JP2007173075A - Conductive particulate and anisotropic conductive material - Google Patents

Conductive particulate and anisotropic conductive material Download PDF

Info

Publication number
JP2007173075A
JP2007173075A JP2005369779A JP2005369779A JP2007173075A JP 2007173075 A JP2007173075 A JP 2007173075A JP 2005369779 A JP2005369779 A JP 2005369779A JP 2005369779 A JP2005369779 A JP 2005369779A JP 2007173075 A JP2007173075 A JP 2007173075A
Authority
JP
Japan
Prior art keywords
fine particles
conductive
nickel
layer
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005369779A
Other languages
Japanese (ja)
Other versions
JP4638341B2 (en
Inventor
Hiroya Ishida
浩也 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005369779A priority Critical patent/JP4638341B2/en
Publication of JP2007173075A publication Critical patent/JP2007173075A/en
Application granted granted Critical
Publication of JP4638341B2 publication Critical patent/JP4638341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive particulates with high adhesiveness between base particulates and a conductive layer and excellent in impact resistance and conductivity, as well as an anisotropic conductive material made by using the conductive particulates. <P>SOLUTION: Of the conductive particulates consisting of base particulates and a conductive layer formed on the surface of the base particulates, the conductive layer comprises an amorphous-structure nickel-phosphorous plated layer in contact with the surface of the base particulates, and a crystal-structure nickel-tungsten-phosphorous plated layer in contact with the surface of the amorphous-structure nickel-phosphorous plated layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、基材微粒子と導電層との密着性が高く、耐衝撃性及び導電性に優れた導電性微粒子、並びに、該導電性微粒子を用いてなる異方性導電材料に関する。 The present invention relates to conductive fine particles having high adhesion between substrate fine particles and a conductive layer and excellent in impact resistance and conductivity, and an anisotropic conductive material using the conductive fine particles.

導電性微粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。 The conductive fine particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、基板同士を電気的に接続したり、半導体素子等の小型部品を基板に電気的に接続したりするために、相対向する基板や電極端子の間に挟み込んで使用されている。 These anisotropic conductive materials are, for example, for electrically connecting substrates in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and electrically connecting small components such as semiconductor elements to the substrate. In order to do so, it is used by being sandwiched between opposing substrates and electrode terminals.

これらの導電性微粒子としては、従来、粒子径が均一で、適度な強度を有する樹脂微粒子等の非導電性微粒子の表面に、導電性膜として金属メッキ層を形成させた導電性微粒子が開示されている(例えば、特許文献1参照)。 As these conductive fine particles, conventionally, conductive fine particles in which a metal plating layer is formed as a conductive film on the surface of non-conductive fine particles such as resin fine particles having a uniform particle size and appropriate strength have been disclosed. (For example, refer to Patent Document 1).

特許文献1に開示されている導電性微粒子は、導電性膜としてニッケルメッキ被膜が形成されているが、ニッケルメッキ被膜の形成過程でのリン濃度が低くなっている。このようなリン濃度が低いニッケルメッキ被膜では、結晶構造のニッケルメッキ被膜が形成される。このようなニッケルメッキ被膜は硬く、衝撃に対する追従性が充分でなく、ニッケルメッキ被膜が割れる恐れがあり、また、基材微粒子とニッケルメッキ被膜との密着性も良くないといった問題点があった。 In the conductive fine particles disclosed in Patent Document 1, a nickel plating film is formed as a conductive film, but the phosphorus concentration in the formation process of the nickel plating film is low. In such a nickel plating film having a low phosphorus concentration, a nickel plating film having a crystal structure is formed. Such a nickel-plated film is hard and has insufficient followability to impact, and the nickel-plated film may break, and there is a problem that the adhesion between the substrate fine particles and the nickel-plated film is not good.

このような問題点に対し、特許文献2には、基材微粒子の表面に、結晶粒塊が認められない第1層と、結晶粒塊が厚さ方向に配向している第2層とからなるニッケルメッキ被膜を有する導電性微粒子が開示されている。この導電性微粒子においては、第1層が基材微粒子とニッケルメッキ被膜との密着性を高める役割を行っている。
しかしながら、特許文献2に開示された導電性微粒子は、特に近年の電子機器の急激な進歩や発展に伴って求められているほどの導電性や耐衝撃性等の性能が発揮されているとは言えなかった。
特開昭63−190204号公報 特開2004−197160号公報
In order to solve such a problem, Patent Document 2 includes a first layer in which no crystal grain lump is recognized on the surface of the base particle and a second layer in which the crystal grain lump is oriented in the thickness direction. A conductive fine particle having a nickel plating film is disclosed. In the conductive fine particles, the first layer plays a role of improving the adhesion between the base fine particles and the nickel plating film.
However, the conductive fine particles disclosed in Patent Document 2 exhibit performances such as conductivity and impact resistance that are required with the rapid progress and development of electronic devices in recent years. I could not say it.
JP-A-63-190204 Japanese Patent Laid-Open No. 2004-197160

本発明は、上記現状に鑑み、基材微粒子と導電層との密着性が高く、耐衝撃性及び導電性に優れた導電性微粒子、並びに、該導電性微粒子を用いてなる異方性導電材料を提供することを目的とする。 In view of the present situation, the present invention provides conductive fine particles having high adhesion between the substrate fine particles and the conductive layer and excellent in impact resistance and conductivity, and an anisotropic conductive material using the conductive fine particles. The purpose is to provide.

本発明は、基材微粒子と、前記基材微粒子の表面に形成された導電層とからなる導電性微粒子であって、前記導電層は、前記基材微粒子の表面に接する非結晶構造ニッケル−リンメッキ層と、前記非結晶構造ニッケル−リンメッキ層の表面に接する結晶構造ニッケル−タングステン−リンメッキ層とを有する導電性微粒子である。
以下に本発明を詳述する。
The present invention relates to a conductive fine particle comprising a base particle and a conductive layer formed on the surface of the substrate fine particle, wherein the conductive layer is in contact with the surface of the substrate fine particle. Conductive fine particles having a layer and a crystalline structure nickel-tungsten-phosphorous plating layer in contact with the surface of the non-crystalline nickel-phosphorous plating layer.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、基材微粒子の表面に、非結晶構造層と、結晶構造層とを有する導電層を形成させた導電性微粒子は、基材微粒子と導電層との密着性に優れ、更に、導電性、耐衝撃性等に優れた導電性微粒子となるということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have found that conductive fine particles in which a conductive layer having an amorphous structure layer and a crystal structure layer is formed on the surface of the substrate fine particles are adhered to the substrate fine particles and the conductive layer. As a result, the inventors have found that the conductive fine particles are excellent in conductivity and further excellent in conductivity, impact resistance and the like, and have completed the present invention.

本発明の導電性微粒子は、基材微粒子と、上記基材微粒子の表面に形成された導電層とからなる。 The conductive fine particles of the present invention comprise substrate fine particles and a conductive layer formed on the surface of the substrate fine particles.

上記基材微粒子としては特に限定されず、適度な弾性率、弾性変形性及び復元性を有するものであれば、無機材料であっても有機材料であってもよいが、適度な弾性率、弾性変形性及び復元性を制御しやすいため、樹脂からなる樹脂微粒子であることが好ましい。 The substrate fine particles are not particularly limited, and may be an inorganic material or an organic material as long as it has an appropriate elastic modulus, elastic deformability, and restoration property. Since it is easy to control the deformability and the recoverability, resin fine particles made of a resin are preferable.

上記樹脂微粒子としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ジビニルベンゼン重合樹脂;ジビニルベンゼン−スチレン共重合体、ジビニルベンゼン−アクリル酸エステル共重合体、ジビニルベンゼン−メタクリル酸エステル共重合体等のジビニルベンゼン系共重合樹脂;ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等からなるものが挙げられる。これらの樹脂微粒子は、単独で用いられてもよく、2種以上が併用されてもよい。 The resin fine particles are not particularly limited. For example, polyolefins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate Divinylbenzene polymer resin; divinylbenzene-styrene copolymer, divinylbenzene-acrylic acid ester copolymer, divinylbenzene-methacrylic acid ester copolymer and other divinylbenzene copolymer resins; polyalkylene terephthalate, polysulfone, polycarbonate, Polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, etc. Thing, and the like. These resin fine particles may be used independently and 2 or more types may be used together.

