cross-section passing through the central point of the conductive particle, eight lines extending radially from the central point at an inner angle of 45 degrees are drawn, and the length of the portion where these eight lines intersect with the outermost layer is measured as the thickness of the outermost layer. Then, when eight values of the thickness are obtained, the average value thereof may be 5 nm or more and the standard deviation may be 5.0 or less. As a result, it is possible to provide conductive particles in which the outermost layer is formed with a uniform thickness with little variation on the surface of the underlying layer.

当該導電粒子表面の元素組成をX線光電子分光分析により分析したときに、最外層を構成する元素に対する、最外層の内側で最外層に隣接する層を構成する元素の比率が、0.4以下であってもよい。この場合、最外層の内側の層の露出が少ない。そのため、耐マイグレーション性により一層優れた導電粒子を提供できる。   When the elemental composition of the surface of the conductive particles is analyzed by X-ray photoelectron spectroscopy, the ratio of the elements constituting the layer adjacent to the outermost layer inside the outermost layer to the elements constituting the outermost layer is 0.4 or less It may be. In this case, exposure of the inner layer of the outermost layer is small. Therefore, it is possible to provide conductive particles that are more excellent in migration resistance.

別の側面において、本発明は、上記導電粒子と、該導電粒子の最外層の外側表面上に配置された複数の絶縁性粒子とを備える絶縁被覆導電粒子に関する。   In another aspect, the present invention relates to an insulating coated conductive particle comprising the conductive particle and a plurality of insulating particles disposed on the outer surface of the outermost layer of the conductive particle.

上記絶縁性粒子は、コア粒子の直径よりも小さく、最外層の凸部の高さよりも大きい直径を有していてもよい。   The insulating particles may have a diameter smaller than the diameter of the core particles and larger than the height of the convex portion of the outermost layer.

これにより、導電粒子同士が凝集してショートする不良をより確実に防ぐことができる。緻密でバリア性に優れた、スパッタ法による最外層と、その表面に配置された絶縁性粒子とを有する絶縁被覆導電粒子は、耐マイグレーション性に優れ、安定した絶縁性を有し、また、凸部による安定した接続信頼性も併せ持っている。   Thereby, the defect which conductive particles aggregate and short-circuit can be prevented more reliably. Insulating coated conductive particles having an outermost layer formed by sputtering, which is dense and excellent in barrier properties, and insulating particles disposed on the surface thereof have excellent migration resistance, stable insulating properties, and convexity. In addition, it has stable connection reliability.

本発明はまた、上記導電粒子、又は上記絶縁被覆導電粒子と、接着剤とを含有する異方導電性接着剤に関する。   The present invention also relates to an anisotropic conductive adhesive containing the conductive particles or the insulating coated conductive particles and an adhesive.

本発明によれば、非常に狭ピッチな電極を接続するための異方性導電接着剤に用いられたときであっても安定した絶縁信頼性を得ることができる導電粒子を提供できる。また、本発明によれば、硬質で平滑な電極を接続するための異方性導電接着剤に用いられたときであっても、十分な導電性を得ることが可能な導電粒子が提供される。   According to the present invention, it is possible to provide conductive particles that can obtain stable insulation reliability even when used in an anisotropic conductive adhesive for connecting electrodes with a very narrow pitch. Further, according to the present invention, there are provided conductive particles capable of obtaining sufficient conductivity even when used in an anisotropic conductive adhesive for connecting hard and smooth electrodes. .

絶縁被覆導電粒子の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of insulation coating electrically-conductive particle. 絶縁被覆導電粒子の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of insulation coating electrically-conductive particle. 絶縁被覆導電粒子の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of insulation coating electrically-conductive particle. 絶縁被覆導電粒子の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of insulation coating electrically-conductive particle. 絶縁被覆導電粒子の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of insulation coating electrically-conductive particle. 絶縁被覆導電粒子の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of insulation coating electrically-conductive particle. 絶縁被覆導電粒子の一実施形態を示す拡大断面図である。It is an expanded sectional view showing one embodiment of insulating covering conductive particles. 接続構造体の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a connection structure. 導電粒子のSEM画像である。It is a SEM image of conductive particles. 最外層の厚みの決定方法を示す断面図である。It is sectional drawing which shows the determination method of the thickness of outermost layer. 凸部の高さの決定方法を示す図である。It is a figure which shows the determination method of the height of a convex part.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施
形態に限定されるものではない。
Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

図1は、絶縁被覆導電粒子の一実施形態を示す断面図である。図1に示される絶縁被覆導電粒子1は、コア粒子2、コア粒子2の表面上に点在する粒状の核3、及びこれらを覆う導電性の最外層5を有する導電粒子10と、最外層5の外側表面上に点在する絶縁性粒子7とを備える。最外層5は、その外表面に形成された複数の凸部5aを有している。   FIG. 1 is a cross-sectional view showing an embodiment of insulating coated conductive particles. An insulating coated conductive particle 1 shown in FIG. 1 includes a core particle 2, a particle core 3 scattered on the surface of the core particle 2, and a conductive particle 10 having a conductive outermost layer 5 covering the core, and an outermost layer. 5 and the insulating particles 7 scattered on the outer surface. The outermost layer 5 has a plurality of convex portions 5a formed on the outer surface thereof.

導電粒子10の粒径は、一般に、接続される回路部材の電極の間隔の最小値よりも小さい。接続される電極の高さにばらつきがある場合、導電粒子の粒径は、高さのばらつきよりも大きいことが好ましい。係る観点から、導電粒子10の粒径は1〜10μmであることが好ましく、2.5〜5μmであることがより好ましい。   The particle diameter of the conductive particles 10 is generally smaller than the minimum value of the distance between the electrodes of the circuit members to be connected. In the case where there is a variation in the height of the electrode to be connected, the particle diameter of the conductive particles is preferably larger than the variation in the height. From such a viewpoint, the particle size of the conductive particles 10 is preferably 1 to 10 μm, and more preferably 2.5 to 5 μm.

コア粒子2を形成する材料は特に限定されず、有機材料、無機材料、金属材料などが使用できる。隣接する電極間の絶縁性を保つためには、粒度分布がシャープであるほうが好ましい。粒度分布が揃っていると、隣接する電極間の絶縁信頼性が安定する。また、対向する電極に挟まれたときに導電粒子に均一に力が加わるため、安定した接続抵抗を得られるため好ましい。粒度分布が揃ったコア粒子としては、合成で得られる有機樹脂粒子やシリカ粒子などが好適に利用できる。   The material for forming the core particle 2 is not particularly limited, and an organic material, an inorganic material, a metal material, or the like can be used. In order to maintain the insulation between adjacent electrodes, it is preferable that the particle size distribution is sharp. If the particle size distribution is uniform, the insulation reliability between adjacent electrodes is stabilized. Moreover, since force is uniformly applied to the conductive particles when sandwiched between opposing electrodes, a stable connection resistance can be obtained, which is preferable. As core particles having a uniform particle size distribution, organic resin particles and silica particles obtained by synthesis can be suitably used.

有機樹脂粒子は、例えば、ポリメチルメタクリレート及びポリメチルアクリレートのようなアクリル樹脂、並びに、ポリエチレン、ポリプロピレン、ポリイソブチレン及びポリブタジエンのようなポリオレフィン樹脂から選ばれる樹脂を含む。このような有機樹脂粒子は公知の方法で合成可能であり、例えば懸濁重合、シード重合、沈殿重合、分散重合によって合成される。   The organic resin particles include, for example, resins selected from acrylic resins such as polymethyl methacrylate and polymethyl acrylate, and polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polybutadiene. Such organic resin particles can be synthesized by a known method, for example, by suspension polymerization, seed polymerization, precipitation polymerization, or dispersion polymerization.

コア粒子2は真球状であることが好ましい。特に、シード重合で作られた粒子は、粒度分布がシャープで、粒径バラツキが小さいため好ましい。具体的には、C.V.が20%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましい。特に、隣接電極間が10μmレベルの電極をショート不良なく安定して接続するには、コア粒子2のC.V.が5%以下であれば特に好ましく、3%以下であることが最も好ましい。たとえば、平均粒径3.0μmの粒子のC.V.が20%を超えると、10μmレベルの狭ピッチ電極の駆動用ICを接続する場合、ショート不良が発生し得る。   The core particles 2 are preferably spherical. In particular, particles produced by seed polymerization are preferable because the particle size distribution is sharp and the particle size variation is small. Specifically, C.I. V. Is preferably 20% or less, more preferably 15% or less, and even more preferably 10% or less. In particular, in order to stably connect electrodes having a level of 10 μm between adjacent electrodes without short-circuit failure, the CV of the core particle 2 is particularly preferably 5% or less, and most preferably 3% or less. For example, if the CV of particles having an average particle size of 3.0 μm exceeds 20%, a short circuit failure may occur when a driving IC for a 10 μm level narrow pitch electrode is connected.

比較的やわらかいポリイミドフィルム上に形成された電極や、脆いガラス基板上に電極が形成されている場合は、コア粒子2が硬すぎると導電粒子10が電極を傷つける可能性がある。係る観点から、COG実装のようなガラス基板上に形成された電極に駆動用ICを直接接続する場合、コア粒子2が柔らかい方が好ましい。たとえば、200℃において20%圧縮変位させたときのコア粒子2の圧縮弾性率(20%K値)は、300kgf/mm以下であることが好ましく、200kgf/mm以下であることがさらに好ましい。コア粒子2が柔らかすぎると、圧痕により粒子捕捉率を測定することが難しくなることから、コア粒子2の200℃における20%K値は80kgf/mm以上であることが好ましい。 When the electrode is formed on a relatively soft polyimide film or a fragile glass substrate, the conductive particles 10 may damage the electrode if the core particle 2 is too hard. From such a viewpoint, when the driving IC is directly connected to an electrode formed on a glass substrate such as COG mounting, it is preferable that the core particle 2 is soft. For example, the compression modulus of the core particle 2 obtained while a 20% compression displacement at 200 ° C. (20% K value) is more preferably is preferably 300 kgf / mm 2 or less, 200 kgf / mm 2 or less . If the core particle 2 is too soft, it is difficult to measure the particle capture rate due to the indentation. Therefore, the 20% K value at 200 ° C. of the core particle 2 is preferably 80 kgf / mm 2 or more.

コア粒子2の20%K値は、フィッシャースコープH100C(フィッシャーインスツールメント製)を使用して、以下の方法で測定される。
1)粒子試料を乗せたスライドガラスを200℃のホットプレート上に置き、粒子の中心方向に対して、加重をかける。
2)粒子試料が20%変形したときの圧縮変形弾性率(K20、20%K値)を、50秒間で50mNの加重をかけつつ測定を行った後、下記式に従って算出する。
K20(圧縮変形弾性率)=(3/√2)・F20・S20−3/2・R−1/2
F20:粒子を20%変形させるのに必要な荷重(N)
S20:20%変形時の粒子の変形量(m)
R:粒子の半径(m)
The 20% K value of the core particle 2 is measured by the following method using a Fischer scope H100C (manufactured by Fischer Instrument).
1) A slide glass on which a particle sample is placed is placed on a hot plate at 200 ° C., and a weight is applied to the center direction of the particle.
2) The compression deformation elastic modulus (K20, 20% K value) when the particle sample is deformed by 20% is measured while applying a weight of 50 mN for 50 seconds, and then calculated according to the following formula.
K20 (compression elastic modulus) = (3 / √2) · F20 · S20-3 / 2 · R-1 / 2
F20: Load (N) necessary to deform the particles by 20%
S20: Deformation amount of particles at 20% deformation (m)
R: radius of particle (m)

電極が非常に硬質な場合、コア粒子2が圧着時に変形しすぎてしまい、導電層を十分に電極にめり込ませることができないことがある。この場合は、コア粒子2は硬い方が好ましい。具体的には、シリカ粒子が好適に用いられる。シリカはストーバー法に代表される合成方法で、非常に粒度分布が鋭く、粒径ばらつきの少ない粒子を得ることができるため好ましい。コア粒子2からの不純物の溶出は、耐マイグレーション性を低下させるため、コア粒子2は純度が高い方が好ましい。具体的には、SiO2の含有量が95質量%以上であることが好ましく、98質量%以上であることがより好ましく、99質量%以上であることがさらに好ましく、99.9質量%以上であることが最も好ましい。 When the electrode is very hard, the core particle 2 may be deformed too much at the time of pressure bonding, and the conductive layer may not be sufficiently embedded in the electrode. In this case, the core particle 2 is preferably hard. Specifically, silica particles are preferably used. Silica is a synthetic method typified by the Stover method, and is preferable because particles having a very sharp particle size distribution and small particle size variation can be obtained. Since elution of impurities from the core particle 2 lowers the migration resistance, the core particle 2 preferably has a higher purity. Specifically, the content of SiO 2 is preferably 95% by mass or more, more preferably 98% by mass or more, further preferably 99% by mass or more, and 99.9% by mass or more. Most preferably it is.

コア粒子2の表面には、スパッタ法によって核3が形成される。スパッタ法としては、二極スパッタリング法、マグネトロンスパッタリング法、反応性スパッタリング法、レーザースパッタリング法、RF(高周波)スパッタリング法などが適用できる。   Nuclei 3 are formed on the surface of the core particle 2 by sputtering. As the sputtering method, a bipolar sputtering method, a magnetron sputtering method, a reactive sputtering method, a laser sputtering method, an RF (radio frequency) sputtering method, or the like can be applied.

スパッタ法は連続膜だけでなく、例えば特開2012−119351号公報に開示される方法のように、島状の堆積物(核)を対象物表面に形成することができる。   In the sputtering method, not only a continuous film but also an island-like deposit (nucleus) can be formed on the surface of the object as in the method disclosed in Japanese Patent Application Laid-Open No. 2012-119351.

通常、スパッタ法では、真空容器内にスパッタターゲットが設けられ、スパッタターゲットに対峙した位置に対象物が置かれた状態で、スパッタターゲットから飛来するターゲット材質が対象物に衝突し、スパッタ層が堆積していく。したがって、通常の方法では粒子表面に均一なスパッタ層を得るのは困難であるが、粒子のような粉体にスパッタ処理を行う方法がいくつか開示されており、これらを利用することができる。具体的には、ターゲットの対面に配置された被覆対象物を載せるステージが回転する特開昭56−41375の方法、対象物を載せるステージが揺動することで、対象物に均一にスパッタ層を設ける工夫がなされた特開2009−79251の方法、被覆対象物を落下させながらスパッタする特開昭62−250172の方法、粒子を入れたバレルを回転させることで、粒子を転動・回転させながらスパッタを行う特許第2909744又は特開2012−172240の方法、さらにバレル内にスクリュー攪拌機構を備え、粒子の攪拌効率を高めた特許第3420857号の方法、粒子の転動・攪拌をより効率的にするためにバレル断面を多角形にした特許第3620842号の方法が使用できる。特に、バレルを用いたバレルスパッタ法は、粒子の全面にムラ無くスパッタ金属層を形成できるため、好ましい。バレルスパッタ装置としては、粉体スパッタリング装置(株式会社 共立製)が使用できる。   Normally, in the sputtering method, a sputtering target is provided in a vacuum vessel, and the target material flying from the sputtering target collides with the target in a state where the target is placed at a position facing the sputtering target, and a sputter layer is deposited. I will do it. Therefore, although it is difficult to obtain a uniform sputtered layer on the particle surface by a normal method, several methods for performing a sputtering process on a powder such as particles have been disclosed, and these can be used. Specifically, the method of Japanese Patent Laid-Open No. Sho 56-41375 in which the stage on which the coated object placed on the surface of the target is rotated rotates, and the stage on which the object is placed swings, so that the sputter layer is uniformly applied to the object. The method of JP 2009-79251, which is devised to provide, the method of JP 62-250172 to sputter while dropping the coated object, while rotating and rotating the particles by rotating the barrel containing the particles The method of Japanese Patent No. 2909744 or JP 2012-172240 for performing sputtering, and the method of Japanese Patent No. 3420857 in which a screw stirring mechanism is provided in the barrel to increase the stirring efficiency of the particles, and the rolling and stirring of the particles are performed more efficiently. For this purpose, the method of Japanese Patent No. 3620842 with a polygonal barrel cross section can be used. In particular, the barrel sputtering method using a barrel is preferable because a sputtered metal layer can be uniformly formed on the entire surface of the particles. As the barrel sputtering device, a powder sputtering device (manufactured by Kyoritsu Co., Ltd.) can be used.

後述の実施例では、自作したバレルスパッタ装置を使用した。このバレルスパッタ装置は、水平方向に設置された円筒形を有したバレルと、バレル内を真空に出来る真空機構と、バレルを水平軸周りに回転・反転させる機構と、バレル内部にバレルの回転とは独立し、一定方向にターゲット面を向け続けられるスパッタターゲットと、バレル内にアルゴンガスを送る機構と、前述バレルを回転させながらバレルの回転軸を最大±40度まで連続的に傾けることが出来る機構と、バレル内の粒子に直接振動を加える機構と、バレルを加熱する機構とを備えている。バレルが回転することでバレル内の粒子が転動・攪拌され、さらに回転軸が連続的に傾くため、粒子がバレル内で回転軸方向に移動し、粒子の分散性が高まり、粒子表面に均一なスパッタ層を形成できる。また、バレル内に粒子の分散を促進する邪魔板や攪拌機構を備えるとさらに好ましい。   In the examples described later, a self-made barrel sputtering apparatus was used. This barrel sputtering apparatus has a cylindrical barrel installed in a horizontal direction, a vacuum mechanism capable of evacuating the barrel, a mechanism for rotating and inverting the barrel around a horizontal axis, and rotation of the barrel inside the barrel. Is independent, the sputter target that can keep the target surface directed in a certain direction, the mechanism that sends argon gas into the barrel, and the rotation axis of the barrel can be continuously tilted up to ± 40 degrees while rotating the barrel. A mechanism, a mechanism for directly vibrating the particles in the barrel, and a mechanism for heating the barrel. As the barrel rotates, the particles in the barrel roll and agitate, and the axis of rotation continuously tilts, so the particles move in the direction of the axis of rotation in the barrel, increasing the dispersibility of the particles and evenly on the particle surface. A sputter layer can be formed. Further, it is more preferable to provide a baffle plate or a stirring mechanism for promoting particle dispersion in the barrel.

コア粒子2の表面にスパッタ法により核3を形成する場合は、アルゴン量、スパッタの強さ(印加電圧、周波数)、粒子への加熱温度や加熱時間を適宜調整する。核3を形成する材料は特に限定されないが、核3が硬いと、凸部5aが電極と接触した際に電極に十分にめり込むことが出来るため好ましい。具体的には、金属材料や無機物、酸化物などが利用できる。具体的には、セシウム、銀、銅、金、アルミニウム、ベリリウム、カルシウム、マグネシウム、ナトリウム、ロジウム、イリジウム、タングステン、モリブデン、亜鉛、コバルト、カリウム、ニッケル、黄銅、ルテニウム、インジウム、鉄、白金、パラジウム、ルビジウム、スズ、タンタル、クロム、銅、タリウム、ロジウム、鉛、ジルコニウム、銀、マンガニン、ステンレス、インコロイやこれらの合金、および酸化物が利用できる。特に、ニッケル、パラジウム、金、タングステンなどが導電層の導電性を高められるため好ましい。特にSiO2、Ti0、ZrO2、Al23、ダイアモンド、BNなどは硬度が高いため好ましい。 When the nucleus 3 is formed on the surface of the core particle 2 by sputtering, the amount of argon, the strength of sputtering (applied voltage, frequency), the heating temperature and the heating time for the particles are appropriately adjusted. The material for forming the nucleus 3 is not particularly limited, but it is preferable that the nucleus 3 is hard because the protrusion 5a can be sufficiently recessed into the electrode when it contacts the electrode. Specifically, a metal material, an inorganic material, an oxide, or the like can be used. Specifically, cesium, silver, copper, gold, aluminum, beryllium, calcium, magnesium, sodium, rhodium, iridium, tungsten, molybdenum, zinc, cobalt, potassium, nickel, brass, ruthenium, indium, iron, platinum, palladium , Rubidium, tin, tantalum, chromium, copper, thallium, rhodium, lead, zirconium, silver, manganin, stainless steel, incoloy, alloys thereof, and oxides can be used. In particular, nickel, palladium, gold, tungsten, or the like is preferable because the conductivity of the conductive layer can be increased. In particular, SiO 2 , Ti 0 2 , ZrO 2 , Al 2 O 3 , diamond, BN and the like are preferable because of their high hardness.

核3及びコア粒子2の表面全体を導電層で覆う方法としては電気めっきや無電解めっき、スパッタ法を用いることができる。   As a method for covering the entire surface of the core 3 and the core particle 2 with a conductive layer, electroplating, electroless plating, or sputtering can be used.

スパッタ法は、高電圧をかけてイオン化させた希ガス元素がターゲットに衝突することで、ターゲット原子が飛び出して、粒子表面に高速で衝突する現象を繰り返すので、金属皮膜形成時の核発生密度が極めて密になり、少量の金属で粒子表面を均一に被覆できる。一方、無電解めっき法では、予め粒子表面がパラジウム等で活性化処理される。パラジウムの付着部分が無電解めっき時の金属皮膜形成用核の発生点になる。物理吸着現象であるパラジウムの付着密度は、スパッタ法における励起されたターゲット原子の衝突密度と比較すると格段に小さいものと推察される。この違いからも、スパッタ法では、粒子表面全体を均一に被覆するのに必要な金属薄膜を薄くすることができる。   In the sputtering method, the rare gas element ionized by applying a high voltage collides with the target, and the target atoms jump out and repeatedly collide with the particle surface at high speed. It becomes extremely dense and can uniformly coat the particle surface with a small amount of metal. On the other hand, in the electroless plating method, the particle surface is previously activated with palladium or the like. The part where the palladium is attached becomes the generation point of the nucleus for forming the metal film during electroless plating. It is presumed that the adhesion density of palladium, which is a physical adsorption phenomenon, is much smaller than the collision density of excited target atoms in the sputtering method. Also from this difference, in the sputtering method, the metal thin film necessary to uniformly coat the entire particle surface can be thinned.

無電解めっきは、非導電体の表面にも均一な金属被覆が可能であり、数十ナノメートルから数ミクロンまで厚みを調整しやすく、スパッタ法と比べると比較的厚めに金属層を形成できるメリットがある。また、電気めっきと比較しても電源が必要でないため、簡便な設備で実施できるため好ましい。また、無電解めっき法は溶液中で処理できること、大面積を処理できることなど、実用性が高い方法である。また、金属イオンを還元する還元剤や添加剤などが共析することで、合金化することもできる。具体的には、無電解ニッケルめっきでは、ニッケルイオンの還元剤として、リン酸塩やヒドラジン、水素化ホウ素塩などが利用でき、それぞれ、ニッケル-リン合金、純ニッケル、ニッケル−ホウ素合金などが得られる。また、金属イオンを液中で安定化させるための錯化剤が各種用いられており、その種類により結晶構造の違うニッケル膜が得られる。それぞれ、合金比率や結晶構造の違いにより高耐食性、低抵抗、展延性、硬さなど様々な特性を調整できるため、所望に特性を選択できる利点がある。   Electroless plating enables uniform metal coating on the surface of non-conductive materials, and it is easy to adjust the thickness from several tens of nanometers to several microns. Advantages of forming a relatively thick metal layer compared to sputtering methods There is. Moreover, since a power supply is not required even when compared with electroplating, it is preferable because it can be performed with simple facilities. In addition, the electroless plating method is highly practical because it can be processed in a solution and a large area can be processed. Moreover, it can be alloyed by co-depositing a reducing agent or an additive for reducing metal ions. Specifically, in electroless nickel plating, phosphate, hydrazine, borohydride, etc. can be used as a reducing agent for nickel ions, and nickel-phosphorus alloy, pure nickel, nickel-boron alloy, etc. are obtained respectively. It is done. Various complexing agents for stabilizing metal ions in the liquid are used, and nickel films having different crystal structures can be obtained depending on the type. Since various properties such as high corrosion resistance, low resistance, spreadability, and hardness can be adjusted depending on the alloy ratio and crystal structure, there is an advantage that the properties can be selected as desired.

図1の導電粒子では、バレルスパッタ法を用いて最外層5を形成している。コア粒子2を覆う緻密な金属膜が最外層として形成できる利点がある。ターゲットを変更すれば、様々な合金や酸化物、金属の膜を作ることができ、めっき法よりも材料の選択が広いことも利点である。不純物の共析がきわめて少ないため、耐マイグレーション性の高い材料をターゲットに選定すれば、数十nmの厚みで高いバリア性を有する膜を形成できる利点がある。最外層のスパッタ層としては、前述の核の材料と同様の材料が利用できる。特に、金、ニッケル、パラジウム、タングステン、白金、コバルト、モリブデン、マグネシウムなどが下地導電層を露出させないバリア性が高く、比抵抗が低いため、導電粒子の低抵抗化が図られ好ましい。特にタングステンは、硬度も高く導電層を電極にめり込み、低抵抗化するため特に好ましい。   In the conductive particles of FIG. 1, the outermost layer 5 is formed by using barrel sputtering. There is an advantage that a dense metal film covering the core particle 2 can be formed as the outermost layer. If the target is changed, films of various alloys, oxides, and metals can be formed, and it is also advantageous that the selection of materials is wider than the plating method. Since the eutectoid of impurities is extremely small, if a material having high migration resistance is selected as a target, there is an advantage that a film having a high barrier property can be formed with a thickness of several tens of nm. As the outermost sputter layer, the same material as the core material described above can be used. In particular, gold, nickel, palladium, tungsten, platinum, cobalt, molybdenum, magnesium, and the like are preferable because they have a high barrier property that does not expose the base conductive layer and have a low specific resistance. Tungsten is particularly preferable because it has high hardness and penetrates the conductive layer into the electrode to reduce resistance.

