JP2015122888A - 車両の電源装置 - Google Patents

車両の電源装置 Download PDF

Info

Publication number
JP2015122888A
JP2015122888A JP2013265625A JP2013265625A JP2015122888A JP 2015122888 A JP2015122888 A JP 2015122888A JP 2013265625 A JP2013265625 A JP 2013265625A JP 2013265625 A JP2013265625 A JP 2013265625A JP 2015122888 A JP2015122888 A JP 2015122888A
Authority
JP
Japan
Prior art keywords
voltage
atmospheric pressure
converter
boost
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013265625A
Other languages
English (en)
Other versions
JP5949749B2 (ja
Inventor
卓 熊沢
Suguru Kumazawa
卓 熊沢
英輝 鎌谷
Hideki Kamatani
英輝 鎌谷
亮次 佐藤
Ryoji Sato
亮次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013265625A priority Critical patent/JP5949749B2/ja
Priority to US15/107,130 priority patent/US9694696B2/en
Priority to PCT/JP2014/006022 priority patent/WO2015097993A1/en
Publication of JP2015122888A publication Critical patent/JP2015122888A/ja
Application granted granted Critical
Publication of JP5949749B2 publication Critical patent/JP5949749B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/10Temporary overload
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/906Motor or generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】大気圧の低い環境下において昇圧コンバータと接続される負荷部品が絶縁破壊されるのを防止することができる車両の電源装置を提供する。【解決手段】制御装置500は、コンバータ200を連続的に作動させる連続昇圧モードと、コンバータ200を間欠的に作動させる間欠昇圧モードとで昇圧コンバータを制御する。制御装置500は、大気圧が第1の所定値以上のときには、間欠昇圧モードでコンバータ200を制御することを許可し、大気圧が第1の所定値未満のときには、間欠昇圧モードでコンバータ200を制御することを禁止する。【選択図】図2

Description

本発明は、車両の電源装置に関する。
特開2010−239791号公報(特許文献1)には、大気圧が小さい(標高が高い)ほど小さくなる傾向の電圧を制限電圧に設定し、設定した制限電圧を用いてインバータに供給すべき目標電圧を設定して昇圧コンバータを制御する技術が開示されている。これによって、大気圧が小さいため、電動機などの負荷部品の耐電圧が低くなったとしても、電動機などの負荷部品が絶縁破壊するのを防止できる。
特開2010−239791号公報 特開2011−015603号公報
ところで、電動機での電流消費が少ない場合に、昇圧コンバータの動作と停止を間欠的に行なうことによって、電力損失を低減する間欠昇圧制御を実行する場合において、昇圧停止中には、昇圧コンバータの出力電圧が指令電圧から時間とともに乖離していく。
特許文献1に記載のように大気圧に応じて制限電圧を設定したとしても、大気圧が低いときには、昇圧停止中に昇圧コンバータの出力電圧と指令電圧との乖離によって昇圧コンバータの出力電圧が増加すると、電動機などの負荷部品が絶縁短絡してしまう。