上記基材微粒子の平均粒子径としては特に限定されないが、好ましい下限は1μm、好ましい上限は20μmである。1μm未満であると、例えば、無電解メッキをする際に凝集しやすく、単粒子としにくくなることがあり、20μmを超えると、異方性導電材料として基板電極間等で用いられる範囲を超えてしまうことがある。より好ましい上限は10μmである。 Although it does not specifically limit as an average particle diameter of the said base material fine particle, A preferable minimum is 1 micrometer and a preferable upper limit is 20 micrometers. If it is less than 1 μm, for example, it is likely to aggregate when electroless plating is performed, and it may be difficult to form single particles. If it exceeds 20 μm, it exceeds the range used between the substrate electrodes as an anisotropic conductive material. May end up. A more preferable upper limit is 10 μm.

上記導電層は、上記基材微粒子の表面に接する非結晶構造ニッケル−リンメッキ層と、上記非結晶構造ニッケル−リンメッキ層の表面に接する結晶構造ニッケル−タングステン−リンメッキ層とを有する。
本発明の導電性微粒子においては、上記基材微粒子の表面に接する非結晶構造ニッケル−リンメッキ層を有することにより、上記基材微粒子と上記導電層との密着性が高い導電性微粒子とすることができる。
また、上記非結晶構造ニッケル−リンメッキ層の表面に接する結晶構造ニッケル−タングステン−リンメッキ層を有することにより、上記非結晶構造ニッケル−リンメッキ層との密着性が高く、また、導電性、耐熱性に優れるとともに、導電層を割れにくくすることができ、耐衝撃性が向上した導電性微粒子とすることができる。これは、タングステンを含有させることにより、層が微細結晶化し、層が硬くなることにより耐衝撃性が向上するためと考えられる。
The conductive layer has an amorphous structure nickel-phosphorous plating layer in contact with the surface of the substrate fine particles and a crystalline structure nickel-tungsten-phosphorous plating layer in contact with the surface of the amorphous structure nickel-phosphorus plating layer.
In the conductive fine particles of the present invention, by having an amorphous nickel-phosphorous plating layer in contact with the surface of the substrate fine particles, conductive fine particles having high adhesion between the substrate fine particles and the conductive layer can be obtained. it can.
Further, by having a crystal structure nickel-tungsten-phosphorous plating layer in contact with the surface of the non-crystalline structure nickel-phosphorous plating layer, the adhesiveness with the non-crystalline structure nickel-phosphorus plating layer is high, and conductivity and heat resistance are improved. While being excellent, the conductive layer can be made difficult to break, and conductive fine particles having improved impact resistance can be obtained. This is presumably because the inclusion of tungsten causes the layer to be finely crystallized and the layer becomes hard to improve the impact resistance.

上記非結晶構造ニッケル−リンメッキ層は、含リン率の好ましい下限が10wt%、好ましい上限が18wt%である。10wt%未満であると、非結晶構造ニッケル−リンメッキ層が硬くなりすぎ、割れやすくなることがあり、18wt%を超えると、非結晶構造ニッケル−リンメッキ層が軟らかくなりすぎ、基材微粒子と導電層との密着性が低下することがある。 In the non-crystalline nickel-phosphorus plating layer, the preferable lower limit of the phosphorus content is 10 wt%, and the preferable upper limit is 18 wt%. If it is less than 10 wt%, the non-crystalline structure nickel-phosphorous plating layer becomes too hard and may be easily broken, and if it exceeds 18 wt%, the non-crystalline structure nickel-phosphorous plating layer becomes too soft, and the base particle and conductive layer Adhesiveness may be reduced.

上記結晶構造ニッケル−タングステン−リンメッキ層は、含リン率の好ましい下限が1wt%、好ましい上限が8wt%である。1wt%未満であると、結晶構造ニッケル−タングステン−リンメッキ層が硬くなりすぎ、割れやすくなることがあり、8wt%を超えると、非結晶構造ニッケル−タングステン−リンメッキ層が軟らかくなりすぎ、導電性微粒子としての充分な性能が発揮できないことがある。
また、上記結晶構造ニッケル−タングステン−リンメッキ層は、含タングステン率の好ましい下限が0.5wt%、好ましい上限が5wt%である。0.5wt%未満であると、微細結晶化させ、上記結晶構造ニッケル−タングステン−リンメッキ層を硬くするタングステンの性質を充分に発揮できないことがあり、5wt%を超えると、上記結晶構造ニッケル−タングステン−リンメッキ層が硬くなりすぎ、割れやすくなることがある。
In the crystal structure nickel-tungsten-phosphorus plating layer, a preferable lower limit of the phosphorus content is 1 wt%, and a preferable upper limit is 8 wt%. If it is less than 1 wt%, the crystal structure nickel-tungsten-phosphorous plating layer may be too hard and may be easily broken, and if it exceeds 8 wt%, the amorphous structure nickel-tungsten-phosphorous plating layer will be too soft and conductive fine particles As a result, sufficient performance may not be exhibited.
The crystal structure nickel-tungsten-phosphorous plating layer has a preferable lower limit of the tungsten content of 0.5 wt% and a preferable upper limit of 5 wt%. If the amount is less than 0.5 wt%, the properties of tungsten that are finely crystallized and harden the crystal structure nickel-tungsten-phosphorous plating layer may not be fully exhibited. -Phosphorus plating layer may become too hard and easily break.

上記非結晶構造ニッケル−リンメッキ層の厚さとしては特に限定されないが、好ましい下限は10nm、好ましい上限は100nmである。
上記結晶構造ニッケル−タングステン−リンメッキ層の厚さとしては特に限定されないが、好ましい下限は100nm、好ましい上限は400nmである。
また、上記非結晶構造ニッケル−リンメッキ層の厚さは、基材微粒子との密着性に大きく影響し、上記結晶構造ニッケル−タングステン−リンメッキ層の厚さは、導電性に大きく影響するため、それぞれの層の厚さの割合も重要となり、上記非結晶構造ニッケル−リンメッキ層の厚さは、上記結晶構造ニッケル−タングステン−リンメッキ層の厚さの1/20〜1/5であることが好ましい。
The thickness of the non-crystalline nickel-phosphorous plating layer is not particularly limited, but a preferred lower limit is 10 nm and a preferred upper limit is 100 nm.
The thickness of the crystal structure nickel-tungsten-phosphorous plating layer is not particularly limited, but a preferred lower limit is 100 nm and a preferred upper limit is 400 nm.
In addition, the thickness of the non-crystalline nickel-phosphorous plating layer greatly affects the adhesion to the substrate fine particles, and the thickness of the crystalline nickel-tungsten-phosphorous plating layer greatly affects the conductivity. The thickness ratio of the non-crystalline structure nickel-phosphorus plating layer is also preferably 1/20 to 1/5 of the thickness of the crystalline structure nickel-tungsten-phosphorus plating layer.

上記導電層の厚さとしては特に限定されないが、好ましい下限は110nm、好ましい上限は500nmである。110nm未満であると、所望の導電性が得られないことがあり、500nmを超えると、上記導電層が基材微粒子から剥離しやすくなる。 Although it does not specifically limit as thickness of the said conductive layer, A preferable minimum is 110 nm and a preferable upper limit is 500 nm. When the thickness is less than 110 nm, desired conductivity may not be obtained. When the thickness exceeds 500 nm, the conductive layer is easily peeled off from the substrate fine particles.

本発明の導電性微粒子を製造する際には、後述するようにニッケルメッキ液中にメッキ安定剤として、硝酸ビスマス及び/又は硝酸タリウム等を添加することが好ましいため、上記導電層は、ビスマス及び/又はタリウムを1000ppm以下含有することとなる。 When producing the conductive fine particles of the present invention, as described later, it is preferable to add bismuth nitrate and / or thallium nitrate or the like as a plating stabilizer in the nickel plating solution. / Or 1000 ppm or less of thallium will be contained.

本発明の導電性微粒子においては、上記導電層は表面に突起を有していてもよい。表面に突起を有することにより、本発明の導電性微粒子を回路基板等の圧着に用いたときに、該突起が回路基板等の表面の酸化被膜を突き破ることができるため、接続抵抗の低減等が期待できる。 In the conductive fine particles of the present invention, the conductive layer may have protrusions on the surface. By having the protrusion on the surface, when the conductive fine particles of the present invention are used for pressure bonding of a circuit board or the like, the protrusion can break through the oxide film on the surface of the circuit board or the like. I can expect.

