WO2016152942A1 - Method for producing conductive particles - Google Patents

Method for producing conductive particles Download PDF

Info

Publication number
WO2016152942A1
WO2016152942A1 PCT/JP2016/059271 JP2016059271W WO2016152942A1 WO 2016152942 A1 WO2016152942 A1 WO 2016152942A1 JP 2016059271 W JP2016059271 W JP 2016059271W WO 2016152942 A1 WO2016152942 A1 WO 2016152942A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
sputtering
vibration
particle
metal layer
Prior art date
Application number
PCT/JP2016/059271
Other languages
French (fr)
Japanese (ja)
Inventor
博之 熊倉
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2016152942A1 publication Critical patent/WO2016152942A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin

Definitions

  • the present invention relates to a method for producing conductive particles mainly used for anisotropic conductive adhesives and the like.
  • An anisotropic conductive adhesive is used as a connection material for connecting an electronic component having a large number of electrodes to a substrate or the like.
  • Anisotropic conductive adhesive is a printed wiring board, glass substrates for liquid crystal displays (LCD), substrates such as flexible printed boards, and connected members such as semiconductor elements such as ICs and LSIs and packages. Is a connecting material that performs electrical connection and mechanical fixation so as to keep the conductive state between the opposing electrodes and to keep the insulation between adjacent electrodes.
  • conductive particles blended in the anisotropic conductive adhesive various particles have been proposed and used from the viewpoint of improving the connection reliability and reducing the resistance of the connection portion.
  • metal particles such as tin (Sn), lead (Pb), silver (Ag), aluminum (Al), nickel (Ni), solder alloy particles, inorganic fine particles such as glass and ceramics, and resins such as thermosetting resins
  • ACA anisotropic conductive adhesive
  • an electroless plating method is generally used.
  • solder alloy particles an oxide film is easily formed on the surface, so the metal layer should be formed uniformly.
  • Patent Document 1 discloses a metal (Sn, Au, etc.) serving as a protective film on the surface of a solder particle by a sputtering apparatus while rotating the spherical solder particle by an ultrasonic vibrator or the like. ) Is produced by sputtering the solder material.
  • Patent Document 2 describes lead-free solder powder in which Sn or Bi is coated on the surface by vapor deposition while rocking lead-free solder powder particles.
  • Patent Document 3 discloses that when a conductive material such as carbon is vibrated, a catalyst material such as Pt is attached to the surface of the conductive powder by a physical vapor deposition method such as sputtering. And a method for producing conductive catalyst particles in which a ball or the like as a vibration amplifying means is disposed on a vibration surface and these are vibrated simultaneously.
  • JP 2002-331385 A Japanese Patent Laid-Open No. 2004-90011 Japanese Patent Laid-Open No. 2003-33668
  • the conductive particles used in anisotropic conductive adhesives are often small particles with a particle size of 20 ⁇ m or less, and such particles aggregate when forming a metal layer on the surface. I often do.
  • Patent Document 1 and the lead-free solder powder of Patent Document 2 are both solder particles for solder paste and have a particle size of 20 ⁇ m or more. Therefore, Patent Document 1 and Patent Document 2 describe a coating of a metal layer on solder particles having a relatively large particle size, but uniform formation of a metal layer on particles having a small particle size of 20 ⁇ m or less. There is no description about prevention of particle aggregation.
  • Patent Document 3 describes that a catalytic substance is uniformly attached to the conductive powder by using a vibration amplifying means such as a ball. However, the vibration of the ball or the like is applied to a soft material such as solder particles. When the amplification means is used, the solder particles may be deformed by the contact between the solder particles and the ball. Patent Document 3 does not describe adhesion of a metal layer to a soft material such as solder particles.
  • the present invention has been proposed in view of such circumstances, and the conductive particles capable of forming a uniform metal layer on the deposition target particles without aggregating the particles during the formation of the metal layer.
  • a manufacturing method is provided.
  • the present invention is a method for producing conductive particles in which a metal layer is formed by sputtering on the surface of a film formation target particle using a sputtering target made of a metal material, and the film formation target is formed when the metal layer is formed.
  • the method includes intermittently performing the sputtering while vibrating the container in which the particles are arranged.
  • good conductive particles can be obtained without intermittent generation of particles or deformation of particles by intermittently performing sputtering when forming the metal layer. That is, while sputtering is not performed, vibration is applied to the particles in a state where no sputtered particles are deposited from the sputtering target, so that a large crushing effect is added and particle aggregation can be prevented.
  • a uniform metal layer can be formed on the particles.
  • the step of performing the sputtering for 1 minute to 60 minutes and the step of not performing the sputtering for 1 minute to 15 minutes are alternately repeated at least once each. Is also effective. By repeating the step of performing sputtering with such a time distribution and the step of not performing sputtering, it is possible to efficiently deposit the sputtered particles from the sputtering target and crush the aggregated particles.
  • the present invention is effective even when the ratio A / B of the time (A) of the step of performing sputtering and the time (B) of the step of not performing sputtering is in the range of 1 ⁇ A / B ⁇ 10. Is.
  • the film formation target particles are also effective when the particles are solder particles.
  • the solder particles are conductive particles that can be suitably used for the anisotropic conductive adhesive because high reliability is easily obtained at the time of connection.
  • the metal material is also effective when it is at least one selected from the group consisting of copper (Cu), aluminum (Al), nickel (Ni), titanium (Ti), and ruthenium (Ru). Is.
  • the hardness of the conductive particles can be increased.
  • the surface oxide film can be pierced by the conductive particles even in the pressure bonding of wiring such as aluminum where a surface oxide film is easily formed, and the conductivity of the connection body can be ensured.
  • the present invention is also effective when the particle size of the film formation target particles is 1 ⁇ m or more and 20 ⁇ m or less.
  • the present invention is also effective when the thickness of the metal layer is 5 nm or more and 200 nm or less.
  • the thickness of the metal layer is 5 nm or more and 200 nm or less.
  • the vibration frequency is 15 Hz to 65 Hz
  • the vibration amplitude is also effective from 0.5 mm to 10 mm. is there.
  • a favorable crushing effect can be acquired by making the frequency and amplitude of vibration of the container mentioned above into the above-mentioned range.
  • a uniform metal layer is formed on the film formation target particles without agglomerating the particles during the formation of the metal layer. Can be formed.
  • the manufacturing method of the electroconductive particle which concerns on one Embodiment of this invention uses the sputtering target consisting of the metal material mentioned later, and forms the electroconductive particle 10 by forming the metal layer 12 on the surface of the film-forming object particle 11 by sputtering. It is manufactured (see FIGS. 1A and 1C).
  • Examples of the film formation target particles 11 include metal particles such as tin (Sn), lead (Pb), and silver (Ag), solder particles, inorganic fine particles such as glass and ceramics, and resin particles such as a thermosetting resin. However, it is preferable to use solder particles, particularly from the viewpoint of improving connection reliability.
  • the solder particles are not particularly limited and may be appropriately selected depending on the purpose.
  • the solder particles are produced by, for example, an atomizing method in which molten solder is sprayed into the atmosphere from a nozzle to obtain particles having a certain particle size.
  • the average particle diameter of the film formation target particles 11 those having a particle diameter of 1 ⁇ m or more and 20 ⁇ m or less are preferably used.
  • the metal layer 12 formed on the surface of the film formation target particle 11 is at least one selected from the group consisting of copper (Cu), aluminum (Al), nickel (Ni), titanium (Ti), and ruthenium (Ru). It is preferably used as a sputtering target made of a metal material. By depositing these metals on the surface of the film formation target particles 11 by sputtering, the hardness of the conductive particles 10 can be increased, and even at the time of pressure bonding of a wiring made of a material on which a surface oxide film such as aluminum is easily formed. The surface oxide film can be reliably broken by the conductive particles 10, and the conductivity of the connection body can be ensured.
  • Cu copper
  • Al aluminum
  • Ni nickel
  • Ti titanium
  • Ru ruthenium
  • the thickness of the metal layer 12 is preferably 5 nm or more and 200 nm or less. By setting the thickness of the metal layer 12 in the range of 5 nm or more and 200 nm or less, conductive particles having a hardness sufficient to obtain sufficient connectivity even when crimping a wiring having a surface oxide film formed thereon. 10 can be used.
  • the electroconductive particle 10 which concerns on one Embodiment of this invention is manufactured using the sputtering apparatus 4 as shown, for example in FIG.1 (b).
  • the sputtering apparatus 4 includes a vacuum chamber 3, and a backing plate 21 that is a cathode electrode connected to a sputtering power source 20 is disposed on the ceiling side inside the vacuum chamber 3.
  • a sputtering target 22 made of a metal or an insulating material is disposed on the backing plate 21. Examples of the metal used for the sputtering target 22 include copper (Cu), aluminum (Al), nickel (Ni), titanium (Ti), and ruthenium (Ru).
  • a vibration device 23 is disposed outside the vacuum chamber 3, and a vibration shaft 24 connected to the vibration device 23 is hermetically inserted into the bottom surface of the vacuum chamber 3, and the upper end of the vibration shaft 24 is inside the vacuum chamber 3. It is comprised so that it may be located in.
  • the vibration device 23 may be disposed inside the vacuum chamber 3.
  • a vibration container 25 in which the film formation target particles 11 are arranged is provided at the upper end of the vibration shaft 24 at the upper end of the vibration shaft 24, a vibration container 25 in which the film formation target particles 11 are arranged is provided.
  • the vibrating container 25 is located below the sputtering target 22, the opening 26 of the vibrating container 25 is directed upward, and the bottom surface of the vibrating container 25 faces the sputtering target 22 through the opening 26 of the vibrating container 25.
  • a vacuum exhaust device 27 is connected to the vacuum chamber 3, and the inside of the vacuum chamber 3 is evacuated by the operation of the vacuum exhaust device 27, so that a vacuum atmosphere is formed inside the vacuum chamber 3.
  • a gas introducing device 28 is connected to the vacuum chamber 3 so that the gas disposed in the gas introducing device 28 can be introduced into the vacuum chamber 3 in a vacuum atmosphere.