導電粒子10は、導電性の最外層に凸部5aを備えている。凸部5aの高さは、導電粒子の中心付近を通るようにウルトラミクロトーム法で導電粒子の断面を切り出し、TEM装置を用いて25万倍の倍率で観察し、得られた画像に基づいて求めることができる。例えば、10個の凸部の高さを求め、それらの平均値を平均高さとすることができる。図11は、凸部5aの高さを求める方法について説明するための図である。図11に示すように、凸部5aの高さhは、凸部5aの両側の裾と裾を結んだ直線から垂直方向における凸部5aの頂点までの距離として計測できる。   The conductive particle 10 includes a convex portion 5a on the conductive outermost layer. The height of the convex portion 5a is obtained based on an image obtained by cutting a cross section of the conductive particle by an ultra microtome method so as to pass through the vicinity of the center of the conductive particle, observing it at a magnification of 250,000 times using a TEM device. be able to. For example, the height of 10 convex portions can be obtained, and the average value thereof can be used as the average height. FIG. 11 is a diagram for explaining a method of obtaining the height of the convex portion 5a. As shown in FIG. 11, the height h of the convex portion 5a can be measured as the distance from the straight line connecting the hems and hems on both sides of the convex portion 5a to the apex of the convex portion 5a in the vertical direction.

凸部5aの(平均)高さhは、コア粒子2の直径aの0.003倍以上0.3倍以下であると好ましく、0.004倍以上0.2倍以下であることがより好ましく、0.005倍以上0.1倍以下であることがさらに好ましい。凸部5aの高さが上記範囲であると、異方導電性接着剤に配合される導電粒子として用いられたときに、低い導通抵抗と高い絶縁信頼性とをより一層高いレベルで両立することができる。   The (average) height h of the convex portion 5a is preferably 0.003 to 0.3 times the diameter a of the core particle 2, and more preferably 0.004 to 0.2 times. More preferably, it is 0.005 times or more and 0.1 times or less. When the height of the convex portion 5a is within the above range, when used as conductive particles blended in the anisotropic conductive adhesive, both low conduction resistance and high insulation reliability can be achieved at a higher level. Can do.

近年、COG実装用の異方導電性接着剤には、10μmレベルの狭ピッチでの絶縁信頼性が求められている。絶縁信頼性をさらに向上させるためには、導電粒子を絶縁被覆することが好ましい。本実施形態の絶縁被覆導電粒子によればかかる要求特性を有効に実現することができる。   In recent years, anisotropic conductive adhesives for COG mounting are required to have insulation reliability at a narrow pitch of 10 μm level. In order to further improve the insulation reliability, it is preferable to insulate the conductive particles. According to the insulating coated conductive particles of the present embodiment, such required characteristics can be effectively realized.

導電粒子を被覆する絶縁性粒子7としては、有機高分子化合物微粒子、無機酸化物微粒子等が挙げられる。中でも、絶縁信頼性の点では、無機酸化物微粒子が好ましい。また、有機高分子化合物微粒子は、硬さ、粒子直径の調整が容易であり、高い絶縁性と、安定した接続抵抗を両立しやすい。   Examples of the insulating particles 7 covering the conductive particles include organic polymer compound fine particles and inorganic oxide fine particles. Among these, inorganic oxide fine particles are preferable in terms of insulation reliability. The organic polymer compound fine particles can be easily adjusted in hardness and particle diameter, and can easily achieve both high insulating properties and stable connection resistance.

有機高分子化合物としては、熱軟化性を有するものが好ましく、例えば、ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル共重合体、ポリエステル、ポリアミド、ポリウレタン、ポリスチレン、スチレン−ジビニルベンゼン共重合体、スチレン−イソブチレン共重合体、スチレン−ブタジエン共重合体、スチレン−(メタ)アクリル共重合体、エチレン−プロピレン共重合体、(メタ)アクリル酸エステル系ゴム、スチレン−エチレン−ブチレン共重合体、フェノキシ樹脂、固形エポキシ樹脂が好適に用いられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。   As the organic polymer compound, those having heat softening properties are preferable, for example, polyethylene, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer. , Polyester, polyamide, polyurethane, polystyrene, styrene-divinylbenzene copolymer, styrene-isobutylene copolymer, styrene-butadiene copolymer, styrene- (meth) acrylic copolymer, ethylene-propylene copolymer, (meta ) Acrylic acid ester rubber, styrene-ethylene-butylene copolymer, phenoxy resin, and solid epoxy resin are preferably used. These may be used individually by 1 type and may be used in combination of 2 or more type.

無機酸化物としては、例えば、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム及びマグネシウムからなる群より選ばれる少なくとも一種の元素を含む酸化物が好ましく、これらは一種類を単独で又は二種類以上を混合して使用することができる。無機酸化物微粒子の中でも、水分散コロイダルシリカ(SiO2)は、表面に水酸基を有するたに導電粒子との結合性に優れ、粒子径を揃えやすく、安価であるので特に好適である。このような無機酸化物微粒子の市販品としては、例えば、スノーテックス、スノーテックスUP(日産化学工業株式会社製、商品名)、クオートロンPLシリーズ(扶桑化学工業株式会社製、商品名)が挙げられる。   As the inorganic oxide, for example, an oxide containing at least one element selected from the group consisting of silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium and magnesium is preferable, and these may be used alone or in combination. Two or more types can be mixed and used. Among the inorganic oxide fine particles, water-dispersed colloidal silica (SiO 2) is particularly preferable because it has a hydroxyl group on the surface, is excellent in binding properties with conductive particles, easily adjusts the particle diameter, and is inexpensive. Examples of such commercially available inorganic oxide fine particles include Snowtex, Snowtex UP (trade name, manufactured by Nissan Chemical Industries, Ltd.), and Quatron PL series (trade name, manufactured by Fuso Chemical Industries, Ltd.). .

絶縁性粒子の平均粒径は、20〜500nmであることが好ましい。絶縁性子粒子の平均粒径は、例えば、BET法による比表面積換算法、X線小角散乱法で測定される。平均粒径が上記範囲であると、例えば、絶縁性粒子として有機物微粒子を用いた場合に導電粒子に吸着された有機物微粒子が絶縁膜として有効に作用しやすく、また、加圧した際に変形するため、圧着方向の導電性が良好になりやすい。   The average particle size of the insulating particles is preferably 20 to 500 nm. The average particle diameter of the insulator particles is measured by, for example, a specific surface area conversion method by the BET method or a small-angle X-ray scattering method. When the average particle size is in the above range, for example, when organic fine particles are used as the insulating particles, the organic fine particles adsorbed on the conductive particles easily act effectively as an insulating film, and are deformed when pressurized. Therefore, the electrical conductivity in the crimping direction tends to be good.

電気抵抗を下げやすく、電気抵抗の経時的な上昇を抑制しやすい観点から、絶縁性粒子7は、コア粒子2の直径よりも小さく、凸部5aの高さhより大きい直径を有すると好ましい。絶縁性粒子7の直径は、導電粒子10の平均粒径に対して、1/10以下であることが好ましく、1/15以下であることがより好ましい。より良好な絶縁信頼性を得る観点から、絶縁性粒子7の平均粒径は、導電粒子10の平均粒径に対して、1/20以上であることが好ましい。   Insulating particles 7 preferably have a diameter smaller than the diameter of the core particle 2 and larger than the height h of the convex portion 5a from the viewpoint of easily reducing the electrical resistance and suppressing the increase in electrical resistance over time. The diameter of the insulating particles 7 is preferably 1/10 or less and more preferably 1/15 or less with respect to the average particle diameter of the conductive particles 10. From the viewpoint of obtaining better insulation reliability, the average particle size of the insulating particles 7 is preferably 1/20 or more than the average particle size of the conductive particles 10.

絶縁性粒子7は、被覆率が20〜70%となるように導電粒子10の表面を被覆することが好ましい。絶縁性と導電性の効果を一層確実に得る観点から、被覆率は、20〜60%であることがより好ましく、25〜60%であることがさらに好ましく、28〜55%であることが特に好ましい。ここでいう被覆率は、導電粒子の正投影面において、導電粒子の直径の1/2の直径を有する同心円内における絶縁性粒子の表面積の割合を意味する。具体的には、SEMにより、3万倍で導電粒子を観察し、得られるSEM画像をもとに、画像解析により導電粒子表面において絶縁性粒子が占める割合を算出する。   It is preferable that the insulating particles 7 cover the surfaces of the conductive particles 10 so that the coverage is 20 to 70%. From the viewpoint of obtaining the effects of insulation and conductivity more reliably, the coverage is more preferably 20 to 60%, further preferably 25 to 60%, and particularly preferably 28 to 55%. preferable. The coverage here means the ratio of the surface area of the insulating particles in concentric circles having a diameter that is ½ of the diameter of the conductive particles on the orthographic projection surface of the conductive particles. Specifically, the conductive particles are observed at a magnification of 30,000 by SEM, and the ratio of the insulating particles on the surface of the conductive particles is calculated by image analysis based on the obtained SEM image.

導電粒子の表面を絶縁性粒子で被覆する方法としては、例えば、高分子電解質と絶縁性粒子とを交互に積層する方法が好ましい。より具体的には、(1)導電粒子を高分子電解質溶液に分散し、導電粒子の表面に高分子電解質を吸着させた後、リンスする工程、(2)導電粒子を絶縁性粒子の分散溶液に分散し、導電粒子の表面に絶縁性子粒子を吸着させた後、リンスする工程、を備える製造方法によって、高分子電解質と絶縁性子粒子とが積層された絶縁性子粒子によって表面が被覆された絶縁被覆導電粒子を製造できる。このような方法は、交互積層法(Layer−by−Layer assembly)と呼ばれる。交互積層法は、G.Decherらによって1992年に発表された有機薄膜を形成する方法である(Thin Solid Films,210/211,p831(1992))。   As a method for coating the surface of the conductive particles with insulating particles, for example, a method of alternately laminating polymer electrolytes and insulating particles is preferable. More specifically, (1) a step of dispersing conductive particles in a polymer electrolyte solution, adsorbing the polymer electrolyte on the surface of the conductive particles, and then rinsing; (2) a dispersion solution of the conductive particles in insulating particles Insulation having a surface coated with an insulator particle in which a polymer electrolyte and an insulator particle are laminated by a manufacturing method including a step of rinsing after the insulator particle is adsorbed on the surface of the conductive particle Coated conductive particles can be produced. Such a method is called an alternating lamination method (Layer-by-Layer assembly). The alternate lamination method is described in G.H. This is a method of forming an organic thin film published in 1992 by Decher et al. (Thin Solid Films, 210/211, p831 (1992)).

図2は、絶縁導電粒子の別の実施形態を示す断面図である。図2に示される絶縁被覆導電粒子1は、コア粒子2、コア粒子2の表面に点在する微粒子である核3、及びこれらを覆う最外層5を有する導電粒子10と、最外層5の外側表面上に配置された絶縁性粒子7とを備える。   FIG. 2 is a cross-sectional view showing another embodiment of insulated conductive particles. Insulating coated conductive particles 1 shown in FIG. 2 include core particles 2, cores 3 that are fine particles scattered on the surface of the core particles 2, and conductive particles 10 having an outermost layer 5 covering them, and an outer side of the outermost layer 5. And insulating particles 7 arranged on the surface.

コア粒子2の表面上に配置される微粒子(核)3は、凸部5aの核として機能するため、硬い方が電極に導電層をめり込ませることができて好ましい。微粒子(核)3としては先に絶縁性粒子としてあげた粒子が使用できる。具体的には、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム及びマグネシウムからなる群より選ばれる少なくとも一種の元素を含む無機酸化物微粒子が好ましく、これらは一種類を単独で又は二種類以上を混合して使用することができる。無機酸化物微粒子の中でも、水分散コロイダルシリカ(SiO)は、表面に水酸基を有するたに導電粒子との結合性に優れ、粒子径を揃えやすく、安価であるので特に好適である。このような無機酸化物微粒子の市販品としては、例えば、スノーテックス、スノーテックスUP(日産化学工業株式会社製、商品名)、クオートロンPLシリーズ(扶桑化学工業株式会社製、商品名)が挙げられる。 Since the fine particles (nuclei) 3 arranged on the surface of the core particle 2 function as the nuclei of the convex portions 5a, a harder one is preferable because the conductive layer can be embedded in the electrode. As the fine particles (nuclei) 3, the particles mentioned above as insulating particles can be used. Specifically, inorganic oxide fine particles containing at least one element selected from the group consisting of silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium and magnesium are preferable, and these may be used alone or in combination. A mixture of more than one can be used. Among the inorganic oxide fine particles, water-dispersed colloidal silica (SiO 2 ) is particularly preferable because it has a hydroxyl group on the surface, is excellent in binding properties with conductive particles, easily has a uniform particle diameter, and is inexpensive. Examples of such commercially available inorganic oxide fine particles include Snowtex, Snowtex UP (trade name, manufactured by Nissan Chemical Industries, Ltd.), and Quatron PL series (trade name, manufactured by Fuso Chemical Industries, Ltd.). .

微粒子(核)3の平均粒径が凸部の高さを決定するため、平均粒径のばらつきが少なく、シャープな粒度分布を有するものが好ましい。微粒子(核)3の平均粒径は、コア粒子2の平均直径aの0.001倍以上0.3倍以下であることが好ましく、0.002倍以上0.2倍以下であることがより好ましく、0.003倍以上0.1倍以下であることがさらに好ましい。微粒子(核)3の平均粒径がコア粒子2の平均直径aの0.001倍以下だと、凸部が小さすぎて、導電層を十分に電極にめり込ませることができない可能性がある。一方、核3の平均粒径がコア粒子2の平均直径の0.3倍以上であると、微粒子(核)3をコア粒子2の表面に吸着させることが困難な傾向がある。また、凸部が大きくなりすぎてショート不良が生じ得る。微粒子(核)3の粒径ばらつきはできるだけ小さいことが好ましい。ばらつきが大きいと、凸部の高さのばらつきが大きくなり、ショート不良を起こしやすくなる。具体的には、粒径のばらつきC.V.は30%以下が好ましく、20%以下がより好ましく、10%以下がさらに好ましく、5%以下が特に好ましく、3%以下が最も好ましい。このC.V.が30%を超えると、ばらつきが大きすぎて、凸部の高さが揃わず、ショート不良を引き起こすリスクが高まる可能性がある。   Since the average particle size of the fine particles (nuclei) 3 determines the height of the convex portion, it is preferable that the average particle size has little variation in the average particle size and has a sharp particle size distribution. The average particle diameter of the fine particles (nuclei) 3 is preferably 0.001 to 0.3 times the average diameter a of the core particles 2, and more preferably 0.002 to 0.2 times. Preferably, it is 0.003 times or more and 0.1 times or less. If the average particle diameter of the fine particles (nuclei) 3 is 0.001 times or less of the average diameter a of the core particles 2, the convex portion may be too small to sufficiently immerse the conductive layer into the electrode. is there. On the other hand, when the average particle diameter of the core 3 is 0.3 times or more the average diameter of the core particle 2, it tends to be difficult to adsorb the fine particles (core) 3 on the surface of the core particle 2. Further, the convex portion becomes too large, and a short circuit failure may occur. It is preferable that the particle size variation of the fine particles (nuclei) 3 is as small as possible. If the variation is large, the variation in the height of the convex portion becomes large, and a short circuit failure is likely to occur. Specifically, particle size variation C.I. V. Is preferably 30% or less, more preferably 20% or less, further preferably 10% or less, particularly preferably 5% or less, and most preferably 3% or less. This C.I. V. If it exceeds 30%, the variation is too large, the heights of the convex portions are not uniform, and there is a possibility that the risk of causing a short circuit failure is increased.

図3は、絶縁導電粒子の別の実施形態を示す断面図である。図3に示される絶縁被覆導電粒子1は、コア粒子2、コア粒子2の表面上に配置された微粒子(核)3、これらを覆う内側導電層(第一の層)11、及び導電性の最外層5を有する導電粒子10と、最外層5の表面上に配置された絶縁性粒子7とを備える。   FIG. 3 is a cross-sectional view showing another embodiment of insulated conductive particles. 3 includes a core particle 2, fine particles (nuclei) 3 disposed on the surface of the core particle 2, an inner conductive layer (first layer) 11 covering these, and conductive particles Conductive particles 10 having the outermost layer 5 and insulating particles 7 disposed on the surface of the outermost layer 5 are provided.

内側導電層として第一の層11を設けることで、圧着した際に、導電層の破壊が抑制され、安定した接続抵抗を得られやすく好ましい。第一の層11としては、無電解めっきで形成される金属層が好適に利用される。第一の層11の材質は特に限定されないが、無電解めっきで使用される金属または合金が適用できる。具体的には、ニッケル、銅、パラジウム、金、銀、白金、錫、またこれらの合金などが利用できる。特にニッケルは、実用性が高く好ましい。ニッケルめっき層は、リン又はホウ素を含むことが好ましい。これにより第一の層11の耐腐食性が高まり、高い絶縁性を維持しやすく、さらに第一の層11の硬度を高めることができ、導電粒子が圧縮されたときの電気抵抗値を低く保つことが容易となる。また、第一の層11としてのニッケルめっき層は、リン又はホウ素と共に、共析する他の金属を含んでいてもよい。他の金属としては、例えば、コバルト、銅、亜鉛、鉄、マンガン、クロム、バナジウム、モリブデン、パラジウム、錫、タングステン、レニウム、ルテニウム、ロジウム等の金属が挙げられる。これらの金属を第一の層11に含有させることで第一の層11の硬度を高めることができ、導電粒子10を高圧縮して圧着接続する場合に突起が押しつぶされるのを抑制し、より低い電気抵抗値を得ることが可能となる。リン又はホウ素と共に、共析する他の金属の中でも、硬度そのものが高いタングステンが好ましい。この場合、第一の層11におけるニッケルの含有量は、85質量%以上であることが好ましい。   By providing the first layer 11 as the inner conductive layer, it is preferable that destruction of the conductive layer is suppressed and a stable connection resistance is easily obtained when pressure bonding is performed. As the first layer 11, a metal layer formed by electroless plating is preferably used. Although the material of the 1st layer 11 is not specifically limited, The metal or alloy used by electroless plating can be applied. Specifically, nickel, copper, palladium, gold, silver, platinum, tin, and alloys thereof can be used. Nickel is particularly preferable because of its high practicality. The nickel plating layer preferably contains phosphorus or boron. Thereby, the corrosion resistance of the first layer 11 is increased, it is easy to maintain high insulation, the hardness of the first layer 11 can be further increased, and the electrical resistance value when the conductive particles are compressed is kept low. It becomes easy. Moreover, the nickel plating layer as the first layer 11 may contain other metal to be co-deposited together with phosphorus or boron. Examples of the other metal include metals such as cobalt, copper, zinc, iron, manganese, chromium, vanadium, molybdenum, palladium, tin, tungsten, rhenium, ruthenium, and rhodium. By containing these metals in the first layer 11, the hardness of the first layer 11 can be increased, and when the conductive particles 10 are subjected to high pressure compression bonding, the protrusions are suppressed from being crushed, and more A low electrical resistance value can be obtained. Among other metals that co-deposit with phosphorus or boron, tungsten having high hardness is preferable. In this case, the nickel content in the first layer 11 is preferably 85% by mass or more.

第一の層11を無電解ニッケルめっきにより形成する場合、例えば、還元剤として次亜リン酸ナトリウム等のリン含有化合物を用いることで、リンを共析させることができ、ニッケル−リン合金が含まれる第一の層11を形成することができる。また、還元剤として、例えば、ジメチルアミンボラン、水素化ホウ素ナトリウム、水素化ホウ素カリウム等のホウ素含有化合物を用いることで、ホウ素を共析させることができ、ニッケル−ホウ素合金が含まれる第一の層11を形成することができる。ニッケル−ホウ素合金はニッケル−リン合金よりも硬度が高いので、導電粒子を高圧縮して圧着接続する場合に突起が押しつぶされるのを抑制し、より低い電気抵抗値を得る観点から、第一の層11はニッケル−ホウ素合金を含むことが好ましい。   When the first layer 11 is formed by electroless nickel plating, for example, phosphorus can be co-deposited by using a phosphorus-containing compound such as sodium hypophosphite as a reducing agent, and a nickel-phosphorous alloy is included. The first layer 11 can be formed. Further, as a reducing agent, for example, boron can be co-deposited by using a boron-containing compound such as dimethylamine borane, sodium borohydride, potassium borohydride, etc., and a first nickel-boron alloy is included. Layer 11 can be formed. Since the nickel-boron alloy has a higher hardness than the nickel-phosphorus alloy, when the conductive particles are highly compressed and bonded by crimping, the protrusion is suppressed from being crushed, and from the viewpoint of obtaining a lower electrical resistance value, the first Layer 11 preferably comprises a nickel-boron alloy.

本実施形態において、ニッケルを含む第一の層11は、無電解ニッケルめっきにより形成することが好ましい。無電解ニッケルめっき液は、水溶性ニッケル化合物を含むことができ、錯化剤、還元剤、pH調整剤及び界面活性剤から選択される1種以上の化合物をさらに含むことが好ましい。   In the present embodiment, the first layer 11 containing nickel is preferably formed by electroless nickel plating. The electroless nickel plating solution may contain a water-soluble nickel compound, and preferably further contains one or more compounds selected from a complexing agent, a reducing agent, a pH adjusting agent, and a surfactant.

水溶性ニッケル化合物としては、例えば、硫酸ニッケル、塩化ニッケル、次亜リン酸ニッケル等の水溶性ニッケル無機塩、酢酸ニッケル、リンゴ酸ニッケル等の水溶性ニッケル有機塩を用いることができる。これらの水溶性ニッケル化合物は、一種を単独で又は二種以上を混合して用いることができる。   Examples of the water-soluble nickel compound include water-soluble nickel inorganic salts such as nickel sulfate, nickel chloride and nickel hypophosphite, and water-soluble nickel organic salts such as nickel acetate and nickel malate. These water-soluble nickel compounds can be used individually by 1 type or in mixture of 2 or more types.

水溶性ニッケル化合物の濃度は、0.001〜1mol/Lとすることが好ましく、0.01〜0.3mol/Lとすることがより好ましい。水溶性ニッケル化合物の濃度を上記範囲とすることで、めっき被膜の析出速度を十分に得ながら、めっき液の粘度が高くなりすぎることを抑制してニッケル析出の均一性を高めることができる。   The concentration of the water-soluble nickel compound is preferably 0.001 to 1 mol / L, and more preferably 0.01 to 0.3 mol / L. By making the density | concentration of a water-soluble nickel compound into the said range, it can suppress that the viscosity of a plating solution becomes high too much, obtaining the precipitation rate of a plating film, and can improve the uniformity of nickel precipitation.

錯化剤としては、例えば、エチレンジアミンテトラ酢酸、エチレンジアミンテトラ酢酸のナトリウム(1−,2−,3−及び4−ナトリウム)塩、エチレンジアミントリ酢酸、ニトロテトラ酢酸及びそのアルカリ塩、グリコン酸、酒石酸、グルコネート、クエン酸、グルコン酸、コハク酸、ピロリン酸、グリコール酸、乳酸、リンゴ酸、マロン酸、トリエタノールアミングルコノ(γ)−ラクトンが挙げられるが、錯化剤として機能するものであればよく、これらに限定されない。また、これらの錯化剤は、1種類を単独で又は2種類以上を組み合わせて用いることができる。   Examples of complexing agents include ethylenediaminetetraacetic acid, sodium (1-, 2-, 3- and 4-sodium) salts of ethylenediaminetetraacetic acid, ethylenediaminetriacetic acid, nitrotetraacetic acid and alkali salts thereof, glyconic acid, tartaric acid, and gluconate. , Citric acid, gluconic acid, succinic acid, pyrophosphoric acid, glycolic acid, lactic acid, malic acid, malonic acid, triethanolamine glucono (γ) -lactone may be used as long as they function as a complexing agent. However, it is not limited to these. Moreover, these complexing agents can be used individually by 1 type or in combination of 2 or more types.

錯化剤の濃度については、その種類によっても異なり、特に制限されないが、通常、0.001〜2mol/Lとすることが好ましく、0.002〜1mol/Lとすることがより好ましい。錯化剤の濃度を上記範囲とすることで、めっき液中の水酸化ニッケルの沈殿及びめっき液の分解を抑制しつつめっき被膜の析出速度が十分に得られ、なおかつ、めっき液の粘度が高くなりすぎることを抑制してニッケル析出の均一性を高めることができる。   The concentration of the complexing agent varies depending on the type and is not particularly limited, but is usually preferably 0.001 to 2 mol / L, and more preferably 0.002 to 1 mol / L. By setting the concentration of the complexing agent within the above range, a sufficient deposition rate of the plating film can be obtained while suppressing precipitation of nickel hydroxide and decomposition of the plating solution in the plating solution, and the viscosity of the plating solution is high. It can suppress that it becomes too much and can improve the uniformity of nickel precipitation.

還元剤としては、無電解ニッケルめっき液に用いられる公知の還元剤を用いることができ、例えば、次亜リン酸ナトリウム、次亜リン酸カリウム等の次亜リン酸化合物、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ジメチルアミンボラン等の水素化ホウ素化合物、ヒドラジン類が挙げられる。   As the reducing agent, a known reducing agent used in an electroless nickel plating solution can be used. For example, hypophosphite compounds such as sodium hypophosphite and potassium hypophosphite, sodium borohydride, hydrogen Examples thereof include borohydride compounds such as potassium borohydride and dimethylamine borane, and hydrazines.