上記突起の形態としては特に限定されず、本発明の導電性微粒子を回路基板等の間に挟んで導電圧着したときに導電性微粒子と回路基板等との間のバインダー樹脂を突き破り、かつ、回路基板等と面接触することができるほどにつぶれる硬さを有するものであれば特に限定されず、例えば、金属、金属の酸化物、黒鉛等の導電性非金属、ポリアセチレン等の導電性ポリマー等の導電性物質を芯物質とする突起が挙げられる。なかでも、導電性に優れることから金属が好適に用いられる。 The form of the protrusion is not particularly limited, and when the conductive fine particles of the present invention are sandwiched between the circuit boards and the like and conductively bonded, the binder resin between the conductive fine particles and the circuit boards and the like is broken through, and the circuit It is not particularly limited as long as it has such a hardness that it can be brought into surface contact with a substrate, etc., for example, conductive non-metal such as metal, metal oxide, graphite, conductive polymer such as polyacetylene, etc. A protrusion having a conductive substance as a core substance is exemplified. Of these, metals are preferably used because of their excellent conductivity.

上記金属としては特に限定されず、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム等の金属;錫−鉛合金、錫−銅合金、錫−銀合金、錫−鉛−銀合金等の2種類以上の金属で構成される合金等が挙げられる。なかでも、ニッケル、銅、銀、金等が好ましい。 The metal is not particularly limited. For example, a metal such as gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium; Examples of the alloy include two or more kinds of metals such as a tin-lead alloy, a tin-copper alloy, a tin-silver alloy, and a tin-lead-silver alloy. Of these, nickel, copper, silver, gold and the like are preferable.

上記芯物質の形状としては特に限定されないが、塊状又は粒子状であることが好ましい。形状が塊状のものとしては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、不定形の塊等が挙げられる。また、形状が粒子状のものとしては、例えば、球状、円盤状、柱状、板状、針状、立方体、直方体等が挙げられる。 The shape of the core substance is not particularly limited, but is preferably a lump or particle. Examples of the bulk shape include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump. Examples of the particle shape include a spherical shape, a disk shape, a columnar shape, a plate shape, a needle shape, a cube shape, and a rectangular parallelepiped shape.

上記芯物質が粒子状である場合には、芯物質の80%以上が、基材微粒子に接触しているか又は上記基材微粒子との距離が5nm以内であることが好ましい。
上記芯物質が、基材微粒子に接触しているか又は基材微粒子から近接した位置に存在することにより、芯物質が確実に導電層で覆われることになり、突起の基材微粒子に対する密着性が優れた導電性微粒子を得ることができる。更に、芯物質が基材微粒子に接触しているか又は基材微粒子から近接した位置に存在することにより、基材微粒子の表面上に突起を揃えることができる。また、芯物質の大きさを揃えやすく、突起の高さが基材微粒子の表面上で揃った導電性微粒子を得ることが可能となる。
従って、本発明の導電性微粒子を異方性導電材料として用いた電極間の接続時には、導電性微粒子の導電性能のばらつきが小さくなり、導電信頼性に優れるという効果が得られる。
When the core substance is in the form of particles, it is preferable that 80% or more of the core substance is in contact with the base particle or the distance from the base particle is within 5 nm.
When the core material is in contact with the substrate fine particles or is present at a position close to the substrate fine particles, the core material is surely covered with the conductive layer, and the adhesion of the protrusions to the substrate fine particles is improved. Excellent conductive fine particles can be obtained. Furthermore, when the core substance is in contact with the substrate fine particles or exists at a position close to the substrate fine particles, the protrusions can be aligned on the surface of the substrate fine particles. In addition, it is possible to obtain conductive fine particles in which the size of the core substance can be easily adjusted and the height of the protrusion is uniform on the surface of the base fine particles.
Therefore, at the time of connection between electrodes using the conductive fine particles of the present invention as an anisotropic conductive material, the variation in conductive performance of the conductive fine particles is reduced, and the effect of excellent conductive reliability can be obtained.

上記突起の平均高さとしては特に限定されないが、好ましい下限は基材微粒子の粒子直径の0.5%、好ましい上限は基材微粒子の粒子直径の25%である。0.5%未満であると、充分な樹脂排除性が得られないことがあり、25%を超えると、突起が回路基板等に深くめり込み、回路基板等を破損させるおそれがある。より好ましい下限は基材微粒子の粒子直径の10%、より好ましい上限は基材微粒子の粒子直径の17%である。
なお、突起の平均高さは、無作為に選んだ50個の導電層上にある凸部の高さを測定し、それを算術平均して突起の平均高さとする。このとき、突起を付与した効果が得られるものとして、導電層上の10nm以上の凸部のものを突起として選ぶものとした。
The average height of the protrusions is not particularly limited, but a preferred lower limit is 0.5% of the particle diameter of the substrate fine particles, and a preferred upper limit is 25% of the particle diameter of the substrate fine particles. If it is less than 0.5%, sufficient resin exclusion may not be obtained, and if it exceeds 25%, the protrusions may be deeply embedded in the circuit board and the like, possibly damaging the circuit board. A more preferred lower limit is 10% of the particle diameter of the substrate fine particles, and a more preferred upper limit is 17% of the particle diameter of the substrate fine particles.
Note that the average height of the protrusions is obtained by measuring the heights of the protrusions on 50 conductive layers selected at random, and calculating the average height of the protrusions to obtain the average height of the protrusions. At this time, a projection having a projection of 10 nm or more on the conductive layer was selected as the projection as an effect of providing the projection.

本発明の導電性微粒子が突起を有する際には、基材微粒子の表面に芯物質を付着させればよい。上記芯物質を付着させる方法としては特に限定されず、例えば、基材微粒子の分散液中に、芯物質となる導電性物質を添加し、基材微粒子の表面上に芯物質を、例えば、ファンデルワールス力により集積させ付着させる方法;基材微粒子を入れた容器に、芯物質となる導電性物質を添加し、容器の回転等による機械的な作用により基材微粒子の表面上に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御しやすいことから、分散液中の基材微粒子の表面上に芯物質を集積させ付着させる方法が好適に用いられる。 When the conductive fine particles of the present invention have protrusions, a core substance may be attached to the surface of the substrate fine particles. The method for adhering the core substance is not particularly limited. For example, a conductive substance serving as the core substance is added to the dispersion of the base particle, and the core substance is applied onto the surface of the base particle, for example, a fan. Method of collecting and adhering by Delwars force; adding a conductive material as a core material to a container containing the base material fine particles, and applying the core material on the surface of the base material fine particles by mechanical action such as rotation of the container The method of making it adhere, etc. are mentioned. Among them, since the amount of the core substance to be attached is easily controlled, a method of accumulating and attaching the core substance on the surface of the substrate fine particles in the dispersion is preferably used.

分散液中の基材微粒子の表面上に芯物質を集積させ付着させる方法としては、より具体的には、基材微粒子の平均粒子径に対して、0.5〜25%の粒子径の芯物質を用いることが好ましい。より好ましくは、1.5〜15%である。また、芯物質の分散媒への分散性を考慮すると、芯物質の比重はできるだけ小さいほうが好ましい。さらに、基材微粒子及び芯物質の表面電荷を著しく変化させないために、分散媒として脱イオン水を用いることが好ましい。また、分散性を向上させる目的で、カチオン性界面活性剤を用いてもよい。 More specifically, as a method for accumulating and attaching the core substance on the surface of the base particle in the dispersion, the core having a particle diameter of 0.5 to 25% with respect to the average particle diameter of the base particle It is preferable to use a substance. More preferably, it is 1.5 to 15%. In consideration of the dispersibility of the core material in the dispersion medium, the specific gravity of the core material is preferably as small as possible. Furthermore, it is preferable to use deionized water as a dispersion medium in order not to significantly change the surface charges of the substrate fine particles and the core substance. In addition, a cationic surfactant may be used for the purpose of improving dispersibility.

本発明の導電性微粒子は、更に、導電層の表面に金層が形成されていることが好ましい。導電層の表面に金層を施すことにより、導電層の酸化防止、接続抵抗の低減化、表面の安定化等を図ることができる。 The conductive fine particles of the present invention preferably further have a gold layer formed on the surface of the conductive layer. By applying a gold layer to the surface of the conductive layer, it is possible to prevent oxidation of the conductive layer, reduce connection resistance, stabilize the surface, and the like.