  • an inert gas such as argon (Ar) gas or a sputtering gas such as nitrogen (N 2 ) gas can be introduced from the gas introducing device 28.
  • the vacuum evacuation device 27 is operated. After the vacuum evacuation device 27 is evacuated to a vacuum atmosphere, the vibration device 23 is operated. Generate vibration. This vibration is basically in the vertical direction, and the vertical vibration is transmitted to the vibration container 25 by the vibration shaft 24 without the air entering the vacuum chamber 3, and the vibration container 25 vibrates and vibrates. The vibration of the film formation target particles 11 in the container 25 is started.
  • the frequency of vibration is preferably 15 Hz to 65 Hz, and the amplitude is preferably 0.5 mm to 10 mm.
  • the vibration is basically the vibration in the vertical direction, but in addition to the vibration component in the vertical direction, a vibration having a vibration component in the horizontal direction may be added.
  • a plurality of film formation target particles 11 are arranged in a single layer or in an amount to form a plurality of layers, and between the film formation target particles 11 and the film formation target particles 11, There is no adsorptive force between the particles 11 and the bottom surface or wall surface of the vibrating container 25, and each film forming target particle 11 can rotate and move independently from each other inside the vibrating container 25.
  • the film-forming target particle 11 vibrates and moves in the vertical direction and the horizontal direction and rotates.
  • the pressure inside the vacuum chamber 3 is reduced to a predetermined pressure due to the above-described vacuum exhaust, the pressure inside the vacuum chamber 3 is increased by starting the introduction of the sputtering gas while evacuating the inside of the vacuum chamber 3. To do.
  • the sputtering gas is introduced in a state in which the flow rate is controlled, the pressure inside the vacuum chamber 3 is stabilized at a predetermined value, and after the sputtering gas atmosphere of a constant pressure is formed inside the vacuum chamber 3, the sputtering power source 20 is started.
  • a voltage is applied to the backing plate 21 (sputtering target 22)
  • sputtering of the sputtering target 22 is started.
  • the sputtered particles struck out from the surface of the sputtering target 22 by this sputtering are not shaded as seen from the sputtering target 22 of the film formation target particles 11. A thin film is formed at the reached location.
  • each film formation target particle 11 is moved and rotated in the vertical and horizontal directions by vibration, the shadowed part is directed to the sputtering target 22 for each vibration, and the sputtered particle is formed in the part where the thin film is not formed.
  • a thin film is formed and is vibrated a predetermined number of times, so that the sputtered particles reach the entire surface of each film forming target particle 11 and the thin film is uniformly formed on the entire surface. Thereby, the conductive particles 10 in which the metal layer 12 is provided on the surface of each film formation target particle 11 are obtained.
  • the above-described sputtering is performed intermittently.
  • the sputtering is intermittently performed when the voltage application to the backing plate 21 is ON for a predetermined time (sputter output ON) and the voltage application to the backing plate 21 is OFF for a predetermined time (sputter output). OFF) each of which is alternately repeated at least once or more.
  • the value of the applied voltage to the backing plate 21 may be set lower than the value of the normal applied voltage.
  • the present embodiment it is possible to obtain good conductive particles 10 by intermittently performing sputtering without causing generation or deformation of particles. That is, while the voltage application to the backing plate 21 is turned off, the film formation target particles 11 are vibrated in a state where no sputtering particles are deposited from the sputtering target 22, thereby adding a large crushing effect. Aggregation of the conductive particles 10 can be prevented.
  • the sputtering intermittently it is preferable to alternately repeat the step of performing sputtering for 1 minute or more and 60 minutes or less and the step of not performing sputtering for 1 minute or more and 15 minutes or less, respectively.
  • the sputtering time is less than 1 minute, the metal layer 12 is hardly formed on the film formation target particles 11 and sputtering becomes insufficient.
  • the sputtering time exceeds 60 minutes, the amount of sputtering formed continuously increases and the conductive particles 10 agglomerate a lot.
  • ratio A / B of the time (A) which performs sputtering, and the time (B) which does not perform sputtering is following (1)
  • the A / B ratio is out of the range of the above formula (1). From the viewpoint of forming the uniform metal layer 12 and preventing aggregation of the conductive particles 10, this is not preferable.
  • the step of forming the metal layer 12 by sputtering and the step of preventing aggregation of the conductive particles 10 by vibration without performing sputtering are performed in a balanced manner. Can do.
  • the conductive particles 10 produced under the conditions as described above can be suitably used as an anisotropic conductive adhesive (ACA) by being dispersed in an adhesive component.
  • ACA anisotropic conductive adhesive
  • the adhesive component can be appropriately selected from those used in conventional anisotropic conductive materials.
  • adhesive components include film forming resins such as phenoxy resins, curing components such as liquid or solid epoxy resins, curing agents such as amine curing agents and imidazole curing agents, silane coupling agents, and toluene as necessary.
  • various additives such as pigments and rust preventives can be appropriately contained.
  • the method for producing conductive particles according to an embodiment of the present invention is performed by, for example, intermittently performing sputtering in a state in which solder particles that are film formation target particles 11 are continuously vibrated. Even in the case of such a soft material, it is possible to perform a stable surface sputtering process without deforming the particles. Further, by forming the metal layer 12 on the surface of the film formation target particle 11 by a sputtering method, even when used for wiring on which a surface oxide film such as aluminum is easily formed, the connection resistance is low and the connection reliability is high. Conductive particles can be obtained.
  • solder alloy particles As the solder alloy particles, Sn-3Ag-0.5Cu solder particles having an average particle diameter of 5 ⁇ m were used.
  • Aluminum (Al) was used for the sputtering target.
  • a container made of stainless steel having an opening diameter of ⁇ 12 cm was placed on a vibration table, placed in this container, and after evacuating to 2 ⁇ 10 ⁇ 4 Pa with a rotary pump and a cryopump after sealing the vacuum chamber. .
  • a vibration device with an amplitude of 2 mm and a vibration frequency of 30 Hz is generated, Ar (gas pressure 2 Pa) is introduced as a gas while applying continuous vibration to the container, 300 W DC power is applied to the target, and a predetermined surface is applied to the particle surface.
  • Sputtering was performed so as to form a metal layer having a thickness of.
  • sputtering in Examples 1 to 5 and Comparative Examples 3 to 5, sputtering output was turned ON / OFF at time intervals as shown in Table 1.
  • Comparative Example 1 sputtering was performed in a normal continuous operation without turning on / off the sputtering output.
  • Comparative Example 2 a ⁇ 3 mm SUS ball was placed in a container and sputtering was performed in a normal continuous operation.
  • the obtained conductive particles of Examples 1 to 5 and Comparative Examples 1 to 5 were evaluated for particle aggregation and particle deformation, respectively.
  • sputtering is performed by repeating the process of turning on the sputtering output for 1 minute to 60 minutes and the process of turning off the sputtering output for 1 minute to 10 minutes. It can be seen that, by carrying out intermittently, particle aggregation and particle deformation can be prevented, and good conductive particles can be obtained.
  • Comparative Example 1 since the continuous process was performed without performing the ON / OFF cycle of the sputter output, the particles aggregated during the process, resulting in non-uniform particles.
  • Comparative Example 2 since the SUS ball was put into the container as a stirring aid, the particle was deformed by the contact between the particle and the SUS ball during the treatment, and good conductive particles could not be obtained. .
  • the sputter output OFF time (B) in Example 2 is extended from 5 minutes to 20 minutes, and A / B is less than 1.
  • the quality of the obtained conductive particles was similar to that in Example 2. Therefore, if the time (B) during which sputtering is not performed is made too long, there is almost no effect, and only the total processing time becomes long.
  • Example 3 Metal layer thickness measurement
  • Conductive particles obtained by the production method of Example 3 were dispersed in an epoxy adhesive and cured, and the particle surface was shaved with a polishing machine (manufactured by Marumoto Struers). The particle cross section was observed with an SEM (manufactured by Keyence Corporation, VE-8800), and the thickness of the metal layer was measured.
  • the thickness of the metal layer of the conductive particles obtained by the manufacturing method of Example 3 was 100 nm.
  • An aluminum layer was formed as a metal layer on a glass substrate by a DC magnetron sputtering method using a sputtering target made of aluminum (Al). This aluminum layer was measured with a Vickers hardness tester in accordance with JIS Z 2244, and this was defined as the Vickers hardness (Hv) of the metal layer. The aluminum layer had a Vickers hardness (Hv) of 45 or more and 65 or less.
  • thermosetting resin 20 parts by weight of naphthalene type bifunctional epoxy resin (HP-4032D, manufactured by DIC), 25 parts by weight of bisphenol F type epoxy resin (EXA830CRP, manufactured by DIC), masterbatch type imidazole curing agent (HX-3721, manufactured by Asahi Kasei E-Materials Co., Ltd.) 55 parts by weight, epoxy silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) 1 part by weight, fine particle silica (R202, Nihon Aloezil) 2 parts by weight And 10 parts by weight of conductive particles obtained by the production method of Example 3 were blended and stirred uniformly with a rotating and rotating mixer to prepare an anisotropic conductive adhesive.
  • connection resistance For each mounted body, the initial resistance and the resistance after a heat cycle test (100 ° C. for 30 minutes, ⁇ 40 ° C. for 30 minutes, 500 cycles) were measured. For the measurement, the connection resistance was measured by a two-terminal method using a digital multimeter (manufactured by Advantest). In the mounting body with the anisotropic conductive adhesive in which the conductive particles obtained by the production method of Example 3 are dispersed, the initial resistance is 0.2 ⁇ , the resistance after the heat cycle test is 0.4 ⁇ , There was no significant change in resistance. That is, it was confirmed that good connection reliability was obtained.
  • connection structure electrically connected using the anisotropic conductive adhesive in which the conductive particles manufactured by the method for manufacturing conductive particles according to one embodiment of the present invention are dispersed is good. It was confirmed that connection reliability can be obtained.

