JP2015186383A - 回転電機のロータ - Google Patents

回転電機のロータ Download PDF

Info

Publication number
JP2015186383A
JP2015186383A JP2014062296A JP2014062296A JP2015186383A JP 2015186383 A JP2015186383 A JP 2015186383A JP 2014062296 A JP2014062296 A JP 2014062296A JP 2014062296 A JP2014062296 A JP 2014062296A JP 2015186383 A JP2015186383 A JP 2015186383A
Authority
JP
Japan
Prior art keywords
pair
axis
slots
rotor
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014062296A
Other languages
English (en)
Inventor
武田 健
Takeshi Takeda
健 武田
尚登 齋藤
Naoto Saito
尚登 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2014062296A priority Critical patent/JP2015186383A/ja
Publication of JP2015186383A publication Critical patent/JP2015186383A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

【課題】小型化を図った回転電機のロータを提供する。
【解決手段】回転電機のロータは、磁極の両端に位置する一対のq軸に沿ってそれぞれ形成される一対の第1スロットと、前記一対の第1スロットの中心軸側の端部同士の間でd軸上に形成される中間スロットとを有するロータコアと、磁化方向に垂直な面が前記q軸に沿うように、前記一対の第1スロットの内部にそれぞれ配設される直方体状の一対の第1磁石とを含む。
【選択図】図2