上記金層の形成方法としては特に限定されず、無電解メッキ、置換メッキ、電気メッキ、還元メッキ、スパッタリング等の従来公知の方法が挙げられる。 The method for forming the gold layer is not particularly limited, and examples thereof include conventionally known methods such as electroless plating, displacement plating, electroplating, reduction plating, and sputtering.

上記金層の厚さとしては特に限定されないが、好ましい下限は1nm、好ましい上限は100nmである。1nm未満であると、導電層の酸化を防止することが困難となることがあり、接続抵抗値が高くなることがあり、100nmを超えると、金層が導電層を侵食し、基材微粒子と導電層との密着性を悪くすることがある。 Although it does not specifically limit as thickness of the said gold layer, A preferable minimum is 1 nm and a preferable upper limit is 100 nm. If it is less than 1 nm, it may be difficult to prevent oxidation of the conductive layer, and the connection resistance value may be high. If it exceeds 100 nm, the gold layer erodes the conductive layer, Adhesion with the conductive layer may be deteriorated.

本発明の導電性微粒子においては、上記基材微粒子の表面を被覆している導電層、金層等の厚さの好ましい下限が110nm、好ましい上限が600nmである。110nm未満であると、所望の導電性が得られないことがあり、600nmを超えると、基材微粒子と導電層との密着性が悪くなることがある。 In the conductive fine particles of the present invention, the preferred lower limit of the thickness of the conductive layer, gold layer, etc. covering the surface of the substrate fine particles is 110 nm, and the preferred upper limit is 600 nm. If it is less than 110 nm, desired conductivity may not be obtained, and if it exceeds 600 nm, the adhesion between the substrate fine particles and the conductive layer may be deteriorated.

本発明の導電性微粒子において、上記導電層の各層が非結晶構造層であるか、又は、結晶構造層であるかは、上記導電層のX線回折測定により行うことができる。
上記導電層に含有されるニッケル結晶粒塊は、上記X線回折測定により、例えば、ニッケル(111)面、ニッケル(200)面、ニッケル(220)面等の各格子面の回折ピークで確認される。また、各格子面の回折ピークにおける面積強度比により各格子面の割合を求めることができる。
上記結晶構造ニッケル−タングステン−リンメッキ層において、X線回折測定における面積強度比により求められる、ニッケル(111)面に配向するニッケル結晶粒塊の割合が80%以上であることが好ましい。
本発明においては、後述するように厳密なpH調整により基材微粒子の表面に導電層を形成させていることから、従来では達成し得ないほど高いニッケル結晶粒塊の割合となり、その結果、導電性等に優れた導電性微粒子を得ることができる。
なお、X線回折測定を行う導電層が金、銀、銅等の他の金属層で覆われている場合は、強酸や王水等により他の金属層を溶かし、測定しようとする導電層を表面に露出させてからX線回折測定を行えばよい。
In the conductive fine particles of the present invention, whether each of the conductive layers is an amorphous structure layer or a crystal structure layer can be determined by X-ray diffraction measurement of the conductive layer.
The nickel crystal agglomerates contained in the conductive layer are confirmed by diffraction peaks of each lattice plane such as a nickel (111) plane, a nickel (200) plane, and a nickel (220) plane by the X-ray diffraction measurement. The Further, the ratio of each lattice plane can be obtained from the area intensity ratio at the diffraction peak of each lattice plane.
In the crystal structure nickel-tungsten-phosphorus plating layer, it is preferable that the proportion of nickel crystal grains oriented on the nickel (111) plane determined by the area intensity ratio in X-ray diffraction measurement is 80% or more.
In the present invention, since the conductive layer is formed on the surface of the substrate fine particles by strict pH adjustment as will be described later, the proportion of nickel crystal agglomerates is so high that it cannot be achieved by the conventional method. Conductive fine particles having excellent properties can be obtained.
If the conductive layer for X-ray diffraction measurement is covered with another metal layer such as gold, silver, or copper, dissolve the other metal layer with strong acid or aqua regia, etc. What is necessary is just to perform an X-ray-diffraction measurement after exposing to the surface.

本発明の導電性微粒子を製造する際には、基材微粒子の表面に非結晶構造ニッケル−リンメッキ層を形成し、その後、結晶構造ニッケル−タングステン−リンメッキ層を形成する順番でメッキを行えばよい。上記非結晶構造ニッケル−リンメッキ層又は結晶構造ニッケル−タングステン−リンメッキ層を形成させる方法としては、例えば、メッキ反応のpHを制御する方法、ニッケルメッキ液中のリン濃度を制御する方法等が挙げられる。なかでも、反応制御に優れていることから、メッキ反応のpHを制御する方法が好適に用いられる。
具体的には、例えば、基材微粒子の表面に触媒付与を行う工程1と、クエン酸、リンゴ酸、コハク酸、プロピオン酸、乳酸、及び、酢酸からなる群より選択される少なくとも1種の錯化剤を含有するニッケルメッキ液を用い、かつ、ニッケルメッキ反応時のpHを4.9以下に調整することにより前記基材微粒子の表面に非結晶構造ニッケル−リンメッキ層を形成させる工程2と、クエン酸、リンゴ酸、コハク酸、プロピオン酸、乳酸、及び、酢酸からなる群より選択される少なくとも1種の錯化剤、並びに、ホウ化タングステン、タングステン酸ナトリウムからなる群より選択される結晶調整剤を含有するニッケルメッキ液を用い、かつ、ニッケルメッキ反応時のpHを7〜9に調整することにより結晶構造ニッケル−タングステン−リンメッキ層を形成させる工程3とを有する製造方法により製造することができる。
When producing the conductive fine particles of the present invention, an amorphous structure nickel-phosphorus plating layer is formed on the surface of the substrate fine particles, and then the plating is performed in the order of forming the crystal structure nickel-tungsten-phosphorus plating layer. . Examples of the method for forming the non-crystalline structure nickel-phosphorus plating layer or the crystal structure nickel-tungsten-phosphorus plating layer include a method for controlling the pH of the plating reaction and a method for controlling the phosphorus concentration in the nickel plating solution. . Especially, since it is excellent in reaction control, the method of controlling the pH of plating reaction is used suitably.
Specifically, for example, at least one complex selected from the group consisting of citric acid, malic acid, succinic acid, propionic acid, lactic acid, and acetic acid, and Step 1 of applying a catalyst to the surface of the substrate fine particles. Forming a non-crystalline structure nickel-phosphorous plating layer on the surface of the substrate fine particles by using a nickel plating solution containing an agent and adjusting the pH during nickel plating reaction to 4.9 or less; and At least one complexing agent selected from the group consisting of citric acid, malic acid, succinic acid, propionic acid, lactic acid, and acetic acid, and crystal adjustment selected from the group consisting of tungsten boride and sodium tungstate Crystal structure nickel-tungsten-phosphorus using a nickel plating solution containing an agent and adjusting the pH during nickel plating reaction to 7-9 Tsu key layer can be produced by a production method and a step 3 of forming a.

以下に、各工程を詳述する。
上記工程1は、基材微粒子の表面に触媒付与を行う工程である。
上記触媒付与を行う方法としては、例えば、アルカリ溶液でエッチングされた基材微粒子に酸中和、及び、二塩化スズ(SnCl)溶液におけるセンシタイジングを行い、二塩化パラジウム(PdCl)溶液におけるアクチベイジングを行う無電解メッキ前処理工程を行う方法等が挙げられる。
なお、センシタイジングとは、絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、絶縁性物質表面にSn2++Pd2+→Sn4++Pdで示される反応を起こしてパラジウムを無電解メッキの触媒核とする工程である。
Below, each process is explained in full detail.
Step 1 is a step of applying a catalyst to the surface of the substrate fine particles.
As a method for performing the catalyst application, for example, acid neutralization and sensitizing in a tin dichloride (SnCl 2 ) solution are performed on the substrate fine particles etched with an alkali solution, and a palladium dichloride (PdCl 2 ) solution is then provided. The method of performing the electroless-plating pre-processing process which performs activating in is mentioned.
Sensitizing is a process in which Sn 2+ ions are adsorbed on the surface of an insulating material, and activating is a reaction represented by Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 on the surface of an insulating material. In this process, palladium is used as a catalyst core for electroless plating.