Abstract

The present invention provides a method for producing conductive particles which is capable of forming uniform metal layers on particles to have a film formed thereon, without causing the particles to agglomerate during formation of the metal layers. In the present invention, conductive particles 10 are produced by using a sputtering target 22 comprising a metal material to form, by way of sputtering, metal layers 12 on the surfaces of particles 11 to have a film formed thereon. When forming the metal layers 12, sputtering is intermittently performed while causing a vibration container 25 in which the particles 11 to have the film formed thereon are disposed to vibrate.

Description

導電性粒子の製造方法Method for producing conductive particles
 本発明は、主に異方性導電接着剤等に用いられる導電性粒子の製造方法に関する。 The present invention relates to a method for producing conductive particles mainly used for anisotropic conductive adhesives and the like.
 多数の電極を有する電子部品を、基板等に接続するための接続材料として、異方性導電接着剤(ACA:anisotropic conductive adhesive)が使用されている。異方性導電接着剤(ACA)は、プリント配線基板、液晶ディスプレイ(LCD:Liquid Crystal Display)用ガラス基板、フレキシブルプリント基板等の基板や、IC、LSI等の半導体素子やパッケージ等の被接続部材を接続する際、相対する電極同士の導通状態を保ち、隣接する電極同士の絶縁を保つように電気的接続と機械的固着を行う接続材料である。 An anisotropic conductive adhesive (ACA) is used as a connection material for connecting an electronic component having a large number of electrodes to a substrate or the like. Anisotropic conductive adhesive (ACA) is a printed wiring board, glass substrates for liquid crystal displays (LCD), substrates such as flexible printed boards, and connected members such as semiconductor elements such as ICs and LSIs and packages. Is a connecting material that performs electrical connection and mechanical fixation so as to keep the conductive state between the opposing electrodes and to keep the insulation between adjacent electrodes.
 異方性導電接着剤(ACA)に配合される導電性粒子については、接続信頼性の向上および接続箇所の低抵抗化の観点から、様々な粒子が提案され、使用されている。例えば、錫(Sn)、鉛(Pb)、銀(Ag)、アルミニウム(Al)、ニッケル(Ni)等の金属粒子やはんだ合金粒子、ガラス、セラミックス等の無機微粒子や熱硬化性樹脂等の樹脂粒子に金属薄膜を被覆した粒子が開示されている。特に、はんだ接合により高信頼性が得られやすい事から、はんだ合金粒子を用いた異方性導電接着剤(ACA)の検討が多くなされている。 Regarding the conductive particles blended in the anisotropic conductive adhesive (ACA), various particles have been proposed and used from the viewpoint of improving the connection reliability and reducing the resistance of the connection portion. For example, metal particles such as tin (Sn), lead (Pb), silver (Ag), aluminum (Al), nickel (Ni), solder alloy particles, inorganic fine particles such as glass and ceramics, and resins such as thermosetting resins A particle having a metal thin film coated thereon is disclosed. In particular, since high reliability is easily obtained by soldering, an anisotropic conductive adhesive (ACA) using solder alloy particles has been studied frequently.
 粒子の表面に金属層を形成する方法としては、無電解メッキ法が一般的ではあるが、はんだ合金粒子の場合、その表面に酸化膜が形成されやすいことから、金属層を均一に形成させることができず、実際的な処理が困難という問題点があった。 As a method of forming a metal layer on the surface of the particles, an electroless plating method is generally used. However, in the case of solder alloy particles, an oxide film is easily formed on the surface, so the metal layer should be formed uniformly. However, there is a problem that practical processing is difficult.
 このような問題に対して、例えば特許文献1には、超音波振動子等により球状のはんだ粒子に回転運動を与えながら、スパッタリング装置によりはんだ粒子の表面に保護膜となる金属(Sn、Au等)をスパッタリングすることで被着させるはんだ材料の製造方法が記載されている。 For example, Patent Document 1 discloses a metal (Sn, Au, etc.) serving as a protective film on the surface of a solder particle by a sputtering apparatus while rotating the spherical solder particle by an ultrasonic vibrator or the like. ) Is produced by sputtering the solder material.
 また、特許文献2には、無鉛はんだ粉末粒子を揺動させながら蒸着によりSnやBiを表面にコーティングさせた無鉛はんだ粉末が記載されている。 Patent Document 2 describes lead-free solder powder in which Sn or Bi is coated on the surface by vapor deposition while rocking lead-free solder powder particles.
 さらに、特許文献3には、カーボン等の導電性粉体を振動させながら、この導電性粉体の表面に、スパッタ等の物理蒸着法によりPt等の触媒物質を付着させる際、導電性粉体と、振動増幅手段としてのボール等とを振動面上に配置し、これらを同時に振動させる、導電性触媒粒子の製造方法が記載されている。 Further, Patent Document 3 discloses that when a conductive material such as carbon is vibrated, a catalyst material such as Pt is attached to the surface of the conductive powder by a physical vapor deposition method such as sputtering. And a method for producing conductive catalyst particles in which a ball or the like as a vibration amplifying means is disposed on a vibration surface and these are vibrated simultaneously.
特開2002-331385号公報JP 2002-331385 A 特開2004-90011号公報Japanese Patent Laid-Open No. 2004-90011 特開2003-33668号公報Japanese Patent Laid-Open No. 2003-33668
 異方性導電接着剤(ACA)に用いられる導電性粒子は、粒径が20μm以下と小粒径のものが多く、このような粒子は、表面に金属層を形成する際に粒子同士が凝集してしまうことが多い。 The conductive particles used in anisotropic conductive adhesives (ACA) are often small particles with a particle size of 20 μm or less, and such particles aggregate when forming a metal layer on the surface. I often do.
 特許文献1のはんだ材料や特許文献2の無鉛はんだ粉末は、いずれもはんだペースト用のはんだ粒子であり、粒径が20μm以上のものである。したがって、特許文献1及び特許文献2には、比較的粒径の大きなはんだ粒子に対する金属層の皮膜については記載されているが、粒径20μm以下の小粒径の粒子に対する金属層の均一な形成や、粒子の凝集防止については記載されていない。 The solder material of Patent Document 1 and the lead-free solder powder of Patent Document 2 are both solder particles for solder paste and have a particle size of 20 μm or more. Therefore, Patent Document 1 and Patent Document 2 describe a coating of a metal layer on solder particles having a relatively large particle size, but uniform formation of a metal layer on particles having a small particle size of 20 μm or less. There is no description about prevention of particle aggregation.
 特許文献3には、ボール等の振動増幅手段を用いることで導電性粉体に均一に触媒物質を付着させることが記載されているが、はんだ粒子のような柔らかい材料に対してボール等の振動増幅手段を用いると、はんだ粒子とボールとの接触により、はんだ粒子が変形してしまうことがある。特許文献3には、はんだ粒子のような柔らかい材料に対する金属層の付着については記載されていない。 Patent Document 3 describes that a catalytic substance is uniformly attached to the conductive powder by using a vibration amplifying means such as a ball. However, the vibration of the ball or the like is applied to a soft material such as solder particles. When the amplification means is used, the solder particles may be deformed by the contact between the solder particles and the ball. Patent Document 3 does not describe adhesion of a metal layer to a soft material such as solder particles.
 本発明は、このような実情に鑑みて提案されたものであり、金属層の形成中に粒子を凝集させることなく、成膜対象粒子に均一な金属層を形成させることができる導電性粒子の製造方法を提供する。 The present invention has been proposed in view of such circumstances, and the conductive particles capable of forming a uniform metal layer on the deposition target particles without aggregating the particles during the formation of the metal layer. A manufacturing method is provided.
 本発明は、金属材料からなるスパッタリングターゲットを用い、成膜対象粒子の表面にスパッタリングによって金属層を形成する導電性粒子の製造方法であって、前記金属層を形成する際に、前記成膜対象粒子を配置した容器を振動させながら、前記スパッタリングを間欠的に行う工程を有するものである。
 本発明によれば、金属層を形成する際にスパッタリングを間欠的に行うことで粒子の凝集の生成や粒子の変形を生じさせることなく、良好な導電性粒子を得ることができる。すなわち、スパッタリングを行わない間は、スパッタリングターゲットからのスパッタリング粒子の堆積がない状態で粒子に振動が加えられることで、大きな解砕効果が加わり、粒子の凝集を防止することができ、成膜対象粒子に均一な金属層を形成させることができる。
 このとき、本発明では、スパッタリングを間欠的に行う際に、1分間以上60分間以下スパッタリングを行う工程と、1分間以上15分間以下スパッタリングを行わない工程とをそれぞれ少なくとも1回以上交互に繰り返すことも効果的である。
 このような時間配分でスパッタリングを行う工程と、スパッタリングを行わない工程を繰り返すことにより、スパッタリングターゲットからのスパッタリング粒子の堆積と凝集粒子の解砕とを効率的に行うことができる。
 このとき、本発明では、スパッタリングを行う工程の時間(A)と、スパッタリングを行わない工程の時間(B)の比A/Bが、1≦A/B≦10の範囲である場合にも効果的である。
 このような範囲とすることで、スパッタリングを行って金属層を形成する工程と、スパッタリングを行わずに振動により粒子の凝集を防止する工程とをバランスよく行うことができる。
 また、本発明では、成膜対象粒子は、はんだ粒子である場合にも効果的である。
 はんだ粒子は接続時に高信頼性が得られやすい事から異方性導電接着剤に好適に用いることのできる導電性粒子となる。
 また、本発明では、金属材料は、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、チタン(Ti)、ルテニウム(Ru)からなる群から選択される少なくとも1種である場合にも効果的である。
 これらの金属をスパッタリングにより成膜対象粒子の表面に堆積させることで、導電性粒子の硬度を上げることができる。これにより、アルミニウム等の表面酸化膜の出来易い配線の圧着においても導電性粒子により表面酸化膜を突き破ることができ、接続体の導電性を確保することができる。
 また、本発明では、成膜対象粒子の粒径が1μm以上20μm以下である場合にも効果的である。
 異方性導電接着剤として、このような小粒径の粒子を用いることにより、ファインピッチの電気的接続を行うことができる。
 また、本発明では、金属層の厚さが5nm以上200nm以下である場合にも効果的である。
 金属層の厚さを上記範囲とすることにより、表面酸化膜が形成されているような配線の圧着時においても十分な接続性を得ることができるだけの硬度を有する導電性粒子とすることができる。
 また、本発明では、成膜対象粒子を配置した容器を振動させる際、当該振動の周波数が15Hz以上65Hz以下であり、当該振動の振幅が0.5mm以上10mm以下である場合にも効果的である。
 上述した容器の振動の周波数や振幅を上記範囲とすることで、良好な解砕効果を得ることができる。
The present invention is a method for producing conductive particles in which a metal layer is formed by sputtering on the surface of a film formation target particle using a sputtering target made of a metal material, and the film formation target is formed when the metal layer is formed. The method includes intermittently performing the sputtering while vibrating the container in which the particles are arranged.
According to the present invention, good conductive particles can be obtained without intermittent generation of particles or deformation of particles by intermittently performing sputtering when forming the metal layer. That is, while sputtering is not performed, vibration is applied to the particles in a state where no sputtered particles are deposited from the sputtering target, so that a large crushing effect is added and particle aggregation can be prevented. A uniform metal layer can be formed on the particles.
At this time, in the present invention, when performing the sputtering intermittently, the step of performing the sputtering for 1 minute to 60 minutes and the step of not performing the sputtering for 1 minute to 15 minutes are alternately repeated at least once each. Is also effective.
By repeating the step of performing sputtering with such a time distribution and the step of not performing sputtering, it is possible to efficiently deposit the sputtered particles from the sputtering target and crush the aggregated particles.
At this time, the present invention is effective even when the ratio A / B of the time (A) of the step of performing sputtering and the time (B) of the step of not performing sputtering is in the range of 1 ≦ A / B ≦ 10. Is.
By setting it as such a range, the process of forming a metal layer by performing sputtering and the process of preventing aggregation of particles by vibration without performing sputtering can be performed in a balanced manner.
In the present invention, the film formation target particles are also effective when the particles are solder particles.
The solder particles are conductive particles that can be suitably used for the anisotropic conductive adhesive because high reliability is easily obtained at the time of connection.
