JP2015159705A - レゾルバ装置、モータ及びアクチュエータ - Google Patents

レゾルバ装置、モータ及びアクチュエータ Download PDF

Info

Publication number
JP2015159705A
JP2015159705A JP2014108474A JP2014108474A JP2015159705A JP 2015159705 A JP2015159705 A JP 2015159705A JP 2014108474 A JP2014108474 A JP 2014108474A JP 2014108474 A JP2014108474 A JP 2014108474A JP 2015159705 A JP2015159705 A JP 2015159705A
Authority
JP
Japan
Prior art keywords
phase
stator
resolver
rotor
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014108474A
Other languages
English (en)
Other versions
JP5892196B2 (ja
Inventor
和広 大平
Kazuhiro Ohira
和広 大平
昌樹 桑原
Masaki Kuwabara
昌樹 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014108474A priority Critical patent/JP5892196B2/ja
Priority to EP15740493.0A priority patent/EP3101787B1/en
Priority to PCT/JP2015/050813 priority patent/WO2015111485A1/ja
Priority to US15/105,129 priority patent/US9716421B2/en
Priority to CN201580003344.0A priority patent/CN105850014B/zh
Publication of JP2015159705A publication Critical patent/JP2015159705A/ja
Application granted granted Critical
Publication of JP5892196B2 publication Critical patent/JP5892196B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K24/00Machines adapted for the instantaneous transmission or reception of the angular displacement of rotating parts, e.g. synchro, selsyn
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/02Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type
    • H02K37/04Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors situated within the stators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

【課題】信頼性を向上したレゾルバ装置、モータ及びアクチュエータを提供する。【解決手段】レゾルバ装置は、ステータコア11と、ステータコア11に対して回転自在に支持され、かつステータコア11との相対的な角度位置に応じてステータコア11との間隙のリラクタンス成分が変化するロータコア12とを含む。ステータコア11は、ステータ主極A1、A2、B1、B2、C1及びC2と、ステータ補極IA1、IA2、IB1、IB2、IC1及びIC2とを備えている。【選択図】図2