Description

本発明は、回転電機のロータに関する。
従来より、ロータコアに永久磁石を各磁極毎に複数層埋設してなる永久磁石回転子において、前記ロータコアの最外周側の層を構成する前記永久磁石以外の永久磁石が埋設されるスリット部のそれぞれの一部に、前記ロータコアの外周側よりも内周側の方が大きくなる傾向で、前記永久磁石が埋設されない空スリット部を形成するとともに、回転電機に組み込まれた状態での各永久磁石層が発生する総磁束量を、前記ロータコアの外周側の層よりも内周側の層の方が大きくなるようにしたことを特徴とする永久磁石回転子がある(例えば、特許文献1参照)。
特開2002−078259号公報
ところで、従来の永久磁石回転子はボンド磁石を用いているため、ある程度大きな磁力を得るには永久磁石回転子が大型化するという課題がある。
そこで、小型化を図った回転電機のロータを提供することを目的とする。
本発明の実施の形態の回転電機のロータ(100)は、磁極(101)の両端に位置する一対のq軸に沿ってそれぞれ形成される一対の第1スロット(111A又は111B)と、前記一対の第1スロット(111A又は111B)の中心軸側の端部同士の間でd軸上に形成される中間スロット(112A又は112B)とを有するロータコア(110)と、磁化方向に垂直な面が前記q軸に沿うように、前記一対の第1スロット(111A又は111B)の内部にそれぞれ配設される直方体状の一対の第1磁石(120A又は120B)とを含む。
小型化を図った回転電機のロータを提供することができる。
実施の形態のロータ100を含むモータ1を示す平面図である。 ロータ100の一部を拡大して示す図である。
以下、本発明の回転電機のロータを適用した実施の形態について説明する。
<実施の形態>
図1は、実施の形態のロータ100を含むモータ1を示す平面図である。図2は、ロータ100の一部を拡大して示す図である。図1に示すように、ロータ100は8つ(8極)の磁極101を含み、図2には、そのうちの1つの磁極101と、両側に隣接する磁極101の一部とを拡大して示す。
モータ1は、ロータ100とステータ200を含む。モータ1は、永久磁石を用いたインナロータ型のモータ(IPM(Interior Permanent Magnet)モータ)であり、回転電機の一例である。モータ1は、例えば、ハイブリッド車又は電気自動車で使用される走行用モータであってもよい。
以下では、径方向、周方向、及び軸方向は、モータ1の中心軸I(図1参照)を基準とし、中心軸Iを中心として径方向の内側及び外側を定義する。径方向の内側とは、径方向における中心軸Iに向かう方向をいい、径方向の外側とは、径方向において中心軸Iとは反対に向かう方向をいう。モータ1の中心軸Iは、ロータ100及びステータ200の中心軸と等しい。また、以下では、平面視とは、軸方向から見ることをいい、平面図とは平面視における構成を示す図をいう。
ここでは、まず、ステータ200について説明する。
ステータ200は、図1に示すように、ヨーク部210、ティース部220、及びコイル230を含む。ヨーク部210は、平面視で円環状であり、径方向内側の面からティース部220が径方向内側に延在している。ティース部220は、ヨーク部210の周方向に等間隔で複数個形成される。
コイル230は、周方向で隣接するティース部220間にコイル230が設けられ、スロットが構築される。ヨーク部210は、各ティース部220及びその間のスロットを外径側から囲繞する態様で周方向に連続して延在する。なお、図1には、ティース部220が48個あるステータ200を示す。
次に、ロータ100について説明する。
ロータ100は、平面視で円環状のステータ200の開口部200Aの内部に収容されており、中心軸Iを回転中心として回転可能にモータ1の筐体に軸受けを介して軸支されている。
ロータ100は、ロータコア110と、磁石120A、120B、120C、130A、130Bとを有する。ここで、磁石120A、120B、120C、130A、130Bは、すべて直方体状の焼結ネオジ磁石である。図2で磁石120A、120B、120C、130A、130Bに示す矢印は磁化方向を示し、矢印の起点側がS極、先端側がN極である。
ロータコア110は、スロット111A、111B、111C、112A、112B、流路113、及び、溝部114を有する。ロータコア110は、積層鋼板から形成される。ロータコア110は、パンチング等の処理によってスロット111A、111B、111C、112A、112B、流路113、及び、一対の溝部114を形成した鋼板を軸方向に多数枚積層することによって形成される。なお、鋼板としては、例えば、珪素鋼板を用いることができる。
また、ロータ100は、上述したように8つの磁極101を有する。8つの磁極101は、それぞれ平面視で扇形であり、径方向外側がN極になる磁極101とS極になる4つの磁極101とが中心軸Iを中心として交互に配列されている。なお、図2の中央に示す磁極101は径方向外側がN極になる磁極である。
8つの磁極101は、q軸を境界としており、各磁極101の両端に位置する一対のq軸同士の中心線は、d軸を構築する。図1では、d軸を破線で示し、q軸を一点鎖線で示す。
図2に示すd軸及びq軸は、ロータコア110の単体での設計上のd軸及びq軸であり、ここでは、ロータコア110に磁石120A、120B、120C、130A、130Bを取り付けた状態における磁極101のd軸及びq軸と一致する。
8つの磁極101の構成はすべて同様であるため、以下では、図2の中央に示す磁極101について説明する。
スロット111A、111B、111Cは、それぞれ、一対ずつ設けられている。スロット111A、111B、111Cの各対は、それぞれ、d軸を対称軸として線対称に形成されている。
また、スロット111A、111B、111Cの各対は、それぞれ、d軸の左側と右側において、長手方向がq軸に平行になるように形成されている。スロット111A、111B、111Cの長手方向の長さは、スロット111Aが最も長く、スロット111Cが最も短い。また、スロット111A、111B、111Cの短手方向の長さは、スロット111Bが最も長く、スロット111Aが最も短い。また、スロット111A、111B、111Cの短手方向における間隔は、それぞれ略等しい。ここで、短手方向とは平面視で長手方向に垂直な向きである。
なお、スロット111A、111B、111Cの長手方向の長さ、短手方向の長さ、及び短手方向における間隔は、それぞれ最適化されている。
一対のスロット111Aの中心軸I側の端部同士の間には、スロット112Aが設けられている。同様に、一対のスロット111Bの中心軸I側の端部同士の間には、スロット112Bが設けられている。
スロット111A、111B、111Cの中には、それぞれ、磁石120A、120B、120Cが配設される。スロット111A、111B、111Cはそれぞれ対で設けられているため、磁石120A、120B、120Cは一対ずつ配設される。