上記工程2は、クエン酸、リンゴ酸、コハク酸、プロピオン酸、乳酸、及び、酢酸からなる群より選択される少なくとも1種の錯化剤を含有するニッケルメッキ液を用い、かつ、ニッケルメッキ反応時のpHを4.9以下に調整することにより前記基材微粒子の表面に非結晶構造ニッケル−リンメッキ層を形成させる工程である。 The step 2 uses a nickel plating solution containing at least one complexing agent selected from the group consisting of citric acid, malic acid, succinic acid, propionic acid, lactic acid, and acetic acid, and a nickel plating reaction It is a step of forming an amorphous nickel-phosphorous plating layer on the surface of the substrate fine particles by adjusting the pH to 4.9 or less.

上記非結晶構造ニッケル−リンメッキ層を形成させる方法としては、ニッケルメッキ反応時のpHを4.9以下に調整することが好ましく、具体的には、例えば、ニッケルメッキ液pHと反応浴pHとを共に4.5にして、ニッケルメッキ反応時のpHを4.5にして行う方法1;ニッケルメッキ液pHを8、反応浴pHを4にし、ニッケルメッキ液の滴下速度を方法1の1/3にし、ニッケルメッキ反応時のpHを4.5にして行う方法2等が挙げられる。
本発明においては、非結晶構造ニッケル−リンメッキ層を形成させる際に、ニッケル−リンメッキ反応時のpHを4.9以下に調整することにより、基材微粒子と非結晶構造ニッケル−リンメッキ層との密着性が優れたものとなり、導電性微粒子全体として、耐衝撃性等に優れたものとなる。
As a method for forming the non-crystalline nickel-phosphorus plating layer, it is preferable to adjust the pH during nickel plating reaction to 4.9 or less. Specifically, for example, the nickel plating solution pH and the reaction bath pH are adjusted. Method 1 in which both are set to 4.5 and the pH during nickel plating reaction is set to 4.5; the nickel plating solution pH is set to 8, the reaction bath pH is set to 4, and the dropping rate of the nickel plating solution is set to 1/3 of method 1. And a method 2 in which the pH during the nickel plating reaction is set to 4.5.
In the present invention, when the amorphous nickel-phosphorous plating layer is formed, the pH of the nickel-phosphorous plating reaction is adjusted to 4.9 or less, whereby the adhesion between the substrate fine particles and the amorphous nickel-phosphorous plating layer is achieved. As a whole, the conductive fine particles have excellent impact resistance and the like.

上記非結晶構造ニッケル−リンメッキ層を形成させる際のニッケルメッキ液は、クエン酸、リンゴ酸、コハク酸、プロピオン酸、乳酸、及び、酢酸からなる群より選択される少なくとも1種の錯化剤を含有することが好ましい。このような錯化剤を含有し、かつ、上述したpHでニッケルメッキ反応を行うことにより、ニッケル結晶粒塊が認められない非結晶構造ニッケル−リンメッキ層を効率よく作製することができる。
上記非結晶構造ニッケル−リンメッキ層を形成させる際のニッケルメッキ液は、リン成分として次亜リン酸ナトリウムを含有することが好ましい。
また、上記非結晶構造ニッケル−リンメッキ層を形成させる際のニッケルメッキ液は、メッキ安定剤として、硝酸ビスマス及び/又は硝酸タリウムを含有することが好ましい。
The nickel plating solution for forming the non-crystalline nickel-phosphorous plating layer includes at least one complexing agent selected from the group consisting of citric acid, malic acid, succinic acid, propionic acid, lactic acid, and acetic acid. It is preferable to contain. By containing such a complexing agent and performing the nickel plating reaction at the pH described above, an amorphous structure nickel-phosphorous plating layer in which no nickel crystal agglomerates are observed can be efficiently produced.
The nickel plating solution used to form the non-crystalline nickel-phosphorous plating layer preferably contains sodium hypophosphite as a phosphorus component.
Moreover, it is preferable that the nickel plating liquid at the time of forming the said amorphous structure nickel- phosphorus plating layer contains bismuth nitrate and / or thallium nitrate as a plating stabilizer.

上記工程3は、クエン酸、リンゴ酸、コハク酸、プロピオン酸、乳酸、及び、酢酸からなる群より選択される少なくとも1種の錯化剤、並びに、ホウ化タングステン、タングステン酸ナトリウムからなる群より選択される結晶調整剤を含有するニッケルメッキ液を用い、かつ、ニッケルメッキ反応時のpHを7〜9に調整することにより結晶構造ニッケル−タングステン−リンメッキ層を形成させる工程である。 Step 3 includes at least one complexing agent selected from the group consisting of citric acid, malic acid, succinic acid, propionic acid, lactic acid, and acetic acid, and a group consisting of tungsten boride and sodium tungstate. This is a step of forming a crystal structure nickel-tungsten-phosphorous plating layer by using a nickel plating solution containing a selected crystal modifier and adjusting the pH during the nickel plating reaction to 7-9.

上記結晶構造ニッケル−タングステン−リンメッキ層を形成させる際には、ニッケルメッキ反応のpHを7〜9に調整することが好ましい。 When forming the crystal structure nickel-tungsten-phosphorus plating layer, it is preferable to adjust the pH of the nickel plating reaction to 7-9.

上記結晶構造ニッケル−タングステン−リンメッキ層を形成させる際のニッケルメッキ液は、クエン酸、リンゴ酸、コハク酸、プロピオン酸、乳酸、及び、酢酸からなる群より選択される少なくとも1種の錯化剤を含有することが好ましい。このような錯化剤を含有し、かつ、上述したpHでニッケルメッキ反応を行うことにより、従来では達成し得ないほどの高いニッケル結晶粒塊を含有する結晶構造ニッケル−タングステン−リンメッキ層を効率よく作製することができる。
また、上記ニッケルメッキ液は、メッキ安定剤として、硝酸ビスマス及び/又は硝酸タリウムを含有することが好ましい。
The nickel plating solution for forming the crystal structure nickel-tungsten-phosphorous plating layer is at least one complexing agent selected from the group consisting of citric acid, malic acid, succinic acid, propionic acid, lactic acid, and acetic acid. It is preferable to contain. By carrying out the nickel plating reaction at the above-mentioned pH containing such a complexing agent, a crystal structure nickel-tungsten-phosphorous plating layer containing nickel crystal agglomerates that cannot be achieved conventionally can be efficiently obtained. Can be made well.
The nickel plating solution preferably contains bismuth nitrate and / or thallium nitrate as a plating stabilizer.

上記結晶構造ニッケル−タングステン−リンメッキ層を形成させる際のニッケルメッキ液は、リン成分として次亜リン酸ナトリウム等を含有することが好ましい。
また、上記結晶構造ニッケル−タングステン−リンメッキ層を形成させる際のニッケルメッキ液は、結晶調整剤を含有することが好ましい。
上記結晶調整剤としては特に限定されず、例えば、ホウ化タングステン、タングステン酸ナトリウム等が挙げられる。
The nickel plating solution used for forming the crystal structure nickel-tungsten-phosphorous plating layer preferably contains sodium hypophosphite or the like as a phosphorus component.
The nickel plating solution for forming the crystal structure nickel-tungsten-phosphorus plating layer preferably contains a crystal adjusting agent.
The crystal modifier is not particularly limited, and examples thereof include tungsten boride and sodium tungstate.

本発明の導電性微粒子は、上記構成からなることにより、基材微粒子と導電層との密着性が高く、耐衝撃性及び導電性に優れたものとなる。 When the conductive fine particles of the present invention have the above-described configuration, the adhesion between the base fine particles and the conductive layer is high, and the impact resistance and the conductivity are excellent.

本発明の導電性微粒子をバインダー樹脂に分散させることにより異方性導電材料を製造することができる。このような異方性導電材料もまた、本発明の1つである。 An anisotropic conductive material can be produced by dispersing the conductive fine particles of the present invention in a binder resin. Such an anisotropic conductive material is also one aspect of the present invention.

本発明の異方性導電材料の具体的な例としては、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘着剤層、異方性導電フィルム、異方性導電シート等が挙げられる。 Specific examples of the anisotropic conductive material of the present invention include, for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive layer, anisotropic conductive film, anisotropic conductive sheet and the like. Is mentioned.