それゆえに、本発明の目的は、大気圧の低い環境下において昇圧コンバータと接続される負荷部品が絶縁破壊されるのを防止することができる車両の電源装置を提供することである。
上記課題を解決するために、本発明の車両の電源装置は、蓄電装置と、電動機と、蓄電装置と電動機に接続され、蓄電装置の電圧を昇圧して電動機に供給する昇圧コンバータと、昇圧コンバータを連続的に作動させる連続昇圧モードと、昇圧コンバータを間欠的に作動させる間欠昇圧モードとで昇圧コンバータを制御する制御装置とを備える。制御装置は、大気圧が第1の所定値以上のときには、間欠昇圧モードで昇圧コンバータを制御することを許可し、大気圧が第1の所定値未満のときには、間欠昇圧モードで昇圧コンバータを制御することを禁止する。
これによって、大気圧が第1の所定値未満のときには、間欠昇圧モードでの制御が行なわれないので、間欠昇圧モードの昇圧停止中に昇圧コンバータの出力電圧が増加し、電動機などの負荷部品が絶縁短絡してしまうのを防止できる。
好ましくは、制御装置は、間欠昇圧モード時の昇圧コンバータの昇圧停止時に、昇圧コンバータの出力電圧と、昇圧コンバータの出力電圧の指令電圧との差が閾値以上となったときに、昇圧コンバータの昇圧を再開させる。制御装置は、大気圧が第1の所定値よりも大きな第2の所定値以上のときには、閾値を固定値に設定する。制御装置は、大気圧が第1の所定値以上かつ第2の所定値未満の範囲にあるときには、閾値を、固定値以下で、かつ大気圧が小さくなるにつれて、小さくなる値に設定する。
これによって、大気圧が第2の所定値かつ第1の所定値以上のときには、間欠昇圧モードでの制御が実行可能となるが、昇圧停止中の駆動電圧系の電圧と駆動電圧系の指令電圧との差を許容する閾値の値を大気圧が低くなるにつれて小さく設定するので、間欠昇圧モードの昇圧停止中に昇圧コンバータの出力電圧の増加量が制限されて、電動機などの負荷部品が絶縁短絡してしまうのを防止できる。
好ましくは、制御装置は、大気圧が第2の所定値以上のときには、指令電圧の上限値を昇圧コンバータが出力可能な電圧の最大値に設定する。制御装置は、大気圧が第1の所定値以上かつ第2の所定値未満の範囲にあるときには、指令電圧の上限値を閾値に基づいて設定する。
これによって、昇圧停止中の駆動電圧系の電圧と駆動電圧系の指令電圧との差を許容する閾値に応じて指令電圧の上限値が設定されるので、昇圧コンバータの出力電圧が大きくなりすぎて、電動機などの負荷部品が絶縁短絡してしまうのを防止できるともに、昇圧コンバータの出力電圧が小さくなりすぎて、車両が走行不能になるのを防止できる。
本発明によれば、間欠昇圧制御による電力損失低減効果が損なわれるのを防止できる。
本発明の実施の形態による電動車両の代表例として示されるハイブリッド車両の構成例を説明するためのブロック図である。 ハイブリッド車両の電気システムを表わす図である。 コンバータの通常の昇圧制御の手順を表わすフローチャートである。 (a)は、連続昇圧モードと間欠昇圧モードにおけるコンバータ200の出力電圧(システム電圧)VHを表わす図である。(b)は、連続昇圧モードと間欠昇圧モードにおけるリアクトル電流ILを表わす図である。(c)は、連続昇圧モードと間欠昇圧モードにおける昇圧損失電力量LPを表わす図である。 間欠昇圧モードが設けられていない場合の、大気圧Pに対する電圧指令VH*の上限の設定例を表わす図である。 (a)は、大気圧Pが通常の場合における昇圧停止期間のシステム電圧VHの変動を表わす図である。(b)は、大気圧Pが通常の場合における昇圧停止期間のシステム電圧VHの変動を表わす図である。 大気圧Pの全範囲において間欠昇圧モード制御を許可にする場合の大気圧Pに対する電圧指令VH*の上限の設定例を表わす図である。 実施の形態1における、大気圧Pに対する電圧指令VH*の上限の設定例を表わす図である。 実施の形態1におけるコンバータの昇圧制御の手順を表わすフローチャートである。 図9のステップSTAの手順を表わすフローチャートである。 実施の形態2における、大気圧Pに対する間欠昇圧モードの限界値ΔVHの設定例を表わす図である。 実施の形態2における、大気圧Pに対する電圧指令VH*の上限の設定例を表わす図である。 実施の形態2におけるコンバータの昇圧制御の手順を表わすフローチャートである。 図13のステップSTBの手順を表わすフローチャートである。
[実施の形態1]
図1は、本発明の実施の形態による電動車両の代表例として示されるハイブリッド車両の構成例を説明するためのブロック図である。