還元剤の濃度については、その種類によっても異なり、特に制限されないが、通常、0.001〜1mol/Lとすることが好ましく、0.002〜0.5mol/Lとすることがより好ましい。還元剤の濃度を上記範囲とすることで、めっき液中でのニッケルイオンの還元速度を十分に得つつ、めっき液の分解を抑制することができる。   The concentration of the reducing agent varies depending on the type and is not particularly limited, but is usually preferably 0.001 to 1 mol / L, and more preferably 0.002 to 0.5 mol / L. By setting the concentration of the reducing agent within the above range, decomposition of the plating solution can be suppressed while sufficiently obtaining a reduction rate of nickel ions in the plating solution.

pH調整剤のうち、酸性のpH調製剤としては、例えば、塩酸、硫酸、硝酸、リン酸、酢酸、蟻酸、塩化第二銅、硫酸第二鉄等の鉄化合物、アルカリ金属塩化物、過硫酸アンモニウム、若しくはこれらを一種以上含む水溶液、又は、クロム酸、クロム酸−硫酸、クロム酸−フッ酸、重クロム酸、重クロム酸−ホウフッ酸等の酸性の6価クロムを含む水溶液が挙げられる。また、アルカリ性のpH調整剤としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等のアルカリ金属又はアルカリ土類金属の水酸化物、エチレンジアミン、メチルアミン、2−アミノエタノール等のアミノ基を含有する化合物を一種以上含む溶液が挙げられる。   Among pH adjusters, acidic pH adjusters include, for example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, formic acid, cupric chloride, ferric sulfate and other iron compounds, alkali metal chlorides, ammonium persulfate Or an aqueous solution containing one or more of these, or an aqueous solution containing acidic hexavalent chromium such as chromic acid, chromic acid-sulfuric acid, chromic acid-hydrofluoric acid, dichromic acid, and dichromic acid-borofluoric acid. Moreover, as an alkaline pH adjuster, it contains amino groups such as alkali metal or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide and sodium carbonate, ethylenediamine, methylamine and 2-aminoethanol. Examples include a solution containing one or more compounds.

界面活性剤としては、例えば、カチオン界面活性剤、アニオン界面活性剤、両性界面活性剤、非イオン界面活性剤、又はこれらの混合物を用いることが可能である。   As the surfactant, for example, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a nonionic surfactant, or a mixture thereof can be used.

図4は、絶縁導電粒子の別の一実施形態を示す断面図である。図4に示される絶縁被覆導電粒子1は、コア粒子2、コア粒子2の表面を覆う内側導電層(第一の層)11、第一の層11の外側表面上に点在するスパッタ法により形成された核3、及びこれらを覆う導電性の最外層5を有する導電粒子10と、最外層5の外側表面上に配置された絶縁性粒子7とを備える。   FIG. 4 is a cross-sectional view showing another embodiment of insulated conductive particles. Insulating coated conductive particles 1 shown in FIG. 4 are formed by a sputtering method interspersed on the outer surface of the core particle 2, the inner conductive layer (first layer) 11 covering the surface of the core particle 2, and the first layer 11. Conductive particles 10 having formed nuclei 3 and a conductive outermost layer 5 covering these nuclei 3 and insulating particles 7 disposed on the outer surface of the outermost layer 5 are provided.

導電粒子10が第一の層11を備えることにより、導電層全体の電気抵抗を下げることが可能で、安定した接続抵抗を得ることができる。   When the conductive particle 10 includes the first layer 11, the electrical resistance of the entire conductive layer can be lowered, and a stable connection resistance can be obtained.

第一の層11が金属膜であると、コア粒子2の表面に比べて硬く、スパッタ法による膜が安定して形成されやすい。また、第一の層11が設けられることで、コア粒子2よりも粒子の重さ(体積比重)が大きくなり、バレル内での転動・攪拌の効率が上がり、単粒子になりやすいため、スパッタ法による核の形成、最外層の形成が粒子に対して均一に行われ易い利点がある。   When the first layer 11 is a metal film, it is harder than the surface of the core particle 2, and a film formed by sputtering is easily formed stably. In addition, by providing the first layer 11, the weight of the particles (volume specific gravity) becomes larger than the core particles 2, and the efficiency of rolling and stirring in the barrel is increased, so that the particles are likely to be single particles. There is an advantage that the formation of the nucleus and the formation of the outermost layer by the sputtering method are easily performed uniformly on the particles.

スパッタ層(最外層)は、下地の内側導電層の露出が無いよう連続した膜であることが好ましい。下地の導電層が露出していると耐マイグレーション性が低下する傾向がある。具体的には5nm以上の厚みがあることが好ましく、10nm以上の厚みがより好ましく、15nm以上の厚みがさらに好ましく、20nm以上が最も好ましい。20nm以上 の厚みがあってもその効果は大きく改善しない。スパッタの処理時間が長くなるため、実用的でない。   The sputtered layer (outermost layer) is preferably a continuous film so that the underlying inner conductive layer is not exposed. If the underlying conductive layer is exposed, the migration resistance tends to decrease. Specifically, the thickness is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and most preferably 20 nm or more. Even if the thickness is 20 nm or more, the effect is not greatly improved. Since the processing time of sputtering becomes long, it is not practical.

スパッタ層の厚みや連続性を確認するには、断面を観察する方法がある。断面加工には、エポキシ樹脂で導電粒子を硬化させ、研磨する方法、収束イオンビームで加工する方法を利用することができる。断面は、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)で観察することができる。スパッタ層の厚みや厚みのばらつきは断面観察から算出する方法がよい。また、スパッタ層の緻密性や下地層の露出具合を評価する方法としては、前述走査型電子顕微鏡で観察する方法のほかに、X線光電子分光装置(XPS:X-ray Photoelectron Spectroscopy)を用いて、最外層の元素比率を算出する方法がある。XPS分析は、金属表面下の数ナノメートルの領域の情報が得られ、また導電粒子を敷き詰めたサンプルを測定することで、多くの粒子の総和として情報が得られるため、断面観察よりも最外層の表面の情報を多く得ることができて好ましい。上記分析で検出された最外層(スパッタ層)表面の元素の存在比(原子%)を算出し、炭素(C)と酸素(O)以外の元素について、最外層を構成する元素の和をX、最外層の直下の層(最外層の内側で最外層に隣接する層)を構成する元素の和をYとして、YをXで除して元素比率(Y/X)を求める。最外層(スパッタ層)を構成する元素は、スパッタターゲットを構成する元素である。また、バレルスパッタ装置に粒子を投入せず、シリコンウエハ基板や銅箔などの評価基材を投入し、スパッタを行い、形成されたスパッタ層を分析することで、元素を特定することもできる。最外層の直下の層を構成する元素を特定する場合は、スパッタ層(最外層)を設ける前の粒子を分析することで、元素を特定できる。分析方法は、エネルギー分散型X線分析(EDX)装置、X線光電子分光装置などで分析できる。これらの分析では、対象表面に吸着した酸素、炭素が検出されるため、各層の構成元素から除外する。特に、導電層の酸化を防ぐために、導電粒子の表面に有機物による防錆処理を施した場合、炭素や酸素が多く検出されるため、本件の構成元素として除外することが好ましい。また、製造上混入が考えられない材料は除いて評価する必要がある。具体的には、還元剤に次亜リン酸塩や水素化ホウ素塩などを用いた無電解ニッケルで作製した層は、ニッケルとリンとホウ素がその構成元素となる。また、還元剤にホルマリンや次亜リン酸塩、水素化ホウ素塩などを用いた無電解銅めっきで作製した層は、銅とリンとホウ素がその構成元素となる。タングステンやモリブデンなどと合金化した際は、これらも構成元素となることはいうまでもない。スパッタターゲットに酸化物を用いた場合であっても、酸素は構成元素から除外する。   In order to confirm the thickness and continuity of the sputtered layer, there is a method of observing a cross section. For cross-section processing, a method of curing and polishing conductive particles with an epoxy resin, or a method of processing with a focused ion beam can be used. The cross section can be observed with a scanning electron microscope (SEM) or a transmission electron microscope (TEM). A method of calculating the thickness of the sputtered layer and variations in thickness from cross-sectional observation is preferable. Moreover, as a method of evaluating the denseness of the sputter layer and the exposure of the underlayer, in addition to the method of observing with the scanning electron microscope, an X-ray photoelectron spectrometer (XPS) is used. There is a method of calculating the element ratio of the outermost layer. In XPS analysis, information on the area of several nanometers below the metal surface can be obtained, and information obtained as the sum of many particles can be obtained by measuring a sample covered with conductive particles. It is preferable that a lot of surface information can be obtained. Calculate the abundance ratio (atomic%) of the elements on the surface of the outermost layer (sputter layer) detected by the above analysis, and calculate the sum of the elements constituting the outermost layer for elements other than carbon (C) and oxygen (O) X The element ratio (Y / X) is obtained by dividing the sum of the elements constituting the layer immediately below the outermost layer (the layer adjacent to the outermost layer inside the outermost layer) by dividing Y by X. The element constituting the outermost layer (sputter layer) is the element constituting the sputter target. In addition, the element can be specified by introducing an evaluation base material such as a silicon wafer substrate or a copper foil, performing sputtering, and analyzing the formed sputtered layer without introducing particles into the barrel sputtering apparatus. When specifying an element constituting a layer immediately below the outermost layer, the element can be specified by analyzing particles before the sputter layer (outermost layer) is provided. The analysis method can be analyzed by an energy dispersive X-ray analysis (EDX) apparatus, an X-ray photoelectron spectrometer, or the like. In these analyses, since oxygen and carbon adsorbed on the target surface are detected, they are excluded from the constituent elements of each layer. In particular, in order to prevent oxidation of the conductive layer, when the surface of the conductive particles is subjected to a rust prevention treatment with an organic substance, a large amount of carbon or oxygen is detected. In addition, it is necessary to evaluate excluding materials that cannot be mixed in production. Specifically, a layer made of electroless nickel using hypophosphite or borohydride as a reducing agent has nickel, phosphorus and boron as its constituent elements. In addition, a layer formed by electroless copper plating using formalin, hypophosphite, borohydride or the like as a reducing agent has copper, phosphorus and boron as its constituent elements. Needless to say, when alloyed with tungsten, molybdenum, or the like, these are also constituent elements. Even when an oxide is used for the sputtering target, oxygen is excluded from the constituent elements.

元素比率(Y/X)は、0.5以下が好ましく、0.4以下がより好ましく、0.3以下がさらに好ましく、0.2以下が特に好ましく、0.1以下が最も好ましい。元素比率が0.4以下であると、最外層の元素比率が高く耐マイグレーション性が高い導電粒子を提供できる。   The element ratio (Y / X) is preferably 0.5 or less, more preferably 0.4 or less, further preferably 0.3 or less, particularly preferably 0.2 or less, and most preferably 0.1 or less. When the element ratio is 0.4 or less, conductive particles having a high element ratio in the outermost layer and high migration resistance can be provided.

図5は、絶縁被覆導電粒子の別の実施形態を示す断面図である。図5に示される絶縁被覆導電粒子1は、コア粒子2、コア粒子2の表面上に順に形成された第一の内側導電層(第一の層)11、第一の層11の外側表面上に点在し、無電解めっきによって形成された粒状の核3と、これらを覆う第二の内側導電層(第二の層)12、及び第二の層12を覆う最外層5を有する導電粒子10と、最外層5の表面上に配置された絶縁性粒子7とを備える。   FIG. 5 is a cross-sectional view showing another embodiment of the insulating coated conductive particles. Insulating coated conductive particles 1 shown in FIG. 5 include core particles 2, first inner conductive layer (first layer) 11 formed on the surface of core particles 2 in order, and outer surfaces of first layer 11. Conductive particles having granular nuclei 3 formed by electroless plating, a second inner conductive layer (second layer) 12 covering these, and an outermost layer 5 covering the second layer 12. 10 and insulating particles 7 disposed on the surface of the outermost layer 5.

図9は、第一の層11の外側に無電解めっきによって核3が形成され、第二の層12が形成される前の導電粒子のSEM写真である。無電解めっきによって核3を形成することにより、非常に緻密に多くの核を形成できることから、第二の層および最外層を設けても非常に密度が高い凸部が形成でき、安定した接続抵抗を達成できる。内側導電層が、第一の層11及び第二の層11の二層を有する。   FIG. 9 is an SEM photograph of the conductive particles before the nucleus 3 is formed on the outside of the first layer 11 by electroless plating and the second layer 12 is formed. By forming the nuclei 3 by electroless plating, a large number of nuclei can be formed very densely, so that even if the second layer and the outermost layer are provided, a very high density convex portion can be formed, and a stable connection resistance. Can be achieved. The inner conductive layer has two layers of the first layer 11 and the second layer 11.

図6は、絶縁被覆導電粒子の別の実施形態を示す断面図である。図6に示される絶縁被覆導電粒子1は、コア粒子2、コア粒子2の表面上に形成された第一の内側導電層(第一の層)11、第一の層11の外側表面上に点在し、無電解めっき又はスパッタ法によって形成された核3、これらを覆う第二の内側導電層(第二の層)12、及び第二の層12を覆う最外層5を有する導電粒子10と、最外層4の外側表面上に配置された絶縁性粒子7とを備える。内側導電層が、第一の層11と第二の層11とから構成されることを特徴としている。   FIG. 6 is a cross-sectional view showing another embodiment of the insulating coated conductive particles. 6 are the core particle 2, the first inner conductive layer (first layer) 11 formed on the surface of the core particle 2, and the outer surface of the first layer 11. Conductive particles 10 having interspersed nuclei 3 formed by electroless plating or sputtering, a second inner conductive layer (second layer) 12 covering these, and an outermost layer 5 covering the second layer 12. And insulating particles 7 disposed on the outer surface of the outermost layer 4. The inner conductive layer is composed of a first layer 11 and a second layer 11.

図7は、図6の絶縁被覆粒子の拡大断面図である。第一の層11は、ニッケルの比率が高い第一の部分11a、ニッケル−銅合金の割合が高い第二の部分11b、及び銅の割合が高い第三の部分11cから構成されており、これらが内側からこの順で設けられている。銅又はニッケルと銅を含む第一の層11は、97質量%以上の銅を含む層でもよいが、粒子同士の凝集を抑えてピンホールの発生を抑制できる点から、ニッケルと銅を合計で97質量%以上を含む層であることが好ましい。   FIG. 7 is an enlarged cross-sectional view of the insulating coating particles of FIG. The first layer 11 includes a first portion 11a having a high nickel ratio, a second portion 11b having a high nickel-copper alloy ratio, and a third portion 11c having a high copper ratio. Are provided in this order from the inside. The first layer 11 containing copper or nickel and copper may be a layer containing 97 mass% or more of copper, but nickel and copper are combined in total from the point that aggregation of particles can be suppressed and generation of pinholes can be suppressed. A layer containing 97% by mass or more is preferable.

第一の層11は、ニッケル及び銅を含み、かつ、コア粒子2から遠ざかるにしたがってニッケルに対する銅の元素比率が高くなる部分を有する。この部分は第一の層11の厚さ方向の一部であってコア粒子2のほぼ全体もしくは全体をカバーするように設けられた層であってもよい。言い換えると、ニッケルと銅を含む第一の層11は、上記部分として、ニッケル及び銅を主成分とする層(以下、「Ni−Cu層」ともいう)を少なくとも有し、Ni−Cu層はニッケルに対する銅の元素比率がコア粒子2の表面から遠ざかる方向に高くなる濃度勾配を有してもよい。   The first layer 11 includes nickel and copper, and has a portion where the element ratio of copper to nickel increases as the distance from the core particle 2 increases. This part may be a part of the first layer 11 in the thickness direction and a layer provided so as to cover almost the whole or the whole of the core particle 2. In other words, the first layer 11 containing nickel and copper has at least a layer containing nickel and copper as main components (hereinafter also referred to as “Ni—Cu layer”) as the above-described portion, The element ratio of copper to nickel may have a concentration gradient that increases in a direction away from the surface of the core particle 2.

Ni−Cu層におけるニッケルの含有率と銅の含有率との合計は97質量%以上であることが好ましく、98.5質量%以上であることがより好ましく、99.5質量%以上であることがさらに好ましい。Ni−Cu層におけるニッケルの含有率と銅の含有率との合計の上限は100質量%である。また、Ni−Cu層におけるニッケルに対する銅の元素比率はコア粒子2の表面から遠ざかる方向に高くなる濃度勾配を有し、この濃度勾配は連続的であることが好ましい。なお、本実施形態における元素比率は、例えば、導電粒子の断面を収束イオンビームで切り出し、40万倍の透過型電子顕微鏡で観察し、透過型電子顕微鏡に付属するEDX(エネルギー分散型X線分光機、日本電子データム株式会社製)による成分分析により、Ni−Cu層(例えば後述の第1の部分、第2の部分及び第3の部分)における元素比率を測定することができる。   The total of the nickel content and the copper content in the Ni-Cu layer is preferably 97% by mass or more, more preferably 98.5% by mass or more, and 99.5% by mass or more. Is more preferable. The upper limit of the total of the nickel content and the copper content in the Ni—Cu layer is 100% by mass. The element ratio of copper to nickel in the Ni—Cu layer has a concentration gradient that increases in the direction away from the surface of the core particle 2, and this concentration gradient is preferably continuous. The element ratio in the present embodiment is determined by, for example, cutting out a cross section of the conductive particle with a focused ion beam, observing with a transmission electron microscope of 400,000 times, and EDX (energy dispersive X-ray spectroscopy) attached to the transmission electron microscope. The element ratio in the Ni—Cu layer (for example, a first part, a second part, and a third part described later) can be measured by component analysis using a machine, manufactured by JEOL Datum Co., Ltd.

ニッケルと銅を含む第一の層4は、Ni−Cu層42を少なくとも有する。Ni−Cu層42は、コア粒子2に近い順に、97重量%以上のニッケルを含有する第1の部分41と、ニッケル及び銅を主成分とする合金を含有する第2の部分42と、銅を主成分とする第3の部分43とが積層された構造からなることが好ましい(図7参照)。
(第1の部分、第2の部分、第3の部分)
The first layer 4 containing nickel and copper has at least a Ni—Cu layer 42. The Ni—Cu layer 42 includes, in order closer to the core particle 2, a first portion 41 containing 97 wt% or more of nickel, a second portion 42 containing an alloy mainly composed of nickel and copper, and copper It is preferable to have a structure in which the third portion 43 mainly composed of is laminated (see FIG. 7).
(First part, second part, third part)

第1の部分11aは、97質量%以上のニッケルを含有する。第1の部分11aのニッケルの含有率は、98.5質量%以上であることがより好ましく、99.5質量%以上であることがさらに好ましい。ニッケルが97質量%以上であることで、コア粒子2とニッケルと銅を含む第一の層11との接着性を良好に保つことができる。その結果、導電粒子10を高圧縮して圧着接続する場合に、圧縮後のコア粒子2とニッケルと銅を含む第一の層11との剥がれを抑制することができる。このニッケルの含有率の上限は100質量%である。   The 1st part 11a contains 97 mass% or more of nickel. The nickel content of the first portion 11a is more preferably 98.5% by mass or more, and further preferably 99.5% by mass or more. Adhesiveness of the core particle 2 and the 1st layer 11 containing nickel and copper can be kept favorable because nickel is 97 mass% or more. As a result, when the conductive particles 10 are highly compressed and crimped and connected, the peeling between the compressed core particles 2 and the first layer 11 containing nickel and copper can be suppressed. The upper limit of the nickel content is 100% by mass.

第1の部分11aの厚みは、20〜200Å(2〜20nm)の範囲が好ましく、30〜150Å(3〜15nm)の範囲がより好ましく、40〜100Å(4〜10nm)の範囲がさらに好ましい。第1の部分11aの厚みが20Å(2nm)未満であるとめっき時に凝集しやすい傾向があり、200Å(20nm)を超えると、導電粒子を高圧縮して圧着接続する場合に、ニッケルの部分で金属の割れが発生しやすくなる傾向がある。   The thickness of the first portion 11a is preferably in the range of 20 to 200 mm (2 to 20 nm), more preferably in the range of 30 to 150 mm (3 to 15 nm), and still more preferably in the range of 40 to 100 mm (4 to 10 nm). If the thickness of the first portion 11a is less than 20 mm (2 nm), it tends to agglomerate during plating. If the thickness exceeds 200 mm (20 nm), when the conductive particles are highly compressed and connected by pressure bonding, There is a tendency for metal cracking to occur easily.

第2の部分11bは、ニッケル及び銅を主成分とする合金を含有する。第2の部分11bにおける、ニッケルの含有率と銅の含有率との合計は、97質量%以上であることが好ましく、98.5質量%以上であることがより好ましく、99.5質量%以上であることがさらに好ましい。この含有率が97質量%以上であると、導電粒子10を高圧縮して圧着接続する場合に、圧縮後の金属の割れをより抑制することができる。このニッケルの含有率と銅の含有率との合計の上限は100質量%である。   The second portion 11b contains an alloy mainly composed of nickel and copper. The total of the nickel content and the copper content in the second portion 11b is preferably 97% by mass or more, more preferably 98.5% by mass or more, and 99.5% by mass or more. More preferably. When the content is 97% by mass or more, cracking of the metal after compression can be further suppressed when the conductive particles 10 are highly compressed and crimped. The upper limit of the total content of nickel and copper is 100% by mass.

第2の部分11bの厚みは、20〜500Å(2〜50nm)の範囲が好ましく、20〜400Å(2〜40nm)の範囲がより好ましく、20〜200Å(2〜20nm)の範囲がさらに好ましい。第2の部分11bの厚みが20Å(2nm)未満であるとめっき時に凝集しやすい傾向があり、500Å(50nm)を超えると、導電粒子10を高圧縮して圧着接続する場合に、ニッケルの部分で金属割れが発生しやすくなる傾向がある。   The thickness of the second portion 11b is preferably in the range of 20 to 500 mm (2 to 50 nm), more preferably in the range of 20 to 400 mm (2 to 40 nm), and still more preferably in the range of 20 to 200 mm (2 to 20 nm). When the thickness of the second portion 11b is less than 20 mm (2 nm), the metal tends to aggregate during plating. When the thickness exceeds 500 mm (50 nm), the nickel particles are used when the conductive particles 10 are highly compressed and connected by pressure bonding. There is a tendency for metal cracks to occur easily.

第3の部分11cは、銅を主成分とする。第3の部分11cにおける銅の含有率は、97質量%以上であることが好ましく、98.5質量%以上であることが好ましく、99.5質量%以上であることがさらに好ましい。この含有率が97質量%以上であると、導電粒子10を高圧縮して圧着接続する場合に、圧縮後の金属の割れをより抑制することができる。この銅の含有率の上限は100質量%である。   The third portion 11c has copper as a main component. The copper content in the third portion 11c is preferably 97% by mass or more, preferably 98.5% by mass or more, and more preferably 99.5% by mass or more. When the content is 97% by mass or more, cracking of the metal after compression can be further suppressed when the conductive particles 10 are highly compressed and crimped. The upper limit of the copper content is 100% by mass.

第3の部分11cの厚みは、100〜2000Å(10〜200nm)の範囲が好ましく、200〜1500Å(20〜150nm)の範囲がより好ましく、300〜1000Å(30〜100nm)の範囲がさらに好ましい。第3の部分11cの厚みが100Å(10nm)未満であると、導電性が低下する傾向があり、2000Å(200nm)を超えると、めっき時に導電粒子が凝集しやすくなる傾向がある。   The thickness of the third portion 11c is preferably in the range of 100 to 2000 mm (10 to 200 nm), more preferably in the range of 200 to 1500 mm (20 to 150 nm), and still more preferably in the range of 300 to 1000 mm (30 to 100 nm). If the thickness of the third portion 11c is less than 100 mm (10 nm), the conductivity tends to decrease, and if it exceeds 2000 mm (200 nm), the conductive particles tend to aggregate during plating.

第1の部分11a、第2の部分11b及び第3の部分11cは、いずれもニッケル、銅及びホルムアルデヒドを含む無電解めっきにより形成されたものであることが好ましく、一つの建浴槽における無電解めっき液の中で順次形成されたものであることがより好ましい。一つの建浴槽において複数の層を順次形成することで、それぞれの層間の密着性を良好に保つことができる。   The first part 11a, the second part 11b, and the third part 11c are all preferably formed by electroless plating containing nickel, copper and formaldehyde, and electroless plating in one building tub. It is more preferable that they are sequentially formed in the liquid. By sequentially forming a plurality of layers in one building tub, it is possible to maintain good adhesion between the respective layers.

第1の部分11a、第2の部分11b及び第3の部分11cを同一の無電解めっき液により連続的に作製するための無電解めっき液の組成としては、例えば、(a)硫酸銅等の水溶性銅塩、(b)硫酸ニッケル等の水溶性ニッケル塩、(c)ホルムアルデヒド等の還元剤、(d)ロッシェル塩、EDTA等の錯化剤、及び、(e)水酸化アルカリ等のpH調整剤を加えたものが好ましい。   Examples of the composition of the electroless plating solution for continuously producing the first portion 11a, the second portion 11b, and the third portion 11c with the same electroless plating solution include (a) copper sulfate and the like. Water-soluble copper salt, (b) water-soluble nickel salt such as nickel sulfate, (c) reducing agent such as formaldehyde, (d) complexing agent such as Rochelle salt, EDTA, and (e) pH of alkali hydroxide, etc. What added the regulator is preferable.