上記樹脂バインダーとしては特に限定されないが、絶縁性の樹脂が用いられ、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型のいずれの硬化型であってもよい。
The resin binder is not particularly limited, and an insulating resin is used. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene-acetic acid Thermoplastic resins such as vinyl copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene block copolymer Polymers, thermoplastic block copolymers such as styrene-isoprene-styrene block copolymers and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber (rubbers) ) And the like. These resins may be used alone or in combination of two or more.
Further, the curable resin may be any curable type of room temperature curable type, heat curable type, photo curable type, and moisture curable type.

本発明の異方性導電材料には、本発明の導電性微粒子、及び、上記樹脂バインダーの他に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を添加してもよい。 In addition to the conductive fine particles of the present invention and the resin binder described above, the anisotropic conductive material of the present invention includes, for example, a bulking agent and a softening agent (if necessary) within a range not impairing the achievement of the problems of the present invention. Additives such as plasticizers), adhesive improvers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Good.

本発明の異方性導電材料の製造方法としては特に限定されず、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に溶解(分散)させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなる用に塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、製造しようとする異方性導電材料の種類に対応して、適宜の製造方法をとればよい。
また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and are mixed and dispersed uniformly. A method of using a conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., adding the conductive fine particles of the present invention in an insulating resin binder and uniformly dissolving (dispersing), or , Heat-dissolve, and apply to the release treatment surface of the release material such as release paper and release film to have a predetermined film thickness, and perform drying and cooling as necessary, for example, anisotropic For example, an appropriate manufacturing method may be employed in accordance with the type of anisotropic conductive material to be manufactured.
Moreover, it is good also as an anisotropic conductive material by using separately, without mixing an insulating resin binder and the electroconductive fine particles of this invention.

本発明によれば、基材微粒子と導電層との密着性が高く、耐衝撃性及び導電性に優れた導電性微粒子、並びに、該導電性微粒子を用いてなる異方性導電材料を提供することができる。 According to the present invention, there are provided conductive fine particles having high adhesion between the substrate fine particles and the conductive layer and excellent in impact resistance and conductivity, and an anisotropic conductive material using the conductive fine particles. be able to.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
平均粒子径3μmのジビニルベンゼン系共重合樹脂(積水化学工業社製、「SP−203」)からなる基材微粒子10gに、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化スズ溶液におけるセンシタイジングを行った。その後、二塩化パラジウム溶液におけるアクチベイチングからなる無電解メッキ前処理を施し、濾過洗浄後、粒子表面にパラジウムを付着させた基材微粒子を得た。
Example 1
To 10 g of substrate fine particles made of divinylbenzene copolymer resin (“SP-203” manufactured by Sekisui Chemical Co., Ltd.) having an average particle size of 3 μm, alkali degreasing with sodium hydroxide aqueous solution, acid neutralization, sensitivity in tin dichloride solution Tizing was performed. Thereafter, an electroless plating pretreatment consisting of activation in a palladium dichloride solution was performed, and after filtering and washing, substrate fine particles having palladium adhered to the particle surfaces were obtained.

得られた基材微粒子を更に水1200mLで希釈し、メッキ安定剤として1g/Lの硝酸タリウム水溶液4mLを添加後、この水溶液に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム(錯化剤)116g/L、メッキ安定剤として1g/Lの硝酸タリウム水溶液6mLの混合溶液120mLを10%硫酸でpHを4.5に調整しニッケルメッキ液とし、81mL/分の添加速度で、反応浴槽に、定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、ニッケルメッキ反応時のpHが4.5であることを確認後、水素の発泡が停止するのを確認し、無電解メッキ前期工程を行い、ニッケルメッキ微粒子1を得た。
得られたニッケルメッキ微粒子1をサンプリングし、乾燥させて、ニッケルメッキ被膜のX線回折測定を行った。X線回折測定は、Rigaku社製「X−RAY DIFFRACTOMETER RINT1400」により、測定条件は、管電圧:50kV、管電流:100mA、X線:CuKα線、波長λ:1.541オングストロムとした。X線回折測定を行った結果、ニッケルの結晶ピークは確認できず、非結晶構造ニッケル−リンメッキ層であることが確認された。
The obtained substrate fine particles were further diluted with 1200 mL of water, and 4 mL of a 1 g / L aqueous solution of thallium nitrate was added as a plating stabilizer. Then, 450 g / L of nickel sulfate, 150 g / L of sodium hypophosphite, citric acid were added to this aqueous solution. Sodium (complexing agent) 116 g / L, 1 g / L of thallium nitrate solution 6 mL 120 mL as a plating stabilizer 120 mL of 10% sulfuric acid to adjust the pH to 4.5 to make a nickel plating solution, 81 mL / min addition rate And added to the reaction bath through a metering pump. Thereafter, the mixture is stirred until the pH is stabilized, and after confirming that the pH during the nickel plating reaction is 4.5, it is confirmed that hydrogen foaming stops, and the first step of electroless plating is performed. Got.
The obtained nickel plating fine particles 1 were sampled and dried, and X-ray diffraction measurement of the nickel plating film was performed. The X-ray diffraction measurement was performed by “X-RAY DIFFRACTOMETER RINT1400” manufactured by Rigaku Corporation. The measurement conditions were tube voltage: 50 kV, tube current: 100 mA, X-ray: CuKα ray, wavelength λ: 1.541 Å. As a result of X-ray diffraction measurement, a crystal peak of nickel could not be confirmed, and it was confirmed that it was an amorphous structure nickel-phosphorous plating layer.

次いで、更に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム(錯化剤)116g/L、結晶調整剤としてホウ化タングステン200g/L、メッキ安定剤として1g/Lの硝酸タリウム水溶液35mLの混合溶液650mLをアンモニア水でpHを9.3に調整しニッケルメッキ液とし、27mL/分の添加速度で定量ポンプを通して添加した。その後、水素の発泡が停止するのを確認し、無電解メッキ後期工程を行い、ニッケルメッキ微粒子2を得た。
また、得られたニッケルメッキ微粒子2をサンプリングし、乾燥させて、ニッケルメッキ微粒子1と同様にニッケルメッキ被膜のX線回折測定を行った。X線回折測定を行った結果、ニッケルの結晶ピークが確認され、ニッケル(111)面が2θ=44.9°に、ニッケル(200)面が2θ=51.5°に、ニッケル(220)面が2θ=76.7°に確認された。また、各ピークにおける面積強度比は、(111)面:(200)面:(220)面=93:4:3であることが確認され、ニッケル結晶は(111)面へ配向する結晶粒塊が93%であることが確認された。すなわち、ニッケル(111)面の面積強度比により求められる割合が80%以上であることが確認された。
Next, nickel sulfate 450 g / L, sodium hypophosphite 150 g / L, sodium citrate (complexing agent) 116 g / L, tungsten boride 200 g / L as a crystal modifier, and 1 g / L nitric acid as a plating stabilizer 650 mL of a mixed solution of 35 mL of thallium aqueous solution was adjusted to pH 9.3 with aqueous ammonia to obtain a nickel plating solution, and added through a metering pump at an addition rate of 27 mL / min. Thereafter, it was confirmed that hydrogen foaming stopped, and the latter stage of electroless plating was performed to obtain nickel-plated fine particles 2.
The obtained nickel plating fine particles 2 were sampled and dried, and the X-ray diffraction measurement of the nickel plating film was performed in the same manner as the nickel plating fine particles 1. As a result of X-ray diffraction measurement, a nickel crystal peak was confirmed, the nickel (111) plane was 2θ = 44.9 °, the nickel (200) plane was 2θ = 51.5 °, and the nickel (220) plane. Was confirmed at 2θ = 76.7 °. Further, the area intensity ratio at each peak was confirmed to be (111) plane: (200) plane: (220) plane = 93: 4: 3, and the nickel crystal was a crystal grain lump oriented to the (111) plane. Was found to be 93%. That is, it was confirmed that the ratio obtained by the area intensity ratio of the nickel (111) surface was 80% or more.

次いで、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥し、更に、置換メッキ法により表面に金メッキを施し、金メッキされた導電性微粒子を得た。 Next, the plating solution was filtered, and the filtrate was washed with water and then dried with a vacuum dryer at 80 ° C. Further, gold plating was performed on the surface by a displacement plating method to obtain gold-plated conductive fine particles.