In the present invention, the metal material is also effective when it is at least one selected from the group consisting of copper (Cu), aluminum (Al), nickel (Ni), titanium (Ti), and ruthenium (Ru). Is.
By depositing these metals on the surface of the film formation target particles by sputtering, the hardness of the conductive particles can be increased. As a result, the surface oxide film can be pierced by the conductive particles even in the pressure bonding of wiring such as aluminum where a surface oxide film is easily formed, and the conductivity of the connection body can be ensured.
The present invention is also effective when the particle size of the film formation target particles is 1 μm or more and 20 μm or less.
By using particles with such a small particle size as the anisotropic conductive adhesive, fine pitch electrical connection can be made.
The present invention is also effective when the thickness of the metal layer is 5 nm or more and 200 nm or less.
By setting the thickness of the metal layer in the above range, it is possible to obtain conductive particles having a hardness sufficient to obtain sufficient connectivity even when a wiring having a surface oxide film formed thereon is crimped. .
Further, in the present invention, when the container in which the film formation target particles are arranged is vibrated, the vibration frequency is 15 Hz to 65 Hz, and the vibration amplitude is also effective from 0.5 mm to 10 mm. is there.
A favorable crushing effect can be acquired by making the frequency and amplitude of vibration of the container mentioned above into the above-mentioned range.
 本発明によれば、成膜対象粒子を配置した容器を振動させながら、スパッタリングを間欠的に行うことで、金属層の形成中に粒子を凝集させることなく、成膜対象粒子に均一な金属層を形成させることができる。 According to the present invention, by performing sputtering intermittently while vibrating the container in which the film formation target particles are arranged, a uniform metal layer is formed on the film formation target particles without agglomerating the particles during the formation of the metal layer. Can be formed.
(a):本発明の一実施形態に係る導電性粒子の製造方法によって製造される導電性粒子の成膜対象粒子の断面図である。(b):本発明の一実施形態に係る導電性粒子の製造方法において用いられるスパッタリング装置の概略図である。(c):本発明の一実施形態に係る導電性粒子の製造方法によって製造される導電性粒子の断面図である。(A): It is sectional drawing of the film-forming object particle | grains of the electroconductive particle manufactured by the manufacturing method of the electroconductive particle which concerns on one Embodiment of this invention. (B): It is the schematic of the sputtering device used in the manufacturing method of the electroconductive particle which concerns on one Embodiment of this invention. (C): It is sectional drawing of the electroconductive particle manufactured by the manufacturing method of the electroconductive particle which concerns on one Embodiment of this invention.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are indispensable as means for solving the present invention. Not always.
 本発明の一実施形態に係る導電性粒子の製造方法は、後述する金属材料からなるスパッタリングターゲットを用い、スパッタリングによって成膜対象粒子11の表面に金属層12を形成することで導電性粒子10を製造するものである(図1(a)(c)参照)。 The manufacturing method of the electroconductive particle which concerns on one Embodiment of this invention uses the sputtering target consisting of the metal material mentioned later, and forms the electroconductive particle 10 by forming the metal layer 12 on the surface of the film-forming object particle 11 by sputtering. It is manufactured (see FIGS. 1A and 1C).
 成膜対象粒子11としては、錫(Sn)、鉛(Pb)、銀(Ag)等の金属粒子やはんだ粒子、ガラス、セラミックス等の無機微粒子や熱硬化性樹脂等の樹脂粒子等が挙げられるが、特に接続信頼性を向上させる観点からは、はんだ粒子を用いることが好ましい。 Examples of the film formation target particles 11 include metal particles such as tin (Sn), lead (Pb), and silver (Ag), solder particles, inorganic fine particles such as glass and ceramics, and resin particles such as a thermosetting resin. However, it is preferable to use solder particles, particularly from the viewpoint of improving connection reliability.
 はんだ粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Sn-Bi系はんだ、Sn-In系はんだ、Sn-Zn系はんだ、Sn-Ag系はんだ、Sn-Ag-Cu系はんだ等が挙げられる。はんだ粒子は、例えば、溶融したはんだをノズルから雰囲気中に噴霧して、一定の粒径の粒子を得るアトマイズ法等で作成される。成膜対象粒子11の平均粒径としては、1μm以上20μm以下のものが好適に用いられる。 The solder particles are not particularly limited and may be appropriately selected depending on the purpose. For example, Sn—Bi solder, Sn—In solder, Sn—Zn solder, Sn—Ag solder, Sn—Ag -Cu based solder and the like. The solder particles are produced by, for example, an atomizing method in which molten solder is sprayed into the atmosphere from a nozzle to obtain particles having a certain particle size. As the average particle diameter of the film formation target particles 11, those having a particle diameter of 1 μm or more and 20 μm or less are preferably used.
 成膜対象粒子11の表面に形成する金属層12は、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、チタン(Ti)、ルテニウム(Ru)からなる群から選択される少なくとも1種の金属材料からなるスパッタリングターゲットとして用いることが好ましい。これらの金属をスパッタリングにより成膜対象粒子11の表面に堆積させることで、導電性粒子10の硬度を上げることができ、アルミニウム等の表面酸化膜が形成され易い材料からなる配線の圧着時においても導電性粒子10により表面酸化膜を確実に突き破ることができ、接続体の導電性を確保することができる。 The metal layer 12 formed on the surface of the film formation target particle 11 is at least one selected from the group consisting of copper (Cu), aluminum (Al), nickel (Ni), titanium (Ti), and ruthenium (Ru). It is preferably used as a sputtering target made of a metal material. By depositing these metals on the surface of the film formation target particles 11 by sputtering, the hardness of the conductive particles 10 can be increased, and even at the time of pressure bonding of a wiring made of a material on which a surface oxide film such as aluminum is easily formed. The surface oxide film can be reliably broken by the conductive particles 10, and the conductivity of the connection body can be ensured.
 また、金属層12の厚さは、5nm以上200nm以下であることが好ましい。金属層12の厚さを5nm以上200nm以下の範囲とすることにより、表面酸化膜が形成されているような配線の圧着時においても十分な接続性を得ることができるだけの硬度を有する導電性粒子10とすることができる。 The thickness of the metal layer 12 is preferably 5 nm or more and 200 nm or less. By setting the thickness of the metal layer 12 in the range of 5 nm or more and 200 nm or less, conductive particles having a hardness sufficient to obtain sufficient connectivity even when crimping a wiring having a surface oxide film formed thereon. 10 can be used.
 本発明の一実施形態に係る導電性粒子10は、例えば図1(b)に示すようなスパッタリング装置4を用いて製造される。
 このスパッタリング装置4は、真空槽3を有し、真空槽3の内部の天井側には、スパッタ電源20に接続された、カソード電極であるバッキングプレート21が配置されている。
 バッキングプレート21には、金属又は絶縁物質からなるスパッタリングターゲット22が配置されている。スパッタリングターゲット22に用いる金属としては、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、チタン(Ti)、ルテニウム(Ru)があげられる。
The electroconductive particle 10 which concerns on one Embodiment of this invention is manufactured using the sputtering apparatus 4 as shown, for example in FIG.1 (b).
The sputtering apparatus 4 includes a vacuum chamber 3, and a backing plate 21 that is a cathode electrode connected to a sputtering power source 20 is disposed on the ceiling side inside the vacuum chamber 3.
A sputtering target 22 made of a metal or an insulating material is disposed on the backing plate 21. Examples of the metal used for the sputtering target 22 include copper (Cu), aluminum (Al), nickel (Ni), titanium (Ti), and ruthenium (Ru).
 真空槽3の外部には、振動装置23が配置され、この振動装置23に接続された振動軸24が、真空槽3の底面に気密に挿通され、振動軸24の上端が真空槽3の内部に位置するように構成されている。なお、振動装置23は真空槽3の内部に配置してもよい。 A vibration device 23 is disposed outside the vacuum chamber 3, and a vibration shaft 24 connected to the vibration device 23 is hermetically inserted into the bottom surface of the vacuum chamber 3, and the upper end of the vibration shaft 24 is inside the vacuum chamber 3. It is comprised so that it may be located in. The vibration device 23 may be disposed inside the vacuum chamber 3.
 振動軸24の上端には、成膜対象粒子11が配置される振動容器25が設けられている。振動容器25は、スパッタリングターゲット22の下方に位置し、振動容器25の開口26は上方に向けられており、振動容器25の底面が、振動容器25の開口26を介してスパッタリングターゲット22と対面するように配置されている。 At the upper end of the vibration shaft 24, a vibration container 25 in which the film formation target particles 11 are arranged is provided. The vibrating container 25 is located below the sputtering target 22, the opening 26 of the vibrating container 25 is directed upward, and the bottom surface of the vibrating container 25 faces the sputtering target 22 through the opening 26 of the vibrating container 25. Are arranged as follows.
 真空槽3には、真空排気装置27が接続され、真空排気装置27の動作によって真空槽3の内部が真空排気され、真空槽3の内部に真空雰囲気が形成されるように構成されている。 A vacuum exhaust device 27 is connected to the vacuum chamber 3, and the inside of the vacuum chamber 3 is evacuated by the operation of the vacuum exhaust device 27, so that a vacuum atmosphere is formed inside the vacuum chamber 3.
 また、真空槽3にはガス導入装置28が接続されており、真空雰囲気にされた真空槽3の内部に、ガス導入装置28に配置されたガスを導入できるようにされている。ここではガス導入装置28から、アルゴン(Ar)ガス等の不活性ガスや窒素(N2)ガス等のスパッタリングガスを導入できるようにされている。 A gas introducing device 28 is connected to the vacuum chamber 3 so that the gas disposed in the gas introducing device 28 can be introduced into the vacuum chamber 3 in a vacuum atmosphere. Here, an inert gas such as argon (Ar) gas or a sputtering gas such as nitrogen (N 2 ) gas can be introduced from the gas introducing device 28.
 このようなスパッタリング装置4を用い、成膜対象粒子11の表面に金属層12を形成するには、まず、真空槽3の内部の振動容器25内に、所定量の成膜対象粒子11を配置し、真空槽3の内部を大気から遮断した後、真空排気装置27を動作させ、真空排気装置27によって真空槽3の内部を真空排気して真空雰囲気にした後、振動装置23を動作させて振動を発生させる。この振動は基本的には上下方向のものであり、上下方向の振動は、真空槽3内に大気が侵入することなく振動軸24によって振動容器25に伝達され、振動容器25が振動し、振動容器25中の成膜対象粒子11の振動が開始される。 In order to form the metal layer 12 on the surface of the film formation target particle 11 using such a sputtering apparatus 4, first, a predetermined amount of the film formation target particle 11 is placed in the vibrating container 25 inside the vacuum chamber 3. Then, after the inside of the vacuum chamber 3 is cut off from the atmosphere, the vacuum evacuation device 27 is operated. After the vacuum evacuation device 27 is evacuated to a vacuum atmosphere, the vibration device 23 is operated. Generate vibration. This vibration is basically in the vertical direction, and the vertical vibration is transmitted to the vibration container 25 by the vibration shaft 24 without the air entering the vacuum chamber 3, and the vibration container 25 vibrates and vibrates. The vibration of the film formation target particles 11 in the container 25 is started.