図1を参照して、ハイブリッド車両は、「内燃機関」に対応するエンジン100と、第1MG(Motor Generator)110と、第2MG120と、動力分割機構130と、減速機140と、バッテリ150と、駆動輪160と、制御装置500とを備える。制御装置500は、PM(Power Management)−ECU(Electronic Control Unit)170と、MG(Motor Generator)−ECU172とからなる。
ハイブリッド車両は、エンジン100および第2MG120のうちの少なくともいずれか一方からの駆動力により走行する。エンジン100、第1MG110および第2MG120は、動力分割機構130を介して連結されている。
動力分割機構130は、代表的には、遊星歯車機構として構成される。動力分割機構130は、外歯歯車のサンギヤ131と、このサンギヤ131と同心円上に配置された内歯歯車のリングギヤ132と、サンギヤ131に噛合するとともにリングギヤ132に噛合する複数のピニオンギヤ133と、キャリア134とを含む。キャリア134は、複数のピニオンギヤ133を自転かつ公転自在に保持するように構成される。
動力分割機構130によって、エンジン100が発生する動力は、2経路に分割される。一方は減速機140を介して駆動輪160を駆動する経路である。もう一方は、第1MG110を駆動させて発電する経路である。
第1MG110および第2MG120は、代表的には、永久磁石モータによって構成された、三相交流回転電機である。
第1MG110は、主に「発電機」として動作して、動力分割機構130により分割されたエンジン100からの駆動力により発電することができる。第1MG110により発電された電力は、車両の走行状態や、バッテリ150のSOC(State Of Charge)の状態に応じて使い分けられる。その後、この電力は、後述するコンバータにより電圧が調整されてバッテリ150に蓄えられる。なお、第1MG110は、エンジン始動時にエンジン100をモータリングする場合等には、トルク制御の結果として電動機として動作することも可能である。
第2MG120は、主に「電動機」として動作して、バッテリ150に蓄えられた電力および第1MG110により発電された電力のうちの少なくともいずれかの電力により駆動する。第2MG120が発生する動力は、駆動軸135へ伝達され、さらに減速機140を介して駆動輪160に伝達される。これにより、第2MG120は、エンジン100をアシストしたり、第2MG120からの駆動力により車両を走行させたりする。
ハイブリッド車両の回生制動時には、減速機140を介して駆動輪160により第2MG120が駆動される。この場合には、第2MG120は発電機として動作する。これにより第2MG120は、制動エネルギを電力に変換する回生ブレーキとして機能する。第2MG120により発電された電力は、バッテリ150に蓄えられる。
バッテリ150は、複数のバッテリセルを一体化したバッテリモジュールを、さらに複数直列に接続して構成された組電池である。バッテリ150の電圧は、たとえば200V程度である。バッテリ150は、第1MG110もしくは第2MG120により発電された電力によって充電することができる。バッテリ150の温度・電圧・電流は、電池センサ152により検出される。電池センサ152は、温度センサ、電圧センサ、電流センサを包括的に標記するものである。
PM−ECU170およびMG−ECU172は、図示しないCPU(Central Processing Unit)およびメモリを内蔵して構成され、当該メモリに記憶されたマップおよびプログラムに従うソフトウェア処理によって、各センサによる検出値に基づく演算処理を実行するように構成される。あるいは、PM−ECU170およびMG−ECU172の少なくとも一部は、専用の電子回路等によるハードウェア処理によって、所定の数値演算処理および/または論理演算処理を実行するように構成されてもよい。
エンジン100は、PM−ECU170からの動作指令値に従って制御される。第1MG110、第2MG120、コンバータ200、インバータ210,220は、MG−ECU172によって制御される。PM−ECU170とMG−ECU172とは双方向に通信可能に接続される。
なお、本実施の形態では、PM−ECU170およびMG−ECU172を別個のECUによって構成するが、両者の機能を包括する単一のECUを設けてもよい。
図2は、図1に示したハイブリッド車両の電気システムの構成例を説明する回路図である。
図2を参照して、ハイブリッド車両の電気システムには、コンバータ200と、第1MG110に対応するインバータ210と、第2MG120に対応するインバータ220と、SMR(System Main Relay)230と、コンデンサC1,C2とが設けられる。