Description

本発明は、レゾルバ装置、モータ及びアクチュエータに関する。
回転運動の回転数又は回転角度を検出するために、モータのロータの回転角度位置等を磁気的に高分解能で検出する検出器として、レゾルバ装置が知られている。例えば、特許文献1には、ロータ鉄心とステータ歯間の空隙中のリラクタンスがロータ鉄心位置により変化し、ロータ鉄心の1回転でリラクタンス変化の基本波成分が1周期となる構造のステータとロータを持ち、前記リラクタンス変化を検出することにより回転角度位置又は回転速度を検出する2極バリアブルリラクタンス形レゾルバにおいて、3相交流励磁巻線と出力巻線を夫々別に持つ3個のステータ歯を120゜間隔で設け、前記各相ステータ歯の180゜対称位置に前記3相交流励磁巻線と同様の励磁巻線と、前記出力巻線に対して巻方向を逆向きにした出力巻線を持つ3個のステータ歯を設けてA組のステータ歯とし、これらの6個のA組のステータ歯に対し各々90゜ずれた位置に6個のA組と同様な巻線を持つB組のステータ歯を設け、各出力巻線の出力を合成したレゾルバが記載されている。
特許第2624747号公報
ところで、特許文献1に記載のレゾルバは、2次高調波を抑制できる。しかしながら、特許文献1に記載のレゾルバは、3次高調波の抑制に限界があり、検出の信頼性が低下する可能性がある。
本発明は、上記に鑑みてなされたものであって、3次高調波を抑制し、信頼性を向上したレゾルバ装置、モータ及びアクチュエータを提供することを目的とする。
本発明のレゾルバ装置は、ステータコアと、前記ステータコアに対して回転自在に支持され、かつ前記ステータコアとの相対的な角度位置に応じて前記ステータコアとの間隙のリラクタンス成分が変化するロータコアとを含むレゾルバ装置であって、前記ステータコアは、相数3の偶数倍の主極数を備え、1相励磁の入力信号を受けて巻回された各励磁コイルが電気角+120度又は電気角−120度ずれた3相の出力信号を出力するように環状ステータ基部の円周方向に沿って配置されるステータ主極と、巻回された各励磁コイルに1相の前記入力信号が入力され、かつ環状ステータ基部の円周方向に沿って各相毎の前記出力信号に対して2次高調波を抑制する位置に配置される各相毎のステータ補極と、を備え、前記各相毎のステータ補極は、対応する各相毎のステータ主極の前記出力信号に、前記各相毎のステータ補極に巻回された各励磁コイルの出力を加えて合成した3相レゾルバ信号とし、前記3相レゾルバ信号を3相2相変換して2相レゾルバ信号を得ることを特徴とする。
本発明のレゾルバ装置は、ステータ主極及びステータ補極により2次高調波を抑制することができる。そして、本発明のレゾルバ装置は、3相2相変換で2相に変換した上で角度の情報を求めることにより、3次高調波をキャンセルすることができる。その結果、角度の情報の精度が高まり、信頼性が向上する。
本発明の望ましい態様として、前記各相毎のステータ補極は、対応する各相毎のステータ主極の少なくとも1つに対して電気角+90度又は電気角−90度ずれた位置に配置されていることが好ましい。この構造により、レゾルバ装置は、2次高調波を抑制することができる。
本発明の望ましい態様として、前記ロータコアは、前記ステータコアに対向する側に突出する複数のロータ歯を備え、前記主極数をPとして、前記ロータ歯の数であるロータ歯数をqとした場合、下記式(1)を満たすことが好ましい。
P=(q/(M+(N±1)/N)・・・(1)
但し、Nは相数の3であり、Mは、式(1)を満たす整数の変数である。
この構造により、ロータ歯数の自由度を高めることができる。
本発明の望ましい態様として、前記各相毎のステータ補極は、対応する各相毎のステータ主極の少なくとも1つに対して機械角+90度又は機械角−90度ずれた位置に配置されていることが好ましい。この構造により、ロータコアが1回転すると、レゾルバ装置は、1周期を検出できるので、絶対角度を算出しやすい。
本発明の望ましい態様として、前記ロータコアは、内径の中心が外形の中心からずれており、ロータコア1回転で1周期の前記出力信号を出力することが好ましい。この構造により、ロータコアが1回転すると、レゾルバ装置は、1周期を検出できるので、絶対角度を算出しやすい。
本発明の望ましい態様として、モータは、上述したレゾルバ装置を含み、前記ロータコアがモータロータと連動して回転し、前記レゾルバ装置が前記モータロータの回転を検出することが好ましい。この構造により、3次高調波を抑制し、信頼性を向上したモータを得ることができる。
本発明の望ましい態様として、モータは、レゾルバ装置を含み、前記ロータコアがモータロータと連動して回転し、前記レゾルバ装置により前記モータロータの回転を検出することが可能であって、前記ロータコアの歯数qと同じ極対数を備えることが好ましい。この構造により、レゾルバ装置のロータコアの一回転当りの電気的サイクル数とモータの極対数を一致させることができ、モータ駆動電流制御のためのコミテーションが容易となる。
本発明の望ましい態様として、アクチュエータは、上述したレゾルバ装置を含み、前記レゾルバ装置が検出可能な回転運動を伝達可能であることが好ましい。この構造により、3次高調波を抑制し、信頼性を向上したアクチュエータを得ることができる。
本発明によれば、3次高調波を抑制し、信頼性を向上したレゾルバ装置、モータ及びアクチュエータを提供することができる。
図1は、実施形態1に係るレゾルバ装置を有するモータ装置の構成図である。 図2は、図1の軸方向に直交する仮想平面で切った実施形態1のレゾルバ装置の断面図である。 図3は、レゾルバ装置の励磁コイルの結線図である。 図4は、モータ回転角度検出装置を示すブロック図である。 図5は、電流電圧変換器で得られるC相のレゾルバ電圧信号の一例を示す説明図である。 図6は、図5に示す電流電圧変換器で得られるC相のレゾルバ電圧信号を、基本波、2次高調波、3次高調波に分波して説明する説明図である。 図7は、図5に示す電流電圧変換器で得られるC相のレゾルバ電圧信号のうち2次高調波が抑制された状態を、基本波、3次高調波に分波して説明する説明図である。 図8は、実施形態1に係るレゾルバ装置の角度誤差を説明する説明図である。 図9は、実施形態1に係るレゾルバ装置の角度演算を説明するリサージュ波形の説明図である。 図10は、図1の軸方向に直交する仮想平面で切った実施形態2のレゾルバ装置の断面図である。 図11は、図1の軸方向に直交する仮想平面で切った実施形態3のレゾルバ装置の断面図である。
本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
図1は、実施形態1に係るレゾルバ装置を有するモータ装置の構成図である。図2は、図1の軸方向に直交する仮想平面で切ったレゾルバ装置の断面図である。図3は、レゾルバ装置の励磁コイルの結線図である。図4は、モータ回転角度検出装置を示すブロック図である。実施形態1に係るレゾルバ装置1及びモータ100について、図1から図4を参照して説明する。
(実施形態1)
図1に示すモータ100は、駆動対象に直接回転力を伝達するダイレクトドライブモータと呼ばれるモータ装置である。ダイレクトドライブモータは、駆動対象に直接回転力を伝達するため、摩擦損失が少なく回転効率を高めることができる。モータ100は、モータ本体部2と、レゾルバ装置1と、を含んでいる。
図1に示すように、モータ本体部2は、ハウジング25と、モータステータコア23と、励磁コイル24と、マグネット22と、モータロータ21とを備えている。モータ本体部2は、モータロータ21がハウジング25に対して回転中心軸Zrを中心に回転自在となるように、軸受3で支持されている。ハウジング25は、回転中心軸Zrを中心とした中空円筒の筒形状であり、外周にモータステータコア23及び軸受3の内輪を固定している。なお、ハウジング25を形成する材料としては、例えばSPCC(Steel Plate Cold Commercial)等の一般的な鋼材や、電磁軟鉄等、アルミニウム等が適用できる。