無電解めっきによりコア粒子2の表面にニッケルと銅を含む第一の層11を形成するためには、例えば、コア粒子2の表面にパラジウム触媒を付与し、その後、無電解めっきを行うことによりめっき被膜を形成するのがよい。第1の部分11a、第2の部分11b及び第3の部分11cを無電解めっきにより形成する具体的な方法としては、例えば、(a)硫酸銅等の水溶性銅塩、(b)硫酸ニッケル等の水溶性ニッケル塩、(c)ホルムアルデヒド等の還元剤、(d)ロッシェル塩、EDTA等の錯化剤、及び、(e)水酸化アルカリ等のpH調整剤を加えた建浴液に、パラジウム触媒を付与した樹脂粒子を加えることで、第1の部分11a及び第2の部分11bを形成し、その後に(a)硫酸銅等の水溶性銅塩、(c)ホルムアルデヒド等の還元剤、(d)ロッシェル塩、EDTA等の錯化剤、及び、(e)水酸化アルカリ等のpH調整剤を加えた補充液を補充することで、第3の部分11cを形成することが可能である。   In order to form the first layer 11 containing nickel and copper on the surface of the core particle 2 by electroless plating, for example, a palladium catalyst is applied to the surface of the core particle 2 and then electroless plating is performed. It is good to form a plating film. Specific methods for forming the first portion 11a, the second portion 11b, and the third portion 11c by electroless plating include, for example, (a) a water-soluble copper salt such as copper sulfate, and (b) nickel sulfate. To a building bath solution containing a water-soluble nickel salt such as (c) a reducing agent such as formaldehyde, (d) a complexing agent such as Rochelle salt, EDTA, and (e) a pH adjusting agent such as alkali hydroxide. By adding resin particles provided with a palladium catalyst, the first part 11a and the second part 11b are formed, and thereafter (a) a water-soluble copper salt such as copper sulfate, (c) a reducing agent such as formaldehyde, It is possible to form the third portion 11c by replenishing a replenisher solution to which (d) a complexing agent such as Rochelle salt or EDTA and (e) a pH adjusting agent such as alkali hydroxide is added. .

(a)硫酸銅等の水溶性銅塩、(b)硫酸ニッケル等の水溶性ニッケル塩、(c)ホルムアルデヒド等の還元剤、(d)ロッシェル塩、EDTA等の錯化剤、及び、(e)水酸化アルカリ等のpH調整剤を加えた建浴液における、(b)硫酸ニッケル等の水溶性ニッケル塩の濃度としては、0.0005〜0.05mol/Lが好ましく、0.001〜0.03mol/Lがより好ましく、0.005〜0.02mol/Lがさらに好ましい。(b)硫酸ニッケル等の水溶性ニッケル塩の濃度が0.0005mol/Lよりも低い場合、粒子表面のパラジウム触媒上をニッケルめっき膜により覆うことができずに、パラジウム触媒上に銅が析出する箇所が部分的に出てきやすくなり、粒子同士が凝集しやすくなるとともに、粒子の表面の一部に金属が未析出の箇所が発生しやすくなる。(b)硫酸ニッケル等の水溶性ニッケル塩の濃度が0.05mol/Lよりも高い場合、ニッケルの濃度が高くなることで液の活性が高まり粒子同士の凝集が発生しやすくなる。   (A) a water-soluble copper salt such as copper sulfate, (b) a water-soluble nickel salt such as nickel sulfate, (c) a reducing agent such as formaldehyde, (d) a complexing agent such as Rochelle salt, EDTA, and (e ) The concentration of the water-soluble nickel salt such as (b) nickel sulfate in the building bath solution to which a pH adjusting agent such as alkali hydroxide is added is preferably 0.0005 to 0.05 mol / L, 0.001 to 0 0.03 mol / L is more preferable, and 0.005 to 0.02 mol / L is more preferable. (B) When the concentration of the water-soluble nickel salt such as nickel sulfate is lower than 0.0005 mol / L, the palladium catalyst on the particle surface cannot be covered with the nickel plating film, and copper is deposited on the palladium catalyst. Locations are likely to appear partially, particles are likely to aggregate, and locations where metal has not yet precipitated are likely to occur on part of the surface of the particles. (B) When the concentration of the water-soluble nickel salt such as nickel sulfate is higher than 0.05 mol / L, the activity of the liquid is increased by the increase in the nickel concentration, and the aggregation of particles tends to occur.

(a)硫酸銅等の水溶性銅塩、(b)硫酸ニッケル等の水溶性ニッケル塩、(c)ホルムアルデヒド等の還元剤、(d)ロッシェル塩、EDTA等の錯化剤、及び、(e)水酸化アルカリ等のpH調整剤を加えた建浴液における、(a)硫酸銅等の水溶性銅塩の濃度としては、0.0005〜0.05mol/Lが好ましく、0.001〜0.03mol/Lがより好ましく、0.005〜0.02mol/Lがさらに好ましい。(a)硫酸銅等の水溶性銅塩の濃度が0.0005mol/Lよりも低い場合、第2の部分11b又は第3の部分11cの形成が不均一になる傾向がある。(a)硫酸銅等の水溶性銅塩の濃度が0.05mol/Lよりも高い場合、銅の濃度が高くなることで液の活性が高まり粒子同士の凝集が発生しやすくなる。   (A) a water-soluble copper salt such as copper sulfate, (b) a water-soluble nickel salt such as nickel sulfate, (c) a reducing agent such as formaldehyde, (d) a complexing agent such as Rochelle salt, EDTA, and (e ) The concentration of the water-soluble copper salt such as copper sulfate (a) in the building bath solution to which a pH adjusting agent such as alkali hydroxide is added is preferably 0.0005 to 0.05 mol / L, 0.001 to 0 0.03 mol / L is more preferable, and 0.005 to 0.02 mol / L is more preferable. (A) When the concentration of the water-soluble copper salt such as copper sulfate is lower than 0.0005 mol / L, the formation of the second portion 11b or the third portion 11c tends to be uneven. (A) When the concentration of the water-soluble copper salt such as copper sulfate is higher than 0.05 mol / L, the activity of the liquid increases and the aggregation of particles tends to occur due to the increase in the concentration of copper.

無電解めっき液に(a)硫酸銅等の水溶性銅塩、及び、(b)硫酸ニッケル等の水溶性ニッケル塩を同時に含ませることで第1の部分11a及び第2の部分11bを同一の無電解めっき液により連続的に作製することができる。この理由としては、次のように考えられる。すなわち、ホルムアルデヒドを還元剤として用いることで、樹脂表面のパラジウム触媒上ではニッケルの方が銅よりも優先的に析出するために第1の部分11aが形成され、その後、第1の部分11aの外側に第2の部分11bが形成される。第2の部分11bの、ニッケルに対する銅の濃度の割合は、第2の部分11bの厚みの成長とともに高くなる傾向がある。パラジウム触媒上ではニッケルが優先的に析出し、パラジウム触媒がニッケルにより被覆されると、ただちに銅の析出も起こるようになるためにニッケル及び銅を主成分とする合金を含有する層(第2の部分11b)が形成され始めると考えられる。そして、めっき被膜(第3の部分11c)の厚みが厚くなるにしたがってパラジウム触媒の影響が薄れていくために、銅の析出がニッケルの析出よりも支配的になり、結果として、コア粒子2側からめっき被膜中の厚さ方向において、銅の割合が高くなると考えられる。   By simultaneously including (a) a water-soluble copper salt such as copper sulfate and (b) a water-soluble nickel salt such as nickel sulfate in the electroless plating solution, the first portion 11a and the second portion 11b are made identical. It can be continuously produced with an electroless plating solution. The reason is considered as follows. That is, by using formaldehyde as a reducing agent, nickel is preferentially deposited over copper on the palladium catalyst on the surface of the resin, so that the first portion 11a is formed. The second portion 11b is formed. The ratio of the concentration of copper with respect to nickel in the second portion 11b tends to increase as the thickness of the second portion 11b increases. On the palladium catalyst, nickel is preferentially deposited, and when the palladium catalyst is coated with nickel, copper is immediately deposited. Therefore, a layer containing an alloy containing nickel and copper as a main component (the second layer) It is believed that portion 11b) begins to form. Then, as the thickness of the plating film (third portion 11c) increases, the influence of the palladium catalyst decreases, so that the copper deposition becomes more dominant than the nickel deposition. As a result, the core particle 2 side From the above, it is considered that the copper ratio increases in the thickness direction in the plating film.

粒子の表面に第1の部分11aを形成した場合、コア粒子2の表面に直接銅めっき層を形成した場合と比較して、コア粒子2同士の凝集を抑制することができる。この理由としては、以下のように考えられる。無電解銅めっきの銅イオンから銅への析出過程は、銅の価数がCu(2価)→Cu(1価)→Cu(0価)へと変化する反応であり、反応中間体として不安定な1価の銅イオンが生成する。この一価の銅イオンが不均化反応を起こすことで、例えばめっき液中にCu(0価)が発生する等し、液の安定性が非常に低くなると考えられる。一方、無電解ニッケルめっきのニッケルイオンからニッケルへの析出過程は、ニッケルの価数がNi(2価)→Ni(0価)へと変化する反応であり、反応中間体として不安定な1価のニッケルイオンの過程を通過しない。したがって、パラジウム触媒表面上での無電解銅めっきと無電解ニッケルめっきとを比較すると、無電解銅めっき液の方が安定性に乏しく反応が激しいために、反応開始と同時に粒子同士の凝集が発生しやすくなる。一方、無電解ニッケルめっきは前述したように、安定性が高く、粒子同士の凝集を抑制してめっき被膜を形成することが可能になると考えられる。   When the 1st part 11a is formed in the surface of particle | grains, compared with the case where a copper plating layer is directly formed in the surface of the core particle 2, aggregation of core particle | grains 2 can be suppressed. The reason is considered as follows. The deposition process from copper ions to copper in electroless copper plating is a reaction in which the valence of copper changes from Cu (divalent) → Cu (monovalent) → Cu (zero valent), and is not suitable as a reaction intermediate. Stable monovalent copper ions are produced. This monovalent copper ion causes a disproportionation reaction, for example, Cu (zero valence) is generated in the plating solution, and the stability of the solution is considered to be very low. On the other hand, the deposition process from nickel ions to nickel in electroless nickel plating is a reaction in which the valence of nickel changes from Ni (divalent) to Ni (zero valent), and is an unstable monovalent as a reaction intermediate. Does not pass through the nickel ion process. Therefore, when comparing electroless copper plating and electroless nickel plating on the surface of the palladium catalyst, the electroless copper plating solution is less stable and the reaction is more intense. It becomes easy to do. On the other hand, as described above, electroless nickel plating has high stability, and it is considered that a plating film can be formed while suppressing aggregation of particles.

導電粒子10の銅又はニッケルと銅を含む第一の層11に、ニッケルと銅の合計の含有率が97質量%以上のニッケルと銅を含む層よりも、97質量%以上の銅からなる層を用いると、ピンホールが生じやすい原因としては、めっき被膜形成の際に粒子同士が凝集するためであると考えられる。これについて本発明者等は次のように推測する。すなわち、めっきの初期段階で粒子が凝集し、その後に粒子同士が離れた場合、凝集していたところは初期段階でめっきがされなかったため、その後にめっき被膜を成長させてもめっきされることはなく、ピンホールが形成されてしまう。   The layer which consists of 97 mass% or more of copper rather than the layer containing nickel and copper whose total content of nickel and copper is 97 mass% or more in the first layer 11 containing copper or nickel and copper of the conductive particles 10 It is considered that the reason why pinholes are likely to occur is that the particles are aggregated during the formation of the plating film. The present inventors infer about this as follows. That is, if the particles aggregate in the initial stage of plating, and then the particles are separated from each other, plating was not performed in the initial stage where it was agglomerated. And pinholes are formed.

本実施形態で用いる無電解めっき液の還元剤として、例えば、次亜リン酸ナトリウム、水素化ほう素ナトリウム、ジメチルアミンボラン、ヒドラジン等の還元剤を用いてもよいが、ホルムアルデヒドを単独で使用することが最も好ましい。次亜リン酸ナトリウム、水素化ほう素ナトリウム、ジメチルアミンボラン等を加える場合は、リンやホウ素が共析しやすいため、第1の部分11aにおけるニッケルの含有率を97質量%以上とするためには、濃度を調整することが好ましい。還元剤としてホルムアルデヒドを用いることで、第1の部分11aにおけるニッケルの含有率が99質量%以上のめっき被膜を形成しやすい。この場合、導電粒子10を高圧縮して圧着接続する場合に、圧縮後の金属の割れを抑制することが可能である。一方、第1の部分11aにおけるニッケルの含有率が97質量%よりも低い場合、圧縮後の金属の割れが発生しやすくなる。なお、次亜リン酸ナトリウム、水素化ほう素ナトリウム、ジメチルアミンボラン、ヒドラジン等の還元剤を用いる場合は、これらの少なくとも1種をホルムアルデヒドと併用することが好ましい。   As a reducing agent for the electroless plating solution used in this embodiment, for example, a reducing agent such as sodium hypophosphite, sodium borohydride, dimethylamine borane, hydrazine may be used, but formaldehyde is used alone. Most preferred. When adding sodium hypophosphite, sodium borohydride, dimethylamine borane, etc., phosphorus and boron are likely to be co-deposited, so that the nickel content in the first portion 11a is 97 mass% or more. It is preferable to adjust the concentration. By using formaldehyde as the reducing agent, it is easy to form a plating film having a nickel content of 99% by mass or more in the first portion 11a. In this case, when the conductive particles 10 are highly compressed and crimped and connected, it is possible to suppress cracking of the metal after compression. On the other hand, when the nickel content in the first portion 11a is lower than 97% by mass, metal cracking after compression tends to occur. When a reducing agent such as sodium hypophosphite, sodium borohydride, dimethylamine borane, hydrazine is used, it is preferable to use at least one of these in combination with formaldehyde.

本実施形態で用いる無電解めっき液の錯化剤として、例えば、グリシン等のアミノ酸、エチレンジアミン、アルキルアミン等のアミン類、EDTA、ピロリン酸等の銅錯化剤、クエン酸、酒石酸、ヒドロキシ酢酸、リンゴ酸、乳酸、グルコン酸などを用いてもよい。   Examples of complexing agents for the electroless plating solution used in the present embodiment include amino acids such as glycine, amines such as ethylenediamine and alkylamine, copper complexing agents such as EDTA and pyrophosphate, citric acid, tartaric acid, hydroxyacetic acid, Malic acid, lactic acid, gluconic acid and the like may be used.

無電解銅めっき終了後の水洗は、短時間に効率よく行うことが望ましい。水洗時間が短いほど、銅表面に酸化被膜ができにくいため、後のめっきが有利になる傾向がある。   It is desirable that the washing with water after the electroless copper plating is completed efficiently in a short time. As the washing time is shorter, an oxide film is less likely to be formed on the copper surface, so that subsequent plating tends to be advantageous.

<異方導電性接着剤>
本実施形態の異方導電性接着剤は、上述した、本実施形態の導電粒子又は絶縁被覆導電粒子と、接着剤とを含有する。この異方導電性接着剤を、フィルム状に形成してなる異方導電性接着剤フィルムとして用いることが好ましい。
<Anisotropic conductive adhesive>
The anisotropic conductive adhesive of the present embodiment contains the above-described conductive particles or insulating coated conductive particles of the present embodiment and an adhesive. It is preferable to use this anisotropic conductive adhesive as an anisotropic conductive adhesive film formed into a film.

接着剤としては、例えば、熱反応性樹脂と硬化剤との混合物が用いられる。好ましく用いられる接着剤としては、例えば、エポキシ樹脂と潜在性硬化剤との混合物、ラジカル重合性化合物と有機過酸化物との混合物が挙げられる。   As the adhesive, for example, a mixture of a heat-reactive resin and a curing agent is used. Examples of the adhesive preferably used include a mixture of an epoxy resin and a latent curing agent, and a mixture of a radical polymerizable compound and an organic peroxide.

また、接着剤としてはペースト状又はフィルム状のものが用いられる。フィルム状にするためには、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリエステルウレタン樹脂等の熱可塑性樹脂を接着剤に配合することが効果的である。   Also, a paste or film is used as the adhesive. In order to form a film, it is effective to add a thermoplastic resin such as a phenoxy resin, a polyester resin, a polyamide resin, a polyester resin, a polyurethane resin, an acrylic resin, or a polyester urethane resin to the adhesive.

<接続構造体>
図8は、本実施形態の係る接続構造体を示す模式断面図である。図8に示す接続構造体800は、相互に対向する第1の回路部材91及び第2の回路部材92を備えており、第1の回路部材91と第2の回路部材92との間には、これらを接続する接続部100が設けられている。
<Connection structure>
FIG. 8 is a schematic cross-sectional view showing the connection structure according to the present embodiment. A connection structure 800 shown in FIG. 8 includes a first circuit member 91 and a second circuit member 92 that are opposed to each other, and is between the first circuit member 91 and the second circuit member 92. A connecting portion 100 for connecting them is provided.

第1の回路部材91は、回路基板(第1の回路基板)911と、回路基板911上に形成される回路電極(第1の回路電極)912とを備える。第2の回路部材92は、回路基板(第2の回路基板)921と、回路基板921の上に形成される回路電極(第2の回路電極)922とを備える。   The first circuit member 91 includes a circuit board (first circuit board) 911 and a circuit electrode (first circuit electrode) 912 formed on the circuit board 911. The second circuit member 92 includes a circuit board (second circuit board) 921 and a circuit electrode (second circuit electrode) 922 formed on the circuit board 921.

回路部材の具体例としては、ICチップ(半導体チップ)、抵抗体チップ、コンデンサチップ、ドライバーIC等のチップ部品、リジット型のパッケージ基板が挙げられる。これらの回路部材は、回路電極を備えており、多数の回路電極を備えているものが一般的である。上記回路部材が接続される、もう一方の回路部材の具体例としては、金属配線を有するフレキシブルテープ基板、フレキシブルプリント配線板、インジウム錫酸化物(ITO)が蒸着されたガラス基板等の配線基板が挙げられる。フィルム状の異方導電性接着剤50によれば、これらの回路部材同士を効率的且つ高い接続信頼性をもって接続することができる。本実施形態の異方導電性接着剤は、微細な回路電極を多数備えるチップ部品の配線基板上へのCOG実装もしくはCOF実装に好適である。   Specific examples of the circuit member include a chip component such as an IC chip (semiconductor chip), a resistor chip, a capacitor chip, and a driver IC, and a rigid package substrate. These circuit members are provided with circuit electrodes, and generally have many circuit electrodes. Specific examples of the other circuit member to which the circuit member is connected include a flexible tape substrate having metal wiring, a flexible printed wiring board, and a wiring substrate such as a glass substrate on which indium tin oxide (ITO) is deposited. Can be mentioned. According to the film-like anisotropic conductive adhesive 50, these circuit members can be connected efficiently and with high connection reliability. The anisotropic conductive adhesive of this embodiment is suitable for COG mounting or COF mounting on a wiring board of a chip component having many fine circuit electrodes.

接続部100は、接着剤の硬化物80と、これに分散している絶縁被覆導電粒子1とを備える。なお、図8において、絶縁被覆導電粒子1は絶縁性粒子7の図示を省略している。接続構造体800においては、対向する回路電極912と回路電極922とが、絶縁被覆導電粒子1を介して電気的に接続されている。より具体的には、絶縁被覆導電粒子1にあっては、導電粒子が図8のAの方向に、圧縮により変形し、回路電極912、922の双方に電気的に接続している。他方、図8のB横方向では導電粒子間に絶縁性粒子が介在することで絶縁性が維持される。従って、本実施形態の異方導電性接着剤を用いれば、10μmレベルの狭ピッチでの絶縁信頼性を向上させることが可能となる。また、用途によっては絶縁被覆導電粒子の代わりに絶縁被覆されていない導電粒子を用いることも可能である。   The connection part 100 is provided with the hardened | cured material 80 of an adhesive agent, and the insulation coating electrically-conductive particle 1 currently disperse | distributed to this. In FIG. 8, the insulating coated conductive particles 1 are omitted from the illustration of the insulating particles 7. In the connection structure 800, the circuit electrode 912 and the circuit electrode 922 facing each other are electrically connected via the insulating coated conductive particles 1. More specifically, in the insulating coated conductive particles 1, the conductive particles are deformed by compression in the direction of A in FIG. 8 and are electrically connected to both the circuit electrodes 912 and 922. On the other hand, in the horizontal direction B in FIG. 8, insulating properties are maintained by interposing insulating particles between the conductive particles. Therefore, if the anisotropic conductive adhesive of this embodiment is used, it is possible to improve the insulation reliability at a narrow pitch of 10 μm level. Further, depending on the application, it is also possible to use conductive particles that are not covered with insulation instead of insulating coated conductive particles.

本実施形態の接続構造体800は、第1の回路電極912を有する第1の回路部材91と第2の回路電極922を有する第2の回路部材92とを、第1の回路電極912と第2の回路電極922とが相対向するように配置し、第1の回路部材91と第2の回路部材92との間に本実施形態の異方導電性接着剤を介在させ、加熱及び加圧して第1の回路電極912と第2の回路電極922とを電気的に接続させることにより得られる。第1の回路部材91及び第2の回路部材92は、本実施形態の異方導電性接着剤の硬化物100によって接着される。異方導電性接着剤の硬化物100は接着剤の硬化物80と絶縁被覆導電粒子1を含有する。   The connection structure 800 according to the present embodiment includes a first circuit member 91 having a first circuit electrode 912 and a second circuit member 92 having a second circuit electrode 922, and the first circuit electrode 912 and the second circuit member 922. The second circuit electrode 922 is disposed so as to face each other, and the anisotropic conductive adhesive of the present embodiment is interposed between the first circuit member 91 and the second circuit member 92, and heated and pressed. Thus, the first circuit electrode 912 and the second circuit electrode 922 are electrically connected. The 1st circuit member 91 and the 2nd circuit member 92 are adhere | attached by the hardened | cured material 100 of the anisotropic conductive adhesive of this embodiment. A cured product 100 of anisotropic conductive adhesive contains a cured product 80 of adhesive and insulating coated conductive particles 1.

<接続構造体の製造方法>
上記接続構造体の製造方法について、図8を参照しながら説明する。本実施形態では、異方導電性接着剤を熱硬化させて接続構造体を製造する。
<Method for manufacturing connection structure>
A method for manufacturing the connection structure will be described with reference to FIG. In the present embodiment, the anisotropic conductive adhesive is thermoset to produce a connection structure.

先ず、上述した第1の回路部材91と、フィルム状の異方導電性接着剤(異方導電性接着剤フィルム)を用意する。異方導電性接着剤フィルムは、上記のように絶縁被覆導電粒子を絶縁性の接着剤に含有してなるものである。   First, the above-described first circuit member 91 and a film-like anisotropic conductive adhesive (anisotropic conductive adhesive film) are prepared. As described above, the anisotropic conductive adhesive film contains insulating coated conductive particles in an insulating adhesive.

異方導電性接着剤フィルムを第1の回路部材91の回路電極912が形成されている面上に載せる。   An anisotropic conductive adhesive film is placed on the surface of the first circuit member 91 on which the circuit electrode 912 is formed.

次いで、第1の回路電極912と第2の回路電極922とが相対向するようにして、第2の回路部材92を異方導電性接着剤フィルム上に載せる。そして、異方導電性接着剤フィルムを加熱しながら、矢印A方向に全体を加圧する。   Next, the second circuit member 92 is placed on the anisotropic conductive adhesive film so that the first circuit electrode 912 and the second circuit electrode 922 face each other. And the whole is pressurized in the arrow A direction, heating an anisotropic conductive adhesive film.

異方導電性接着剤フィルムの硬化により図8に示すような接続構造体800が得られる。本実施形態では、異方導電性接着剤はフィルム状であったが、ペースト状であってもよい。   A connection structure 800 as shown in FIG. 8 is obtained by curing the anisotropic conductive adhesive film. In the present embodiment, the anisotropic conductive adhesive is in the form of a film, but may be in the form of a paste.

上記の接続構造を有する接続構造体としては、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話、スマートフォン、タブレット等の携帯製品が挙げられる。   Examples of the connection structure having the above connection structure include portable products such as a liquid crystal display, a personal computer, a mobile phone, a smartphone, and a tablet.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(1)導電粒子の作製
平均粒径3.0μmの架橋アクリル粒子を4g準備した。内部にTiOターゲットを備えたドラム(バレル)にアクリル粒子(架橋アクリル粒子)を投入し、バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、バレルを回転・反転させてアクリル粒子を転動、攪拌した。さらに、アクリル粒子に直接振動を加えてアクリル粒子の凝集を抑制しながら、スパッタを行った。ヒータによるバレルの加熱と、アクリル粒子へのスパッタの照射を間欠的に行い、アクリル粒子表面に高さ50nmのTiOの核を点在させた。続けて、ターゲットをAuに変更し、バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、前述同様にバレルを回転・反転して、表面にTiOの核が点在したアクリル粒子の凝集を抑制させながら、今度は連続的にスパッタを行い、厚さ20nmの連続したスパッタ層を形成した。バレル内を大気圧に戻し、TiOの核に由来する複数の凸部を表面に有するスパッタ層を最外層として有する導電粒子を取り出した。
(Example 1)
(1) Production of conductive particles 4 g of crosslinked acrylic particles having an average particle diameter of 3.0 μm were prepared. Acrylic particles (cross-linked acrylic particles) are put into a drum (barrel) equipped with a TiO 2 target inside, the pressure inside the barrel is reduced to 1 × 10 −4 Pa or less, and argon is then flowed at a constant flow rate so that the inside of the barrel becomes 1 Pa. Washed away. Thereafter, the barrel was rotated and inverted to roll and stir the acrylic particles. Further, sputtering was performed while directly agitating the acrylic particles to suppress aggregation of the acrylic particles. The heating of the barrel by the heater and the irradiation of the sputters onto the acrylic particles were intermittently performed, and the TiO 2 nuclei having a height of 50 nm were scattered on the surface of the acrylic particles. Subsequently, the target was changed to Au, the inside of the barrel was depressurized to 1 × 10 −4 Pa or less, and then argon was flowed at a constant flow rate so that the inside of the barrel became 1 Pa. After that, the barrel was rotated and reversed as described above, and while continuously suppressing spattering of acrylic particles having TiO 2 nuclei scattered on the surface, a continuous sputter layer having a thickness of 20 nm was formed. Formed. The inside of the barrel was returned to atmospheric pressure, and conductive particles having a sputtered layer having a plurality of convex portions derived from the TiO 2 nucleus on the surface were taken out.