ここで、一対のスロット111Aは、一対の第1スロットの一例であり、同様に、一対のスロット111Bは、一対の第1スロットの一例である。また、一対のスロット111Cは、一対の第2スロットの一例である。
スロット112A、112Bは、ともにd軸上に形成される。スロット112Aは、一対のスロット111Aの中心軸I側の端部同士の間に形成されており、スロット112Bは、一対のスロット111Bの中心軸I側の端部同士の間に形成されている。
スロット112A、112Bの長手方向は、d軸に垂直な方向である。スロット112A、112Bには、それぞれ、磁石130A、130Bが配設される。スロット112A、112Bは、ともに中間スロットの一例である。
ここで、スロット112Aと一対のスロット111Aとの間は、一対の支持部115Aを構築する。一対の支持部115Aは、それぞれ、スロット112Aの両側に存在する。一対の支持部115Aは、一対のスロット111Aとスロット112Aとをパンチング等で形成する際に、一対のスロット111Aとスロット112Aとの間でロータコア110の一部が除去されずに残された部分である。
また、スロット112Bと一対のスロット111Bとの間は、一対の支持部115Bを構築する。一対の支持部115Bは、それぞれ、スロット112Bの両側に存在する。一対の支持部115Bは、一対のスロット111Bとスロット112Bとをパンチング等で形成する際に、一対のスロット111Bとスロット112Bとの間でロータコア110の一部が除去されずに残された部分である。
このような一対の支持部115Aと、一対の支持部115Bとは、それぞれ、d軸の左側及び右側において、直線を含む形状を有するように形成される。図2には、d軸の左側及び右側に、2本の直線L1、L2を示す。直線L1は、d軸の左側で支持部115A及び115Bの内部を通り、d軸に角度αで交わる。直線L2は、d軸の右側で支持部115A及び115Bの内部を通り、d軸に角度αで交わる。
このように、一対の支持部115Aと、一対の支持部115Bとが、それぞれ、d軸の左側及び右側において、直線L1、L2を含む形状を有するように形成するのは、一対の支持部115Aと、一対の支持部115Bとの機械的な強度を確保するためである。
以上のようなスロット111A、111B、111C、112A、112Bは、一対のスロット111Aとスロット112Aとで1つの層を形成し、一対のスロット111Bとスロット112Bとで別の1つの層を形成し、一対のスロット111Cがさらに別の1つの層を形成するように配列されている。すなわち、符号の添え字のアルファベットがA、B、Cの3つの層(A層、B層、C層)が略V字状に折れ曲げられた状態で重なり合うように形成されている。
また、スロット111A、111B、111C、112A、112Bの両端側には、それぞれ、磁石120A、120B、120C、130A、130Bが配設された状態で隙間が形成されている。これらの隙間は、磁石120A、120B、120C、130A、130Bに掛かる応力を逃がすため、又は、磁力線の最適化を図るため等に形成されている。
実施の形態では、3層のスロットのうちの中央の層(B層)の一対のスロット111Bの中心軸I側に位置する隙間を冷媒の流路として用いる。このため、一対のスロット111Bの中心軸I側に位置する隙間に流路111B1、111B2を示す。流路111B1、111B2は、第1流路の一例である。
流路113は、一対のスロット120Cの間で、d軸上に形成されている。流路113の位置は、一対のスロット120Cが形成するV字の内側に位置し、スロット120Cの長手方向における中央よりも径方向外側に位置する。流路113は、第2流路の一例である。
流路111B1、111B2、及び113は、図示しないリテーナを介して冷媒の流路に接続されており、ロータ100の回転に伴う遠心力を利用して、流路111B1、111B2、及び113の内部に冷媒を通流させる。
流路111B1、111B2、及び113から流れ出る冷媒は、遠心力で径方向外側に飛散され、例えば、ステータ200のコイルエンドに到達するようにしてもよい。なお、冷媒としては、例えば、ATF(Automatic Transmission Fluid)を用いればよい。なお、ATFは、図示しないオイルポンプから供給される。
溝部114は、ロータコア110の周方向における一対のスロット111Cよりも内側(d軸側)において、d軸の両側でロータコア110の外周面が径方向の内側に凹むように一対形成されている。
d軸の左側及び右側のそれぞれにおいて、スロット111Cの周方向における中心と、スロット111Bの周方向における中心とのピッチ(間隔)と、スロット111Cの周方向における中心と溝部114の周方向における中心とのピッチ(間隔)は等しい。
このような一対の溝部114は、ロータコア110の外周面に形成される一対の凹部の一例である。一対の溝部114は、トルクリプルを軽減するために設けられている。なお、一対の溝部114によるトルクリプルの軽減については後述する。
磁石120A、120B、120C、130A、130Bは、それぞれ、スロット111A、111B、111C、112A、112Bの内部に配設されている。ここで、磁石120A、120Bは、それぞれ、第1磁石の一例である。また、磁石120Cは、第2磁石の一例である。また、磁石130A、130Bは、第3磁石の一例である。
磁石120A、120B、120C、130A、130Bは、すべて直方体状の焼結ネオジ磁石である。
焼結ネオジ磁石を用いるのは、マグネットシート、フェライト磁石、ネオジボンド磁石、サマリウムコバルト磁石等よりも磁力が強く、小型化が可能だからである。例えば、ネオジボンド磁石と比べると、焼結ネオジ磁石は約2倍の磁力を発生する。
また、焼結ネオジ磁石は、例えばネオジボンド磁石と比べると成形時の自由度が比較的低く、例えば湾曲した形状等のように複雑な形状を実現することは比較的困難である。このため、実施の形態では、磁石120A、120B、120C、130A、130Bとして直方体に成形した焼結ネオジ磁石を用いている。直方体状の焼結ネオジ磁石であれば、製造コストの点で有利になるからである。
磁石120A、120B、120C、130A、130Bとして用いる直方体状の焼結ネオジ磁石の平面視における長手方向の長さはそれぞれ異なるが、磁化方向はすべて平面視における短手方向を向くように形成されている。なお、磁石120A、120B、120C、130A、130Bとして用いる直方体の焼結ネオジ磁石の軸方向の寸法はすべて等しい。
図2において、磁石120A、120B、120C、130A、130Bに示す矢印は磁化方向を示し、矢印の起点側がS極、先端側がN極である。各焼結ネオジ磁石は、直方体であるため、平面視では磁化方向に垂直な面が長手方向に沿った面である。