モータステータコア23は、絶縁性のインシュレータを介して、励磁コイル24が巻き付けられている。モータステータコア23は、電磁鋼板、冷間圧延鋼板などの薄板を、接着、ボス、カシメなどの手段により積層して製造されている円筒状の筒体である。励磁コイル24は、線状の電線であり、モータケーブルMCからの電力供給を受けて、モータステータコア23を励磁して回転磁界を生じさせることができる。モータステータコア23及び励磁コイル24は、モータ本体部2のいわゆる固定子である。
モータロータ21は、回転中心軸Zrを中心とした円筒の筒形状であり、ハウジング25の外周を覆うように2重筒構造となっている。モータロータ21は、内周側にマグネット22及び軸受3の外輪を固定している。なお、モータロータ21を形成する材料としては、例えばSPCC(Steel Plate Cold Commercial)等の一般的な鋼材や、電磁軟鉄等、アルミニウム等が適用できる。モータロータ21は、マグネット22がモータロータ21の径方向内側の内周表面に沿って貼り付けられ、円周方向に複数設けられている。マグネット22は、永久磁石であり、S極及びN極がモータロータ21の円周方向に交互に等間隔で配置される。このようなモータロータ21は、PM(Permanent Magnet)型の回転子とよばれる。S極及びN極が一対であり、回転子の極対数は極数の半分となる。モータロータ21は、励磁コイル24がモータステータコア23のティースに励磁した回転磁界に応じて回転する。
図1に示すように、レゾルバ装置1は、軸方向(回転中心と平行な方向)のモータ本体部2の端部に位置している。レゾルバ装置1は、レゾルバロータ14と、レゾルバステータ13と、を備えている。レゾルバロータ14は、ボルト15でモータロータ21に固定されている。レゾルバステータ13は、モータ本体部2のハウジング25にボルト16を介して固定されている。レゾルバロータ14には、モータ本体部2とは反対側の端面に、駆動対象物を固定可能な固定部33として、ねじ穴を有している。レゾルバロータ14には、モータ本体部2とは反対側の端面に、防塵のためのカバー部材31を備えていてもよい。カバー部材31は、ボルト32などによりレゾルバロータ14に固定されている。
レゾルバ装置1は、レゾルバロータ14がレゾルバステータ13に対して回転中心軸Zrを中心に回転自在となるように、軸受3で支持されている。レゾルバステータ13は、ハウジング25と同径であって、回転中心軸Zrを中心とした中空円筒の筒形状であり、外周で軸受3の内輪を固定している。なお、レゾルバステータ13を形成する材料としては、例えばSPCC(Steel Plate Cold Commercial)等の一般的な鋼材や、電磁軟鉄等、アルミニウム等が適用できる。
レゾルバロータ14は、回転中心軸Zrを中心とした円筒の筒形状であり、レゾルバステータ13の外周を覆うように2重筒構造となっている。レゾルバロータ14は、内周側で軸受3の外輪を固定している。なお、モータロータ21を形成する材料としては、例えばSPCC(Steel Plate Cold Commercial)等の一般的な鋼材や、電磁軟鉄等、アルミニウム等が適用できる。この構造により、モータステータコア23の励磁コイル24が励磁され、モータロータ21が回転駆動すると、レゾルバロータ14がレゾルバステータ13に対して同時に回転駆動する。その結果、モータ100は、レゾルバロータ14の回転に応じて固定部33に固定された駆動対象物を回転することができる。
なお、レゾルバ装置1とモータ本体部2との間に磁気遮蔽のための遮蔽板を設けてもよい。遮蔽板により、レゾルバ装置1は、モータ本体部2からの磁束の変化の影響をより受けにくくなる。
レゾルバロータ14は、図1に示すように、円環状のロータコア12を有しており、端面にボルト18でロータコア12を固定している。
レゾルバステータ13は、複数の磁極が円周方向に等間隔に形成された円環状のステータコア11を有し、各磁極にレゾルバコイルが巻回されている。ステータコア11は、ボルト17でレゾルバステータ13の端面に固定されている。各レゾルバコイルには、励磁信号が入力される配線及びレゾルバ電流信号を出力する配線がレゾルバケーブルRCを介して接続されている。
ロータコア12は、ステータコア11の外周を囲み、ステータコア11が配置される回転中心軸Zrと直交する同一平面上に配置されている。ロータコア12は、ステータコア11の周りを回転すると、特定の磁極における先端位置でのステータコア11と、ロータコア12との空隙の距離が変化する。その結果、ロータコア12の回転は、ロータコア12とステータコア11との間のリラクタンスを変化させる。このロータコア12とステータコア11との間に作用するリラクタンスの変化を利用して回転位置を検出するレゾルバ装置1は、バリアブルリラクタンス形レゾルバという。実施形態1のレゾルバ装置1は、ロータコア12のステータコア11に対向する側に突出する複数のロータ歯が10歯であり、ロータコア12の1回転で基本波成分が10周期となる。なお、ロータコア12は、アウターロータに限られず、ステータコア11との相対的な角度位置に応じてステータコア11との間隙のリラクタンス成分が変化すればよい。ロータコア12は、ステータコア11がロータコア12の外周を囲むインナーロータであってもよい。
ロータコア12の内径中心は、後述するレゾルバステータ13のステータコア11の内径中心と一致している。ロータコア12が回転すると、所定位置でのレゾルバステータ13のステータコア11の内径と、ロータコア12の外径との距離が変化する。これにより、ロータコア12の外径とステータコア11との空隙が変化する。その結果、ロータコア12の回転は、ロータコア12とステータコア11とのリラクタンスを変化させる。このロータコア12と、ステータコア11とのリラクタンスの変化を利用して回転位置を検出するレゾルバ装置は、バリアブルリラクタンス形レゾルバという。
ステータコア11は、環状ステータ基部の円周方向に沿ってロータコア12側に突出する突極である、複数のステータ主極A1、A2、B1、B2、C1及びC2と、複数のステータ補極IA1、IA2、IB1、IB2、IC1及びIC2とを備えている。
ステータコア11は、巻回された各励磁コイルL2、L10及びL6が環状ステータ基部の円周方向に沿って電気角で120°間隔で配置されたA相、B相及びC相の3相のステータ主極(主磁極)A1、B1及びC1を有している。励磁コイルL2、L10及びL6は、ステータ主極A1、ステータ主極B1及びステータ主極C1に巻回される方向は同じ方向である。また、ステータコア11は、A相、B相及びC相の3相のステータ主極A1、B1、C1に対して電気角で各180°ずれた所に配置されたA相、B相及びC相のステータ主極A2、B2及びC2が配置されている。ステータ主極A1、B1、C1、A2、B2、C2の主極数は、相数3の偶数倍の6である。励磁コイルL2は、ステータ主極A1に巻回され、励磁コイルL8は、ステータ主極A2に、励磁コイルL2と同方向に巻回される。励磁コイルL10は、ステータ主極B1に巻回され、励磁コイルL4は、ステータ主極B2に、励磁コイルL10と同方向に巻回される。励磁コイルL6は、ステータ主極C1に巻回され、励磁コイルL12は、ステータ主極C2に、励磁コイルL6と同方向に巻回される。
A相のステータ補極IA1、IA2は、対応するA相のステータ主極A1、A2の少なくとも1つに対して電気角+90度又は電気角−90度ずれた位置に配置されている。励磁コイルL1は、励磁コイルL2と逆巻きかつステータ補極IA1に巻回される。また、励磁コイルL7は、ステータ補極IA2に、励磁コイルL1と同方向でかつ励磁コイルL8と逆巻きに巻回される。ステータコア11は、ステータ補極IA1に対して電気角で各180°ずれた所にステータ補極IA2が配置されている。
B相のステータ補極IB1、IB2は、対応するB相のステータ主極B1、B2の少なくとも1つに対して電気角+90度又は電気角−90度ずれた位置に配置されている。励磁コイルL9は、励磁コイルL10と逆巻きかつステータ補極IB1に巻回される。また、励磁コイルL3は、ステータ補極IB2に、励磁コイルL9と同方向であって、励磁コイルL4と逆巻きに巻回される。ステータコア11は、ステータ補極IB1に対して電気角で各180°ずれた所にステータ補極IB2が配置されている。