 ここで、振動の周波数は15Hz以上65Hz以下が好ましく、振幅は0.5mm以上10mm以下が好ましい。振動は、上述したように基本的には上下方向の振動であるが、上下方向の振動成分に加え、横方向の振動成分を有する振動を加えてもよい。 Here, the frequency of vibration is preferably 15 Hz to 65 Hz, and the amplitude is preferably 0.5 mm to 10 mm. As described above, the vibration is basically the vibration in the vertical direction, but in addition to the vibration component in the vertical direction, a vibration having a vibration component in the horizontal direction may be added.
 振動容器25の底面上では、複数の成膜対象粒子11が、単一層又は複数層を形成する量が配置されており、成膜対象粒子11と成膜対象粒子11の間や、成膜対象粒子11と振動容器25の底面や壁面との間には吸着力はなく、各成膜対象粒子11は、振動容器25の内部で互いに独立して回転や移動が可能になっており、振動容器25が振動されることにより、成膜対象粒子11は振動して上下方向や左右方向に移動するとともに回転する。 On the bottom surface of the vibrating container 25, a plurality of film formation target particles 11 are arranged in a single layer or in an amount to form a plurality of layers, and between the film formation target particles 11 and the film formation target particles 11, There is no adsorptive force between the particles 11 and the bottom surface or wall surface of the vibrating container 25, and each film forming target particle 11 can rotate and move independently from each other inside the vibrating container 25. By vibrating 25, the film-forming target particle 11 vibrates and moves in the vertical direction and the horizontal direction and rotates.
 上述した真空排気により、真空槽3内部の圧力が、所定圧力まで低下した後、真空槽3の内部を真空排気しながらスパッタリングガスの導入を開始することにより、真空槽3の内部の圧力は上昇する。 After the pressure inside the vacuum chamber 3 is reduced to a predetermined pressure due to the above-described vacuum exhaust, the pressure inside the vacuum chamber 3 is increased by starting the introduction of the sputtering gas while evacuating the inside of the vacuum chamber 3. To do.
 スパッタリングガスは、流量制御された状態で導入され、真空槽3の内部の圧力が所定値で安定し、真空槽3の内部に一定圧力のスパッタリングガス雰囲気が形成された後、スパッタ電源20を起動し、バッキングプレート21(スパッタリングターゲット22)に電圧を印加すると、スパッタリングターゲット22のスパッタリングが開始される。 The sputtering gas is introduced in a state in which the flow rate is controlled, the pressure inside the vacuum chamber 3 is stabilized at a predetermined value, and after the sputtering gas atmosphere of a constant pressure is formed inside the vacuum chamber 3, the sputtering power source 20 is started. When a voltage is applied to the backing plate 21 (sputtering target 22), sputtering of the sputtering target 22 is started.
 このスパッタリングによって、スパッタリングターゲット22の表面から叩き出されたスパッタリング粒子のうち、振動容器25の開口26を通過したスパッタリング粒子は、成膜対象粒子11の、スパッタリングターゲット22から見て影となっていない場所に到達し、到達した場所に薄膜が形成される。 Of the sputtered particles struck out from the surface of the sputtering target 22 by this sputtering, the sputtered particles that have passed through the opening 26 of the vibrating container 25 are not shaded as seen from the sputtering target 22 of the film formation target particles 11. A thin film is formed at the reached location.
 各成膜対象粒子11は、振動による上下方向と左右方向の移動と回転により、振動毎に、影となっていた部分がスパッタリングターゲット22に向き、薄膜が形成されていなかった部分にスパッタリング粒子が到達して薄膜が形成され、所定回数振動することで、各成膜対象粒子11の全表面にスパッタリング粒子が到達してその全表面に薄膜が均一に形成される。これにより各成膜対象粒子11の表面に金属層12が設けられた導電性粒子10を得る。 As each film formation target particle 11 is moved and rotated in the vertical and horizontal directions by vibration, the shadowed part is directed to the sputtering target 22 for each vibration, and the sputtered particle is formed in the part where the thin film is not formed. A thin film is formed and is vibrated a predetermined number of times, so that the sputtered particles reach the entire surface of each film forming target particle 11 and the thin film is uniformly formed on the entire surface. Thereby, the conductive particles 10 in which the metal layer 12 is provided on the surface of each film formation target particle 11 are obtained.
 本実施の形態では、上述したスパッタリングを間欠的に行うことを特徴とする。
 ここで、スパッタリングを間欠的に行うとは、バッキングプレート21に対する電圧の印加を所定時間ONにした状態(スパッタ出力ON)と、バッキングプレート21に対する電圧の印加を所定時間OFFにした状態(スパッタ出力OFF)とをそれぞれ少なくとも1回以上交互に繰り返すことを意味する。
 また、バッキングプレート21に対する電圧の印加をOFFにする代わりに、バッキングプレート21に対する印加電圧の値を通常の印加電圧の値より低くしてもよい。
In this embodiment mode, the above-described sputtering is performed intermittently.
Here, the sputtering is intermittently performed when the voltage application to the backing plate 21 is ON for a predetermined time (sputter output ON) and the voltage application to the backing plate 21 is OFF for a predetermined time (sputter output). OFF) each of which is alternately repeated at least once or more.
Further, instead of turning off the voltage applied to the backing plate 21, the value of the applied voltage to the backing plate 21 may be set lower than the value of the normal applied voltage.
 本実施の形態では、スパッタリングを間欠的に行うことで粒子の凝集の生成や変形を生じさせることなく、良好な導電性粒子10を得ることができる。
 すなわち、バッキングプレート21に対する電圧の印加をOFFにしている間は、スパッタリングターゲット22からのスパッタリング粒子の堆積がない状態で成膜対象粒子11に振動が加えられることで、大きな解砕効果が加わり、導電性粒子10の凝集を防止することができる。
In the present embodiment, it is possible to obtain good conductive particles 10 by intermittently performing sputtering without causing generation or deformation of particles.
That is, while the voltage application to the backing plate 21 is turned off, the film formation target particles 11 are vibrated in a state where no sputtering particles are deposited from the sputtering target 22, thereby adding a large crushing effect. Aggregation of the conductive particles 10 can be prevented.
 スパッタリングを間欠的に行う際には、1分間以上60分間以下スパッタリングを行う工程と、1分間以上15分間以下スパッタリングを行わない工程とをそれぞれ少なくとも1回以上交互に繰り返すことが好ましい。
 スパッタリング時間が1分未満であると成膜対象粒子11に金属層12がほとんど形成されずスパッタリングが不十分となる。また、スパッタリング時間が60分を超えると連続して形成されるスパッタ量が多くなってしまい導電性粒子10の凝集が多く生じてしまう。同様に、スパッタリングを行わずに振動により凝集粒子を解砕する時間が1分未満では振動による解砕を十分に行うことができず、15分を超えると既に十分に振動による解砕の効果が得られているためあまり意味がない。スパッタリングを行う工程と、スパッタリングを行わない工程は、金属層12が所望の厚さとなるまで繰り返す。
When performing the sputtering intermittently, it is preferable to alternately repeat the step of performing sputtering for 1 minute or more and 60 minutes or less and the step of not performing sputtering for 1 minute or more and 15 minutes or less, respectively.
When the sputtering time is less than 1 minute, the metal layer 12 is hardly formed on the film formation target particles 11 and sputtering becomes insufficient. In addition, when the sputtering time exceeds 60 minutes, the amount of sputtering formed continuously increases and the conductive particles 10 agglomerate a lot. Similarly, if the time for crushing the agglomerated particles by vibration without sputtering is less than 1 minute, sufficient crushing by vibration cannot be performed, and if it exceeds 15 minutes, the effect of crushing by vibration has already been sufficiently obtained. There is not much meaning because it is obtained. The process of performing sputtering and the process of not performing sputtering are repeated until the metal layer 12 has a desired thickness.
 また、本発明では、スパッタリングを行う時間(A)と、スパッタリングを行わない時間(B)の比A/Bは、下記(1)式
   1≦A/B≦10  ・・・(1)
 を満たす範囲とすることが好ましい。
 ここで、一方の時間(A又はB)が、他方の時間(B又はA)に比べて短すぎたり又は長すぎたりすることでA/Bの比が上記(1)式の範囲から外れると、均一な金属層12の形成や導電性粒子10の凝集防止という観点から好ましくない。
 1≦A/B≦10の範囲とすることで、スパッタリングを行って金属層12を形成する工程と、スパッタリングを行わずに振動により導電性粒子10の凝集を防止する工程とをバランスよく行うことができる。
Moreover, in this invention, ratio A / B of the time (A) which performs sputtering, and the time (B) which does not perform sputtering is following (1) Formula 1 <= A / B <= 10 ... (1)
It is preferable to make it the range which satisfy | fills.
Here, if one time (A or B) is too short or too long compared to the other time (B or A), the A / B ratio is out of the range of the above formula (1). From the viewpoint of forming the uniform metal layer 12 and preventing aggregation of the conductive particles 10, this is not preferable.
By setting the range of 1 ≦ A / B ≦ 10, the step of forming the metal layer 12 by sputtering and the step of preventing aggregation of the conductive particles 10 by vibration without performing sputtering are performed in a balanced manner. Can do.
 上述したような条件で製造された導電性粒子10は、接着剤成分中に分散させることで異方性導電接着剤(ACA)として好適に用いることができる。 The conductive particles 10 produced under the conditions as described above can be suitably used as an anisotropic conductive adhesive (ACA) by being dispersed in an adhesive component.
 接着剤成分は、従来の異方性導電材料において用いられているものを適宜選択して使用することができる。例えば、接着剤成分は、フェノキシ樹脂等の成膜性樹脂、液状又は固体エポキシ樹脂等の硬化成分、アミン系硬化剤、イミダゾール系硬化剤等の硬化剤、シランカップリング剤、必要に応じてトルエン等の有機溶剤等、更に顔料、防錆剤等の各種添加剤を適宜含有することができる。 The adhesive component can be appropriately selected from those used in conventional anisotropic conductive materials. For example, adhesive components include film forming resins such as phenoxy resins, curing components such as liquid or solid epoxy resins, curing agents such as amine curing agents and imidazole curing agents, silane coupling agents, and toluene as necessary. In addition, various additives such as pigments and rust preventives can be appropriately contained.
 以上述べたように、本発明の一実施形態に係る導電性粒子の製造方法は、例えば成膜対象粒子11であるはんだ粒子を連続で振動させた状態でスパッタリングを間欠的に行うことにより、はんだのように柔らかい材料の場合でも粒子を変形させることなく、安定した表面スパッタ処理を行うことが可能である。また、成膜対象粒子11の表面にスパッタリング法によって金属層12を形成することで、アルミニウム等の表面酸化膜が形成され易い配線に用いた場合でも、接続抵抗が低く、高い接続信頼性を有する導電性粒子を得ることが可能である。 As described above, the method for producing conductive particles according to an embodiment of the present invention is performed by, for example, intermittently performing sputtering in a state in which solder particles that are film formation target particles 11 are continuously vibrated. Even in the case of such a soft material, it is possible to perform a stable surface sputtering process without deforming the particles. Further, by forming the metal layer 12 on the surface of the film formation target particle 11 by a sputtering method, even when used for wiring on which a surface oxide film such as aluminum is easily formed, the connection resistance is low and the connection reliability is high. Conductive particles can be obtained.
 以下、本発明の実施例について説明する。なお、本発明は、これらの実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described. The present invention is not limited to these examples.
(導電性粒子の作製)
 実施例1~5及び比較例1~5として、図1(b)に示した装置を用い、成膜対象粒子である、はんだ合金粒子の表面に、スパッタリングによって金属層を形成した。
 はんだ合金粒子は、平均粒子径が5μmのSn-3Ag-0.5Cuはんだ粒子を用いた。スパッタリングターゲットにはアルミニウム(Al)を用いた。開口径φ12cmのステンレスからなる容器を振動テーブル上に設置し、この容器中に配置し、真空槽の密閉後、ロータリーポンプとクライオポンプにて2×10-4Paになるまで真空排気を行った。
 振動装置にて振幅2mm、振動数30Hzの振動を発生させ、容器に連続振動を加えながら、ガスとしてAr(ガス圧2Pa)を導入し、ターゲットに300Wの直流電力を印加し、粒子表面に所定の厚みの金属層が形成されるようにスパッタリングを行った。スパッタリングにおいて、実施例1~5及び比較例3~5では、表1に示すような時間間隔で、スパッタ出力のON/OFFを行った。比較例1においては、スパッタ出力のON/OFFは行わずに、通常の連続運転でスパッタリングを行った。比較例2においては、φ3mmのSUSボールを容器内に投入し、通常の連続運転でスパッタリングを行った。得られた実施例1~5、比較例1~5の導電性粒子について、それぞれ粒子の凝集と粒子の変形の評価を行った。
(Preparation of conductive particles)