(2)絶縁被覆導電粒子の作製
分子量70000のポリエチレンイミンの30質量%水溶液(和光純薬工業株式会社製)を、超純水で0.3質量%まで希釈した。この0.3質量%ポリエチレンイミン水溶液300mLに上記で得た導電粒子200gを加え、室温で15分間攪拌した。φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過により、表面にポリエチレンが付着した導電粒子を取出した。取り出された導電粒子を超純水200gに入れて室温で5分間攪拌した。さらに、φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過により導電粒子を取出し、メンブレンフィルタ上の導電粒子を200gの超純水で2回洗浄して、吸着していないポリエチレンイミンを除去した。
(2) Preparation of insulating coated conductive particles A 30% by mass aqueous solution of polyethyleneimine having a molecular weight of 70000 (manufactured by Wako Pure Chemical Industries, Ltd.) was diluted to 0.3% by mass with ultrapure water. 200 g of the conductive particles obtained above were added to 300 mL of this 0.3% by mass polyethyleneimine aqueous solution, and the mixture was stirred at room temperature for 15 minutes. Conductive particles having polyethylene adhered to the surface were taken out by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore). The taken out conductive particles were put in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Further, the conductive particles were removed by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore), and the conductive particles on the membrane filter were washed twice with 200 g of ultrapure water to remove unadsorbed polyethyleneimine. .

次いで、絶縁性粒子としてφ300nmのアクリル粒子分散液を超純水で希釈して、0.1質量%アクリル粒子分散液を得た。そこに、ポリエチレンイミンによって処理された導電粒子を200g入れて、室温で15分間攪拌した。φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過により、アクリル粒子がさらに付着した導電粒子を取出した。取り出された導電粒子を超純水200gに入れて室温で5分間攪拌した。さらに、φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過により導電粒子を取出し、メンブレンフィルタ上の導電粒子を200gの超純水で2回洗浄して、吸着していないアクリル粒子を除去し、アクリル粒子が表面に吸着した絶縁被覆導電粒子を得た。   Next, an acrylic particle dispersion having a diameter of 300 nm as insulating particles was diluted with ultrapure water to obtain a 0.1% by mass acrylic particle dispersion. 200 g of conductive particles treated with polyethyleneimine were put therein and stirred at room temperature for 15 minutes. Conductive particles to which acrylic particles further adhered were taken out by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore). The taken out conductive particles were put in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Furthermore, the conductive particles are removed by filtration using a φ3 μm membrane filter (Merck Millipore), and the conductive particles on the membrane filter are washed twice with 200 g of ultrapure water to remove unadsorbed acrylic particles. Insulating coated conductive particles having acrylic particles adsorbed on the surface were obtained.

得られた絶縁被覆導電粒子の表面に、分子量3000のシリコーンオリゴマーであるSC6000(日立化成株式会社製、商品名)を付着させて、絶縁被覆導電粒子の表面を疎水化した。疎水化後の絶縁被覆導電粒子を80℃で30分間、120℃で1時間の順に、加熱により乾燥して、疎水化された絶縁被覆導電粒子を得た。SEM画像を画像解析することで絶縁被覆微粒子であるアクリル粒子による導電粒子表面の平均被覆率を測定したところ、約35%であった。   SC6000 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a silicone oligomer having a molecular weight of 3000, was attached to the surface of the obtained insulating coated conductive particles to make the surface of the insulating coated conductive particles hydrophobic. The insulating coated conductive particles after the hydrophobization were dried by heating in the order of 30 minutes at 80 ° C. and 1 hour at 120 ° C. to obtain hydrophobic insulated coated conductive particles. Image analysis of the SEM image measured the average coverage of the conductive particle surface with acrylic particles, which were insulating coating fine particles, and was about 35%.

(3)異方導電性接着フィルム及び接続構造体の作製
フェノキシ樹脂(ユニオンカーバイド社製、商品名「PKHC」)100gと、アクリルゴム(ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、グリシジルメタクリレート3質量部の共重合体、分子量:85万)75gとを、酢酸エチル400gに溶解し、溶液を得た。この溶液に、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂組成物(エポキシ当量185、旭化成エポキシ株式会社製、商品名「ノバキュアHX−3941」)300gを加え、撹拌して接着剤溶液を得た。
(3) Production of anisotropic conductive adhesive film and connection structure 100 g of phenoxy resin (manufactured by Union Carbide, trade name “PKHC”), acrylic rubber (40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile) Part, a copolymer of 3 parts by weight of glycidyl methacrylate, molecular weight: 850,000) was dissolved in 400 g of ethyl acetate to obtain a solution. To this solution, 300 g of a liquid epoxy resin composition (epoxy equivalent 185, manufactured by Asahi Kasei Epoxy Co., Ltd., trade name “Novacure HX-3941”) containing a microcapsule-type latent curing agent is added and stirred to form an adhesive solution. Obtained.

この接着剤溶液に、上記で得た絶縁被覆粒子を分散させて、接着剤溶液の全量を基準として9体積%の絶縁被覆粒子を含む分散液を得た。得られた分散液を、セパレータ(シリコーン処理されたポリエチレンテレフタレートフィルム、厚み40μm)にロールコータを用いて塗布し、塗膜を90℃で10分間の加熱により乾燥して、厚み25μmの異方導電性接着フィルムをセパレータ上に形成させた。   The insulating coating particles obtained above were dispersed in this adhesive solution to obtain a dispersion containing 9% by volume of insulating coating particles based on the total amount of the adhesive solution. The obtained dispersion was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) using a roll coater, and the coating film was dried by heating at 90 ° C. for 10 minutes to obtain an anisotropic conductive film having a thickness of 25 μm. An adhesive film was formed on the separator.

次に、作製した異方導電性接着フィルムを用いて、金バンプ(面積:30×90μm、スペース10μm、高さ:15μm、バンブ数362)付きチップ(1.7×1.7mm、厚み:0.5μm)と、IZO回路付きガラス基板(厚み:0.7mm)との接続を、以下に示すi)〜iii)の手順に従って行い、接続構造体を得た。
i)異方導電性接着フィルム(2×19mm)をIZO回路付きガラス基板に、80℃、0.98MPa(10kgf/cm)で貼り付けた。
ii)セパレータを剥離し、チップのバンプとIZO回路付きガラス基板の位置合わせを行った。
iii)190℃、40gf/バンプ、10秒の条件でチップ上方から加熱及び加圧を行い、本接続を行った。
Next, using the produced anisotropic conductive adhesive film, a chip (1.7 × 1.7 mm, thickness: 0) with gold bumps (area: 30 × 90 μm, space: 10 μm, height: 15 μm, bump number: 362) 0.5 μm) and a glass substrate with an IZO circuit (thickness: 0.7 mm) were connected according to the following procedures i) to iii) to obtain a connection structure.
i) An anisotropic conductive adhesive film (2 × 19 mm) was attached to a glass substrate with an IZO circuit at 80 ° C. and 0.98 MPa (10 kgf / cm 2 ).
ii) The separator was peeled off, and the bumps of the chip and the glass substrate with IZO circuit were aligned.
iii) The main connection was performed by heating and pressing from above the chip under the conditions of 190 ° C., 40 gf / bump, and 10 seconds.

(4)接続構造体の評価
得られた接続構造体の導通抵抗試験及び絶縁抵抗試験を以下のように行った。評価の手順は他の実施例、比較例でも同様である。
(4) Evaluation of connection structure The conduction resistance test and the insulation resistance test of the obtained connection structure were performed as follows. The evaluation procedure is the same in other examples and comparative examples.

(導通抵抗試験)
チップ電極(バンプ)/ガラス電極(IZO)間の導通抵抗に関しては、導通抵抗の初期値と吸湿耐熱試験(温度85℃、湿度85%の条件で100、300、500、1000、2000時間放置)後の値を、20サンプルについて測定し、それらの平均値を算出した。得られた平均値から下記基準に従って導通抵抗を評価した。結果を表1に示す。なお、吸湿耐熱試験500時間後に、下記A又はBの基準を満たす場合は導通抵抗が良好といえる。
A:導通抵抗の平均値が2Ω未満
B:導通抵抗の平均値が2Ω以上5Ω未満
C:導通抵抗の平均値が5Ω以上10Ω未満
D:導通抵抗の平均値が10Ω以上20Ω未満
E:導通抵抗の平均値が20Ω以上
(Conduction resistance test)
Regarding the conduction resistance between the chip electrode (bump) / glass electrode (IZO), the initial value of the conduction resistance and the moisture absorption heat resistance test (left for 100, 300, 500, 1000, 2000 hours under conditions of temperature 85 ° C. and humidity 85%) The latter values were measured for 20 samples and their average value was calculated. The conduction resistance was evaluated from the average value obtained according to the following criteria. The results are shown in Table 1. In addition, it can be said that conduction resistance is favorable when the following A or B standard is satisfied after the moisture absorption heat test 500 hours.
A: Average value of conduction resistance is less than 2Ω B: Average value of conduction resistance is 2Ω or more and less than 5Ω C: Average value of conduction resistance is 5Ω or more and less than 10Ω D: Average value of conduction resistance is 10Ω or more and less than 20Ω E: Conduction resistance The average value of 20Ω or more

(絶縁抵抗試験)
チップ電極間の絶縁抵抗に関しては、絶縁抵抗の初期値とマイグレーション試験(温度60℃、湿度90%、20V印加の条件で100、300、500、1000時間放置)後の値を、20サンプルについて測定し、全20サンプル中、絶縁抵抗値が10Ω以上となるサンプルの割合を算出した。得られた割合から下記基準に従って絶縁抵抗を評価した。結果を表1に示す。なお、吸湿耐熱試験500時間後に、下記A又はBの基準を満たした場合は絶縁抵抗が良好といえる。
A:絶縁抵抗値10Ω以上の割合が100%
B:絶縁抵抗値10Ω以上の割合が90%以上100%未満
C:絶縁抵抗値10Ω以上の割合が80%以上90%未満
D:絶縁抵抗値10Ω以上の割合が50%以上80%未満
E:絶縁抵抗値10Ω以上の割合が50%未満
(Insulation resistance test)
Regarding the insulation resistance between chip electrodes, the initial value of the insulation resistance and the value after migration test (temperature 60 ° C., humidity 90%, 20 V applied for 100, 300, 500, 1000 hours) were measured for 20 samples. And the ratio of the sample from which the insulation resistance value becomes 10 9 Ω or more among all 20 samples was calculated. The insulation resistance was evaluated from the obtained ratio according to the following criteria. The results are shown in Table 1. In addition, it can be said that insulation resistance is favorable when the following A or B standard is satisfied after 500 hours of the moisture absorption heat test.
A: Ratio of insulation resistance value of 10 9 Ω or more is 100%
B: Ratio of insulation resistance value 10 9 Ω or more is 90% or more and less than 100% C: Ratio of insulation resistance value 10 9 Ω or more is 80% or more and less than 90% D: Ratio of insulation resistance value 10 9 Ω or more is 50% More than 80% and less than E: Insulation resistance of 10 9 Ω or more is less than 50%

(実施例2〜12)
アクリル粒子表面にスパッタによってTiOの核を点在させた後、表1に示す最外層の金属種にターゲットを変更したこと以外は、実施例1と同様にして、表1に示す材料のスパッタ層を有する実施例2〜12の導電粒子を作製した。作製した導電粒子は、表面に形成された凸部を有していた。続いて、実施例1と同様にして、導電粒子表面にアクリル絶縁粒子を配置した絶縁性導電粒子を作製し、これを用いて接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Examples 2 to 12)
Sputtering of the materials shown in Table 1 was carried out in the same manner as in Example 1 except that the TiO 2 nuclei were scattered on the surface of the acrylic particles by sputtering and then the target was changed to the outermost metal species shown in Table 1. The electroconductive particle of Examples 2-12 which has a layer was produced. The produced conductive particles had convex portions formed on the surface. Subsequently, in the same manner as in Example 1, insulating conductive particles in which acrylic insulating particles were arranged on the surface of the conductive particles were produced, and the conduction resistance test and the insulation resistance test of the connection structure were performed using this.

(実施例16)
(1)導電粒子の作製
平均粒径3.0μmの架橋アクリル粒子を4g準備した。分子量70000の30質量%ポリエチレンイミン水溶液(和光純薬工業株式会社製)を、超純水で0.3質量%まで希釈した。この0.3質量%ポリエチレンイミン水溶液300mLに上記アクリル粒子4gを加え、室温で15分攪拌した。φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過によりアクリル粒子を取り出し、取り出されたアクリル粒子を超純水300gに入れて室温で5分攪拌した。次いでφ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過によりアクリル粒子を取り出し、メンブレンフィルタ上のアクリル粒子を200gの超純水で2回洗浄し、吸着していないポリエチレンイミンを除去して、ポリエチレンイミンが吸着したアクリル粒子を得た。
(Example 16)
(1) Production of conductive particles 4 g of crosslinked acrylic particles having an average particle diameter of 3.0 μm were prepared. A 30% by mass polyethyleneimine aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a molecular weight of 70,000 was diluted to 0.3% by mass with ultrapure water. 4 g of the acrylic particles were added to 300 mL of this 0.3% by mass polyethyleneimine aqueous solution and stirred at room temperature for 15 minutes. The acrylic particles were removed by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore), and the removed acrylic particles were placed in 300 g of ultrapure water and stirred at room temperature for 5 minutes. Next, the acrylic particles were removed by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore), and the acrylic particles on the membrane filter were washed twice with 200 g of ultrapure water to remove non-adsorbed polyethyleneimine, Acrylic particles adsorbed with polyethyleneimine were obtained.

芯材(凸部の核)として、平均粒子径100nmのコロイダルシリカ分散液を超純水で希釈して、0.33質量%のシリカ粒子分散液(シリカ総量:1g)を得た。そこに、ポリエチレンイミンが吸着した上記アクリル粒子を入れ、室温で15分攪拌した。その後、φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過によりアクリル粒子を取り出した。シリカ粒子が吸着したアクリル粒子を、超純水200gに入れて室温で5分攪拌した。その後、φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過によりアクリル粒子を取り出し、メンブレンフィルタ上のアクリル粒子を200gの超純水で2回洗浄した。洗浄後のアクリル粒子を80℃で30分、120℃で1時間の順に加熱することにより乾燥して、表面に核としてシリカ粒子が吸着した複合粒子を得た。   A colloidal silica dispersion having an average particle diameter of 100 nm was diluted with ultrapure water as a core (convex core) to obtain a 0.33 mass% silica particle dispersion (total amount of silica: 1 g). The said acrylic particle which polyethyleneimine adsorb | sucked there was put there, and it stirred for 15 minutes at room temperature. Thereafter, acrylic particles were taken out by filtration using a φ3 μm membrane filter (Merck Millipore). The acrylic particles adsorbed with the silica particles were placed in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Thereafter, the acrylic particles were removed by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore), and the acrylic particles on the membrane filter were washed twice with 200 g of ultrapure water. The washed acrylic particles were dried by heating at 80 ° C. for 30 minutes and 120 ° C. for 1 hour in order to obtain composite particles having silica particles adsorbed as nuclei on the surface.

スパッタ層の形成
バレルスパッタ装置のバレル内に、上記複合粒子を投入し、Auのターゲットを設置した。バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、バレルを回転・反転させて複合粒子を転動、攪拌した。さらに、複合粒子に直接振動を加えて、複合粒子の凝集を抑制した。スパッタを行い、厚さ50nmの連続したスパッタ層を形成した。バレル内を大気圧に戻し、最外層としてスパッタ層を有する導電粒子を取り出した。スパッタ層は、シリカ粒子の核に由来する複数の凸部を有していた。
Formation of Sputtered Layer The composite particles were put into a barrel of a barrel sputtering apparatus, and an Au target was installed. After reducing the pressure in the barrel to 1 × 10 −4 Pa or less, argon was flowed at a constant flow rate so that the pressure in the barrel was 1 Pa. Thereafter, the composite particles were rolled and stirred by rotating and inverting the barrel. Furthermore, the composite particles were directly vibrated to suppress the aggregation of the composite particles. Sputtering was performed to form a continuous sputtered layer having a thickness of 50 nm. The inside of the barrel was returned to atmospheric pressure, and conductive particles having a sputter layer as the outermost layer were taken out. The sputtered layer had a plurality of convex portions derived from the nuclei of silica particles.

(2)絶縁被覆導電粒子の作製
得られた導電粒子を用いたこと以外は実施例1同様にして、導電粒子の表面に平均粒径300nmのアクリル粒子を配置した絶縁被覆導電粒子を得た。
(2) Preparation of insulating coated conductive particles Insulating coated conductive particles in which acrylic particles having an average particle size of 300 nm were arranged on the surface of the conductive particles were obtained in the same manner as in Example 1 except that the obtained conductive particles were used.

(3)接続構造体の作製と評価
得られた絶縁被覆導電粒子を用いたこと以外は実施例1と同様にして、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(3) Production and evaluation of connection structure An anisotropic conductive adhesive film was prepared in the same manner as in Example 1 except that the obtained insulating coated conductive particles were used, and the conduction resistance test and insulation of the connection structure were performed. A resistance test was performed.

(実施例17〜27)
スパッタのターゲットをそれぞれ表1に示す最外層の金属種に変更したこと意外は、実施例16と同様にして、スパッタ層を最外層として有する実施例17〜27の導電粒子を作製した。作製した導電粒子は、表面に核に由来する形状の凸部を有していた。続いて、実施例1と同様にして、導電粒子表面に、アクリル絶縁粒子を配置した絶縁性導電粒子を作成した。さらに、得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Examples 17 to 27)
Conductive particles of Examples 17 to 27 having the sputtered layer as the outermost layer were produced in the same manner as in Example 16 except that the sputter target was changed to the metal species of the outermost layer shown in Table 1, respectively. The produced conductive particles had convex portions having a shape derived from the nucleus on the surface. Subsequently, in the same manner as in Example 1, insulating conductive particles having acrylic insulating particles arranged on the surface of the conductive particles were created. Furthermore, using the obtained insulating coated conductive particles, an anisotropic conductive adhesive film was prepared, and the connection structure conduction resistance test and the insulation resistance test were conducted. It was.

(実施例31)
(1)導電粒子の作製
平均粒径3.0μmの架橋アクリル粒子を4g準備した。分子量70000の30質量%ポリエチレンイミン水溶液(和光純薬工業株式会社製)を、超純水で0.3質量%まで希釈した。この0.3質量%ポリエチレンイミン水溶液300mLに上記アクリル粒子4gを加え、室温で15分攪拌した。φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過によりアクリル粒子を取り出し、取り出されたアクリル粒子を超純水300gに入れて室温で5分攪拌した。次いでφ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過によりアクリル粒子を取り出し、メンブレンフィルタ上のアクリル粒子を200gの超純水で2回洗浄し、吸着していないポリエチレンイミンを除去して、ポリエチレンイミンが吸着したアクリル粒子を得た。
(Example 31)
(1) Production of conductive particles 4 g of crosslinked acrylic particles having an average particle diameter of 3.0 μm were prepared. A 30% by mass polyethyleneimine aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) having a molecular weight of 70,000 was diluted to 0.3% by mass with ultrapure water. 4 g of the acrylic particles were added to 300 mL of this 0.3% by mass polyethyleneimine aqueous solution and stirred at room temperature for 15 minutes. The acrylic particles were removed by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore), and the removed acrylic particles were placed in 300 g of ultrapure water and stirred at room temperature for 5 minutes. Next, the acrylic particles were removed by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore), and the acrylic particles on the membrane filter were washed twice with 200 g of ultrapure water to remove non-adsorbed polyethyleneimine, Acrylic particles adsorbed with polyethyleneimine were obtained.

芯材(凸部の核)として、平均粒子径100nmのコロイダルシリカ分散液を超純水で希釈して、0.33質量%のシリカ粒子分散液(シリカ総量:1g)を得た。そこにポリエチレンイミンが吸着した上記アクリル粒子を入れ、室温で15分攪拌した。その後φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過によりアクリル粒子を取り出した。シリカ粒子が吸着したアクリル粒子を超純水200gに入れて室温で5分攪拌した。その後、φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過によりアクリル粒子を取り出し、メンブレンフィルタ上のアクリル粒子を200gの超純水で2回洗浄した。洗浄後のアクリル粒子を80℃で30分、120℃で1時間の順に加熱することにより乾燥して、表面に核としてシリカ粒子が吸着した複合粒子を得た。   A colloidal silica dispersion having an average particle diameter of 100 nm was diluted with ultrapure water as a core (convex core) to obtain a 0.33 mass% silica particle dispersion (total amount of silica: 1 g). The acrylic particles adsorbed with polyethyleneimine were put therein and stirred at room temperature for 15 minutes. Thereafter, acrylic particles were taken out by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore). Acrylic particles adsorbed with silica particles were placed in 200 g of ultrapure water and stirred at room temperature for 5 minutes. Thereafter, the acrylic particles were removed by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore), and the acrylic particles on the membrane filter were washed twice with 200 g of ultrapure water. The washed acrylic particles were dried by heating at 80 ° C. for 30 minutes and 120 ° C. for 1 hour in order to obtain composite particles having silica particles adsorbed as nuclei on the surface.

得られた複合粒子4gを、共振周波数28kHz、出力100Wの超音波を15分間照射した後、パラジウム触媒であるアトテックネオガント834(アトテックジャパン株式会社製:商品名)を8質量%含有するパラジウム触媒化液100mLに添加して、超音波を照射しながら30℃で30分攪拌した。その後、φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過により複合粒子を取出し、取り出された複合粒子を水洗した。水洗後の複合粒子を、pH6.0に調整された0.5質量%ジメチルアミンボラン液に添加して、複合粒子の表面を活性化させた。   After 4 g of the obtained composite particles were irradiated with ultrasonic waves having a resonance frequency of 28 kHz and an output of 100 W for 15 minutes, a palladium catalyst containing 8% by mass of Atotech Neogant 834 (manufactured by Atotech Japan Co., Ltd., trade name), which is a palladium catalyst. The solution was added to 100 mL of the chemical solution and stirred at 30 ° C. for 30 minutes while irradiating with ultrasonic waves. Thereafter, the composite particles were taken out by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore), and the taken out composite particles were washed with water. The composite particles after washing with water were added to a 0.5% by mass dimethylamine borane solution adjusted to pH 6.0 to activate the surface of the composite particles.

表面が活性化された複合粒子4.0gを、70℃に加温した水1000mLに分散させた。この分散液に、めっき安定剤として1g/Lの硝酸ビスマス水溶液を1mL添加し、次いで、下記組成の第一の層形成用無電解ニッケルめっき液100mLを、5mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、分散液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、表2に示す80nmの膜厚のニッケル−リン合金被膜である第一の層を有する粒子(母粒子)を形成した。得られた母粒子は6gであった。得られた母粒子は、表面に凸部を有していた。
第一の層形成用無電解ニッケルめっき液:
硫酸ニッケル・・・・・・・・・・・・・・・400g/L
次亜リン酸ナトリウム・・・・・・・・・・・150g/L
酒石酸ナトリウム・2水和物・・・・・・・・120g/L
硝酸ビスマス水溶液(1g/L)・・・・・・・1mL/L
4.0 g of the composite particles whose surface was activated were dispersed in 1000 mL of water heated to 70 ° C. To this dispersion, 1 mL of a 1 g / L bismuth nitrate aqueous solution as a plating stabilizer was added, and then 100 mL of an electroless nickel plating solution for forming a first layer having the following composition was added dropwise at a dropping rate of 5 mL / min. After 10 minutes had passed after completion of the dropping, the dispersion was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. In this way, particles (mother particles) having a first layer which is a nickel-phosphorus alloy film having a thickness of 80 nm shown in Table 2 were formed. The obtained mother particle was 6 g. The obtained mother particle had a convex part on the surface.
Electroless nickel plating solution for first layer formation:
Nickel sulfate ... 400g / L
Sodium hypophosphite ... 150g / L
Sodium tartrate dihydrate ... 120g / L
Bismuth nitrate aqueous solution (1 g / L) ... 1 mL / L

スパッタ層の形成
バレルスパッタ装置のバレル内に、上記母粒子を投入し、Auのターゲットを設置した。バレル内を1×10−4Pa以下に減圧した後、アルゴンを1%になるように一定流速でバレル内に流した。その後、母粒子が転動、攪拌されるようにバレルを回転させ、ターゲットに電圧を印加し、母粒子の表面にスパッタ層を形成した。スパッタ層が20nmになるまでスパッタを行った後、真空容器内を大気圧に戻し、スパッタ層を有する導電粒子を取り出した。作製した導電粒子は、表面に凸部を有していた。続いて、実施例1と同様にして絶縁性導電粒子を作製した。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
Formation of Sputtered Layer The above mother particles were put into a barrel of a barrel sputtering apparatus, and an Au target was installed. After reducing the pressure in the barrel to 1 × 10 −4 Pa or less, argon was flowed into the barrel at a constant flow rate so as to be 1%. Thereafter, the barrel was rotated so that the mother particles were rolled and stirred, and a voltage was applied to the target to form a sputter layer on the surface of the mother particles. After sputtering until the sputter layer reached 20 nm, the inside of the vacuum vessel was returned to atmospheric pressure, and the conductive particles having the sputter layer were taken out. The produced conductive particles had a convex portion on the surface. Subsequently, insulating conductive particles were produced in the same manner as in Example 1. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例32〜42)
ターゲットを表2に示す金属種に変更したこと以外は実施例31と同様にして、実施例32〜42のスパッタ層を有する導電粒子、及び絶縁性導電粒子を作製した。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Examples 32-42)
Except having changed the target into the metal seed | species shown in Table 2, it carried out similarly to Example 31, and produced the electrically-conductive particle which has a sputter | spatter layer of Examples 32-42, and insulating electrically-conductive particle. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例43)
(1)導電粒子の作製
実施例1と同様の方法により、表面に高さ50nmのTiOの核が点在したアクリル粒子を4g得た。得られたアクリル粒子4gを、共振周波数28kHz、出力100Wの超音波を15分間照射した後、パラジウム触媒であるアトテックネオガント834(アトテックジャパン株式会社製:商品名)を8質量%含有するパラジウム触媒化液100mLに添加して、超音波を照射しながら30℃で30分攪拌した。その後、φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過によりアクリル粒子を取出し、取り出されたアクリル粒子を水洗した。水洗後のアクリル粒子を、pH6.0に調整された0.5質量%ジメチルアミンボラン液に添加し、アクリル粒子の表面を活性化させた。
(Example 43)
(1) Production of Conductive Particles By the same method as in Example 1, 4 g of acrylic particles having TiO 2 nuclei with a height of 50 nm scattered on the surface were obtained. 4 g of the obtained acrylic particles were irradiated with ultrasonic waves having a resonance frequency of 28 kHz and an output of 100 W for 15 minutes, and then a palladium catalyst containing 8% by mass of Atotech Neogant 834 (trade name, manufactured by Atotech Japan Co., Ltd.), which is a palladium catalyst. The solution was added to 100 mL of the chemical solution and stirred at 30 ° C. for 30 minutes while irradiating with ultrasonic waves. Thereafter, acrylic particles were taken out by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore), and the removed acrylic particles were washed with water. The acrylic particles after washing with water were added to a 0.5 mass% dimethylamine borane solution adjusted to pH 6.0 to activate the surfaces of the acrylic particles.