C相のステータ補極IC1、IC2は、対応するC相のステータ主極C1、C2の少なくとも1つに対して電気角+90度又は電気角−90度ずれた位置に配置されている。励磁コイルL5は、励磁コイルL6と逆巻きかつステータ補極IC1に巻回される。また、励磁コイルL11は、ステータ補極IC2に、励磁コイルL5と同方向であって、励磁コイルL12と逆巻きに巻回される。ステータコア11は、ステータ補極IC1に対して電気角で各180°ずれた所にステータ補極IC2が配置されている。
図3は、励磁コイルの結線図である。図3に示すように、各励磁コイルL2、L6及びL10には、1相励磁の入力信号が共通端子COMから周波数の正弦波の励磁信号として印加される。各励磁コイルL1、L2、L3、L4、L5、L6、L7、L8、L9、L10、L11及びL12のレゾルバ電流信号は、A相、B相、C相毎に直列接続され、電流検出用抵抗R1、R2、R3に接続される。例えば、A相の励磁コイルL2、L1、L8及びL7は、直列に接続されている。また、B相の励磁コイルL10、L9、L4及びL3は、直列に接続されている。さらに、C相の励磁コイルL6、L5、L12及びL11は、直列に接続されている。そして、A相の励磁コイルL7は、電流検出用抵抗R1の一端に接続されている。また、B相の励磁コイルL3は、電流検出用抵抗R2の一端に接続されている。また、C相の励磁コイルL11は、電流検出用抵抗R3の一端に接続されている。なお、電流検出用抵抗R1、R2及びR3の各他端は内部でアースされている。
レゾルバ装置4は、共通端子COMにある周波数の正弦波が励磁信号として印加されると、ロータ12が回転してロータ歯1つ分の移動により生じる電気角度θにおいて、1サイクルの交流信号であって、リラクタンスの変化に応じて電流値が変化したレゾルバ電流信号が電流電圧変換器41に出力される。
図4は、モータ装置を示すブロック図である。例えば図4に示すように、モータ装置10は、レゾルバ装置1と、モータ本体部2と、ドライブユニット60とを含んでいる。また、ドライブユニット60と、モータ100のレゾルバ装置1とは、レゾルバケーブルRCで接続されている。また、ドライブユニット60と、モータ100のモータ本体部2とは、モータケーブルMCで接続されている。
ドライブユニット60は、レゾルバ装置1に励磁信号を供給するレゾルバ励磁回路50及び発振回路51と、応答するレゾルバ電流信号を取り込み、デジタル角度信号Rsを出力する検出回路部40と、デジタル角度信号Rsから回転角度位置信号を生成する演算装置61と、演算装置61の指令Sfbに基づきモータ本体部2に電力を供給するパワーアンプ62と、を有している。
発振回路51は、基準信号を発振する回路である。基準信号は、例えば正弦波である。レゾルバ励磁回路50は、増幅器52を含んでいる。レゾルバ励磁回路50は、発振回路51から出力される基準信号を増幅器52により適度な信号レベルに増幅し励磁信号を発生させる。励磁信号は、例えば正弦波のアナログ信号である。レゾルバ励磁回路50は、共通端子COMへ励磁信号を出力する。
共通端子COMは、励磁信号をレゾルバケーブルRCを介して、レゾルバ装置1へ出力する。レゾルバ装置1では、図3に示すように、共通端子COMが各励磁コイルL2、L6及びL10の一端に励磁信号を入力信号として供給している。
励磁信号の入力信号がレゾルバ装置1に供給されると、図3に示す各励磁コイルL3、L7及びL11の各他端からレゾルバ電流信号がレゾルバケーブルRCを介して検出回路部40へ供給される。
レゾルバ装置1は、共通端子COMにある周波数の正弦波が励磁信号として印加されると、ロータコア12が1回転する間に、各励磁コイルL1、L7からは、A相の1サイクルの交流信号であって、リラクタンスの変化に応じて電流値が変化したレゾルバ電流信号が電流電圧変換器41に出力される。
また、レゾルバ装置1は、共通端子COMにある周波数の正弦波が励磁信号として印加されると、ロータコア12が1回転する間に、各励磁コイルL3、L9からは、B相の1サイクルの交流信号であって、リラクタンスの変化に応じて電流値が変化したレゾルバ電流信号が電流電圧変換器41に出力される。
また、レゾルバ装置1は、共通端子COMにある周波数の正弦波が励磁信号として印加されると、ロータコア12が1回転する間に、各励磁コイルL11、L5からは、C相の1サイクルの交流信号であって、リラクタンスの変化に応じて電流値が変化したレゾルバ電流信号が電流電圧変換器41に出力される。
A相の1サイクルの交流信号であって、リラクタンスの変化に応じて電流値が変化したレゾルバ電流信号は、B相及びC相の1サイクルの交流信号であって、リラクタンスの変化に応じて電流値が変化したレゾルバ電流信号に対して電気角で120°位相がずれている。
検出回路部40の電流電圧変換器41は、レゾルバ電流信号をレゾルバ電圧信号へ変換する。変換されたレゾルバ電圧信号は、3相2相変換器42へ供給される。
3相2相変換器42は、供給されたレゾルバ電圧信号を2相信号(sin信号Ssin、cos信号Scos)に変換する。
例えば、電流電圧変換器41で得られる各相のレゾルバ電圧信号には高次成分が含まれる可能性がある。図5は、電流電圧変換器で得られるC相のレゾルバ電圧信号の一例を示す説明図である。縦軸は、電圧であり、横軸は基本波成分の回転角度である。図6は、図5に示す電流電圧変換器で得られるC相のレゾルバ電圧信号を、基本波、2次高調波、3次高調波に分波して説明する説明図である。図6に示すように、基本波hws1は、sinθ曲線であり、2次高調波hws2は、cos2θ曲線であり、3次高調波hws3は、sin3θ曲線である。
複数のステータ主極C1及びC2は、下記2次高調波が重畳している場合、式(2)に示されるC相のレゾルバ電圧信号の主極信号SMを出力する。
Figure 2015159705
この場合、ステータ補極IC1及びIC2は、同じ2次高調波が重畳している場合、式(3)に示されるC相のレゾルバ電圧信号の補極信号SIを出力する。
Figure 2015159705
従って、C相のレゾルバ電圧信号の主極信号SM及び補極信号SIは、合成成分のC相レゾルバ信号Sを得ると、下記式(4)に示すように、2次高調波がキャンセルされる。
Figure 2015159705
以上、C相について説明したが、B相及びA相についても2次高調波がキャンセルされる。図7は、図5に示す電流電圧変換器で得られるC相のレゾルバ電圧信号のうち2次高調波が抑制された状態を、C相レゾルバ信号の合成波、3次高調波に分波して説明する説明図である。実施形態1に係るレゾルバ装置1のC相のレゾルバ電圧信号は、図6に示す基本波hws1、2次高調波hws2及び3次高調波hws3の代わりに、図7に示すC相レゾルバ信号Sの合成波HWに3次高調波が重畳されるようになる。
実施形態1に係るレゾルバ装置1は、C相を基準としてB相及びA相の位相がそれぞれ120度ずつ遅れている。上述したように、図7に示すC相レゾルバ信号Sの合成波HWに3次高調波が重畳される場合において、3次高調波が重畳されている3相のレゾルバ信号SA、SB、SCを下記式(5)、式(6)及び式(7)で示すことができる。
Figure 2015159705
Figure 2015159705
Figure 2015159705
3相2相変換器42で得られる2相信号のうち、cos信号Scosは、式(5)、式(6)及び式(7)に基づいて式(8)で、得ることができる。
Figure 2015159705
ここで、下記式(9)から式(12)までを参照すると、式(8)は、下記式(13)のように求められる。
Figure 2015159705
Figure 2015159705
Figure 2015159705
Figure 2015159705
Figure 2015159705
式(13)より明らかなように、cos信号Scosは、3次高調波がキャンセルされている。