As Examples 1 to 5 and Comparative Examples 1 to 5, using the apparatus shown in FIG. 1B, a metal layer was formed by sputtering on the surface of solder alloy particles, which are particles to be deposited.
As the solder alloy particles, Sn-3Ag-0.5Cu solder particles having an average particle diameter of 5 μm were used. Aluminum (Al) was used for the sputtering target. A container made of stainless steel having an opening diameter of φ12 cm was placed on a vibration table, placed in this container, and after evacuating to 2 × 10 −4 Pa with a rotary pump and a cryopump after sealing the vacuum chamber. .
A vibration device with an amplitude of 2 mm and a vibration frequency of 30 Hz is generated, Ar (gas pressure 2 Pa) is introduced as a gas while applying continuous vibration to the container, 300 W DC power is applied to the target, and a predetermined surface is applied to the particle surface. Sputtering was performed so as to form a metal layer having a thickness of. In sputtering, in Examples 1 to 5 and Comparative Examples 3 to 5, sputtering output was turned ON / OFF at time intervals as shown in Table 1. In Comparative Example 1, sputtering was performed in a normal continuous operation without turning on / off the sputtering output. In Comparative Example 2, a φ3 mm SUS ball was placed in a container and sputtering was performed in a normal continuous operation. The obtained conductive particles of Examples 1 to 5 and Comparative Examples 1 to 5 were evaluated for particle aggregation and particle deformation, respectively.
(粒子の凝集)
 スパッタリング後の各導電性粒子について、倍率1000倍のSEM観察を10視野行い、粒子中に20μm以上の凝集体がある場合には×、20μm以上の凝集体がない場合には○とした。この基準に基づく粒子の凝集についての評価を表1に示す。
(Agglomeration of particles)
About each electroconductive particle after sputtering, SEM observation of 1000-times magnification was performed 10 views, and when there was an aggregate of 20 μm or more in the particle, it was evaluated as “X”, and when there was no aggregate of 20 μm or more, “Good”. Table 1 shows the evaluation of particle aggregation based on this criterion.
(粒子の変形)
 スパッタリング後の各導電性粒子について、倍率1000倍のSEM観察を10視野行い、粒子の変形が10個以上ある場合を×、10個未満の場合を○とした。この基準に基づく粒子の変形についての評価を表1に示す。
(Particle deformation)
About each electroconductive particle after sputtering, SEM observation of 1000-times multiplication factor was performed 10 views, and when the deformation | transformation of a particle was 10 or more, the case where it was less than 10 was set as (circle). Table 1 shows the evaluation of particle deformation based on this criterion.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、実施例1~5のように、1分間以上60分間以下スパッタ出力をONにする工程と、1分間以上10分間以下スパッタ出力をOFFにする工程を繰り返すことでスパッタリングを間欠的に行うことで、粒子の凝集や粒子の変形を防止することができ、良好な導電性粒子が得られることがわかる。 As can be seen from Table 1, as in Examples 1 to 5, sputtering is performed by repeating the process of turning on the sputtering output for 1 minute to 60 minutes and the process of turning off the sputtering output for 1 minute to 10 minutes. It can be seen that, by carrying out intermittently, particle aggregation and particle deformation can be prevented, and good conductive particles can be obtained.
 これに対して、比較例1では、スパッタ出力のON/OFFサイクルを行わず連続処理を行ったため、処理中に粒子の凝集が生じてしまい、不均一な粒子となってしまった。また、比較例2では、撹拌補助剤としてSUSボールを容器内に投入したため、処理中に粒子とSUSボールとの接触により、粒子が変形してしまい良好な導電性粒子を得ることができなかった。 On the other hand, in Comparative Example 1, since the continuous process was performed without performing the ON / OFF cycle of the sputter output, the particles aggregated during the process, resulting in non-uniform particles. In Comparative Example 2, since the SUS ball was put into the container as a stirring aid, the particle was deformed by the contact between the particle and the SUS ball during the treatment, and good conductive particles could not be obtained. .
 比較例3、4では、スパッタリングを行う時間(A)と、スパッタリングを行わない時間(B)の比A/Bが10を超えている。この場合、スパッタ出力ONの時間に対してスパッタ出力OFFの時間が短すぎるため、振動のみによる十分な解砕効果を得ることができずに一部に導電性粒子の凝集が生じてしまっていた。 In Comparative Examples 3 and 4, the ratio A / B of the time for sputtering (A) and the time for sputtering (B) exceeds 10. In this case, since the sputter power OFF time is too short with respect to the sputter power ON time, a sufficient crushing effect due to vibration alone cannot be obtained, and agglomeration of conductive particles occurs in part. .
 比較例5では、実施例2においてスパッタ出力OFFの時間(B)を5分から20分に伸ばしており、A/Bが1未満である。得られた導電性粒子の品質は、実施例2と同程度のものであった。したがって、スパッタリングを行わない時間(B)を長くしすぎてもほとんど効果はなく、合計の処理時間が長くなるだけであった。 In Comparative Example 5, the sputter output OFF time (B) in Example 2 is extended from 5 minutes to 20 minutes, and A / B is less than 1. The quality of the obtained conductive particles was similar to that in Example 2. Therefore, if the time (B) during which sputtering is not performed is made too long, there is almost no effect, and only the total processing time becomes long.
(導電性粒子の評価)
 次に、実施例3の製造方法で得られた導電性粒子について、金属層の厚さと硬さを測定した。また、実施例3の製造方法で得られた導電性粒子を用いて異方性導電接着剤を作製し、この異方性導電接着剤によりICを基板に接合した実装体について評価した。
(Evaluation of conductive particles)
Next, regarding the conductive particles obtained by the manufacturing method of Example 3, the thickness and hardness of the metal layer were measured. In addition, an anisotropic conductive adhesive was produced using the conductive particles obtained by the production method of Example 3, and the mounted body in which the IC was bonded to the substrate using this anisotropic conductive adhesive was evaluated.
(金属層の厚さ測定)
 エポキシ接着剤に、実施例3の製造方法で得られた導電性粒子を分散させて硬化させ、研磨機(丸本ストルアス社製)にて粒子表面を削り出した。この粒子断面をSEM(キーエンス社製、VE-8800)にて観察し、金属層の厚さを測定した。実施例3の製造方法で得られた導電性粒子の金属層の厚さは100nmであった。
(Metal layer thickness measurement)
Conductive particles obtained by the production method of Example 3 were dispersed in an epoxy adhesive and cured, and the particle surface was shaved with a polishing machine (manufactured by Marumoto Struers). The particle cross section was observed with an SEM (manufactured by Keyence Corporation, VE-8800), and the thickness of the metal layer was measured. The thickness of the metal layer of the conductive particles obtained by the manufacturing method of Example 3 was 100 nm.
(金属層の硬さ測定)
 アルミニウム(Al)からなるスパッタリングターゲットを用いて、DCマグネトロンスパッタリング法によりガラス基板上に金属層としてアルミニウム層を成膜した。このアルミニウム層をビッカース硬さ試験機により、JIS Z 2244に準拠して測定し、これを金属層のビッカース硬さ(Hv)とした。
 このアルミニウム層のビッカース硬さ(Hv)は45以上65以下であった。
(Metal layer hardness measurement)
An aluminum layer was formed as a metal layer on a glass substrate by a DC magnetron sputtering method using a sputtering target made of aluminum (Al). This aluminum layer was measured with a Vickers hardness tester in accordance with JIS Z 2244, and this was defined as the Vickers hardness (Hv) of the metal layer.
The aluminum layer had a Vickers hardness (Hv) of 45 or more and 65 or less.
(異方性導電接着剤の作製)
 熱硬化性樹脂として、ナフタレン型2官能エポキシ樹脂(HP-4032D、DIC社製)を20重量部、ビスフェノールF型エポキシ樹脂(EXA830CRP、DIC社製)を25重量部、マスターバッチ型イミダゾール系硬化剤(HX-3721、旭化成イーマテリアルズ社製)を55重量部、エポキシ系シランカップリング剤(KBM-403、信越化学社製)を1重量部、微粒子シリカ(R202、日本アロエジル社)を2重量部、及び実施例3の製造方法で得られた導電性粒子10重量部を配合し、自転公転ミキサーにて均一に撹拌し、異方性導電接着剤を作製した。
(Production of anisotropic conductive adhesive)
As thermosetting resin, 20 parts by weight of naphthalene type bifunctional epoxy resin (HP-4032D, manufactured by DIC), 25 parts by weight of bisphenol F type epoxy resin (EXA830CRP, manufactured by DIC), masterbatch type imidazole curing agent (HX-3721, manufactured by Asahi Kasei E-Materials Co., Ltd.) 55 parts by weight, epoxy silane coupling agent (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) 1 part by weight, fine particle silica (R202, Nihon Aloezil) 2 parts by weight And 10 parts by weight of conductive particles obtained by the production method of Example 3 were blended and stirred uniformly with a rotating and rotating mixer to prepare an anisotropic conductive adhesive.
(実装体の作製)
 上述の工程によって作成した異方性導電接着剤を用いて、ICチップ(1.5mm×1.5mm、t=0.15mm、Auメッキバンプ[150μm×130μm、h=15μm])と、PET基板(t=38μm)上にアルミ配線(t=30μm)がパターニングされたFPC基板との接合を行った。
 この場合、異方性導電接着剤をFPC基板上に塗布し、その上にICチップを位置合わせして載せた後、コンスタントヒートツールを用いて接合条件200℃、3N/chip、10秒にて接合を行い、実装体を完成させた。得られた実装体について、接続抵抗を測定することで評価した。
(Production of mounting body)
An IC chip (1.5 mm × 1.5 mm, t = 0.15 mm, Au plating bump [150 μm × 130 μm, h = 15 μm]) and a PET substrate using the anisotropic conductive adhesive prepared by the above-described process Bonding with an FPC substrate in which aluminum wiring (t = 30 μm) was patterned on (t = 38 μm) was performed.
In this case, an anisotropic conductive adhesive is applied on the FPC board, and an IC chip is aligned and placed on the FPC board. Then, using a constant heat tool, bonding conditions are 200 ° C., 3 N / chip, 10 seconds. Bonding was performed to complete the mounting body. About the obtained mounting body, it evaluated by measuring connection resistance.
(接続抵抗の測定)
 各実装体について、初期の抵抗と、ヒートサイクルテスト(100℃30分、-40℃30分、500cycle)後の抵抗を測定した。測定はデジタルマルチメータ(アドバンテスト社製)を用いて、2端子法にて接続抵抗を測定した。
 実施例3の製造方法で得られた導電性粒子を分散させた異方性導電接着剤による実装体においては、初期の抵抗が0.2Ω、ヒートサイクルテスト後の抵抗が0.4Ωであり、抵抗値の大きな変化は見られなかった。すなわち、良好な接続信頼性が得られることが確認できた。
(Measurement of connection resistance)
For each mounted body, the initial resistance and the resistance after a heat cycle test (100 ° C. for 30 minutes, −40 ° C. for 30 minutes, 500 cycles) were measured. For the measurement, the connection resistance was measured by a two-terminal method using a digital multimeter (manufactured by Advantest).
In the mounting body with the anisotropic conductive adhesive in which the conductive particles obtained by the production method of Example 3 are dispersed, the initial resistance is 0.2Ω, the resistance after the heat cycle test is 0.4Ω, There was no significant change in resistance. That is, it was confirmed that good connection reliability was obtained.
 このように、本発明の一実施形態に係る導電性粒子の製造方法により製造された導電性粒子を分散させた異方性導電接着剤を用いて、電気的に接続した接続構造体は良好な接続信頼性を得ることができることが確認された。 Thus, the connection structure electrically connected using the anisotropic conductive adhesive in which the conductive particles manufactured by the method for manufacturing conductive particles according to one embodiment of the present invention are dispersed is good. It was confirmed that connection reliability can be obtained.
 4…スパッタリング装置、10…導電性粒子、11…成膜対象粒子、12…金属層、22…スパッタリングターゲット、23…振動装置、25…振動容器  4 ... Sputtering device, 10 ... Conductive particles, 11 ... Particles to be deposited, 12 ... Metal layer, 22 ... Sputtering target, 23 ... Vibrating device, 25 ... Vibrating vessel