磁石120A、120B、120Cは、それぞれ、スロット111A、111B、111Cの内部で、磁化方向に垂直な面がq軸と平行になるように配設されている。磁石120A、120B、120Cは、それぞれ、d軸を挟んで一対ずつ設けられているため、磁石120A、120B、120Cの各対同士の磁化方向は、それぞれ、d軸を対称軸として線対称である。
図2に示す中央の磁極101では、磁石120A、120B、120Cの各対の磁化方向は、磁極101の両端に位置する一対のq軸から、磁極101の中央に位置するd軸に向かう方向である。このような磁石120A、120B、120Cが発生する磁束は、ロータコア110の磁路を経て合成され、中心軸Iからd軸に沿ってロータ100の外側に向かう方向の磁束になる。
磁石130A、130Bは、それぞれ、スロット112A、112Bの内部で、磁化方向がd軸に平行になるように配設されている。
図2に示す中央の磁極101では、磁石130A、130Bの磁化方向は、ともに中心軸Iからd軸に沿ってロータ100の外側に向かう方向である。このような磁石130A、130Bが発生する磁束は、ロータコア110の磁路を経て合成され、中心軸Iからd軸に沿ってロータ100の外側に向かう方向の磁束になる。
このため、図2に示す中央の磁極101では、磁石120A、120B、120C、130A、130Bが発生する磁束を合成して得る磁束の方向は、中心軸Iからd軸に沿ってロータ100の外側に向かう方向である。従って、図2に示す中央の磁極101は、径方向外側がN極となる。
また、図2に示す中央の磁極101に隣接する一対の磁極101では、磁石120A、120B、120C、130A、130Bの磁化方向は、図2に示す磁化方向とは逆方向になる。このため、図2に示す中央の磁極101に隣接する一対の磁極101は、ともにS極となる。
従って、図1及び図2に示すような構成で、径方向外側がN極になる4つの磁極101と、S極になる4つの磁極101とが交互に配列されるロータ100が得られる。
以上、実施の形態によれば、磁化方向に垂直な面がq軸に平行な直方体状の磁石120A、120B、120Cを一対ずつ設けたので、磁石120A、120B、120Cを平面的に高密度に実装でき、積層方向の厚さを減らすことができるため、ロータ100の小型化を図ることができる。
例えば、各磁極101において、d軸を対称軸としてd軸に対して約30度の角度をなす一対の焼結ネオジ磁石をV字型に配置したロータと、同一のトルクを得る条件下で比べて、積層方向の厚さを20%低減することができる。
また、磁石120A、120B、120Cは、焼結ネオジ磁石であるため、強力な磁力を保持しつつ、高密度化によってロータ100の小型化を図ることができる。
また、磁石120A、120B、120Cは、直方体状であるため、製造が容易で製造コストを抑えることができる。
また、上述のようにd軸を対称軸としてd軸に対して約30度の角度をなす一対の焼結ネオジ磁石をV字型に配置したロータでは、1層の磁路しか存在しないため、d軸上における磁気抵抗を十分に大きくすることが困難である。
これに対して、実施の形態のロータ100では、スロット111A、111B、111C、112A、112Bによる3つの層(A層、B層、C層)で分けられた複数層の磁路がd軸上に存在するため、q軸の磁気抵抗を大きくすることなくd軸の磁気抵抗を大きくすることが可能になる。
また、一般的に、ステータ200においてコイル230のターン数を増大させるとトルクが増大する反面、インダクタンスの増大によって出力が減少するが、実施の形態のロータ100では、q軸の磁気抵抗を大きくすることなくd軸の磁気抵抗を大きくできるため、ステータ200におけるコイル230のターン数を増加させてもd軸におけるインダクタンスの増加を抑制することができる。
また、磁石120A及び120Bの各対の間に、それぞれ、磁化方向がd軸に平行な磁石130A及び130Bを配設したので、磁束の高密度化によりさらに小型化を図ることができる。
また、スロット111A、111B、111Cを比較的狭い間隔で配列するとともに、スロット111A、111Bの各対の間にそれぞれスロット112A、112Bを設けることにより、ロータコア110の残存部分による磁路が細くなるようにしたので、漏洩磁束を少なくすることができる。
また、一対の支持部115Aと一対の支持部115Bとは、それぞれ、d軸の左側及び右側において、直線L1、L2を含む形状を有するように形成されるため、磁石120A、120B、130A、130Bを支持する部分の機械的な強度が向上し、遠心力に対する十分な強度を確保したロータ100を得ることができる。
例えば、一対の支持部115Aと一対の支持部115Bとが、それぞれ、d軸の左側及び右側において、直線L1、L2を含まないように位置がずれていると、ロータ100が回転した際に、一対の磁石120Aと磁石130Aとの荷重を支持部115Aと支持部115Bの間で十分に支えきれなくなるおそれがある。
従って、一対の支持部115Aと一対の支持部115Bとが、それぞれ、d軸の左側及び右側において、直線L1、L2を含む形状を有することは、遠心力に対する十分な強度を確保する上で、非常に有意義である。
また、流路111B1、111B2は、3つの層(A層、B層、C層)をなすスロット111A、111B、111C、112A、112Bの真ん中の層に位置しており、流路113はd軸上で一対のスロット111Cの間に位置している。すなわち、流路111B1、111B2、及び113は、平面視で扇形の磁極101の中央部に位置している。
ここで、流路111B1、111B2だけに冷媒を通流させたのでは、磁極101の径方向外側における冷却能力が不足する場合がある。また、流路113だけに冷媒を通流させたのでは、磁極101の径方向内側における冷却能力が不足する場合がある。
これは、図2に示すような3つの層をなすスロット111A、111B、111C、112A、112Bと、磁石120A、120B、120C、130A、130Bとの配置では、磁極101の外周部と、ロータコア110のスロット111A、111B、111Cの間の部分とに発熱が集中することがシミュレーションで判明したからである。
従って、流路111B1、111B2、及び113に冷媒を通流させることにより、各磁極101で効率的に磁石120A、120B、120C、130A、130Bを冷却することができる。このように磁極101の中央部に位置する流路111B1、111B2、及び113に冷媒を通流させることによって十分な冷却能力を確保し、これにより、焼結ネオジ磁石の熱減磁を抑制することができる。
なお、一対のスロット111Bの流路111B1、111B2を用いる代わりに、スロット112Bの両端の隙間を流路として用いてもよい。