同様に、上述した式(9)から式(12)までを参照して、3相2相変換器42で得られる2相信号のうち、sin信号Ssinは、式(14)より明らかなように、3次高調波がキャンセルされている。
Figure 2015159705
図4に示すように、3相2相変換器42によって変換された2相信号(sin信号Ssin、cos信号Scos)は、RDC(レゾルバ・デジタル・コンバータ)44に供給される。移相器45は発振回路51から出力される基準信号の位相と同期させた参照信号(Ref信号)をRDC44に供給する。RDC44は2相信号(sin信号Ssin、cos信号Scos)をデジタル化し、演算装置61に出力する。
演算装置61は、コンピュータであり、例えば、CPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)と、内部記憶部と、入力インターフェースと、出力インターフェースと、を含んでいる。CPU、ROM、RAM及び内部記憶部は、内部バスで接続されている。ROMには、BIOS等のプログラムが記憶されている。内部記憶部は、例えばHDD(Hard disk drive)やフラッシュメモリ等であり、オペレーティングシステムプログラムやアプリケーションプログラムを記憶している。CPUは、RAMをワークエリアとして使用しながらROM又は内部記憶部に記憶されているプログラムを実行することにより、種々の機能を実現する。
演算装置61はこれらのデジタル角度信号Rsを取り込み、モータ本体部2の回転角度位置を演算する。演算装置61は、3相2相変換器42によって変換された2相信号(sin信号Ssin、cos信号Scos)のアークタンジェント(逆正接関数)を求めることにより角度θを得ることができる。図8は、実施形態1に係るレゾルバ装置の角度誤差を説明する説明図である。図8に示すように、実施形態1に係るレゾルバ装置1は、2次高調波及び3次高調波がキャンセルされているため、角度θの角度誤差を非常に小さくすることができる。図9は、実施形態1に係るレゾルバ装置の角度演算を説明するリサージュ波形の説明図である。このように、RDC44は、3相2相変換器42によって変換された2相信号(sin信号Ssin、cos信号Scos)のアークタンジェント(逆正接関数)を求めることで、図9に示すリサージュ波形の角度θを求めることができる。演算装置61は、角度θの情報に基づいて、パワーアンプ62に対してモータ本体部2に電力を供給するように指令Sfbを送信する。
なお、レゾルバ信号からデジタル角度信号Rsを得るためには、必ずしもハードウエア回路(RDC44)で処理する必要はなく、演算装置61がレゾルバ信号をA/D変換し、ソフトウエアによる情報処理で角度θの情報を得るようにしてもよい。
以上説明したように、レゾルバ装置1は、ステータコア11と、ステータコア11に対して回転自在に軸受3で支持され、かつステータコア11との相対的な角度位置に応じてステータコア11との間隙のリラクタンス成分が変化するロータコア12とを含む。ステータコア11は、ステータ主極A1、A2、B1、B2、C1及びC2と、ステータ補極IA1、IA2、IB1、IB2、IC1及びIC2とを備えている。ステータ主極A1、A2、B1、B2、C1及びC2は、相数3の偶数倍の6つの主極数であり、1相励磁の入力信号を受けて巻回された各励磁コイルが電気角+120度又は電気角−120度ずれた3相の出力信号を出力するように環状ステータ基部の円周方向に沿って配置される。ステータ補極IA1、IA2、IB1、IB2、IC1及びIC2は、巻回された各励磁コイルに1相の前記入力信号が入力され、かつ環状ステータ基部の円周方向に沿って各相毎の前記出力信号に対して2次高調波を抑制する位置、つまり対応する各相毎のステータ主極の少なくとも1つに対して電気角+90度又は電気角−90度ずれた位置に配置される。各相毎のステータ補極IA1、IA2、IB1、IB2、IC1及びIC2は、対応する各相毎のステータ主極A1、A2、B1、B2、C1及びC2の前記出力信号に、各相毎のステータ補極IA1、IA2、IB1、IB2、IC1及びIC2の巻回された各励磁コイルの出力を加えて合成した3相レゾルバ信号SA、SB及びSCとし、3相レゾルバ信号SA、SB及びSCを3相2相変換して2相レゾルバ信号であるsin信号Ssin及びcos信号Scosを得る。
ロータコア12は、図2に示すように、ステータコア11に対向する側に突出する複数のロータ歯Q1からQ10を備え、主極数Pが6として、ロータ歯数qが10とした場合、下記式(15)を満たしている。
P=(q/(M+(N±1)/N))・・・(15)
但し、Nは相数の3であり、Mは、式(15)を満たす整数の変数であり、例えば1である。
以上説明したように、3相レゾルバを構成するステータ主極の数である主極数は、3の倍数で偶数である。主極数が必ず偶数になる理由は、ステータ主極がステータ補極と合わせ、各励磁コイルへの巻線の巻き方向が各ステータ主極と、各ステータ補極との交互にCW(時計巻き)、CCW(反時計巻き)、CW、CCW……と交互になるためである。そして、レゾルバステータの隣合うステータ主極同士の位相が±120°(±1/3ピッチ)でなければならなず、かつレゾルバステータの隣合うステータ主極とステータ補極との位相が±90°(±1/4ピッチ)でなければならない。このような条件の下で、主極数Pと、ロータ歯数qとを上述した式(15)とする。これにより、実施形態1のレゾルバ装置1は、ロータ歯数の自由度を高め、主極数を限界まで増やすことなく、位置決め精度の向上が可能になる。レゾルバ装置1のリップルは、ロータの加減速時、一定速度時に発生する振動に影響を与える可能性があるが、レゾルバ装置1の検出精度を向上させたことにより、リップルの発生が抑制できる。これにより、レゾルバ装置1及びモータ100の低振動化が達成できる。さらに、モータ100は、高精度化により検出誤差に起因するモータ駆動時の騒音が低減できる。また、レゾルバ装置1は、ステータコアの主極数及び補極数を減らすことができる。これによれば、レゾルバ巻線方法の簡素化もでき、均一な巻線により、レゾルバ装置1は、レゾルバ信号の3相のバランスの崩れも最小限に抑制できる。
実施形態1のレゾルバ装置1はNC工作機などのインデックステーブル、搬送装置、組み立て装置のロボットアームなどに用いられる小型で高精度な位置決めを可能とするモータ100を有する制御機器に好適である。モータ100は、レゾルバ装置1のロータコア12がモータロータ21と連動して回転するので、レゾルバ装置1によりモータロータ21の回転が検出される。レゾルバ装置1のロータ歯数qが10であるので、モータ100の極対数が10であることがより好ましい。この構造により、レゾルバ装置1のロータコア12の一回転当りの電気的サイクル数とモータの極対数を一致させることができ、モータ駆動電流制御のためのコミテーションが容易となる。
実施形態1のモータ100は、ダイレクトドライブモータを例に説明したが、実施形態1に係るレゾルバ装置1は、回転を直線運動にするボールねじ機構などの伝達機構を介して、被駆動機構を動作させるアクチュエータにおいて、駆動機構の回転検出に適用することができる。また、モータ本体部2のモータロータ21の回転数を変更するギア機構などの伝達機構を介して、被駆動機構を動作させるアクチュエータにおいて、駆動機構の回転検出に適用することができる。
(実施形態2)
図10は、図1の軸方向に直交する仮想平面で切った実施形態2のレゾルバ装置の断面図である。なお、上述した実施形態1と同じ構成には同一の符号を付して重複する説明は省略する。実施形態2のレゾルバ装置は、実施形態1のレゾルバ装置1とロータコア12のロータ歯数が異なる。
ロータコア12は、図10に示すように、ステータコアに対向する側に突出する複数のロータ歯Q1からQ16を備え、主極数Pが6として、ロータ歯数qが16とした場合、下記式(16)を満たしている。
P=(q/(M+(N±1)/N))・・・(16)
但し、Nは相数の3であり、Mは、式(16)を満たす整数の変数であり、例えば2である。