コンバータ200は、直列接続された2個の電力用半導体スイッチング素子Q1,Q2(以下、単に「スイッチング素子」とも称する)と、各スイッチング素子Q1,Q2に対応して設けられたダイオードD1,D2と、リアクトルLを含む。
スイッチング素子Q1,Q2は、正極線PL2とバッテリ150の負極に接続される接地線GLとの間に直列に接続される。スイッチング素子Q1のコレクタは正極線PL2に接続され、スイッチング素子Q2のエミッタは接地線GLに接続される。ダイオードD1,D2は、それぞれスイッチング素子Q1,Q2に逆並列に接続される。そして、スイッチング素子Q1およびダイオードD1は、コンバータ200の上アームを構成し、スイッチング素子Q2およびダイオードD2は、コンバータ200の下アームを構成する。
電力用半導体スイッチング素子Q1,Q2としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタ、電力用バイポーラトランジスタ等を適宜採用することができる。各スイッチング素子Q1,Q2のオン/オフは、MG−ECU172からのスイッチング制御信号によって制御される。
リアクトルLの一方端は、バッテリ150の正極に接続される正極線PL1に接続され、他方端は、スイッチング素子Q1,Q2の接続ノード、すなわち、スイッチング素子Q1のエミッタとスイッチング素子Q2のコレクタとの接続点に接続される。
コンデンサC2は、正極線PL2と接地線GLとの間に接続される。コンデンサC2は
、正極線PL2および接地線GL間の電圧変動の交流成分を平滑化する。コンデンサC1は、正極線PL1と接地線GLとの間に接続される。コンデンサC1は、正極線PL1および接地線GL間の電圧変動の交流成分を平滑化する。
リアクトルLに流れる電流(以下、リアクトル電流)ILは、電流センサSEILによって検出される。電圧センサ180は、コンバータ200の出力電圧であるコンデンサC2の端子間電圧、すなわち正極線PL2と接地線GLとの間の電圧VH(システム電圧または駆動電圧系の電圧)を検出し、その検出値をMG−ECU172へ出力する。
コンバータ200と、インバータ210およびインバータ220とは、正極線PL2および接地線GLを介して、互いに電気的に接続される。
コンバータ200は、昇圧動作時には、バッテリ150から供給された直流電圧VB(コンデンサC1の両端の電圧)を昇圧し、昇圧されたシステム電圧VHをインバータ210,220へ供給する。より具体的には、MG−ECU172からのスイッチング制御信号に応答して、スイッチング素子Q1のオン期間およびQ2のオン期間が交互に設けられ、昇圧比は、これらのオン期間の比に応じたものとなる。
コンバータ200は、降圧動作時には、コンデンサC2を介してインバータ210,220から供給されたシステム電圧VHを降圧してバッテリ150を充電する。より具体的には、MG−ECU172からのスイッチング制御信号に応答して、スイッチング素子Q1のみがオンする期間と、スイッチング素子Q1,Q2の両方がオフする期間とが交互に設けられ、降圧比は上記オン期間のデューティ比に応じたものとなる。
コンバータ200の昇降圧停止時には、スイッチング素子Q1がオン固定に設定され、スイッチング素子Q2がオフ固定に設定される。
インバータ210は、一般的な三相インバータで構成され、U相アーム15と、V相アーム16と、W相アーム17とから成る。アーム15〜17は、スイッチング素子Q3〜Q8と、逆並列ダイオードD3〜D8とを含む。
インバータ210は、車両走行時には、車両走行に要求される駆動力(車両駆動トルク、発電トルク等)を発生するために設定される動作指令値(代表的にはトルク指令値)に従って第1MG110が動作するように、第1MG110の各相コイルの電流または電圧を制御する。すなわち、インバータ210は、正極線PL2および第1MG110の間で双方向のDC/AC電力変換を実行する。
インバータ220は、インバータ210と同様に、一般的な三相インバータで構成される。インバータ220は、車両走行時には、車両走行に要求される駆動力(車両駆動トルク、回生制動トルク等)を発生するために設定される動作指令値(代表的にはトルク指令値)に従って第2MG120が動作するように、第2MG120の各相コイルの電流または電圧を制御する。すなわち、インバータ220は、正極線PL2および第2MG120の間で双方向のDC/AC電力変換を実行する。