また、流路111B1、111B2だけ、又は、流路113だけに冷媒を通流させることで十分な冷却能力が得られる場合は、流路111B1、111B2だけ、又は、流路113だけに冷媒を通流させてもよい。また、流路111B1、111B2、113のいずれにも冷媒を通流させなくても冷却の問題が生じない場合は、流路111B1、111B2、113のいずれにも冷媒を通流させなくてもよい。
また、溝部114を形成することによってトルクリプルが軽減されるのは、次のような理由による。
スロット111A、111B、111Cのロータコア110の外周側の端部は、ロータコア110の外周方向において略等ピッチで配置されている。また、磁石120A、120B、120Cの磁化方向は、それぞれスロット111A、111B、111Cの短手方向に略等しい。
このため、ロータコア110の外周部において、スロット111A、111B、111Cが形成されている位置は、ステータ200との間で磁束が流れにくい部位である。
これに対して、一対のスロット111Aの間は、流路113が形成されているだけであるため、ステータ200との間で比較的磁束が流れ易い。
このため、一対のスロット111Aの間に溝部114を設けてステータ200との間で磁束が流れにくい部分を形成することにより、トルクリプルを軽減することができる。ロータ100とステータ200との間隔が広い部分を溝部114によって形成することにより、ステータ200との間で磁束が流れにくい部分が得られる。そして、このような溝部114によって磁束が流れにくい部分を、スロット111A、111B、111Cによって磁束が流れにくい部位と等ピッチで配置すれば、トルクリプルを軽減することができる。
ロータコア110の外周部におけるスロット111A、111B、111Cの外周側の端部は等ピッチで配置されており、スロット111Cとスロット111Bとの周方向におけるピッチと、スロット111Cと溝部114との周方向におけるピッチとは等しい。また、さらに、一対の溝部114同士の周方向におけるピッチは、スロット111Cと溝部114との周方向におけるピッチと等しい。
従って、ロータ100の回転に伴い、一対のq軸同士の間では、スロット111A、111B、111Cの各対のロータコア110の外周側の端部と、一対の溝部114とによって磁束が流れにくい8箇所の部位が周期的に出現することになる。
実施の形態のロータ100は、上述のような構成により、トルクリプルを軽減している。
なお、ここでは、スロット111A、111B、111Cの各対の内部に、それぞれ、磁石120A、120B、120Cが対をなして配設されるとともに、スロット112A、112Bの内部にそれぞれ磁石130A、130Bが配設される形態について説明した。
しかしながら、ロータ100は、第2スロットの一例としてのスロット111Cと、第2磁石の一例としての磁石120Cとを含まなくてもよい。
また、スロットに関しては、少なくとも一対のスロット111Aとスロット112A、又は、一対のスロット111Bとスロット112Bのいずれかの層(A層又はB層)が形成されていればよい。
そして、磁石に関しては、一対の磁石120A又は一対の磁石120Bが一対のスロット111A又は一対のスロット111Bに配設されていればよい。この場合は、スロット112A又はスロット112Bには磁石130A又は130Bが配設されていなくてもよい。
すなわち、最も簡易な構成では、ロータ100は、一対のスロット111Aとスロット112Aが形成されたロータコア110と、一対のスロット111Aの内部に配設される一対の磁石120Aとを含めばよい。あるいは、ロータ100は、一対のスロット111Bとスロット112Bが形成されたロータコア110と、一対のスロット111Bの内部に配設される一対の磁石120Bとを含めばよい。
また、一対のスロット111Cの間に、d軸上に位置する中間スロットが形成されていてもよい。この場合は、一対のスロット111Cは、第2スロットの一例ではなく第1スロットの一例となる。一対のスロット111Cの間に位置する中間スロットの内部には、磁化方向がd軸に平行な磁石(焼結ネオジ磁石)が配設されていてもよい。
また、以上では、スロット111A、111B、111C、112A、112Bのように符号の添え字のアルファベットがA、B、Cの3つの層がV字状に折れ曲げられた状態で重なり合うように形成される形態について説明したが、4層以上の層が形成されていてもよい。
また、以上では、磁石120A、120B、120Cの各対の磁化方向に垂直な面がそれぞれq軸に平行である形態について説明した。しかしながら、磁石120A、120B、120Cの各対の磁化方向に垂直な面は、それぞれ、q軸に平行である形態に限られず、q軸に沿っていればよい。
ここで、q軸に沿うとは、q軸に平行である場合に加えて、q軸に平行ではないが、q軸に平行な場合と比べて、磁極101のd軸上に得られる磁束の方向に影響が生じず、モータ1の出力トルクに影響が生じない程度の角度を磁石120A、120B、120Cがq軸に対してなしている場合を含む。
また、以上では、磁石130A、130Bの磁化方向がd軸に平行である形態について説明したが、磁石130A、130Bの磁化方向は、d軸に沿っていればよい。
ここで、d軸に沿うとは、磁化方向がd軸に平行である場合に加えて、磁化方向がd軸に平行ではないが、d軸に平行な場合と比べて、磁極101のd軸上に得られる磁束の方向に影響が生じず、モータ1の出力トルクに影響が生じない程度の角度を磁石130A、130Bの磁化方向がd軸に対してなしている場合を含む。
また、磁石120A、120B、120Cの磁化方向に垂直な面の角度は互いに異なっていてもよい。例えば、d軸に近い磁石120A、120B、120Cほど、d軸に対してなす角度が大きくなるように配設されていてもよい。
また、以上では、溝部114が一対の第2スロットの一例としての一対のスロット111Cの間に配設される形態について説明した。しかしながら、一対のスロット111Cが形成されない場合には、一対のスロット111Bの間に、溝部114が形成されてもよい。この場合に、溝部114は、等ピッチで複数対形成されてもよい。
また、一対の支持部115Aと、一対の支持部115Bとは、それぞれ、d軸の左側及び右側において、直線L1、L2を含む形状を有するように形成される形態について説明した。しかしながら、一対のスロット111Cの間の支持部が、一対の支持部115A及び一対の支持部115Bと直線を含む形状を有するように形成されてもよい。
すなわち、図2に示す一対のスロット111Cの間の部分(支持部)が直線L1及びL2上を含む形状を有するように形成されてもよい。また、一対のスロット111Cの間に中間スロットが形成される場合には、一対のスロット111Cと中間スロットとの間の一対の支持部が直線L1及びL2上を含む形状を有するように形成されてもよい。