主極数Pと、ロータ歯数qとを上述した式(16)とすることで、ロータ歯数の自由度を高めることができる。
実施形態2のレゾルバ装置はNC工作機などのインデックステーブル、搬送装置、組み立て装置のロボットアームなどに用いられる小型で高精度な位置決めを可能とするモータ100を有する制御機器に好適である。モータ100は、レゾルバ装置1のロータコア12がモータロータ21と連動して回転するので、レゾルバ装置1によりモータロータ21の回転が検出される。レゾルバ装置1のロータ歯数qが16であるので、モータ100の極対数が16であることがより好ましい。この構造により、レゾルバ装置1のロータコア12の一回転当りの電気的サイクル数とモータの極対数を一致させることができ、モータ駆動電流制御のためのコミテーションが容易となる。
(実施形態3)
図11は、図1の軸方向に直交する仮想平面で切った実施形態3のレゾルバ装置の断面図である。なお、上述した実施形態1と同じ構成には同一の符号を付して重複する説明は省略する。実施形態3のレゾルバ装置は、実施形態1のレゾルバ装置1とロータコア12のロータ歯数が異なる。
ロータコア12Aは、図11に示すように、内径12iの中心Qrが外形12pの中心ZrからΔQ分ずれている。この構造により、ロータコア12Aの外径とステータコア11との空隙が変化する。その結果、ロータコア12Aの回転は、ロータコア12Aとステータコア11とのリラクタンスを変化させる。実施形態3のレゾルバ装置1は、ロータコア12Aの1回転で基本波成分が1周期となり、ロータ歯数qが1相当になる。
ロータコア12の内径中心は、後述するレゾルバステータ13のステータコア11の内径中心と一致している。ロータコア12が回転すると、所定位置でのレゾルバステータ13のステータコア11の内径と、ロータコア12の外径との距離が変化する。これにより、ロータコア12の外径とステータコア11との空隙が変化する。その結果、ロータコア12の回転は、ロータコア12とステータコア11とのリラクタンスを変化させる。このロータコア12と、ステータコア11とのリラクタンスの変化を利用して回転位置を検出するレゾルバ装置は、バリアブルリラクタンス形レゾルバという。
ステータコア11は、環状ステータ基部の円周方向に沿ってロータコア12側に突出する突極である、複数のステータ主極A1、A2、B1、B2、C1及びC2と、複数のステータ補極IA1、IA2、IB1、IB2、IC1及びIC2とを備えている。以下、図3及び図11を参照しつつ、実施形態3のレゾルバ装置について説明する。
ステータコア11は、巻回された各励磁コイルL2、L10及びL6が環状ステータ基部の円周方向に沿って機械角で120°間隔で配置されたA相、B相及びC相の3相のステータ主極(主磁極)A1、B1及びC1を有している。励磁コイルL2、L10及びL6は、ステータ主極A1、ステータ主極B1及びステータ主極C1に巻回される方向は同じ方向である。また、ステータコア11は、A相、B相及びC相の3相のステータ主極A1、B1、C1に対して機械角で各180°ずれた所に配置されたA相、B相及びC相のステータ主極A2、B2及びC2が配置されている。ステータ主極A1、B1、C1、A2、B2、C2の主極数は、相数3の偶数倍の6である。励磁コイルL2は、ステータ主極A1に巻回され、励磁コイルL8は、ステータ主極A2に、励磁コイルL2と同方向に巻回される。励磁コイルL10は、ステータ主極B1に巻回され、励磁コイルL4は、ステータ主極B2に、励磁コイルL10と同方向に巻回される。励磁コイルL6は、ステータ主極C1に巻回され、励磁コイルL12は、ステータ主極C2に、励磁コイルL6と同方向に巻回される。
A相のステータ補極IA1、IA2は、対応するA相のステータ主極A1、A2の少なくとも1つに対して機械角+90度又は機械角−90度ずれた位置に配置されている。上述したように、ロータコア12Aの1回転で基本波成分が1周期となり、ロータ歯数qが1相当になるため、A相のステータ補極IA1、IA2は、対応するA相のステータ主極A1、A2の少なくとも1つに対して機械角+90度又は機械角−90度ずれた位置に配置される。励磁コイルL1は、励磁コイルL2と逆巻きかつステータ補極IA1に巻回される。また、励磁コイルL7は、ステータ補極IA2に、励磁コイルL1と同方向でかつ励磁コイルL8と逆巻きに巻回される。ステータコア11は、ステータ補極IA1に対して機械角で各180°ずれた所にステータ補極IA2が配置されている。
B相のステータ補極IB1、IB2は、対応するB相のステータ主極B1、B2の少なくとも1つに対して機械角+90度又は機械角−90度ずれた位置に配置されている。上述したように、ロータコア12Aの1回転で基本波成分が1周期となり、ロータ歯数qが1相当になるため、B相のステータ補極IB1、IB2は、対応するB相のステータ主極B1、B2の少なくとも1つに対して機械角+90度又は機械角−90度ずれた位置に配置される。励磁コイルL9は、励磁コイルL10と逆巻きかつステータ補極IB1に巻回される。また、励磁コイルL3は、ステータ補極IB2に、励磁コイルL9と同方向であって、励磁コイルL4と逆巻きに巻回される。ステータコア11は、ステータ補極IB1に対して機械角で各180°ずれた所にステータ補極IB2が配置されている。
C相のステータ補極IC1、IC2は、対応するC相のステータ主極C1、C2の少なくとも1つに対して機械角+90度又は機械角−90度ずれた位置に配置されている。上述したように、ロータコア12Aの1回転で基本波成分が1周期となり、ロータ歯数qが1相当になるため、C相のステータ補極IC1、IC2は、対応するC相のステータ主極C1、C2の少なくとも1つに対して機械角+90度又は機械角−90度ずれた位置に配置される。励磁コイルL5は、励磁コイルL6と逆巻きかつステータ補極IC1に巻回される。また、励磁コイルL11は、ステータ補極IC2に、励磁コイルL5と同方向であって、励磁コイルL12と逆巻きに巻回される。ステータコア11は、ステータ補極IC1に対して機械角で各180°ずれた所にステータ補極IC2が配置されている。
実施形態3のレゾルバ装置1は、実施形態1のレゾルバ装置1と同様に、ステータ主極A1、A2、B1、B2、C1、C2及びステータ補極IA1、IA2、IB1、IB2、IC1、IC2により2次高調波を抑制することができる。そして、実施形態3のレゾルバ装置1は、実施形態1のレゾルバ装置1と同様に、3相2相変換で2相に変換した上で角度の情報を求めることにより、3次高調波をキャンセルすることができる。その結果、実施形態3のレゾルバ装置1は、角度の情報の精度が高まり、信頼性が向上する。
実施形態3のレゾルバ装置はNC工作機などのインデックステーブル、搬送装置、組み立て装置のロボットアームなどに用いられる小型で高精度な位置決めを可能とするモータ100を有する制御機器に好適である。モータ100は、レゾルバ装置1のロータコア12Aがモータロータ21と連動して回転する。ロータコア12Aが1回転すると、レゾルバ装置1は、モータロータ21の1周期を検出できるので、絶対角度を算出しやすい。
1 レゾルバ装置
2 モータ本体部
3 軸受
10 モータ装置
11 ステータコア
12、12A ロータコア
13 レゾルバステータ
14 レゾルバロータ
15 ボルト
16 ボルト
21 モータロータ
22 マグネット
23 モータステータコア
24 励磁コイル
25 ハウジング
31 カバー部材
32 ボルト
33 固定部
40 検出回路部
41 電流電圧変換器
42 3相2相変換器
45 移相器
50 レゾルバ励磁回路
51 発振回路
52 増幅器
60 ドライブユニット
61 演算装置
62 パワーアンプ
100 モータ
A1、A2、B1、B2、C1、C2 ステータ主極
COM 共通端子
IA1、IA2、IB1、IB2、IC1、IC2 ステータ補極
L1〜L12 励磁コイル
MC モータケーブル
P 主極数
q ロータ歯数
Q1〜Q16 ロータ歯
SI 補極信号
SM 主極信号