(比較例1)
ニッケルメッキの際、結晶調整剤としてホウ化タングステン200g/Lを添加しなかったこと以外は、実施例1と同様にしてニッケルメッキ微粒子及び導電性微粒子を作製した。
また、得られたニッケルメッキ微粒子をサンプリングし、乾燥させて、実施例1と同様にしてニッケルメッキ被膜のX線回折測定を行った。X線回折測定を行った結果、ニッケルの結晶ピークが確認され、ニッケル(111)面が2θ=44.9°に、ニッケル(200)面が2θ=51.5°に、ニッケル(220)面が2θ=76.7°に確認された。また、各ピークにおける面積強度比は、(111)面:(200)面:(220)面=65:20:15であることが確認され、ニッケル結晶は(111)面へ配向する結晶粒塊が65%であることが確認された。すなわち、ニッケル(111)面の面積強度比により求められる割合が80%以下であることが確認された。
(Comparative Example 1)
Nickel plating fine particles and conductive fine particles were produced in the same manner as in Example 1 except that 200 g / L of tungsten boride was not added as a crystal modifier during nickel plating.
The obtained nickel plating fine particles were sampled and dried, and the X-ray diffraction measurement of the nickel plating film was performed in the same manner as in Example 1. As a result of X-ray diffraction measurement, a nickel crystal peak was confirmed, the nickel (111) plane was 2θ = 44.9 °, the nickel (200) plane was 2θ = 51.5 °, and the nickel (220) plane. Was confirmed at 2θ = 76.7 °. Further, the area intensity ratio at each peak was confirmed to be (111) plane: (200) plane: (220) plane = 65: 20: 15, and the nickel crystal was a crystal grain lump oriented to the (111) plane. Was confirmed to be 65%. That is, it was confirmed that the ratio obtained by the area intensity ratio of the nickel (111) surface was 80% or less.

<評価>
実施例1及び比較例1で得られた導電性微粒子について、以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed on the conductive fine particles obtained in Example 1 and Comparative Example 1. The results are shown in Table 1.

(1)導電性微粒子の密着性評価
実施例1及び比較例1で得られたそれぞれの導電性微粒子について、100mLのビーカーに、導電性微粒子1g、直径1mmのジルコニアボール10g、及び、トルエン20mLを投入し、ステンレス製の4枚攪拌羽根により300rpmで3分間攪拌し、導電性微粒子の解砕を行った。
解砕を行った導電性微粒子について、走査電子顕微鏡(SEM)写真(1000倍)にて、1000個観察中の割れた粒子数をカウントして、基材微粒子とメッキ被膜との密着性の評価を行った。なお、割れた粒子数は、導電性微粒子の直径の1/2以上のひびや剥がれをおこしたものをカウントした。
(1) Evaluation of Adhesiveness of Conductive Fine Particles About each of the conductive fine particles obtained in Example 1 and Comparative Example 1, 1 g of conductive fine particles, 10 g of zirconia balls having a diameter of 1 mm, and 20 mL of toluene were added to a 100 mL beaker. The mixture was stirred for 3 minutes at 300 rpm with four stainless steel stirring blades, and the conductive fine particles were crushed.
About the electroconductive fine particles which crushed, with the scanning electron microscope (SEM) photograph (1000 times), the number of the cracking particles under 1000 observation was counted, and the adhesiveness evaluation of base material fine particles and a plating film is performed. Went. In addition, the number of cracked particles was counted as those having cracks or peeling of 1/2 or more of the diameter of the conductive fine particles.

(2)異方性導電材料の評価
樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部を、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが10μmとなるように塗布し、トルエンを蒸発させて接着性フィルムを得た。
次いで、樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及びトルエン100重量部に、得られた導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを蒸発させて導電性微粒子を含有する接着性フィルムを得た。なお、導電性微粒子の配合量は、フィルム中の含有量が5万個/cmとなるようにした。
得られた接着性フィルムと導電性微粒子を含有する接着性フィルムとを常温でラミネートすることにより、2層構造を有する厚さ17μmの異方性導電フィルムを得た。
得られた異方性導電フィルムを5×5mmの大きさに切断した。これを、一方に抵抗測定用の引き回し線を有した幅200μm、長さ1mm、高さ0.2μm、L/S20μmのアルミニウム電極のほぼ中央に貼り付けた後、同じアルミニウム電極を有するガラス基板を、電極同士が重なるように位置あわせをしてから貼り合わせた。
このガラス基板の接合部を、40MPa、200℃の圧着条件で熱圧着した後、電極間の抵抗値、及び、電極間のリーク電流の有無を評価した。
(2) Evaluation of anisotropic conductive material 100 parts by weight of epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene are used as the resin binder resin. Then, after thoroughly mixing using a planetary stirrer, it was applied on a release film so that the thickness after drying was 10 μm, and toluene was evaporated to obtain an adhesive film.
Next, the obtained conductive fine particles were added to 100 parts by weight of an epoxy resin (Epicoat 828, manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin. Then, after sufficiently mixing using a planetary stirrer, it was applied on the release film so that the thickness after drying was 7 μm, and toluene was evaporated to obtain an adhesive film containing conductive fine particles. . In addition, the compounding quantity of electroconductive fine particles was made for the content in a film to be 50,000 piece / cm < 2 >.
By laminating the obtained adhesive film and an adhesive film containing conductive fine particles at room temperature, an anisotropic conductive film having a two-layer structure and a thickness of 17 μm was obtained.
The obtained anisotropic conductive film was cut into a size of 5 × 5 mm. This is attached to the center of an aluminum electrode having a width of 200 μm, a length of 1 mm, a height of 0.2 μm, and an L / S of 20 μm having a resistance measurement lead wire on one side, and then a glass substrate having the same aluminum electrode. After the alignment, the electrodes were pasted together.
The bonded portion of the glass substrate was subjected to thermocompression bonding under pressure bonding conditions of 40 MPa and 200 ° C., and then the resistance value between the electrodes and the presence or absence of a leakage current between the electrodes were evaluated.

Figure 2007173075
Figure 2007173075

本発明によれば、基材微粒子と導電層との密着性が高く、耐衝撃性及び導電性に優れた導電性微粒子、並びに、該導電性微粒子を用いてなる異方性導電材料を提供することができる。 According to the present invention, there are provided conductive fine particles having high adhesion between the substrate fine particles and the conductive layer and excellent in impact resistance and conductivity, and an anisotropic conductive material using the conductive fine particles. be able to.

Claims (4)

基材微粒子と、前記基材微粒子の表面に形成された導電層とからなる導電性微粒子であって、
前記導電層は、前記基材微粒子の表面に接する非結晶構造ニッケル−リンメッキ層と、前記非結晶構造ニッケル−リンメッキ層の表面に接する結晶構造ニッケル−タングステン−リンメッキ層とを有する
ことを特徴とする導電性微粒子。
Conductive fine particles comprising substrate fine particles and a conductive layer formed on the surface of the substrate fine particles,
The conductive layer includes an amorphous structure nickel-phosphorous plating layer in contact with the surface of the substrate fine particles and a crystalline structure nickel-tungsten-phosphorous plating layer in contact with the surface of the amorphous structure nickel-phosphorus plating layer. Conductive fine particles.
非結晶構造ニッケル−リンメッキ層の含リン率が10〜18wt%であり、かつ、結晶構造ニッケル−タングステン−リンメッキ層の含リン率が1〜8wt%及び含タングステン率が0.5〜5wt%であることを特徴とする請求項1記載の導電性微粒子。 The phosphorus content of the amorphous nickel-phosphorous plating layer is 10 to 18 wt%, the phosphor content of the crystalline nickel-tungsten-phosphorous plating layer is 1 to 8 wt%, and the tungsten content is 0.5 to 5 wt%. The conductive fine particles according to claim 1, wherein the conductive fine particles are present. 更に、導電層の表面に金層が形成されていることを特徴とする請求項1又は2記載の導電性微粒子。 3. The conductive fine particle according to claim 1, further comprising a gold layer formed on the surface of the conductive layer. 請求項1、2又は3記載の導電性微粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。 An anisotropic conductive material, wherein the conductive fine particles according to claim 1, 2 or 3 are dispersed in a resin binder.
JP2005369779A 2005-12-22 2005-12-22 Conductive fine particles and anisotropic conductive materials Active JP4638341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369779A JP4638341B2 (en) 2005-12-22 2005-12-22 Conductive fine particles and anisotropic conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005369779A JP4638341B2 (en) 2005-12-22 2005-12-22 Conductive fine particles and anisotropic conductive materials

Publications (2)