PM−ECU170は、アクセル開度Accおよびハイブリッド車両の車速Vに基づいて、第1MG110のトルク指令値TR1、および第2MG120のトルク指令値TR2を算出する。
MG−ECU172は、PM−ECU170で算出された第1MG110のトルク指令値TR1、第2MG120のトルク指令値TR2、第1MG110のモータ回転数MRN1,第2MG120のモータ回転数MRN2に基づいて、コンバータ200の出力電圧(システム電圧)VHの最適値(目標値)、すなわち指令電圧VH*を算出する。MG−ECU172は、電圧センサ180によって検出されるコンバータ200の出力電圧VHと、指令電圧VH*とに基づいて、出力電圧VHを指令電圧VH*に制御するためデューティ比を計算し、コンバータ200を制御する。
MG−ECU172は、コンバータ200を連続昇圧モードと、間欠昇圧モードのいずれかに設定して制御する。連続昇圧モードは、コンバータ200が昇圧動作を停止することなく実行するモードである。連続昇圧モードでは、バッテリ150から供給された電圧をコンバータ200を介してインバータ210,220へ供給する。したがって、バッテリ150の電圧が昇圧されずにコンバータ200を介してそのままインバータ210,220へ供給される場合(つまり、デューティ比が1)も含む。
間欠昇圧モードは、コンバータ200が昇圧動作と、昇圧動作の停止とを間欠的に繰り返すモードである。コンバータ200が昇圧動作を実行するときには、スイッチング素子Q1,Q2のオン/オフが切り換えられる。コンバータ200が昇圧動作を停止するときには、スイッチング素子Q1がオン固定に設定され、スイッチング素子Q2がオフ固定に設定される。コンバータ200が昇圧動作を停止するときには、バッテリ150の電圧がコンバータ200を介してインバータ210,220へ供給されない。
図3は、コンバータ200の通常の昇圧制御の手順を表わすフローチャートである。本実施の形態による昇圧制御の手順は後述する。図4(a)は、連続昇圧モードと間欠昇圧モードにおけるコンバータ200の出力電圧(システム電圧)VHを表わす図である。図4(b)は、連続昇圧モードと間欠昇圧モードにおけるリアクトル電流ILを表わす図である。リアクトル電流ILは、実際には、コンバータ200のスイッチングによって変動するが、図4(b)では、スイッチングによる変動成分を平滑化したものが示されている。図4(c)は、連続昇圧モードと間欠昇圧モードにおけるスイッチングによる昇圧損失電力量LPを表わす図である。
図2、図3および図4を参照して、ステップST1において、制御装置500は、コンバータ200を連続昇圧モードに設定する。コンバータ200は、昇圧動作を停止することなく昇圧動作を実行する。
その後、ステップST2において、制御装置500は、過去の所定期間のリアクトル電流ILの平均値ILMが閾値TH1未満になると、処理をステップST3に進ませる。ステップST3において、制御装置500は、コンバータ200を間欠昇圧モードに設定する。さらに、制御装置500は、は、コンバータ200による昇圧動作を停止させる(たとえば、図4の(1)の時点を参照)。
コンバータ200の昇圧動作が停止すると、バッテリ150から電流が出力されないのでリアクトル電流ILが0となり、昇圧損失電力量LPは0となる。コンバータ200の昇圧動作が停止されているときには、コンデンサC2に蓄積された電力で、第1MG110および/または第2MG120が駆動される。コンデンサC2から電荷が放出されることによって、システム電圧VHが減少することになる。
その後、ステップST4において、制御装置500は、システム電圧VHと指令電圧VH*との乖離量|VH*−VH|が限界値ΔVH以上となったときには、処理をステップST5に進ませる。ステップST5において、制御装置500は、コンバータ200による昇圧動作を再開させる(たとえば、図4の(2)の時点を参照)。
コンバータ200の昇圧動作が再開すると、コンデンサC2を充電しながら第1MG110および/または第2MG120を駆動するのに必要な電流(復帰電流)がバッテリ150から供給されるため、リアクトル電流ILが増加し、昇圧損失電力量LPが増加する。
その後、ステップST6において、制御装置500は、システム電圧VHが指令電圧VH*と等しくなると、処理をステップST7に進ませる。ステップST7において、制御装置500は、コンバータ200による昇圧動作を停止させる(たとえば、図4の(3)の時点を参照)。