Claims (8)

  1. ステータコアと、前記ステータコアに対して回転自在に支持され、かつ前記ステータコアとの相対的な角度位置に応じて前記ステータコアとの間隙のリラクタンス成分が変化するロータコアとを含むレゾルバ装置であって、
    前記ステータコアは、
    相数3の偶数倍の主極数を備え、1相励磁の入力信号を受けて巻回された各励磁コイルが電気角+120度又は電気角−120度ずれた3相の出力信号を出力するように環状ステータ基部の円周方向に沿って配置されるステータ主極と、
    巻回された各励磁コイルに1相の前記入力信号が入力され、かつ環状ステータ基部の円周方向に沿って各相毎の前記出力信号に対して2次高調波を抑制する位置に配置される各相毎のステータ補極と、
    を備え、
    前記各相毎のステータ補極は、対応する各相毎のステータ主極の前記出力信号に、前記各相毎のステータ補極に巻回された各励磁コイルの出力を加えて合成した3相レゾルバ信号とし、
    前記3相レゾルバ信号を3相2相変換して2相レゾルバ信号を得ることを特徴とするレゾルバ装置。
  2. 前記各相毎のステータ補極は、対応する各相毎のステータ主極の少なくとも1つに対して電気角+90度又は電気角−90度ずれた位置に配置されている、請求項1に記載のレゾルバ装置。
  3. 前記ロータコアは、前記ステータコアに対向する側に突出する複数のロータ歯を備え、
    前記主極数をPとして、前記ロータ歯の数であるロータ歯数をqとした場合、下記式(1)を満たす、請求項1又は2に記載のレゾルバ装置。
    P=(q/(M+(N±1)/N))・・・(1)
    但し、Nは相数の3であり、Mは、式(1)を満たす整数の変数である。
  4. 前記各相毎のステータ補極は、対応する各相毎のステータ主極の少なくとも1つに対して機械角+90度又は機械角−90度ずれた位置に配置されている、請求項1に記載のレゾルバ装置。
  5. 前記ロータコアは、内径の中心が外形の中心からずれており、ロータコア1回転で1周期の前記出力信号を出力する、請求項1又は4に記載のレゾルバ装置。
  6. 請求項1から5のいずれか1つに記載のレゾルバ装置を含み、
    前記ロータコアがモータロータと連動して回転し、前記レゾルバ装置が前記モータロータの回転を検出することが可能なことを特徴とするモータ。
  7. 請求項3に記載のレゾルバ装置を含み、
    前記ロータコアがモータロータと連動して回転し、前記レゾルバ装置が前記モータロータの回転を検出することが可能であって、
    前記ロータコアの歯数qと同じ極対数を備えることを特徴とするモータ。
  8. 請求項1から5のいずれか1つに記載のレゾルバ装置を含み、前記レゾルバ装置が検出可能な回転運動を伝達可能なアクチュエータ。
JP2014108474A 2014-01-27 2014-05-26 レゾルバ装置、モータ及びアクチュエータ Active JP5892196B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014108474A JP5892196B2 (ja) 2014-01-27 2014-05-26 レゾルバ装置、モータ及びアクチュエータ
EP15740493.0A EP3101787B1 (en) 2014-01-27 2015-01-14 Resolver device, motor, and actuator
PCT/JP2015/050813 WO2015111485A1 (ja) 2014-01-27 2015-01-14 レゾルバ装置、モータ及びアクチュエータ
US15/105,129 US9716421B2 (en) 2014-01-27 2015-01-14 Resolver device, motor, and actuator
CN201580003344.0A CN105850014B (zh) 2014-01-27 2015-01-14 旋转变压器装置、电动机以及驱动器