Publication Number Publication Date
JP2007173075A true JP2007173075A (en) 2007-07-05
JP4638341B2 JP4638341B2 (en) 2011-02-23

Family

ID=38299349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369779A Active JP4638341B2 (en) 2005-12-22 2005-12-22 Conductive fine particles and anisotropic conductive materials

Country Status (1)

Country Link
JP (1) JP4638341B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080408A (en) * 2008-09-29 2010-04-08 Sekisui Chem Co Ltd Conductive particles, anisotropic conductive material, and connection structure
JP2013084537A (en) * 2011-09-29 2013-05-09 Nippon Shokubai Co Ltd Conductive particulate
WO2013085039A1 (en) * 2011-12-08 2013-06-13 株式会社日本触媒 Conductive fine particles and anisotropically conductive material containing same
JP2013122886A (en) * 2011-12-12 2013-06-20 Nippon Shokubai Co Ltd Conductive particle and anisotropic conductive material
JP2013149613A (en) * 2011-12-22 2013-08-01 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure
CN103305052A (en) * 2013-06-20 2013-09-18 四川理工学院 Nanometer ni-p conductive ink and preparation method thereof
KR20130115150A (en) 2012-04-10 2013-10-21 니폰 가가쿠 고교 가부시키가이샤 Conductive particle and conductive material comprising the same
JP2014011117A (en) * 2012-07-02 2014-01-20 Nippon Shokubai Co Ltd Conductive fine particle
CN103531271A (en) * 2012-07-03 2014-01-22 日本化学工业株式会社 Conductive particle, conductive material, and method for manufacturing the conductive particle
JP2014239043A (en) * 2014-07-04 2014-12-18 積水化学工業株式会社 Conductive particle, anisotropic conductive material and connection structure
US8932716B2 (en) 2009-07-16 2015-01-13 Dexerials Corporation Conductive particle, and anisotropic conductive film, bonded structure, and bonding method
JP2015110834A (en) * 2013-11-01 2015-06-18 積水化学工業株式会社 Electric conductive particle, electrical conducting material, and connection structure
JP2015149276A (en) * 2014-01-10 2015-08-20 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
JP2016201364A (en) * 2016-06-09 2016-12-01 日本化学工業株式会社 Conductive particle and conductive material containing the same
JP2017056695A (en) * 2015-09-18 2017-03-23 コニカミノルタ株式会社 Connection structure, inkjet head, method for manufacturing inkjet head, and inkjet recording apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266729A (en) * 1987-04-23 1988-11-02 Oki Electric Ind Co Ltd Cathode of dc-type plasma luminous element and its manufacture
JPH07118866A (en) * 1993-10-21 1995-05-09 Nippon Chem Ind Co Ltd Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
JP2003197028A (en) * 2001-12-26 2003-07-11 Sekisui Chem Co Ltd Conductive fine particle, manufacturing method for conductive fine particle, and anisotropic conductive material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266729A (en) * 1987-04-23 1988-11-02 Oki Electric Ind Co Ltd Cathode of dc-type plasma luminous element and its manufacture
JPH07118866A (en) * 1993-10-21 1995-05-09 Nippon Chem Ind Co Ltd Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
JP2003197028A (en) * 2001-12-26 2003-07-11 Sekisui Chem Co Ltd Conductive fine particle, manufacturing method for conductive fine particle, and anisotropic conductive material

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080408A (en) * 2008-09-29 2010-04-08 Sekisui Chem Co Ltd Conductive particles, anisotropic conductive material, and connection structure
CN106270496A (en) * 2009-07-16 2017-01-04 迪睿合电子材料有限公司 Electroconductive particle, anisotropic conductive film, conjugant and method of attachment
US8932716B2 (en) 2009-07-16 2015-01-13 Dexerials Corporation Conductive particle, and anisotropic conductive film, bonded structure, and bonding method
JP2013084537A (en) * 2011-09-29 2013-05-09 Nippon Shokubai Co Ltd Conductive particulate
CN103946929A (en) * 2011-12-08 2014-07-23 株式会社日本触媒 Conductive fine particles and anisotropically conductive material containing same
WO2013085039A1 (en) * 2011-12-08 2013-06-13 株式会社日本触媒 Conductive fine particles and anisotropically conductive material containing same
JPWO2013085039A1 (en) * 2011-12-08 2015-04-27 株式会社日本触媒 Conductive fine particles and anisotropic conductive material containing the same
JP2013122886A (en) * 2011-12-12 2013-06-20 Nippon Shokubai Co Ltd Conductive particle and anisotropic conductive material
JP2013149613A (en) * 2011-12-22 2013-08-01 Sekisui Chem Co Ltd Conductive particle, conductive material, and connection structure
KR20130115150A (en) 2012-04-10 2013-10-21 니폰 가가쿠 고교 가부시키가이샤 Conductive particle and conductive material comprising the same
JP2013218907A (en) * 2012-04-10 2013-10-24 Nippon Chem Ind Co Ltd Conductive particles and conductive material containing the same
JP2014011117A (en) * 2012-07-02 2014-01-20 Nippon Shokubai Co Ltd Conductive fine particle
CN107424665A (en) * 2012-07-03 2017-12-01 日本化学工业株式会社 The manufacture method of electroconductive particle, conductive material and electroconductive particle
JP2014013660A (en) * 2012-07-03 2014-01-23 Nippon Chem Ind Co Ltd Conductive particle and conductive material including the same
CN103531271A (en) * 2012-07-03 2014-01-22 日本化学工业株式会社 Conductive particle, conductive material, and method for manufacturing the conductive particle
CN107424665B (en) * 2012-07-03 2019-07-23 日本化学工业株式会社 The manufacturing method of electroconductive particle, conductive material and electroconductive particle
KR101937734B1 (en) * 2012-07-03 2019-01-11 니폰 가가쿠 고교 가부시키가이샤 Conductive particle, conductive material, and method for manufacturing the conductive particle
KR101922575B1 (en) * 2012-07-03 2018-11-27 니폰 가가쿠 고교 가부시키가이샤 Conductive particle, conductive material, and method for manufacturing the conductive particle
TWI602201B (en) * 2012-07-03 2017-10-11 日本化學工業股份有限公司 Conductive particles, conductive material and method for producing conductive particles
KR20170012529A (en) 2012-07-03 2017-02-02 니폰 가가쿠 고교 가부시키가이샤 Conductive particle, conductive material, and method for manufacturing the conductive particle
CN103305052A (en) * 2013-06-20 2013-09-18 四川理工学院 Nanometer ni-p conductive ink and preparation method thereof
JP2015110834A (en) * 2013-11-01 2015-06-18 積水化学工業株式会社 Electric conductive particle, electrical conducting material, and connection structure
JP2015149276A (en) * 2014-01-10 2015-08-20 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
JP2014239043A (en) * 2014-07-04 2014-12-18 積水化学工業株式会社 Conductive particle, anisotropic conductive material and connection structure
JP2017056695A (en) * 2015-09-18 2017-03-23 コニカミノルタ株式会社 Connection structure, inkjet head, method for manufacturing inkjet head, and inkjet recording apparatus
JP2016201364A (en) * 2016-06-09 2016-12-01 日本化学工業株式会社 Conductive particle and conductive material containing the same

Also Published As

Publication number Publication date
JP4638341B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP4243279B2 (en) Conductive fine particles and anisotropic conductive materials
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4957838B2 (en) Conductive fine particles and anisotropic conductive materials
JP4860163B2 (en) Method for producing conductive fine particles
JP6009933B2 (en) Conductive particles, conductive materials, and connection structures
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP2007242307A (en) Conductive particulate and anisotropic conductive material
JP6084868B2 (en) Conductive particles, conductive materials, and connection structures
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JP2006216388A (en) Conductive fine particle and anisotropic conductive material
JP2007324138A (en) Conductive particulate and anisotropic conductive material
JP4772490B2 (en) Method for producing conductive particles
JP2009032397A (en) Conductive fine particle
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials
JP4598621B2 (en) Conductive fine particles and anisotropic conductive material
JP5323147B2 (en) Conductive fine particles and anisotropic conductive materials
JP2020113545A (en) Conductive particle, conductive material and connection structure
JP2007194210A (en) Conductive fine particle and anisotropic conductive material
WO2007072912A1 (en) Conductive fine particle and anisotropic conductive material
JP2006086104A (en) Conductive fine particle and anisotropic conductive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4638341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3