また、以上では、ロータコア110が積層鋼板から形成される形態について説明したが、ロータコア110は、積層鋼板ではなく金属の塊で形成されてもよいし、圧粉で形成されてもよい。
以上、本発明の例示的な実施の形態の回転電機のロータについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
以上の実施の形態に関し、さらに以下を開示する。
(1)磁極(101)の両端に位置する一対のq軸に沿ってそれぞれ形成される一対の第1スロット(111A又は111B)と、前記一対の第1スロット(111A又は111B)の中心軸側の端部同士の間でd軸上に形成される中間スロット(112A又は112B)とを有するロータコア(110)と、
磁化方向に垂直な面が前記q軸に沿うように、前記一対の第1スロット(111A又は111B)の内部にそれぞれ配設される直方体状の一対の第1磁石(120A又は120B)と
を含む、回転電機のロータ(100)。
(1)に記載の構成によれば、前記一対の第1スロット(111A又は111B)、前記中間スロット(112A又は112B)、及び前記一対の第1磁石(120A又は120B)を平面的に高密度に実装でき、積層方向の厚さを減らすことができるため、小型化を図ったロータ(100)を提供することができる。
(2)前記ロータコア(110)は、複数対の前記第1スロット(111A,111B)と、複数の前記中間スロット(112A,112B)とを有し、
前記第1磁石(120A又は120B)を複数対含む、(1)記載の回転電機のロータ(100)。
(2)に記載の構成によれば、平面的により一層高密度化を図ることにより、より一層の小型化を図ったロータ(100)を提供することができる。
(3)前記複数対の第1磁石(120A,120B)は、前記d軸の一方側及び他方側のそれぞれにおいて、互いに平行に配設される、(2)記載の回転電機のロータ(100)。
(3)に記載の構成によれば、前記複数対の第1磁石(120A,120B)を前記d軸に平行に配置することにより、平面的にさらなる高密度化を図ることにより、より一層の小型化を図ったロータ(100)を提供することができる。
(4)前記複数対の第1スロット(111A,111B)と前記複数の中間スロット(112A,112B)との間の複数対の支持部(115A,115B)は、前記d軸の一方側及び他方側において、それぞれ直線を含むように形成される、(2)又は(3)記載の回転電機のロータ(100)。
(4)に記載の構成によれば、複数対の支持部(115A,115B)が直線を含むことにより、前記複数対の第1磁石(120A,120B)を支持する部分が強固なものとなり、遠心力に対する十分な強度を確保することができる。
(5)前記ロータコア(110)は、前記複数対の第1スロット(111A,111B)のうち最も内側に位置する一対の第1スロット(111B)よりも周方向における内側において、前記d軸の両側で外周面が径方向の内側に凹む一対の凹部(114)を有し、
前記d軸の一方側及び他方側のそれぞれにおいて、前記複数の第1スロット(111A,111B)の周方向におけるピッチと、前記最も内側に位置する第1スロット(111B)と前記凹部(114)との周方向におけるピッチとは等しい、(2)乃至(4)のいずれか一項記載の回転電機のロータ(100)。
(5)に記載の構成によれば、前記複数対の第1スロット(111A,111B)のうち最も内側に位置する一対の第1スロット(111B)の間に、磁束が通りにくい凹部(114)を等ピッチで形成することにより、トルクリプルを低減することができる。
(6)前記ロータコア(110)は、前記第1スロット(111A又は111B)よりも前記d軸側において、前記一対のq軸に沿ってそれぞれ形成される一対の第2スロット(111C)をさらに有し、
磁化方向に垂直な面が前記q軸に沿うように、前記一対の第2スロット(111C)の内部にそれぞれ配設される直方体状の一対の第2磁石(120C)をさらに含む、(1)乃至(4)のいずれか一項記載の回転電機のロータ(100)。
(6)に記載の構成によれば、前記第1スロット(111A又は111B)よりも前記d軸側に前記一対の第2スロット(111C)を設けることで、平面的に高密度に実装でき、積層方向の厚さを減らすことができるため、小型化を図ったロータ(100)を提供することができる。
(7)前記一対の第1磁石(120A又は120B)と、前記一対の第2磁石(120C)とは、前記d軸の一方側及び他方側において、それぞれ平行に配設される、(6)記載の回転電機のロータ(100)。
(7)に記載の構成によれば、前記一対の第1磁石(120A又は120B)と前記一対の第2磁石(120C)とが平行に配設されることで、平面的にさらに高密度に実装でき、積層方向の厚さを減らすことができるため、小型化を図ったロータ(100)を提供することができる。
(8)前記ロータコア(110)は、周方向における前記一対の第2スロット(111C)よりも内側において、前記d軸の両側で外周面が径方向の内側に凹む一対の凹部(114)を有し、
前記d軸の一方側及び他方側のそれぞれにおいて、前記第2スロット(111C)と前記第1スロット(111A又は111B)との周方向におけるピッチと、前記第2スロット(111C)と前記凹部(114)との周方向におけるピッチとは等しい、(6)又は(7)記載の回転電機のロータ(100)。
(8)に記載の構成によれば、前記一対の第2スロット(111C)の間に、磁束が通りにくい凹部(114)を等ピッチで形成することにより、トルクリプルを低減することができる。
(9)磁化方向が前記d軸に沿うように、前記中間スロット(112A又は112B)の内部に配設される直方体状の第3磁石(130A又は130B)をさらに含む、(1)乃至(8)のいずれか一項記載の回転電機のロータ(100)。
(9)に記載の構成によれば、前記第3磁石(130A又は130B)を含むことにより、平面的に磁石をさらに高密度に実装でき、積層方向の厚さを減らすことができるため、小型化を図ったロータ(100)を提供することができる。
(10)前記ロータコア(110)は、
前記一対の第1スロット(111A又は111B)の前記中心軸側の端部、又は、前記中間スロット(112A又は112B)の前記d軸の一方側及び他方側の端部に形成され、冷媒の流路になる一対の第1流路(111B1,111B2)と、
前記d軸上で冷媒の流路になる第2流路(113)と
をさらに有する、(1)乃至(9)のいずれか一項記載の回転電機のロータ(100)。
(10)に記載の構成によれば、効率的に磁極(101)を冷却できるロータ(100)を提供することができる。
100 ロータ
110 ロータコア
120A、120B、120C、130A、130B 磁石
111A、111B、111C、112A、112B スロット
111B1、111B2、113 流路
114 溝部