Claims (8)

  1.  金属材料からなるスパッタリングターゲットを用い、成膜対象粒子の表面にスパッタリングによって金属層を形成する導電性粒子の製造方法であって、
     前記金属層を形成する際に、前記成膜対象粒子を配置した容器を振動させながら、前記スパッタリングを間欠的に行う工程を有する導電性粒子の製造方法。
    A method for producing conductive particles using a sputtering target made of a metal material and forming a metal layer by sputtering on the surface of the film formation target particles,
    A method for producing conductive particles, comprising: a step of intermittently performing the sputtering while vibrating the container in which the film formation target particles are disposed when forming the metal layer.
  2.  前記スパッタリングを間欠的に行う際に、1分間以上60分間以下スパッタリングを行う工程と、1分間以上15分間以下スパッタリングを行わない工程とをそれぞれ少なくとも1回以上交互に繰り返す請求項1に記載の導電性粒子の製造方法。 The conductivity according to claim 1, wherein when performing the sputtering intermittently, the step of performing sputtering for 1 minute or more and 60 minutes or less and the step of performing sputtering for 1 minute or more and 15 minutes or less are alternately repeated at least once each. Method for producing particles.
  3.  前記スパッタリングを行う工程の時間(A)と、前記スパッタリングを行わない工程の時間(B)の比A/Bが、1≦A/B≦10の範囲である請求項2に記載の導電性粒子の製造方法。 3. The conductive particle according to claim 2, wherein a ratio A / B of a time (A) of the step of performing the sputtering and a time (B) of the step of not performing the sputtering is in the range of 1 ≦ A / B ≦ 10. Manufacturing method.
  4.  前記成膜対象粒子は、はんだ粒子である請求項1乃至3のいずれか1項に記載の導電性粒子の製造方法。 The method for producing conductive particles according to any one of claims 1 to 3, wherein the film formation target particles are solder particles.
  5.  前記金属材料は、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、チタン(Ti)、ルテニウム(Ru)からなる群から選択される少なくとも1種である請求項1乃至4のいずれか1項に記載の導電性粒子の製造方法。 The metal material is at least one selected from the group consisting of copper (Cu), aluminum (Al), nickel (Ni), titanium (Ti), and ruthenium (Ru). The manufacturing method of the electroconductive particle as described in a term.
  6.  前記成膜対象粒子の粒径が1μm以上20μm以下である請求項1乃至5のいずれか1項に記載の導電性粒子の製造方法。 The method for producing conductive particles according to any one of claims 1 to 5, wherein a particle diameter of the film formation target particles is 1 µm or more and 20 µm or less.
  7.  前記金属層の厚さが5nm以上200nm以下である請求項1乃至6のいずれか1項に記載の導電性粒子の製造方法。 The method for producing conductive particles according to any one of claims 1 to 6, wherein the metal layer has a thickness of 5 nm to 200 nm.
  8.  前記成膜対象粒子を配置した容器を振動させる際、当該振動の周波数が15Hz以上65Hz以下であり、当該振動の振幅が0.5mm以上10mm以下である請求項1乃至7のいずれか1項に記載の導電性粒子の製造方法。  8. The vibration according to claim 1, wherein when the container in which the particles to be deposited are arranged is vibrated, the frequency of the vibration is 15 Hz to 65 Hz, and the amplitude of the vibration is 0.5 mm to 10 mm. The manufacturing method of electroconductive particle of description.
PCT/JP2016/059271 2015-03-23 2016-03-23 Method for producing conductive particles WO2016152942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015059414 2015-03-23
JP2015-059414 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016152942A1 true WO2016152942A1 (en) 2016-09-29