表面が活性化されたアクリル粒子4.0gを、70℃に加温した水1000mLに分散させた。この分散液に、めっき安定剤として1g/Lの硝酸ビスマス水溶液を1mL添加し、次いで、下記組成の第一の層形成用無電解ニッケルめっき液100mLを、5mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、めっき液を加えた分散液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、表2に示す80nmの膜厚のニッケル−リン合金被膜を第1の層として有する母粒子を得た。得られた母粒子は6gであった。得られた母粒子は、表面に凸部を有していた。
第一の層形成用無電解ニッケルめっき液:
硫酸ニッケル・・・・・・・・・・・・・・・400g/L
次亜リン酸ナトリウム・・・・・・・・・・・150g/L
酒石酸ナトリウム・2水和物・・・・・・・・120g/L
硝酸ビスマス水溶液(1g/L)・・・・・・・1mL/L
The surface-activated acrylic particles (4.0 g) were dispersed in water (1000 mL) heated to 70 ° C. To this dispersion, 1 mL of a 1 g / L bismuth nitrate aqueous solution as a plating stabilizer was added, and then 100 mL of an electroless nickel plating solution for forming a first layer having the following composition was added dropwise at a dropping rate of 5 mL / min. After 10 minutes had elapsed after completion of the dropping, the dispersion with the plating solution added was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. In this way, mother particles having a nickel-phosphorus alloy film with a thickness of 80 nm shown in Table 2 as the first layer were obtained. The obtained mother particle was 6 g. The obtained mother particle had a convex part on the surface.
Electroless nickel plating solution for first layer formation:
Nickel sulfate ... 400g / L
Sodium hypophosphite ... 150g / L
Sodium tartrate dihydrate ... 120g / L
Bismuth nitrate aqueous solution (1 g / L) ... 1 mL / L

スパッタ層の形成
バレルスパッタ装置のバレル内に、上記母粒子を投入し、Auのターゲットを設置した。バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、バレルを回転・反転させて母粒子46を転動、攪拌した。さらに、母粒子に直接振動を加えて、母粒子の凝集を抑制した。その後、ターゲットに電圧を印加し、母粒子の表面にスパッタ層を形成した。スパッタ層が20nmになるまでスパッタを行った後、バレル内を大気圧に戻し、スパッタ層を有する導電粒子を取り出した。
Formation of Sputtered Layer The above mother particles were put into a barrel of a barrel sputtering apparatus, and an Au target was installed. After depressurizing the inside of the barrel to 1 × 10 −4 Pa or less, argon was flowed at a constant flow rate so that the inside of the barrel became 1 Pa. Thereafter, the mother particle 46 was rolled and stirred by rotating and inverting the barrel. Furthermore, the mother particles were directly vibrated to suppress the aggregation of the mother particles. Thereafter, a voltage was applied to the target to form a sputter layer on the surface of the mother particle. After sputtering until the sputter layer reached 20 nm, the inside of the barrel was returned to atmospheric pressure, and the conductive particles having the sputter layer were taken out.

得られた導電粒子を用いたこと以外は実施例1と同様にして、絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。   Insulating coated conductive particles were obtained in the same manner as in Example 1 except that the obtained conductive particles were used. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例44〜54)
スパッタのターゲットをそれぞれ表2に示す最外層の金属種に変更したこと以外は実施例43と同様にして、ニッケル−リン合金被膜(第一の層)と、その表面上に形成されたスパッタ層とを有する導電粒子を作製した。作製した導電粒子は、表面に凸部を有していた。続いて、得られた導電粒子を用いたこと以外は実施例1と同様にして、絶縁性導電粒子を作製した。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Examples 44 to 54)
The nickel-phosphorus alloy coating (first layer) and the sputtered layer formed on the surface thereof were the same as in Example 43 except that the sputtering target was changed to the outermost metal species shown in Table 2, respectively. Conductive particles having the following characteristics were prepared. The produced conductive particles had a convex portion on the surface. Subsequently, insulating conductive particles were produced in the same manner as in Example 1 except that the obtained conductive particles were used. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例1)
実施例31と同様の方法により、第一の層(ニッケル膜)を最外層として有する導電粒子を得た。この導電粒子の表面に、実施例1と同様の手順で平均粒径300nmのアクリル粒子を配置して、絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Comparative Example 1)
In the same manner as in Example 31, conductive particles having the first layer (nickel film) as the outermost layer were obtained. Acrylic particles having an average particle size of 300 nm were arranged on the surface of the conductive particles in the same procedure as in Example 1 to obtain insulating coated conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例2)
実施例31と同様の方法により、第一の層(ニッケル膜)を最外層として有する導電粒子を得た。0.03mol/Lのエチレンジアミン四酢酸四ナトリウム、0.04mol/Lのクエン酸三ナトリウム及び0.01mol/Lのシアン化金カリウムを含み、水酸化ナトリウムでpH6に調整されためっき液を準備した。このめっき液を用いて、得られた導電粒子に対して、液温60℃の条件で厚さが平均20nmとなるまで置換金めっき処理を行った。濾過後、100mLの純水を用いて60秒洗浄し、ニッケル膜の外側に形成された厚さ20nmの金膜を有する導電粒子を得た。さらに、得られた導電粒子を用いて、実施例1と同様の手順で、平均粒径300nmのアクリル粒子を表面に配置した絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Comparative Example 2)
In the same manner as in Example 31, conductive particles having the first layer (nickel film) as the outermost layer were obtained. A plating solution containing 0.03 mol / L tetrasodium ethylenediaminetetraacetate, 0.04 mol / L trisodium citrate and 0.01 mol / L potassium gold cyanide and adjusted to pH 6 with sodium hydroxide was prepared. . Using this plating solution, substitutional gold plating treatment was performed on the obtained conductive particles until the thickness reached an average of 20 nm under the condition of a liquid temperature of 60 ° C. After filtration, it was washed with 100 mL of pure water for 60 seconds to obtain conductive particles having a gold film with a thickness of 20 nm formed on the outside of the nickel film. Furthermore, using the obtained conductive particles, in the same procedure as in Example 1, insulating coated conductive particles having acrylic particles having an average particle size of 300 nm disposed on the surface were obtained. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例3)
実施例43と同様の方法により、第一の層(ニッケル膜)を最外層として有する導電粒子を得た。得られた導電粒子の表面に、実施例1と同様の手順で平均粒径300nmのアクリル粒子を配置して、絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Comparative Example 3)
Conductive particles having the first layer (nickel film) as the outermost layer were obtained in the same manner as in Example 43. Acrylic particles having an average particle size of 300 nm were arranged on the surface of the obtained conductive particles in the same procedure as in Example 1 to obtain insulating coated conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例4)
実施例43と同様の方法により、第一の層(ニッケル膜)を最外層として有する導電粒子を得た。0.03mol/Lのエチレンジアミン四酢酸四ナトリウム、0.04mol/Lのクエン酸三ナトリウム及び0.01mol/Lのシアン化金カリウムを含み、水酸化ナトリウムでpH6に調整されためっき液を準備した。このめっき液を用いて、得られた導電粒子に対して、液温60℃の条件で厚さが平均20nmとなるまで置換金めっき処理を行った。濾過後、100mLの純水を用いて60秒洗浄し、ニッケル膜の外側に形成された厚さ20nmの金膜を有する導電粒子を得た。得られた導電粒子の表面に、実施例1と同様の手順で平均粒径300nmのアクリル粒子を配置して、絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Comparative Example 4)
Conductive particles having the first layer (nickel film) as the outermost layer were obtained in the same manner as in Example 43. A plating solution containing 0.03 mol / L tetrasodium ethylenediaminetetraacetate, 0.04 mol / L trisodium citrate and 0.01 mol / L potassium gold cyanide and adjusted to pH 6 with sodium hydroxide was prepared. . Using this plating solution, substitutional gold plating treatment was performed on the obtained conductive particles until the thickness reached an average of 20 nm under the condition of a liquid temperature of 60 ° C. After filtration, it was washed with 100 mL of pure water for 60 seconds to obtain conductive particles having a gold film with a thickness of 20 nm formed on the outside of the nickel film. Acrylic particles having an average particle size of 300 nm were arranged on the surface of the obtained conductive particles in the same procedure as in Example 1 to obtain insulating coated conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例5)
TiOの核が点在したアクリル粒子に代えて、核が設けられていないアクリル粒子を用いたこと以外は比較例4と同様にして、導電粒子及び絶縁被覆粒子を作製した。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Comparative Example 5)
Conductive particles and insulating coating particles were produced in the same manner as in Comparative Example 4 except that acrylic particles without nuclei were used instead of the acryl particles interspersed with TiO 2 nuclei. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例6)
(1)導電粒子の作製
平均粒径3.0μmの架橋アクリル粒子を4g準備した。このアクリル粒子4gを、40℃の5質量%水酸化ナトリウム水溶液に入れ、共振周波数28kHzの超音波を照射することで分散し、アクリル粒子表面を調整した。その後、φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過によりアクリル粒子を取出し、取り出されたアクリル粒子を2回水洗した。次に、アクリル粒子を20mlの水に入れ、共振周波数28kHz、出力100Wの超音波を15分間照射した後、パラジウム触媒であるアトテックネオガント834(アトテックジャパン株式会社製:商品名)を8質量%含有するパラジウム触媒化液100mLに添加して、超音波を照射しながら30℃で30分攪拌した。その後、φ3μmのメンブレンフィルタ(メルクミリポア社製)を用いた濾過によりアクリル粒子を取出し、取り出されたアクリル粒子を水洗した。水洗後のアクリル粒子を、pH6.0に調整された0.5質量%ジメチルアミンボラン液に添加し、アクリル粒子の表面を活性化させた。
(Comparative Example 6)
(1) Production of conductive particles 4 g of crosslinked acrylic particles having an average particle diameter of 3.0 μm were prepared. 4 g of this acrylic particle was put in a 5 mass% sodium hydroxide aqueous solution at 40 ° C. and dispersed by irradiating ultrasonic waves with a resonance frequency of 28 kHz to adjust the surface of the acrylic particle. Thereafter, acrylic particles were removed by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore), and the removed acrylic particles were washed with water twice. Next, after putting acrylic particles in 20 ml of water and irradiating ultrasonic waves with a resonance frequency of 28 kHz and an output of 100 W for 15 minutes, 8 mass% of Atotech Neogant 834 (trade name, manufactured by Atotech Japan Co., Ltd.) which is a palladium catalyst. The mixture was added to 100 mL of the palladium catalyzed solution and stirred for 30 minutes at 30 ° C. while irradiating with ultrasonic waves. Thereafter, acrylic particles were taken out by filtration using a φ3 μm membrane filter (manufactured by Merck Millipore), and the removed acrylic particles were washed with water. The acrylic particles after washing with water were added to a 0.5 mass% dimethylamine borane solution adjusted to pH 6.0 to activate the surfaces of the acrylic particles.

表面が活性化されたアクリル粒子4.0gを、70℃に加温した水1000mLに分散させた。この分散液に、めっき安定剤として1g/Lの硝酸ビスマス水溶液を1mL添加し、次いで、下記組成の第一の層形成用無電解ニッケルめっき液100mLを、5mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、めっき液を加えた分散液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、表3に示す80nmの膜厚のニッケル−リン合金被膜を第一の層として形成して、母粒子を得た。得られた母粒子は6gであった。得られた母粒子の表面は平滑であった。
第一の層形成用無電解ニッケルめっき液:
硫酸ニッケル・・・・・・・・・・・・・・・400g/L
次亜リン酸ナトリウム・・・・・・・・・・・150g/L
酒石酸ナトリウム・2水和物・・・・・・・・120g/L
硝酸ビスマス水溶液(1g/L)・・・・・・・1mL/L
The surface-activated acrylic particles (4.0 g) were dispersed in water (1000 mL) heated to 70 ° C. To this dispersion, 1 mL of a 1 g / L bismuth nitrate aqueous solution as a plating stabilizer was added, and then 100 mL of an electroless nickel plating solution for forming a first layer having the following composition was added dropwise at a dropping rate of 5 mL / min. After 10 minutes had elapsed after completion of the dropping, the dispersion with the plating solution added was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. Thus, a nickel-phosphorus alloy film having a thickness of 80 nm shown in Table 3 was formed as the first layer to obtain mother particles. The obtained mother particle was 6 g. The surface of the obtained mother particle was smooth.
Electroless nickel plating solution for first layer formation:
Nickel sulfate ... 400g / L
Sodium hypophosphite ... 150g / L
Sodium tartrate dihydrate ... 120g / L
Bismuth nitrate aqueous solution (1 g / L) ... 1 mL / L

スパッタ層の形成
バレルスパッタ装置のバレル内に、上記母粒子を投入し、Auのターゲットを設置した。バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、バレルを回転・反転させて母粒子を転動、攪拌した。さらに、母粒子に直接振動を加えて、母粒子の凝集を抑制した。スパッタを行い、厚さ20nmの連続したスパッタ層を形成した。バレル内を大気圧に戻し、凸部を有するスパッタ層を有する導電粒子を取り出した。
Formation of Sputtered Layer The above mother particles were put into a barrel of a barrel sputtering apparatus, and an Au target was installed. After reducing the pressure in the barrel to 1 × 10 −4 Pa or less, argon was flowed at a constant flow rate so that the pressure in the barrel was 1 Pa. Then, the barrel was rotated and inverted to roll and stir the mother particles. Furthermore, the mother particles were directly vibrated to suppress the aggregation of the mother particles. Sputtering was performed to form a continuous sputter layer having a thickness of 20 nm. The inside of the barrel was returned to atmospheric pressure, and conductive particles having a sputter layer having a convex portion were taken out.

得られた導電粒子を用いたこと以外は実施例1と同様にして、導電粒子の表面に平均粒径300nmのアクリル粒子を配置して、絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。   Insulating coated conductive particles were obtained by arranging acrylic particles having an average particle size of 300 nm on the surface of the conductive particles in the same manner as in Example 1 except that the obtained conductive particles were used. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例7〜17)
スパッタのターゲットをそれぞれ表3に示す最外層の金属種に変更したこと以外は、比較例7と同様にして、比較例7〜17のスパッタ層を有する導電粒子を作製した。作製した導電粒子は、表面に凸部を有していた。続いて、実施例1と同様にして、導電粒子表面にアクリル絶縁粒子を配置して、絶縁性導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Comparative Examples 7-17)
Conductive particles having the sputtered layers of Comparative Examples 7 to 17 were produced in the same manner as Comparative Example 7 except that the sputtering target was changed to the metal species of the outermost layer shown in Table 3, respectively. The produced conductive particles had a convex portion on the surface. Subsequently, in the same manner as in Example 1, acrylic insulating particles were arranged on the surface of the conductive particles to obtain insulating conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

実施例1〜54と比較例1〜17の結果を表1、2及び3に示す。実施例1〜54はいずれも、吸湿耐熱試験後においても優れた導通信頼性と絶縁信頼性を示した。特に、導電粒子が凸部を有するスパッタ層を有している実施例1〜54は、表面に凸部を有しない比較例6〜17よりも、吸湿耐熱試験後の導通信頼性がより安定していることが確認された。表面の凸部により、導電粒子の導電性部分が電極に十分にめり込み、また電極と導電性部分との間から樹脂がより確実に排除されて、安定した接続抵抗が得られたと推定される。また、実施例31、43と比較例2、4とを比較すると、最外層が置換めっきでなくスパッタにより形成されていることで、特に絶縁信頼性が改善されることも確認できる。置換めっきが施された導電粒子の比較例2、4及び5は、置換めっきを施さなかった場合と比較して、吸湿耐熱試験後の絶縁信頼性がやや低下する傾向が見られた。これは、置換めっきによる無電解ニッケルめっき層のダメージがあったためと推定される。   The results of Examples 1 to 54 and Comparative Examples 1 to 17 are shown in Tables 1, 2 and 3. Examples 1 to 54 all exhibited excellent conduction reliability and insulation reliability even after the moisture absorption heat test. In particular, in Examples 1 to 54 in which the conductive particles have a sputtered layer having convex portions, the conduction reliability after the moisture absorption heat test is more stable than Comparative Examples 6 to 17 having no convex portions on the surface. It was confirmed that It is presumed that the conductive portions of the conductive particles are sufficiently sunk into the electrodes by the convex portions on the surface, and the resin is more reliably excluded from between the electrodes and the conductive portions, thereby obtaining a stable connection resistance. Further, when Examples 31 and 43 are compared with Comparative Examples 2 and 4, it can be confirmed that the insulation reliability is particularly improved because the outermost layer is formed by sputtering instead of displacement plating. In Comparative Examples 2, 4, and 5 of the conductive particles subjected to displacement plating, the insulation reliability after the moisture absorption heat test tended to be slightly lowered as compared with the case where the displacement plating was not performed. This is presumably because the electroless nickel plating layer was damaged by displacement plating.

(実施例55)
(1)導電粒子の作製
比較例6と同様の方法により、ニッケル−リン合金皮膜を有する母粒子を準備した。
スパッタ層の形成
バレルスパッタ装置のバレル内に、上記母粒子を投入し、TiOのターゲットを設置した。バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、バレルを回転・反転させて母粒子を転動、攪拌した。さらに、母粒子に直接振動を加えて、母粒子の凝集を抑制した。その後、バレルの加熱とスパッタを間欠的に行い、母粒子表面に高さ50nmのTiOの核を点在させた。続いて、ターゲットをAuに変更し、バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、前述同様にバレルを回転・反転して、表面にTiO2の核が点在した母粒子の凝集を抑制させながら、今度は連続的にスパッタを行い、厚さ20nmの連続したスパッタ層(最外層)を形成した。バレル内を大気圧に戻し、凸部を有するスパッタ層(最外層)を有する導電粒子を取り出した。
(Example 55)
(1) Production of Conductive Particles Mother particles having a nickel-phosphorus alloy film were prepared by the same method as in Comparative Example 6.
Formation of Sputtered Layer The above mother particles were put into a barrel of a barrel sputtering apparatus, and a TiO 2 target was installed. After reducing the pressure in the barrel to 1 × 10 −4 Pa or less, argon was flowed at a constant flow rate so that the pressure in the barrel was 1 Pa. Then, the barrel was rotated and inverted to roll and stir the mother particles. Furthermore, the mother particles were directly vibrated to suppress the aggregation of the mother particles. Thereafter, the barrel was heated and sputtered intermittently, and TiO 2 nuclei having a height of 50 nm were scattered on the surface of the mother particles. Subsequently, the target was changed to Au, and after reducing the pressure in the barrel to 1 × 10 −4 Pa or less, argon was flowed at a constant flow rate so that the pressure in the barrel became 1 Pa. Thereafter, the barrel is rotated and inverted as described above to suppress the aggregation of the mother particles having TiO 2 nuclei scattered on the surface. The outermost layer was formed. The inside of the barrel was returned to atmospheric pressure, and conductive particles having a sputter layer (outermost layer) having a convex portion were taken out.

その後は、実施例1と同様にして、平均粒径300nmのアクリル粒子を表面に配置した絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。   Thereafter, in the same manner as in Example 1, insulating coated conductive particles having acrylic particles having an average particle diameter of 300 nm disposed on the surface were obtained. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例56〜66)
母粒子の表面にTiOの核を点在させた後、最外層を形成する際に、スパッタのターゲットを表4に示す最外層の金属種に変更したこと以外は、実施例55と同様にして、実施例56〜66のスパッタ層(最外層)を有する導電粒子を作製した。作製した導電粒子は、表面に凸部を有していた。続いて、実施例1と同様にして、導電粒子表面に、アクリル絶縁粒子を配置して、絶縁性導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Examples 56 to 66)
After the TiO 2 nuclei were interspersed on the surface of the mother particles, the outermost layer was formed in the same manner as in Example 55, except that the sputtering target was changed to the metal species of the outermost layer shown in Table 4. Thus, conductive particles having the sputtered layers (outermost layers) of Examples 56 to 66 were produced. The produced conductive particles had a convex portion on the surface. Subsequently, in the same manner as in Example 1, acrylic insulating particles were arranged on the surface of the conductive particles to obtain insulating conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例67)
導電粒子の作製
工程A(前処理工程)
平均粒径3.0μmの架橋アクリル粒子4gを、パラジウム触媒であるアトテックネオガント834(アトテックジャパン株式会社製、商品名)を8質量%含有するパラジウム触媒化液100mLに添加し、30℃で30分間攪拌した。その後、パラジウム触媒化液をφ3μmのメンブレンフィルタ(メルクミリポア株式会社製)で濾過し、水洗を行うことで、コア粒子としてのアクリル粒子を得た。その後、アクリル粒子をpH6.0に調整された0.5質量%ジメチルアミンボラン液に添加し、表面が活性化されたアクリル粒子を得た。その後、20mLの蒸留水に、表面が活性化されたアクリル粒子を浸漬し、超音波分散することで、アクリル粒子分散液を得た。
(Example 67)
Conductive particle production process A (pretreatment process)
4 g of a crosslinked acrylic particle having an average particle size of 3.0 μm is added to 100 mL of a palladium-catalyzed solution containing 8% by mass of Atotech Neogant 834 (trade name, manufactured by Atotech Japan Co., Ltd.), which is a palladium catalyst, and 30 at 30 ° C. Stir for minutes. Thereafter, the palladium-catalyzed solution was filtered through a membrane filter (manufactured by Merck Millipore Co., Ltd.) having a diameter of 3 μm and washed with water to obtain acrylic particles as core particles. Thereafter, the acrylic particles were added to a 0.5% by mass dimethylamine borane solution adjusted to pH 6.0 to obtain acrylic particles whose surface was activated. Then, the acrylic particle dispersion liquid was obtained by immersing the acrylic particle by which the surface was activated in 20 mL distilled water, and carrying out ultrasonic dispersion | distribution.