Claims (10)

  1. 磁極の両端に位置する一対のq軸に沿ってそれぞれ形成される一対の第1スロットと、前記一対の第1スロットの中心軸側の端部同士の間でd軸上に形成される中間スロットとを有するロータコアと、
    磁化方向に垂直な面が前記q軸に沿うように、前記一対の第1スロットの内部にそれぞれ配設される直方体状の一対の第1磁石と
    を含む、回転電機のロータ。
  2. 前記ロータコアは、複数対の前記第1スロットと、複数の前記中間スロットとを有し、
    前記第1磁石を複数対含む、請求項1記載の回転電機のロータ。
  3. 前記複数対の第1磁石は、前記d軸の一方側及び他方側のそれぞれにおいて、互いに平行に配設される、請求項2記載の回転電機のロータ。
  4. 前記複数対の第1スロットと前記複数の中間スロットとの間の複数対の支持部は、前記d軸の一方側及び他方側において、それぞれ直線を含むように形成される、請求項2又は3記載の回転電機のロータ。
  5. 前記ロータコアは、前記複数対の第1スロットのうち最も内側に位置する一対の第1スロットよりも周方向における内側において、前記d軸の両側で外周面が径方向の内側に凹む一対の凹部を有し、
    前記d軸の一方側及び他方側のそれぞれにおいて、前記複数の第1スロットの周方向におけるピッチと、前記最も内側に位置する第1スロットと前記凹部との周方向におけるピッチは等しい、請求項2乃至4のいずれか一項記載の回転電機のロータ。
  6. 前記ロータコアは、前記第1スロットよりも前記d軸側において、前記一対のq軸に沿ってそれぞれ形成される一対の第2スロットをさらに有し、
    磁化方向に垂直な面が前記q軸に沿うように、前記一対の第2スロットの内部にそれぞれ配設される直方体状の一対の第2磁石をさらに含む、請求項1乃至4のいずれか一項記載の回転電機のロータ。
  7. 前記一対の第1磁石と、前記一対の第2磁石とは、前記d軸の一方側及び他方側において、それぞれ平行に配設される、請求項6記載の回転電機のロータ。
  8. 前記ロータコアは、周方向における前記一対の第2スロットよりも内側において、前記d軸の両側で外周面が径方向の内側に凹む一対の凹部を有し、
    前記d軸の一方側及び他方側のそれぞれにおいて、前記第2スロットと前記第1スロットとの周方向におけるピッチと、前記第2スロットと前記凹部との周方向におけるピッチは等しい、請求項6又は7記載の回転電機のロータ。
  9. 磁化方向が前記d軸に沿うように、前記中間スロットの内部に配設される直方体状の第3磁石をさらに含む、請求項1乃至8のいずれか一項記載の回転電機のロータ。
  10. 前記ロータコアは、
    前記一対の第1スロットの前記中心軸側の端部、又は、前記中間スロットの前記d軸の一方側及び他方側の端部に形成され、冷媒の流路になる一対の第1流路と、
    前記d軸上で冷媒の流路になる第2流路と
    をさらに有する、請求項1乃至9のいずれか一項記載の回転電機のロータ。
JP2014062296A 2014-03-25 2014-03-25 回転電機のロータ Pending JP2015186383A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062296A JP2015186383A (ja) 2014-03-25 2014-03-25 回転電機のロータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062296A JP2015186383A (ja) 2014-03-25 2014-03-25 回転電機のロータ