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014012690 2014-01-27
JP2014012690 2014-01-27
JP2014108474A JP5892196B2 (ja) 2014-01-27 2014-05-26 レゾルバ装置、モータ及びアクチュエータ

Publications (2)

Publication Number Publication Date
JP2015159705A true JP2015159705A (ja) 2015-09-03
JP5892196B2 JP5892196B2 (ja) 2016-03-23

Family

ID=53681291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108474A Active JP5892196B2 (ja) 2014-01-27 2014-05-26 レゾルバ装置、モータ及びアクチュエータ

Country Status (5)

Country Link
US (1) US9716421B2 (ja)
EP (1) EP3101787B1 (ja)
JP (1) JP5892196B2 (ja)
CN (1) CN105850014B (ja)
WO (1) WO2015111485A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244453A1 (ja) * 2018-06-21 2019-12-26 株式会社デンソー リニアポジションセンサ
WO2020026438A1 (ja) * 2018-08-03 2020-02-06 三菱電機株式会社 角度検出器、及び角度検出器の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211382B1 (en) * 2014-10-20 2020-01-08 Mitsubishi Electric Corporation Rotation angle detection device, rotating electrical machine, and elevator hoisting machine
JP2019032200A (ja) * 2017-08-07 2019-02-28 マブチモーター株式会社 位置センサ及びモータ
CN108539931B (zh) * 2018-01-31 2024-02-02 诠脑机电设备(深圳)有限公司 以旋转变压器为传感器的伺服驱动装置
CN108562308A (zh) * 2018-01-31 2018-09-21 制旋科技(深圳)有限公司 一对极磁阻式旋转变压器装置
EP3799277A4 (en) * 2018-06-29 2021-07-28 Guangdong Welling Auto Parts Co., Ltd. ROTATING TRANSFORMER
US11552534B2 (en) * 2018-07-03 2023-01-10 Mitsubishi Electric Corporation Resolver device and rotating electrical machine with resolver device
CN110535258A (zh) * 2019-08-06 2019-12-03 苏州工业园区代尔塔电机技术有限公司 一种外转子旋变结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546862A (en) * 1978-09-25 1980-04-02 Okuma Mach Works Ltd Multipolar resolver
JPH01243839A (ja) * 1988-03-22 1989-09-28 Okuma Mach Works Ltd リラクタンス型レゾルバ
JP2624747B2 (ja) * 1988-02-24 1997-06-25 株式会社東芝 レゾルバ
JP2000116094A (ja) * 1998-10-05 2000-04-21 Nsk Ltd 可変リラクタンス型レゾルバ装置用のロータ
WO2002025216A1 (fr) * 2000-09-19 2002-03-28 Honda Giken Kogyo Kabushiki Kaisha Detecteur de position rotatif et moteur equipe de ce dernier
JP2004271284A (ja) * 2003-03-06 2004-09-30 Nsk Ltd 角度位置検出装置
JP2008125306A (ja) * 2006-11-15 2008-05-29 Mitsuba Corp レゾルバのステータ構造及びブラシレスモータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265960A (en) * 1959-10-08 1966-08-09 Benjamin P Blasingame Capacitive resolver
US3641467A (en) * 1969-05-13 1972-02-08 Allis Chalmers Mfg Co Rotary inductor
US4631510A (en) * 1985-09-03 1986-12-23 Powerton, Division Of Contraves Goerz Corporation Harmonically graded airgap reluctance-type rotating electric resolver
US4794511A (en) * 1988-01-11 1988-12-27 The Superior Electric Company Apparatus and method for generating two-phase signals for use with a resolver to digital converter
US5763976A (en) * 1993-12-15 1998-06-09 Parker-Hannifin Corp. Stator wound resolver with staggered rotor
US6137204A (en) * 1998-05-22 2000-10-24 Nsk Ltd. VR-type resolver
US6856061B2 (en) * 2001-11-12 2005-02-15 Nsk Ltd. Synchronous resolver, resolver cable and direct drive motor system
JP2008216073A (ja) * 2007-03-05 2008-09-18 Nsk Ltd 差動型レゾルバによる密着配置構造を有する転がり軸受装置
KR100943701B1 (ko) * 2008-02-05 2010-02-25 성삼경 전기모터
CN101585189B (zh) * 2009-06-18 2011-05-11 北京理工大学 双旋转变压器共电机轴设计的机器人关节

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546862A (en) * 1978-09-25 1980-04-02 Okuma Mach Works Ltd Multipolar resolver
JP2624747B2 (ja) * 1988-02-24 1997-06-25 株式会社東芝 レゾルバ
JPH01243839A (ja) * 1988-03-22 1989-09-28 Okuma Mach Works Ltd リラクタンス型レゾルバ
JP2000116094A (ja) * 1998-10-05 2000-04-21 Nsk Ltd 可変リラクタンス型レゾルバ装置用のロータ
WO2002025216A1 (fr) * 2000-09-19 2002-03-28 Honda Giken Kogyo Kabushiki Kaisha Detecteur de position rotatif et moteur equipe de ce dernier
JP2004271284A (ja) * 2003-03-06 2004-09-30 Nsk Ltd 角度位置検出装置
JP2008125306A (ja) * 2006-11-15 2008-05-29 Mitsuba Corp レゾルバのステータ構造及びブラシレスモータ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244453A1 (ja) * 2018-06-21 2019-12-26 株式会社デンソー リニアポジションセンサ
WO2020026438A1 (ja) * 2018-08-03 2020-02-06 三菱電機株式会社 角度検出器、及び角度検出器の製造方法
CN112513560A (zh) * 2018-08-03 2021-03-16 三菱电机株式会社 角度检测器以及角度检测器的制造方法

Also Published As

Publication number Publication date
WO2015111485A1 (ja) 2015-07-30
JP5892196B2 (ja) 2016-03-23
EP3101787B1 (en) 2018-12-12
CN105850014A (zh) 2016-08-10
US20170005549A1 (en) 2017-01-05
US9716421B2 (en) 2017-07-25
CN105850014B (zh) 2018-09-04
EP3101787A4 (en) 2017-09-20
EP3101787A1 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP5892196B2 (ja) レゾルバ装置、モータ及びアクチュエータ
JP4692923B2 (ja) レゾルバ装置及びレゾルバ装置を搭載したモータ装置
JP3938501B2 (ja) 回転角度検出装置、それを用いた永久磁石型回転電機、及び、永久磁石型回転電機を用いた電動パワーステアリング装置
JP4916556B2 (ja) 回転角度検出装置、回転電機装置および電動パワーステアリング装置
JP4181380B2 (ja) 回転角度検出装置および回転電機
JP4775294B2 (ja) レゾルバ
JP6192854B2 (ja) 回転角度検出装置、回転電機、及びエレベータ用巻上機
US6137204A (en) VR-type resolver
JP5939868B2 (ja) バリアブルリラクタンス型レゾルバ
JP2014085135A (ja) 高精度レゾルバ
JP4702526B2 (ja) 角度位置検出装置及び方法
JP4652382B2 (ja) 電動パワーステアリング装置用永久磁石型ブラシレスモータ
JP2012177618A (ja) レゾルバ装置
JP2015186369A (ja) 可変リラクタンス型レゾルバ、モータ及びロボット
WO2001042743A1 (fr) Detecteur d'angle de type a reluctance variable
JPH0619292Y2 (ja) ブラシレスレゾルバ
JP2021197895A (ja) 3相ブラシレスモーター及び3相ブラシレスモーターの回転位置検出方法
JP5538758B2 (ja) 漏洩磁束検出型回転位置検出装置を組み込んだ液密サーボモータ装置
JP2000081344A (ja) 高精度vr型レゾルバ
JP6650188B2 (ja) レゾルバ
JP5810552B2 (ja) モータ回転角度検出装置及び搬送装置
JP6404092B2 (ja) レゾルバを備えたモータ、モータレゾルバ構造
JP4223892B2 (ja) 角度位置検出装置
JP2018121404A (ja) レゾルバステータ、レゾルバ及びダイレクトドライブモータシステム
JP2010216844A (ja) レゾルバ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150527

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150527

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5892196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150