工程B(第一の層の形成)
上記で得たアクリル粒子分散液を80℃に加温した水1000mLで希釈し、めっき安定剤として1g/Lの硝酸ビスマス水溶液を1mL添加した。次いで、アクリル粒子を4g含んだ分散液に、下記組成の第一の層形成用無電解ニッケルめっき液160mLを、5mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、めっき液を加えた分散液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、表4に示す80nmの膜厚のニッケル−リン合金被膜を第一の層として形成した。得られた第一の層を最外層として有する粒子は8gであった。
第一の層形成用無電解ニッケルめっき液:
硫酸ニッケル・・・・・・・・・・・・・・・400g/L
次亜リン酸ナトリウム・・・・・・・・・・・150g/L
クエン酸ナトリウム・・・・・・・・・・・・120g/L
硝酸ビスマス水溶液(1g/L)・・・・・・・1mL/L
Step B (Formation of the first layer)
The acrylic particle dispersion obtained above was diluted with 1000 mL of water heated to 80 ° C., and 1 mL of 1 g / L bismuth nitrate aqueous solution was added as a plating stabilizer. Next, 160 mL of a first layer forming electroless nickel plating solution having the following composition was dropped into a dispersion containing 4 g of acrylic particles at a dropping rate of 5 mL / min. After 10 minutes had elapsed after completion of the dropping, the dispersion with the plating solution added was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. In this manner, a nickel-phosphorus alloy film having a thickness of 80 nm shown in Table 4 was formed as the first layer. The obtained particle having the first layer as the outermost layer was 8 g.
Electroless nickel plating solution for first layer formation:
Nickel sulfate ... 400g / L
Sodium hypophosphite ... 150g / L
Sodium citrate ... 120g / L
Bismuth nitrate aqueous solution (1 g / L) ... 1 mL / L

工程C(パラジウムを含む粒の形成)
次に、下記組成の無電解パラジウムめっき液1Lに、上記第一の層を最外層として有する粒子8gを浸漬し、該粒子の表面上にパラジウムを含む粒を凸部を形成するための核として形成した。反応時間は10分間、温度は60℃にて処理を行なった。
無電解パラジウムめっき液:
塩化パラジウム・・・・・・・・・・・・・・・0.07g/L
エチレンジアミン・・・・・・・・・・・・・・0.05g/L
ギ酸ナトリウム・・・・・・・・・・・・・・・0.2g/L
酒石酸・・・・・・・・・・・・・・・・・・・0.11g/L
pH・・・・・・・・・・・・7
Step C (Formation of particles containing palladium)
Next, 8 g of particles having the first layer as the outermost layer are immersed in 1 L of electroless palladium plating solution having the following composition, and particles containing palladium are used as nuclei for forming convex portions on the surface of the particles. Formed. The reaction was carried out at a reaction time of 10 minutes and at a temperature of 60 ° C.
Electroless palladium plating solution:
Palladium chloride: 0.07g / L
Ethylenediamine ... 0.05g / L
Sodium formate …… 0.2g / L
Tartaric acid ... 0.11 g / L
pH ... 7

工程D(第二の層の形成)
工程Cで得た粒子8.1gを、水洗及び濾過した後、70℃に加温した水1000mLに分散させた。この分散液に、めっき安定剤として1g/Lの硝酸ビスマス水溶液を1mL添加し、次いで、下記組成の第二の層形成用無電解ニッケルめっき液100mLを、5mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、分散液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、表4に示す80nmの膜厚のニッケル−リン合金被膜を第二の層として有する母粒子12gを得た。
第二の層形成用無電解ニッケルめっき液:
硫酸ニッケル・・・・・・・・・・・・・・・400g/L
次亜リン酸ナトリウム・・・・・・・・・・・150g/L
酒石酸ナトリウム・2水和物・・・・・・・・120g/L
硝酸ビスマス水溶液(1g/L)・・・・・・・1mL/L
Step D (formation of second layer)
8.1 g of the particles obtained in Step C were washed with water and filtered, and then dispersed in 1000 mL of water heated to 70 ° C. To this dispersion, 1 mL of a 1 g / L bismuth nitrate aqueous solution as a plating stabilizer was added, and then 100 mL of an electroless nickel plating solution for forming a second layer having the following composition was dropped at a dropping rate of 5 mL / min. After 10 minutes had passed after completion of the dropping, the dispersion was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. Thus, 12 g of mother particles having a nickel-phosphorus alloy film having a thickness of 80 nm shown in Table 4 as the second layer were obtained.
Electroless nickel plating solution for second layer formation:
Nickel sulfate ... 400g / L
Sodium hypophosphite ... 150g / L
Sodium tartrate dihydrate ... 120g / L
Bismuth nitrate aqueous solution (1 g / L) ... 1 mL / L

スパッタ層の形成
バレルスパッタ装置のバレル内に、上記母粒子を投入し、Auのターゲットを設置した。バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、バレルを回転・反転させて母粒子を転動、攪拌した。さらに、母粒子に直接振動を加えて、母粒子の凝集を抑制した。スパッタを行い、厚さ20nmの連続したスパッタ層を形成した。バレル内を大気圧に戻し、表面に凸部を有するスパッタ層を有する導電粒子を取り出した。
Formation of Sputtered Layer The above mother particles were put into a barrel of a barrel sputtering apparatus, and an Au target was installed. After depressurizing the inside of the barrel to 1 × 10 −4 Pa or less, argon was flowed at a constant flow rate so that the inside of the barrel became 1 Pa. Then, the barrel was rotated and inverted to roll and stir the mother particles. Furthermore, the mother particles were directly vibrated to suppress the aggregation of the mother particles. Sputtering was performed to form a continuous sputter layer having a thickness of 20 nm. The inside of the barrel was returned to atmospheric pressure, and conductive particles having a sputter layer having a convex portion on the surface were taken out.

得られた導電粒子を用いたこと以外は実施例1と同様にして、導電粒子の表面に平均粒径300nmのアクリル粒子を配置した絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。   Insulating coated conductive particles in which acrylic particles having an average particle size of 300 nm were arranged on the surface of the conductive particles were obtained in the same manner as in Example 1 except that the obtained conductive particles were used. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例68〜78)
スパッタのターゲットをそれぞれ表4に示す最外層の金属種に変更したこと以外は、実施例67と同様にして、実施例68〜78のスパッタ層(最外層)を有する導電粒子を作製した。作製した導電粒子は、表面に凸部を有していた。続いて、実施例1と同様にして、導電粒子表面に、アクリル絶縁粒子を配置した絶縁性導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Examples 68 to 78)
Conductive particles having the sputter layers (outermost layers) of Examples 68 to 78 were produced in the same manner as in Example 67 except that the sputtering target was changed to the metal species of the outermost layer shown in Table 4, respectively. The produced conductive particles had a convex portion on the surface. Subsequently, in the same manner as in Example 1, insulating conductive particles having acrylic insulating particles arranged on the surface of the conductive particles were obtained. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例18)
実施例55と同様の方法により、ニッケル−リン合金皮膜(第一の層)の上に高さ50nmのTiOの核を点在させた母粒子(導電粒子)を得た。この母粒子の表面に、実施例1と同様の手順で平均粒径300nmのアクリル粒子を配置して、絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Comparative Example 18)
In the same manner as in Example 55, mother particles (conductive particles) in which nuclei of TiO 2 having a height of 50 nm were scattered on a nickel-phosphorus alloy film (first layer) were obtained. On the surface of the mother particles, acrylic particles having an average particle diameter of 300 nm were arranged in the same procedure as in Example 1 to obtain insulating coated conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例19)
TiOターゲットの代わりにAuターゲットを用いたこと以外は実施例55と同様にして、ニッケル−リン合金皮膜の上に高さ50nmのAuの核を点在させた母粒子を得た。こ母粒子の表面に、実施例1と同様の手順で平均粒径300nmのアクリル粒子を配置して、絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Comparative Example 19)
Except that an Au target was used in place of the TiO 2 target, a mother particle in which Au nuclei having a height of 50 nm were scattered on a nickel-phosphorus alloy film was obtained in the same manner as in Example 55. On the surface of the mother particles, acrylic particles having an average particle diameter of 300 nm were arranged in the same procedure as in Example 1 to obtain insulating coated conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例20)
実施例67と同様の方法により、ニッケル−リン合金被膜を第二の層として有する母粒子を得た。0.03mol/Lのエチレンジアミン四酢酸四ナトリウム、0.04mol/Lのクエン酸三ナトリウム及び0.01mol/Lのシアン化金カリウムを含み、水酸化ナトリウムでpH6に調整されためっき液を準備した。このめっき液を用いて、得られた母粒子に対して、液温60℃の条件で厚さが平均20nmとなるまで置換金めっき処理を行った。濾過後、100mLの純水を用いて60秒洗浄し、ニッケル膜の外側に形成された厚さ20nmの金膜(第二の層)を有する導電粒子を得た。さらに、得られた導電粒子の表面に、実施例1と同様の手順で平均粒径300nmのアクリル粒子を配置して、縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Comparative Example 20)
In the same manner as in Example 67, mother particles having a nickel-phosphorus alloy coating as the second layer were obtained. A plating solution containing 0.03 mol / L tetrasodium ethylenediaminetetraacetate, 0.04 mol / L trisodium citrate and 0.01 mol / L potassium gold cyanide and adjusted to pH 6 with sodium hydroxide was prepared. . Using this plating solution, substitution gold plating treatment was performed on the obtained mother particles under the condition of a liquid temperature of 60 ° C. until the thickness reached an average of 20 nm. After filtration, it was washed with 100 mL of pure water for 60 seconds to obtain conductive particles having a 20 nm thick gold film (second layer) formed outside the nickel film. Furthermore, acrylic particles having an average particle size of 300 nm were arranged on the surface of the obtained conductive particles in the same procedure as in Example 1 to obtain edge-coated conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

実施例55〜78、比較例18〜20の結果を表4に示す。最外層に凸部を有するスパッタ層を設けた実施例55〜78はいずれも吸湿耐熱試験後においても優れた導通信頼性と絶縁信頼性を示した。実施例55〜78は、比較例20よりも特に絶縁信頼性が優れることが分かった。比較例19は、接続信頼性が充分でなかった。これは、粒子の表面に点在するAuがやわらかいために、十分に電極にめり込まなかったことが原因と推定される。   Table 4 shows the results of Examples 55 to 78 and Comparative Examples 18 to 20. Each of Examples 55 to 78, in which the outermost layer was provided with a sputter layer having a convex portion, exhibited excellent conduction reliability and insulation reliability even after the moisture absorption heat test. In Examples 55 to 78, it was found that the insulation reliability was particularly superior to that of Comparative Example 20. In Comparative Example 19, connection reliability was not sufficient. This is presumed to be because the Au scattered on the surface of the particles was not soft enough to penetrate the electrode.

(実施例79)
工程A(前処理工程)
平均粒径3.0μmの架橋アクリル粒子4gを、パラジウム触媒であるアトテックネオガント834(アトテックジャパン株式会社製、商品名)を8質量%含有するパラジウム触媒化液100mLに添加し、30℃で30分間攪拌した後、φ3μmのメンブレンフィルタ(メルクミリポア株式会社製)で濾過し、取り出したアクリル粒子を水洗した。その後、アクリル粒子をpH6.0に調整された0.5質量%ジメチルアミンボラン液に添加し、アクリル粒子の表面を活性化させた。その後、20mLの蒸留水に、表面が活性化されたアクリル粒子を浸漬し、超音波分散することで、アクリル粒子分散液を得た。
工程B(第一の層(第1の部分、第2の部分及び第3の部分)の形成)
(Example 79)
Process A (Pretreatment process)
4 g of a crosslinked acrylic particle having an average particle size of 3.0 μm is added to 100 mL of a palladium-catalyzed solution containing 8% by mass of Atotech Neogant 834 (trade name, manufactured by Atotech Japan Co., Ltd.), which is a palladium catalyst, and 30 at 30 ° C. After stirring for a minute, the mixture was filtered through a 3 μm membrane filter (manufactured by Merck Millipore), and the acrylic particles taken out were washed with water. Thereafter, the acrylic particles were added to a 0.5% by mass dimethylamine borane solution adjusted to pH 6.0 to activate the surfaces of the acrylic particles. Then, the acrylic particle dispersion liquid was obtained by immersing the acrylic particle by which the surface was activated in 20 mL distilled water, and carrying out ultrasonic dispersion | distribution.
Step B (Formation of the first layer (first part, second part and third part))

40℃に加温した下記の組成を有する2Lの建浴液に、工程Aで前処理されたアクリル粒子を加えて、97重量%以上のニッケルを含有する第1の部分のめっき膜、及び、ニッケル及び銅を主成分とする合金を含有する第2の部分のめっき膜を形成した。さらに、添加法により下記組成のニッケルを含有しない補充液A及び補充液Bをそれぞれ1860mL準備し、20mL/minの速度で連続的に滴下し、銅を主成分とする第3の部分のめっき層を形成した。これにより、第1の部分、第2の部分および第3の部分から構成される第1の層を有する粒子を得た。各部分の厚みを表5に示す。得られた粒子は8gであった。   A plating film of the first part containing 97 wt% or more of nickel, by adding the acrylic particles pretreated in step A to 2 L of the building bath liquid having the following composition heated to 40 ° C, and A second portion plating film containing an alloy mainly composed of nickel and copper was formed. Furthermore, 1860 mL of replenisher A and replenisher B that do not contain nickel having the following composition are prepared by the addition method, and continuously dropped at a rate of 20 mL / min. Formed. As a result, particles having a first layer composed of the first part, the second part, and the third part were obtained. Table 5 shows the thickness of each part. The obtained particle was 8 g.

建浴液:
CuSO・5HO:0.03mol/L
NiSO・6HO:0.005mol/L
HCHO(ホルムアルデヒド):0.2mol/L
NaCN:0.0001mol/L
EDTA・4Na:0.2mol/L
NaOH:0.3mol/L
pH:12.7
補充液A:
CuSO4・5H2O:0.8mol/L
HCHO:1mol/L
NaCN:0.001mol/L
補充液B:
EDTA・4Na:1mol/L
NaOH:1mol/L
Bathing fluid:
CuSO 4 · 5H 2 O: 0.03mol / L
NiSO 4 · 6H 2 O: 0.005mol / L
HCHO (formaldehyde): 0.2 mol / L
NaCN: 0.0001 mol / L
EDTA · 4Na: 0.2 mol / L
NaOH: 0.3 mol / L
pH: 12.7
Replenisher A:
CuSO4 · 5H2O: 0.8 mol / L
HCHO: 1 mol / L
NaCN: 0.001 mol / L
Replenisher B:
EDTA · 4Na: 1 mol / L
NaOH: 1 mol / L

工程C(パラジウムを含む粒の形成)
工程Bで得られた粒子(4g)を、下記組成の無電解パラジウムめっき液1Lに浸漬し、該粒子の表面上にパラジウムを含む粒を形成した。反応時間は10分間、温度は60℃にて処理を行なった。パラジウムを含む粒を有する粒子は4.05gであった。
無電解パラジウムめっき液:
塩化パラジウム・・・・・・・・・・・・・・・0.07g/L
エチレンジアミン・・・・・・・・・・・・・・0.05g/L
ギ酸ナトリウム・・・・・・・・・・・・・・・0.2g/L
酒石酸・・・・・・・・・・・・・・・・・・・0.11g/L
pH・・・・・・・・・・・・7
工程D(第二の層(第五の部分)の形成)
Step C (Formation of particles containing palladium)
The particles (4 g) obtained in step B were immersed in 1 L of an electroless palladium plating solution having the following composition to form particles containing palladium on the surface of the particles. The reaction was carried out at a reaction time of 10 minutes and at a temperature of 60 ° C. The amount of the particles having palladium-containing particles was 4.05 g.
Electroless palladium plating solution:
Palladium chloride: 0.07g / L
Ethylenediamine ... 0.05g / L
Sodium formate …… 0.2g / L
Tartaric acid ... 0.11 g / L
pH ... 7
Step D (formation of second layer (fifth part))

工程Cで得た粒子全量(4.05g)を、水洗及び濾過した後、70℃に加温した水1000mLに分散させた。この分散液に、めっき安定剤として1g/Lの硝酸ビスマス水溶液を1mL添加し、次いで、下記組成の第二の層(第五の部分)形成用無電解ニッケルめっき液50mLを、5mL/分の滴下速度で滴下した。滴下終了後、10分間経過した後に、めっき液を加えた分散液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥した。このようにして、表5に示す40nmの膜厚のニッケル−リン合金被膜を第二の層(第五の部分)として有する母粒子を形成した。得られた母粒子は6gであった。
第二の層(第五の部分)形成用無電解ニッケルめっき液
硫酸ニッケル・・・・・・・・・・・・・・・400g/L
次亜リン酸ナトリウム・・・・・・・・・・・150g/L
酒石酸ナトリウム・2水和物・・・・・・・・120g/L
硝酸ビスマス水溶液(1g/L)・・・・・・・1mL/L
The total amount of particles (4.05 g) obtained in Step C was washed with water and filtered, and then dispersed in 1000 mL of water heated to 70 ° C. To this dispersion, 1 mL of a 1 g / L bismuth nitrate aqueous solution as a plating stabilizer was added, and then 50 mL of an electroless nickel plating solution for forming a second layer (fifth part) having the following composition was added at 5 mL / min. It dropped at the dropping speed. After 10 minutes had elapsed after completion of the dropping, the dispersion with the plating solution added was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. In this way, mother particles having a nickel-phosphorus alloy film having a thickness of 40 nm shown in Table 5 as the second layer (fifth portion) were formed. The obtained mother particle was 6 g.
Electroless nickel plating solution nickel sulfate for forming second layer (fifth part) 400g / L
Sodium hypophosphite ... 150g / L
Sodium tartrate dihydrate ... 120g / L
Bismuth nitrate aqueous solution (1 g / L) ... 1 mL / L

スパッタ層の形成
バレルスパッタ装置のバレル内に、上記母粒子を投入し、Auのターゲットを設置した。バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、バレルを回転・反転させて母粒子を転動、攪拌した。さらに、母粒子に直接振動を加えて、母粒子の凝集を抑制した。スパッタを行い、厚さ20nmの連続したスパッタ層を形成した。バレル内を大気圧に戻し、表面に凸部を有するスパッタ層を有する導電粒子を取り出した。
Formation of Sputtered Layer The above mother particles were put into a barrel of a barrel sputtering apparatus, and an Au target was installed. After reducing the pressure in the barrel to 1 × 10 −4 Pa or less, argon was flowed at a constant flow rate so that the pressure in the barrel was 1 Pa. Then, the barrel was rotated and inverted to roll and stir the mother particles. Furthermore, the mother particles were directly vibrated to suppress the aggregation of the mother particles. Sputtering was performed to form a continuous sputter layer having a thickness of 20 nm. The inside of the barrel was returned to atmospheric pressure, and conductive particles having a sputter layer having a convex portion on the surface were taken out.

得られた導電粒子を用いたこと以外は実施例1と同様にして、導電粒子の表面に平均粒径300nmのアクリル粒子を配置した絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。   Insulating coated conductive particles in which acrylic particles having an average particle size of 300 nm were arranged on the surface of the conductive particles were obtained in the same manner as in Example 1 except that the obtained conductive particles were used. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例80〜90)
スパッタのターゲットをそれぞれ表5に示す最外層の金属種に変更したこと以外は、実施例79と同様にして、実施例80〜90のスパッタ層を有する導電粒子を作製した。作製した導電粒子は、表面に凸部を有していた。続いて、実施例1と同様にして、導電粒子表面にアクリル絶縁粒子を配置した絶縁性導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Examples 80 to 90)
Conductive particles having the sputtered layers of Examples 80 to 90 were produced in the same manner as in Example 79 except that the sputtering target was changed to the outermost metal species shown in Table 5, respectively. The produced conductive particles had a convex portion on the surface. Subsequently, in the same manner as in Example 1, insulating conductive particles having acrylic insulating particles arranged on the surface of the conductive particles were obtained. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例91)
アクリル粒子を平均粒径3.0μmのシリカ粒子に変更したこと以外は、実施例79と同様にして、凸部を有するAuスパッタ層を有する導電粒子を作製した。得られた導電粒子表面に、実施例1と同様にして、アクリル絶縁粒子を配置して、絶縁性導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Example 91)
Conductive particles having an Au sputtered layer having convex portions were produced in the same manner as in Example 79 except that the acrylic particles were changed to silica particles having an average particle diameter of 3.0 μm. Insulating conductive particles were obtained by arranging acrylic insulating particles on the surface of the obtained conductive particles in the same manner as in Example 1. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例92)
アクリル粒子を平均粒径3.0μmのシリカ粒子に変更し、ターゲットをPdターゲットに変更したこと以外は実施例79と同様にして、凸部を有するPdスパッタ層を有する導電粒子を作製した。得られた導電粒子表面に、実施例1と同様にして、アクリル絶縁粒子を配置して、絶縁性導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Example 92)
Conductive particles having a Pd sputtered layer having convex portions were produced in the same manner as in Example 79 except that the acrylic particles were changed to silica particles having an average particle size of 3.0 μm and the target was changed to a Pd target. Insulating conductive particles were obtained by arranging acrylic insulating particles on the surface of the obtained conductive particles in the same manner as in Example 1. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例93)
アクリル粒子を平均粒径3.0μmのシリカ粒子に変更し、ターゲットをWターゲットに変更したこと以外は実施例79と同様にして、凸部を有するWスパッタ層を有する導電粒子を作製した。得られた導電粒子表面に、実施例1と同様にして、アクリル絶縁粒子を配置して、絶縁性導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Example 93)
Conductive particles having a W sputtered layer having convex portions were produced in the same manner as in Example 79 except that the acrylic particles were changed to silica particles having an average particle size of 3.0 μm and the target was changed to a W target. Insulating conductive particles were obtained by arranging acrylic insulating particles on the surface of the obtained conductive particles in the same manner as in Example 1. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例94)
実施例79の工程Aと工程Bを行い、Ni及びCuを含む第一の層を最外層として有する粒子を得た。
工程E(TiOの核の形成)
バレルスパッタ装置のバレル内に、第一の層を有する上記粒子を投入し、TiOのターゲットを設置した。バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、バレルを回転・反転させて粒子を転動、攪拌した。さらに、粒子に直接振動を加えて、粒子の凝集を抑制した。その後、バレルの加熱とスパッタを間欠的に行い、第一の層の表面に高さ50nmのTiOの核を点在させた。
(Example 94)
Step A and Step B of Example 79 were performed to obtain particles having a first layer containing Ni and Cu as the outermost layer.
Step E (Formation of TiO 2 nuclei)
The particles having the first layer were put into a barrel of a barrel sputtering apparatus, and a TiO 2 target was set. After reducing the pressure in the barrel to 1 × 10 −4 Pa or less, argon was flowed at a constant flow rate so that the pressure in the barrel was 1 Pa. Thereafter, the barrel was rotated and inverted to roll and agitate the particles. Furthermore, vibration was directly applied to the particles to suppress particle aggregation. Thereafter, the barrel was heated and sputtered intermittently, and TiO 2 nuclei having a height of 50 nm were scattered on the surface of the first layer.

続いて、TiOの核を有する粒子を、パラジウム触媒であるアトテックネオガント834(アトテックジャパン株式会社製、商品名)を8質量%含有するパラジウム触媒化液100mLに添加し、30℃で30分間攪拌した後、φ3μmのメンブレンフィルタ(メルクミリポア株式会社製)で濾過し、水洗を行った。その後、粒子をpH6.0に調整された0.5質量%ジメチルアミンボラン液に添加し、粒子の表面を活性化させた。その後、20mLの蒸留水に、表面が活性化された粒子を浸漬し、超音波分散することで、粒子分散液を得た。
続いて、実施例79の工程Dを行い、凸部を有する第二の層を有する母粒子を6g得た。
Subsequently, the particles having a TiO 2 nucleus were added to 100 mL of a palladium-catalyzed solution containing 8% by mass of Atotech Neogant 834 (trade name, manufactured by Atotech Japan Co., Ltd.), which is a palladium catalyst, and 30 minutes at 30 ° C. After stirring, the mixture was filtered with a φ3 μm membrane filter (manufactured by Merck Millipore) and washed with water. Thereafter, the particles were added to a 0.5 mass% dimethylamine borane solution adjusted to pH 6.0 to activate the surface of the particles. Then, the particle | grain dispersion liquid was obtained by immersing the particle | grains by which the surface was activated in 20 mL distilled water, and carrying out ultrasonic dispersion | distribution.
Then, the process D of Example 79 was performed and 6g of mother particles which have the 2nd layer which has a convex part were obtained.

スパッタ層の形成
バレルスパッタ装置のバレル内に、上記母粒子を投入し、Auのターゲットを設置した。バレル内を1×10−4Pa以下に減圧した後、バレル内が1Paになるようアルゴンを一定流速で流した。その後、バレルを回転・反転させて母粒子を転動、攪拌した。さらに、母粒子に直接振動を加えて、母粒子の凝集を抑制した。スパッタを行い、厚さ20nmの連続したスパッタ層を形成した。バレル内を大気圧に戻し、凸部を有するスパッタ層を有する導電粒子を取り出した。
Formation of Sputtered Layer The above mother particles were put into a barrel of a barrel sputtering apparatus, and an Au target was installed. After reducing the pressure in the barrel to 1 × 10 −4 Pa or less, argon was flowed at a constant flow rate so that the pressure in the barrel was 1 Pa. Then, the barrel was rotated and inverted to roll and stir the mother particles. Furthermore, the mother particles were directly vibrated to suppress the aggregation of the mother particles. Sputtering was performed to form a continuous sputter layer having a thickness of 20 nm. The inside of the barrel was returned to atmospheric pressure, and conductive particles having a sputter layer having a convex portion were taken out.