Publications (1)

Publication Number Publication Date
JP2015186383A true JP2015186383A (ja) 2015-10-22

Family

ID=54352399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062296A Pending JP2015186383A (ja) 2014-03-25 2014-03-25 回転電機のロータ

Country Status (1)

Country Link
JP (1) JP2015186383A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131393A1 (ja) * 2017-01-12 2018-07-19 アイシン・エィ・ダブリュ株式会社 回転電機用ロータ
JP6685634B1 (ja) * 2018-10-30 2020-04-22 三菱電機株式会社 回転電機
WO2020090152A1 (ja) * 2018-10-30 2020-05-07 三菱電機株式会社 回転電機
JP2020096474A (ja) * 2018-12-14 2020-06-18 トヨタ自動車株式会社 回転電機のロータ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113199A (ja) * 1997-10-06 1999-04-23 Fujitsu General Ltd 永久磁石電動機
JP2000316241A (ja) * 1999-04-27 2000-11-14 Toyota Motor Corp 永久磁石埋め込み式モータ
JP2004328956A (ja) * 2003-04-28 2004-11-18 Toyota Motor Corp 電動機
JP2005261024A (ja) * 2004-03-10 2005-09-22 Hitachi Ltd 永久磁石回転電機及びそれを用いた電動車両
WO2007055192A1 (ja) * 2005-11-09 2007-05-18 Kabushiki Kaisha Toshiba 回転電機用回転子及び回転電機
US20120074801A1 (en) * 2010-09-27 2012-03-29 Kollmorgen Corporation Magnetic Rotor Having Inset Bridges To Promote Cooling
WO2014041507A1 (fr) * 2012-09-13 2014-03-20 Moteurs Leroy-Somer Rotor de machine electrique tournante, comportant une masse rotorique dans laquelle sont menages des logements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113199A (ja) * 1997-10-06 1999-04-23 Fujitsu General Ltd 永久磁石電動機
JP2000316241A (ja) * 1999-04-27 2000-11-14 Toyota Motor Corp 永久磁石埋め込み式モータ
JP2004328956A (ja) * 2003-04-28 2004-11-18 Toyota Motor Corp 電動機
JP2005261024A (ja) * 2004-03-10 2005-09-22 Hitachi Ltd 永久磁石回転電機及びそれを用いた電動車両
WO2007055192A1 (ja) * 2005-11-09 2007-05-18 Kabushiki Kaisha Toshiba 回転電機用回転子及び回転電機
US20120074801A1 (en) * 2010-09-27 2012-03-29 Kollmorgen Corporation Magnetic Rotor Having Inset Bridges To Promote Cooling
WO2014041507A1 (fr) * 2012-09-13 2014-03-20 Moteurs Leroy-Somer Rotor de machine electrique tournante, comportant une masse rotorique dans laquelle sont menages des logements

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131393A1 (ja) * 2017-01-12 2018-07-19 アイシン・エィ・ダブリュ株式会社 回転電機用ロータ
CN110140279A (zh) * 2017-01-12 2019-08-16 爱信艾达株式会社 旋转电机用转子
JPWO2018131393A1 (ja) * 2017-01-12 2019-11-07 アイシン・エィ・ダブリュ株式会社 回転電機用ロータ
CN110140279B (zh) * 2017-01-12 2021-10-15 爱信艾达株式会社 旋转电机用转子
US11190070B2 (en) 2017-01-12 2021-11-30 Aisin Aw Co., Ltd. Rotor for rotating electrical machine
JP6685634B1 (ja) * 2018-10-30 2020-04-22 三菱電機株式会社 回転電機
WO2020090152A1 (ja) * 2018-10-30 2020-05-07 三菱電機株式会社 回転電機
CN112956114A (zh) * 2018-10-30 2021-06-11 三菱电机株式会社 旋转电机
US11929649B2 (en) 2018-10-30 2024-03-12 Mitsubishi Electric Corporation Rotating electric machine with magnet insertion hole arrangement
JP2020096474A (ja) * 2018-12-14 2020-06-18 トヨタ自動車株式会社 回転電機のロータ

Similar Documents

Publication Publication Date Title
JP6879140B2 (ja) 回転電機
JP5757281B2 (ja) 回転電機のロータ
JP5813254B2 (ja) 永久磁石式回転電機
JP5739651B2 (ja) ロータ及びモータ
JP6090987B2 (ja) 回転電機
JP5868513B2 (ja) 永久磁石埋込型電動機
JP6331506B2 (ja) 回転電機のロータ構造
JP5936060B2 (ja) 回転電機のロータ
US8766508B2 (en) Rotor for a motor and connecting pin for the rotor
WO2015156353A1 (ja) 同期リラクタンス型回転電機
US9774223B2 (en) Permanent magnet synchronous machine
JP2009055737A (ja) ロータおよび回転電機
US20140210296A1 (en) Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor
JP2016111842A (ja) ダブルステータ型回転電機
JP2015186383A (ja) 回転電機のロータ
JP2012161134A (ja) 回転電機
CN113169596B (zh) 转子及包括该转子的旋转电机
JP6358158B2 (ja) 回転電機
JP2018098936A (ja) 磁石ユニット
JP7132729B2 (ja) 回転電機
KR101348636B1 (ko) 원주방향 다상 분포를 가지는 횡자속 전기기기의 고정자
JP5918070B2 (ja) Ipmモータ
JP2016034192A (ja) 固定子および回転電機
JP5983037B2 (ja) 回転電機
WO2016084602A1 (ja) 回転電機の回転子及びそれを用いた回転電機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205