Family

ID=56977549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059271 WO2016152942A1 (en) 2015-03-23 2016-03-23 Method for producing conductive particles

Country Status (2)

Country Link
JP (1) JP2016186128A (en)
WO (1) WO2016152942A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2612432A (en) * 2021-10-05 2023-05-03 Teer Coatings Ltd Improvements to apparatus and a method for applying a coating onto items

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321983A (en) * 2000-05-16 2001-11-20 Canon Inc Solder paste and method for soldering electronic parts using the same
JP2002120086A (en) * 2000-10-12 2002-04-23 Sanyo Electric Co Ltd Lead-free solder and its production method
JP2002331385A (en) * 2001-05-08 2002-11-19 Sony Corp Soldering material, manufacturing method therefor, and soldering paste
JP2003033668A (en) * 2001-05-18 2003-02-04 Sony Corp Method of manufacturing conductive catalyst particle and method of manufacturing gas diffusive catalyst electrode, and apparatus and vibration device used for method of manufacturing conductive catalyst particle
JP2005264297A (en) * 2004-03-22 2005-09-29 Takayuki Abe Fine particle
JP2005281765A (en) * 2004-03-29 2005-10-13 Japan Science & Technology Agency Method for stirring fine particles, and surface modification method for abrasive grain using it
JP2014160708A (en) * 2013-02-19 2014-09-04 Dexerials Corp Anisotropic conductive adhesive material, light-emitting device, and method for manufacturing anisotropic conductive adhesive material
JP2015197955A (en) * 2014-03-31 2015-11-09 日立化成株式会社 Conductive particle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321983A (en) * 2000-05-16 2001-11-20 Canon Inc Solder paste and method for soldering electronic parts using the same
JP2002120086A (en) * 2000-10-12 2002-04-23 Sanyo Electric Co Ltd Lead-free solder and its production method
JP2002331385A (en) * 2001-05-08 2002-11-19 Sony Corp Soldering material, manufacturing method therefor, and soldering paste
JP2003033668A (en) * 2001-05-18 2003-02-04 Sony Corp Method of manufacturing conductive catalyst particle and method of manufacturing gas diffusive catalyst electrode, and apparatus and vibration device used for method of manufacturing conductive catalyst particle
JP2005264297A (en) * 2004-03-22 2005-09-29 Takayuki Abe Fine particle
JP2005281765A (en) * 2004-03-29 2005-10-13 Japan Science & Technology Agency Method for stirring fine particles, and surface modification method for abrasive grain using it
JP2014160708A (en) * 2013-02-19 2014-09-04 Dexerials Corp Anisotropic conductive adhesive material, light-emitting device, and method for manufacturing anisotropic conductive adhesive material
JP2015197955A (en) * 2014-03-31 2015-11-09 日立化成株式会社 Conductive particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2612432A (en) * 2021-10-05 2023-05-03 Teer Coatings Ltd Improvements to apparatus and a method for applying a coating onto items

Also Published As

Publication number Publication date
JP2016186128A (en) 2016-10-27

Similar Documents

Publication Publication Date Title
JP3942816B2 (en) Brazing joining method between metals
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP7452418B2 (en) Anisotropic conductive film and method for producing the same, and method for producing a connected structure
JP5114607B2 (en) Conductive particle, method for producing conductive particle, anisotropic conductive material, and connection structure
WO2007034833A1 (en) Pasty silver particle composition, process for producing solid silver, solid silver, joining method, and process for producing printed wiring board
WO2012121355A1 (en) Electronic part and method of manufacturing electronic part
WO2002013205A1 (en) Conductive fine particles, method for plating fine particles, and substrate structural body
JP2012094532A (en) Conductive particle, anisotropic conductive material, and connection structure
JP5622127B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
JP6199145B2 (en) Method for producing composite conductive particles
WO2016152942A1 (en) Method for producing conductive particles
JP6340876B2 (en) Conductive particles
WO2016140326A1 (en) Method for manufacturing conductive particles, anisotropically conductive adhesive, and method for mounting component
JP2012038790A (en) Electronic member and electronic component and manufacturing method thereof
WO2022009754A1 (en) Bonding composition and formulation method for bonding composition
JP6601648B1 (en) Chip electronic components
WO2016152943A1 (en) Conductive particles, anisotropic conductive adhesive, and connection structure
JP4188278B2 (en) Anisotropic conductive film and heat seal connector
JP5943019B2 (en) Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
JP2007067058A (en) Method of manufacturing electronic component aggregation and electronic component aggregation
WO2021131620A1 (en) Connection structure and manufucturing method therefor
JP7298256B2 (en) conductive particles
JP2015199994A (en) Manufacturing method of compound-type conductive particle
TW202120704A (en) Sn-bi-in-based low melting-point joining member, production method therefor, semiconductor electronic circuit, and mounting method therefor
JP7292669B2 (en) Method for producing conductive particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768845

Country of ref document: EP

Kind code of ref document: A1