得られた導電粒子を用いたこと以外は実施例1と同様にして、導電粒子の表面に平均粒径300nmのアクリル粒子を配置して、絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。   Insulating coated conductive particles were obtained by arranging acrylic particles having an average particle size of 300 nm on the surface of the conductive particles in the same manner as in Example 1 except that the obtained conductive particles were used. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例95〜105)
スパッタのターゲットをそれぞれ表6に示す最外層の金属種に変更したこと以外は、実施例94と同様にして、実施例95〜105のスパッタ層を有する導電粒子を作製した。作製した導電粒子は、表面に凸部を有していた。続いて、実施例1と同様にして、導電粒子表面に、アクリル絶縁粒子を配置して、絶縁性導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Examples 95 to 105)
Conductive particles having the sputtered layers of Examples 95 to 105 were produced in the same manner as in Example 94, except that the sputtering target was changed to the metal species of the outermost layer shown in Table 6, respectively. The produced conductive particles had a convex portion on the surface. Subsequently, in the same manner as in Example 1, acrylic insulating particles were arranged on the surface of the conductive particles to obtain insulating conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例21)
実施例79と同様の方法により、第一の層及び第二の層を有する母粒子(導電粒子)を得た。この導電粒子の表面に平均粒径300nmのアクリル粒子を配置して、絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Comparative Example 21)
In the same manner as in Example 79, mother particles (conductive particles) having a first layer and a second layer were obtained. Insulating coated conductive particles were obtained by arranging acrylic particles having an average particle size of 300 nm on the surface of the conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例22)
実施例79と同様の方法により、第一の層及び第二の層を有する母粒子(導電粒子)を得た。0.03mol/Lのエチレンジアミン四酢酸四ナトリウム、0.04mol/Lのクエン酸三ナトリウム及び0.01mol/Lのシアン化金カリウムを含み、水酸化ナトリウムでpH6に調整されためっき液を準備した。このめっき液を用いて、上記母粒子に対して、液温60℃の条件で厚さが平均20nmとなるまで置換金めっき処理を行った。濾過後、100mLの純水を用いて60秒洗浄し、ニッケル膜の外側に形成された厚さ20nmの金膜を有する導電粒子を得た。さらに、得られた導電粒子の表面に、実施例1と同様の手順で平均粒径300nmのアクリル粒子を配置して、絶縁被覆導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Comparative Example 22)
In the same manner as in Example 79, mother particles (conductive particles) having a first layer and a second layer were obtained. A plating solution containing 0.03 mol / L tetrasodium ethylenediaminetetraacetate, 0.04 mol / L trisodium citrate and 0.01 mol / L potassium gold cyanide and adjusted to pH 6 with sodium hydroxide was prepared. . Using this plating solution, a substitution gold plating process was performed on the mother particles until the thickness reached an average of 20 nm under the condition of a liquid temperature of 60 ° C. After filtration, it was washed with 100 mL of pure water for 60 seconds to obtain conductive particles having a gold film with a thickness of 20 nm formed on the outside of the nickel film. Furthermore, acrylic particles having an average particle size of 300 nm were arranged on the surface of the obtained conductive particles in the same procedure as in Example 1 to obtain insulating coated conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

実施例79〜102、比較例21、22の結果を表5、6に示す。最外層にスパッタ層を有する導電粒子の実施例79〜105は、いずれも吸湿耐熱試験後においても優れた導通信頼性と絶縁信頼性を示した。特に、Auスパッタ層を有する実施例79は、無電解めっきによるAu膜を有する比較例22と比較して、吸湿耐熱試験後の絶縁信頼性がより安定していた。置換めっきが施された比較例22は、置換めっきを施さなかった比較例21と比較して吸湿耐熱試験後の絶縁信頼性がやや低下する傾向が見られた。これは、置換めっきによる無電解ニッケルめっき層のダメージがあったためと推定される。   The results of Examples 79 to 102 and Comparative Examples 21 and 22 are shown in Tables 5 and 6. The conductive particles of Examples 79 to 105 having a sputtered layer as the outermost layer all showed excellent conduction reliability and insulation reliability even after the moisture absorption heat test. In particular, in Example 79 having an Au sputtered layer, the insulation reliability after the moisture absorption heat test was more stable as compared with Comparative Example 22 having an Au film formed by electroless plating. In Comparative Example 22 in which displacement plating was performed, the insulation reliability after the hygroscopic heat resistance test tended to be slightly lowered as compared with Comparative Example 21 in which displacement plating was not performed. This is presumably because the electroless nickel plating layer was damaged by displacement plating.

(実施例103〜110)
実施例31と同様の方法で、アクリル粒子表面を覆うSiO2微粒子、及び第一の層としての80nmの無電解Niめっき層を有する母粒子を得た。
スパッタ層の形成
バレルスパッタ装置のバレル内に、上記母粒子を投入し、Auのターゲットを設置した。バレル内を1×10−4Pa以下に減圧した後、アルゴンを1%になるように一定流速でバレル内に流した。その後、母粒子が転動、攪拌されるようにバレルを回転させ、ターゲットに電圧を印加し、母粒子の表面にスパッタ層を形成した。スパッタの処理時間を調整して、表8に示す厚みのAuスパッタ層が形成されるまでスパッタを行い、実施例106〜113の導電粒子を得た。作製した導電粒子は、表面に凸部を有していた。得られた導電粒子の表面に、実施例1と同様にして、アクリル絶縁粒子を配置し、絶縁性導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
(Examples 103 to 110)
In the same manner as in Example 31, SiO 2 fine particles covering the surfaces of the acrylic particles and mother particles having an electroless Ni plating layer of 80 nm as the first layer were obtained.
Formation of Sputtered Layer The above mother particles were put into a barrel of a barrel sputtering apparatus, and an Au target was installed. After reducing the pressure in the barrel to 1 × 10 −4 Pa or less, argon was flowed into the barrel at a constant flow rate so as to be 1%. Thereafter, the barrel was rotated so that the mother particles were rolled and stirred, and a voltage was applied to the target to form a sputter layer on the surface of the mother particles. Sputtering time was adjusted and sputtering was performed until an Au sputtered layer having a thickness shown in Table 8 was formed, and conductive particles of Examples 106 to 113 were obtained. The produced conductive particles had a convex portion on the surface. Acrylic insulating particles were arranged on the surface of the obtained conductive particles in the same manner as in Example 1 to obtain insulating conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(実施例111、112)
実施例31と同様の方法で、アクリル粒子表面を覆うSiO2微粒子、及び第一の層としての80nmの無電解Niめっき層を有する母粒子を得た。
スパッタ層の形成
(Examples 111 and 112)
In the same manner as in Example 31, SiO 2 fine particles covering the surfaces of the acrylic particles and mother particles having an electroless Ni plating layer of 80 nm as the first layer were obtained.
Sputter layer formation

バレルスパッタ装置のバレル内に、上記母粒子を投入し、Auのターゲットを設置した。バレル内を1×10−4Pa以下に減圧した後、アルゴンを1%になるように一定流速でバレル内に流した。その後、母粒子が転動、攪拌されるようにバレルを回転させ、ターゲットに電圧を印加し、母粒子の表面に均一なスパッタ層を形成した。その後、一旦バレルの回転をとめたままスパッタを実施した後、再びバレルを回転させ、粒子を転動・攪拌し実施例114と115の導電粒子を得た。作製した導電粒子は、表面に凸部を有していた。得られた導電粒子の表面に、実施例1同様にしてアクリル絶縁粒子を配置し、絶縁性導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。 The mother particles were put into a barrel of a barrel sputtering apparatus, and an Au target was installed. After reducing the pressure in the barrel to 1 × 10 −4 Pa or less, argon was flowed into the barrel at a constant flow rate so as to be 1%. Thereafter, the barrel was rotated so that the mother particles were rolled and stirred, and a voltage was applied to the target to form a uniform sputtered layer on the surface of the mother particles. Then, after carrying out sputtering while stopping the rotation of the barrel, the barrel was rotated again, and the particles were rolled and stirred to obtain conductive particles of Examples 114 and 115. The produced conductive particles had a convex portion on the surface. Acrylic insulating particles were arranged on the surface of the obtained conductive particles in the same manner as in Example 1 to obtain insulating conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.

(比較例23〜26)
実施例31と同様の方法で、アクリル粒子表面を覆うSiO2微粒子、及び第一の層としての80nmの無電解Niめっき層を有する母粒子を得た。
(Comparative Examples 23 to 26)
In the same manner as in Example 31, SiO 2 fine particles covering the surfaces of the acrylic particles and mother particles having an electroless Ni plating layer of 80 nm as the first layer were obtained.

0.03mol/Lのエチレンジアミン四酢酸四ナトリウム、0.04mol/Lのクエン酸三ナトリウム及び0.01mol/Lのシアン化金カリウムを含み、水酸化ナトリウムでpH6に調整されためっき液を準備した。このめっき液を用いて、上記母粒子に対して、液温60℃の条件で置換金めっき処理を行った。濾過後、100mLの純水を用いて60秒洗浄し、ニッケル膜の外側に表8に示す厚さの金膜を有する導電粒子を得た。得られた導電粒子の表面に、実施例1同様にしてアクリル絶縁粒子を配置し、絶縁性導電粒子を得た。得られた絶縁被覆導電粒子を用いて、異方導電性接着フィルムを作成し、接続構造体の導通抵抗試験及び絶縁抵抗試験を行った。
断面の観察
A plating solution containing 0.03 mol / L tetrasodium ethylenediaminetetraacetate, 0.04 mol / L trisodium citrate and 0.01 mol / L potassium gold cyanide and adjusted to pH 6 with sodium hydroxide was prepared. . Using this plating solution, a displacement gold plating process was performed on the mother particles at a solution temperature of 60 ° C. After filtration, it was washed with 100 mL of pure water for 60 seconds to obtain conductive particles having a gold film having a thickness shown in Table 8 on the outside of the nickel film. Acrylic insulating particles were arranged on the surface of the obtained conductive particles in the same manner as in Example 1 to obtain insulating conductive particles. An anisotropic conductive adhesive film was prepared using the obtained insulating coated conductive particles, and a connection resistance test and an insulation resistance test were performed on the connection structure.
Cross-section observation

絶縁被覆導電粒子をカーボンテープ上に撒いた。これを収束イオンビーム加工装置(FIB2000:日立製作所製)の試料室に入れ、試料室内部を真空圧とした。その後、導電粒子の中心点を通るよう加工位置を決めてタングステンをコートした。ガリウムイオンビームにより、導電粒子の断面を出した。この試料をすばやくSEM(S-4800:日立製作所製)に入れ、断面を撮像した。図10に示すように、導電粒子の中心点を通る内角45度の8本の線を引き、各線の最外層のコア粒子側との交点と最外層の外側との交点の長さを測定した。導電粒子10個について、下記式により最外層の厚みの平均値と標準偏差を算出した。   Insulating coated conductive particles were spread on carbon tape. This was put into a sample chamber of a focused ion beam processing apparatus (FIB2000: manufactured by Hitachi, Ltd.), and the inside of the sample chamber was set to a vacuum pressure. Thereafter, the processing position was determined so as to pass through the center point of the conductive particles, and tungsten was coated. The cross section of the conductive particles was taken out with a gallium ion beam. This sample was quickly put into SEM (S-4800: manufactured by Hitachi, Ltd.), and a cross section was imaged. As shown in FIG. 10, eight lines having an inner angle of 45 degrees passing through the central point of the conductive particles were drawn, and the length of the intersection of each line with the core particle side of the outermost layer and the outer side of the outermost layer was measured. . For 10 conductive particles, the average value and the standard deviation of the thickness of the outermost layer were calculated by the following formula.


最外層の厚み測定数:n
最外層の厚み:m1、m2、m3・・・m80
最外層の厚みの平均値:M
表面の分析(元素比率)

Number of outermost layer thickness measurements: n
The thickness of the outermost layer: m 1 , m 2 , m 3 ... M 80
Average thickness of outermost layer: M
Surface analysis (element ratio)

直径5.0mmの円形の開口を有する厚さ0.1mmのSUS板を用いた。SUS板の開口の部分にアクリル系粘着テープを貼り、生じたくぼみ部分に導電粒子を敷き詰めた。X線光電子分光装置(XPS:X-ray Photoelectron Spectroscopy、アルバック・ファイ社製、ESCA5400型)を用いて、導電粒子表面を分析した。分析条件を以下に示す。   A SUS plate having a thickness of 0.1 mm and a circular opening having a diameter of 5.0 mm was used. Acrylic adhesive tape was applied to the opening of the SUS plate, and conductive particles were spread over the resulting indentation. The surface of the conductive particles was analyzed using an X-ray photoelectron spectrometer (XPS: X-ray Photoelectron Spectroscopy, ULVAC-PHI, ESCA5400 type). The analysis conditions are shown below.

実施例106〜115、比較例23〜26の導電粒子について、最外層を形成する元素Au(金)をXとし、最外層直下の層(第一の層)を形成するNi(ニッケル)及びP(リン)の元素の和をYとして、導電粒子表面の元素比率(Y/X)を、表面元素比として求めた。   For the conductive particles of Examples 106 to 115 and Comparative Examples 23 to 26, the element Au (gold) forming the outermost layer is X, and Ni (nickel) and P forming the layer (first layer) immediately below the outermost layer The sum of the elements of (phosphorus) was defined as Y, and the element ratio (Y / X) on the surface of the conductive particles was determined as the surface element ratio.

実施例106〜115、比較例23〜24の結果を表8に示す。実施例106はスパッタ層が3nmと薄く、表面の元素比率が0.51((Ni+P)/Au)と高かった。実施例106と比較して、実施例107〜112のほうがより優れた絶縁性を示す傾向が見られた。平均膜厚が15nmを超えると、絶縁性が特に顕著に安定することが分かった。
最外層の形成を置換金めっきで実施した比較例23〜26は、標準偏差が小さかったことから均一な厚みで最外層が形成できていたことがわかった。しかし、スパッタで最外層を形成した場合と比較して、同じ厚みでも表面元素比率が大きくなることが分かった。これは、置換めっき層のピンホールから下地のニッケル層が拡散しているためであると考えられる。また、置換めっき層によって、下地の無電解ニッケル層が溶解し、置換めっき層に混合して析出したことも影響し得る。同じ程度の最外層厚みで比較した場合、スパッタは置換めっきよりも安定した絶縁信頼性をもたらすことが確認された。
Table 8 shows the results of Examples 106 to 115 and Comparative Examples 23 to 24. In Example 106, the sputter layer was as thin as 3 nm, and the surface element ratio was as high as 0.51 ((Ni + P) / Au). Compared with Example 106, the tendency for Examples 107-112 to show the more superior insulation was seen. It has been found that when the average film thickness exceeds 15 nm, the insulating property is particularly remarkably stabilized.
In Comparative Examples 23 to 26 in which the outermost layer was formed by substitution gold plating, it was found that the outermost layer could be formed with a uniform thickness because the standard deviation was small. However, it was found that the surface element ratio was increased even with the same thickness as compared with the case where the outermost layer was formed by sputtering. This is presumably because the underlying nickel layer is diffusing from the pinhole in the displacement plating layer. Moreover, it can also be influenced that the underlying electroless nickel layer is dissolved by the displacement plating layer and mixed and deposited on the displacement plating layer. When compared with the same outermost layer thickness, it was confirmed that sputtering provides more stable insulation reliability than displacement plating.

実施例114と115は、均一な最外層(スパッタ層)で下地導電層を覆った後、バレルの回転を止めたため、スパッタ層が粒子の一部に厚く積層した。最外層の平均厚み40nmであるが、標準偏差が5を超えた。しかし、最外層の元素比が0.4を下回っているため、下地導電層の露出が少なく耐マイグレーションに優れ、同じ平均厚みのスパッタ層を備える実施例113と同等の接続信頼性と絶縁性を示した。最外層(スパッタ層)の厚みにばらつき(標準偏差5以上)があっても、下地層の露出が少ない場合は耐マイグレーション性に優れる。   In Examples 114 and 115, the base conductive layer was covered with a uniform outermost layer (sputtering layer), and then the rotation of the barrel was stopped. Therefore, the sputtered layer was thickly stacked on a part of the particles. The average thickness of the outermost layer was 40 nm, but the standard deviation exceeded 5. However, since the element ratio of the outermost layer is less than 0.4, there is little exposure of the underlying conductive layer, excellent migration resistance, and connection reliability and insulation equivalent to those of Example 113 having the same average thickness sputtered layer. Indicated. Even if the thickness of the outermost layer (sputter layer) varies (standard deviation of 5 or more), the migration resistance is excellent when the underlayer is not exposed.

以上の結果から、最外層の表面の元素比率が低いと絶縁信頼性が高まることが分かった。このような金属層を得る方法として、スパッタ法が有効であることも分かった。   From the above results, it was found that the insulation reliability increases when the element ratio on the surface of the outermost layer is low. It has also been found that sputtering is effective as a method for obtaining such a metal layer.

1…絶縁被覆導電粒子、2…コア粒子、3…核、5…最外層、5a…凸部、7…絶縁性粒子、10…導電粒子、11…第一の層、11a…第一の部分、11b…第二の部分、11c…第三の部分、12…第二の層、80…接着剤の硬化物、91…第一の回路部材、92…第二の回路部材、911…第一の基板、912…第一の回路電極、921…第二の基板、922…第二の回路電極、100…異方導電性接着剤の硬化物、800…接続構造体。   DESCRIPTION OF SYMBOLS 1 ... Insulation coating electroconductive particle, 2 ... Core particle, 3 ... Core, 5 ... Outermost layer, 5a ... Convex part, 7 ... Insulating particle, 10 ... Conductive particle, 11 ... First layer, 11a ... First part 11b ... second part, 11c ... third part, 12 ... second layer, 80 ... cured product of adhesive, 91 ... first circuit member, 92 ... second circuit member, 911 ... first 912 ... first circuit electrode, 921 ... second substrate, 922 ... second circuit electrode, 100 ... cured material of anisotropic conductive adhesive, 800 ... connection structure.

Claims (11)

コア粒子と、該コア粒子を囲む導電性の最外層と、を備え、
前記最外層が、スパッタ法により形成された層であり、その外側表面に形成された複数の凸部を有している、導電粒子。
A core particle and a conductive outermost layer surrounding the core particle,
Conductive particles in which the outermost layer is a layer formed by a sputtering method and has a plurality of convex portions formed on the outer surface thereof.
前記コア粒子と前記最外層との間に設けられた1層又は2層以上の内側導電層をさらに備える、請求項1に記載の導電粒子。   The conductive particle according to claim 1, further comprising one or more inner conductive layers provided between the core particle and the outermost layer. 前記内側導電層の外側表面が平滑である、請求項2に記載の導電粒子。   The conductive particle according to claim 2, wherein an outer surface of the inner conductive layer is smooth. 前記内側導電層のうち最も外側の層が、その外側表面に形成された複数の凸部を有している、請求項2に記載の導電粒子。   The conductive particles according to claim 2, wherein the outermost layer of the inner conductive layers has a plurality of convex portions formed on an outer surface thereof. 前記最外層の前記凸部の高さが、前記コア粒子の直径の0.0005倍以上0.1倍以下である、請求項1〜4のいずれか一項に記載の導電粒子。   5. The conductive particle according to claim 1, wherein a height of the convex portion of the outermost layer is 0.0005 times or more and 0.1 times or less of a diameter of the core particle. 前記内側導電層が、ニッケル、銅又はこれらの合金を含有する、請求項1〜5のいずれか一項に記載の導電粒子。   The electroconductive particle as described in any one of Claims 1-5 in which the said inner side conductive layer contains nickel, copper, or these alloys. 当該導電粒子の中心点を通る断面において前記中心点から内角45度で放射状に伸ばした8本の線を引き、これらの8本の線が前記最外層と交わる部分の長さを前記最外層の厚みとして測定して、8個の当該厚みの値を得たときに、それらの平均値が5nm以上であり、標準偏差が5.0以下である、請求項1〜6のいずれか一項に記載の導電粒子。   In a cross-section passing through the central point of the conductive particle, eight lines extending radially from the central point at an inner angle of 45 degrees are drawn, and the length of the portion where these eight lines intersect the outermost layer is defined as the length of the outermost layer. When measuring as thickness and obtaining the value of eight said thickness, those average values are 5 nm or more, and a standard deviation is 5.0 or less in any one of Claims 1-6. The electroconductive particle of description. 当該導電粒子表面の元素組成をX線光電子分光分析により分析したときに、前記最外層を構成する元素に対する、前記最外層の内側で前記最外層に隣接する層を構成する元素の比率が、0.4以下である、請求項1〜7のいずれか一項に記載の導電粒子。   When the elemental composition of the surface of the conductive particle is analyzed by X-ray photoelectron spectroscopy, the ratio of the elements constituting the layer adjacent to the outermost layer inside the outermost layer to the elements constituting the outermost layer is 0 The conductive particle according to any one of claims 1 to 7, which is .4 or less. 請求項1〜8のいずれか一項に記載の導電粒子と、
前記導電粒子の最外層の外側表面上に配置された複数の絶縁性粒子と、
を備える絶縁被覆導電粒子。
Conductive particles according to any one of claims 1 to 8,
A plurality of insulating particles disposed on an outer surface of the outermost layer of the conductive particles;
Insulating coated conductive particles.
前記絶縁性粒子が、前記コア粒子の直径よりも小さく、前記最外層の前記凸部の高さよりも大きい直径を有する、請求項9に記載の絶縁被覆導電粒子。   The insulating coated conductive particle according to claim 9, wherein the insulating particle has a diameter smaller than a diameter of the core particle and larger than a height of the convex portion of the outermost layer. 請求項1〜8のいずれか一項に記載の導電粒子、又は請求項9若しくは10に記載の絶縁被覆導電粒子と、
接着剤と、
を含有する異方導電性接着剤。
The conductive particles according to any one of claims 1 to 8, or the insulating coated conductive particles according to claim 9 or 10, and
Glue and
An anisotropic conductive adhesive containing
JP2014073721A 2014-03-31 2014-03-31 Conductive particles Active JP6340876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073721A JP6340876B2 (en) 2014-03-31 2014-03-31 Conductive particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073721A JP6340876B2 (en) 2014-03-31 2014-03-31 Conductive particles

Publications (2)

Publication Number Publication Date
JP2015197955A true JP2015197955A (en) 2015-11-09
JP6340876B2 JP6340876B2 (en) 2018-06-13

Family

ID=54547538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073721A Active JP6340876B2 (en) 2014-03-31 2014-03-31 Conductive particles

Country Status (1)

Country Link
JP (1) JP6340876B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015312A (en) * 2014-06-11 2016-01-28 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
WO2016152942A1 (en) * 2015-03-23 2016-09-29 デクセリアルズ株式会社 Method for producing conductive particles
JP2020173990A (en) * 2019-04-11 2020-10-22 日立化成株式会社 Method for producing conductive particle
JP2020173991A (en) * 2019-04-11 2020-10-22 日立化成株式会社 Conductive particle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297143A (en) * 2002-04-01 2003-10-17 Ube Nitto Kasei Co Ltd Conductive particle and its manufacturing method
JP2004035293A (en) * 2002-07-01 2004-02-05 Ube Nitto Kasei Co Ltd Silica-based particle, its manufacturing method, and conductive silica-based particle
JP2006228475A (en) * 2005-02-15 2006-08-31 Sekisui Chem Co Ltd Conductive fine particles and anisotropic conductive material
JP2008308537A (en) * 2007-06-13 2008-12-25 Hitachi Chem Co Ltd Anisotropic conductive adhesive composition
WO2012115076A1 (en) * 2011-02-23 2012-08-30 積水化学工業株式会社 Conductive particle, conductive particle manufacturing method, anisotropic conductive material, and connective structure
WO2013094636A1 (en) * 2011-12-21 2013-06-27 積水化学工業株式会社 Conductive particles, conductive material, and connection structure
JP2014026970A (en) * 2012-06-19 2014-02-06 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297143A (en) * 2002-04-01 2003-10-17 Ube Nitto Kasei Co Ltd Conductive particle and its manufacturing method
JP2004035293A (en) * 2002-07-01 2004-02-05 Ube Nitto Kasei Co Ltd Silica-based particle, its manufacturing method, and conductive silica-based particle
JP2006228475A (en) * 2005-02-15 2006-08-31 Sekisui Chem Co Ltd Conductive fine particles and anisotropic conductive material
JP2008308537A (en) * 2007-06-13 2008-12-25 Hitachi Chem Co Ltd Anisotropic conductive adhesive composition
WO2012115076A1 (en) * 2011-02-23 2012-08-30 積水化学工業株式会社 Conductive particle, conductive particle manufacturing method, anisotropic conductive material, and connective structure
WO2013094636A1 (en) * 2011-12-21 2013-06-27 積水化学工業株式会社 Conductive particles, conductive material, and connection structure
JP2014026970A (en) * 2012-06-19 2014-02-06 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016015312A (en) * 2014-06-11 2016-01-28 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
JP2020109765A (en) * 2014-06-11 2020-07-16 積水化学工業株式会社 Conductive particle, manufacturing method of conductive particle, conductive material and connection structure
JP2022003643A (en) * 2014-06-11 2022-01-11 積水化学工業株式会社 Conductive particle, manufacturing method of conductive particle, conductive material and connection structure
WO2016152942A1 (en) * 2015-03-23 2016-09-29 デクセリアルズ株式会社 Method for producing conductive particles
JP2020173990A (en) * 2019-04-11 2020-10-22 日立化成株式会社 Method for producing conductive particle
JP2020173991A (en) * 2019-04-11 2020-10-22 日立化成株式会社 Conductive particle
JP7292669B2 (en) 2019-04-11 2023-06-19 株式会社レゾナック Method for producing conductive particles
JP7298256B2 (en) 2019-04-11 2023-06-27 株式会社レゾナック conductive particles

Also Published As

Publication number Publication date
JP6340876B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP5900535B2 (en) Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
CN103531271B (en) Conductive particle, conductive material, and method for manufacturing the conductive particle
JP2007242307A (en) Conductive particulate and anisotropic conductive material
JP2006228474A (en) Conductive fine particles and anisotropic conductive material
JP2006228475A (en) Conductive fine particles and anisotropic conductive material
JP6379761B2 (en) Conductive particle, insulating coated conductive particle, anisotropic conductive adhesive, connection structure, and method for producing conductive particle
JP6668075B2 (en) Conductive particles, conductive material and connection structure
JP5975054B2 (en) Conductive particle, anisotropic conductive adhesive, connection structure, and method for producing conductive particle
JP6340876B2 (en) Conductive particles
JP2007173075A (en) Conductive particulate and anisotropic conductive material
WO2017057301A1 (en) Coating liquid for forming electroconductive layer, and method for manufacturing electroconductive layer
JP6454154B2 (en) Conductive particle, method for producing conductive particle, conductive material, and connection structure
JP6263228B2 (en) Conductive particles and conductive material containing the same
JP5703836B2 (en) Conductive particles, adhesive composition, circuit connection material, and connection structure
JP7298256B2 (en) conductive particles
JP5323147B2 (en) Conductive fine particles and anisotropic conductive materials
JP6286852B2 (en) Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
JP2020113545A (en) Conductive particle, conductive material and connection structure
JP4714719B2 (en) Method for producing conductive fine particles
JP7292669B2 (en) Method for producing conductive particles
JP2016149360A (en) Conductive particle, conductive material and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180430

R151 Written notification of patent or utility model registration

Ref document number: 6340876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350