一方、ステップST8において、制御装置500は、過去の所定期間のリアクトル電流ILの平均値ILMが閾値TH2を超えるようになると、コンバータ200を連続昇圧モードに設定する(ステップST9)。コンバータ200は、停止することなく昇圧動作を実行する(たとえば、図4の(4)の時点を参照)。図4の(4)の時点では、指令電圧VH*が増加し、リアクトル電流ILが増加していることが示されている。
図4(c)では、間欠昇圧モードの1つの昇圧停止期間と後続の昇圧期間を1組としたときに、昇圧損失電力量LPがどれだけ低減したかが示されている。基準損失電力BSよりも上側にある昇圧損失電力量LPを表わす線と基準損失電力BSを表わす線の間の領域の面積P3は、連続昇圧モードで動作するよりも増加した昇圧損失電力量LPの合計を表わす。基準損失電力BSよりも下側にある昇圧損失電力量LPを表わす線と基準損失電力BSを表わす線の間の領域の面積P0は、連続昇圧モードで動作するよりも減少した昇圧損失電力量の合計を表わす。P0からP2(=P3)を減算した値P1が、1組の昇圧停止期間と後続の昇圧期間において、間欠昇圧モードで動作させることによって連続昇圧モードで動作させるよりも低減した昇圧損失電力量の合計である。
図4(c)に示されるように、間欠昇圧モードに設定することによって、昇圧損失電力量を減少させることができる。また、昇圧停止期間が長いほど、損失低減効果が大きくなる。
図5は、間欠昇圧モードが設けられていない場合の、大気圧Pに対する電圧指令VH*の上限の設定例を表わす図である。
V1(P)は、大気圧Pの環境下において、第1MG110および第2MG120が破壊されることがないシステム電圧VHの最大値を表わす。V2(P)は、第1MG110および第2MG120の耐電圧に対してマージン(余裕)を設けるもので、V1(P)の電圧よりもマージンΔDだけ小さい電圧を表わす。コンバータ200が出力可能なシステム電圧VHの最大値がMAX_VHである。
したがって、大気圧Pに対する電圧指令VH*の上限値は、V2(P)と、MAX_VHの小さい方を表わすU_VHA(P)上の電圧に設定される(図5の実線を参照)。すなわち、PA以上の大気圧では、電圧指令VH*の上限値は、MAX_VHに設定される。PA以下の大気圧では、電圧指令VH*の上限値は、V2(P)上の電圧に設定される。ただし、PAは、V2(PA)=MAX_VHを満たす大気圧である。
図6(a)は、大気圧Pが通常の場合における昇圧停止期間のシステム電圧VHの変動を表わす図である。
破壊閾値VH_Tは、第1MG110または第2MG120が破壊されることがないシステム電圧VHの最大値を表わす。大気圧Pが通常の場合には、破壊閾値VH_Tが大きいため、間欠昇圧モードの昇圧停止期間において、システム電圧VHが電圧指令VH*の上限値からΔVHだけ高く乖離しても、システム電圧VHが破壊閾値VH_Tを超えることがない。
図6(b)は、大気圧Pが低い場合における昇圧停止期間のシステム電圧VHの変動を表わす図である。
大気圧Pが低い場合には、破壊閾値VH_Tが小さいため、間欠昇圧モードの昇圧停止期間において、システム電圧VHが電圧指令VH*の上限値からΔVHだけ高く乖離すると、システム電圧VHが破壊閾値VH_Tを超え、第1MG110または第2MG120が破壊されるという問題がある。
次に、図6を用いて説明した問題を解決するための手法について説明する。
図7は、大気圧Pの全範囲において間欠昇圧モード制御を許可する場合の大気圧Pに対する電圧指令VH*の上限の設定例を表わす図である。
V1(P)、V2(P)、ΔD、MAX_VHは、図5に示すものと同様である。V3(P)は、V2(P)の電圧よりもΔVHだけ小さい電圧である。ΔVHは、間欠昇圧モードの昇圧停止期間において、システム電圧VHと指令電圧VH*との乖離を許す限界値であり、固定値V0である。
間欠昇圧モードの昇圧停止期間では、システム電圧VHが電圧指令VH*よりもΔVHだけ大きくなる可能性があるので、間欠昇圧モードにおいては、大気圧Pに対する電圧指令VH*の上限値は、V3(P)と、MAX_VHの小さい方を表わすU_VHB(P)上の電圧に設定する方法が考えられる(図7の実線参照)。すなわち、この方法では、P1以上の大気圧では、電圧指令VH*の上限値は、MAX_VHに設定される。P1以下の大気圧では、電圧指令VH*の上限値は、V3(P)上の電圧に設定される。ただし、P1は、V3(P1)=MAX_VHを満たす大気圧である。したがって、この方法で、電圧指令VH*の上限値を設定すると、図6を用いて説明したような、第1MG110または第2MG120が破壊されるという問題が生じない。
しかしながら、V3(P)で表わされる電圧は、大気圧Pが小さくなると、車両が走行可能なシステム電圧VHの最小値MIN_VHよりも小さくなる。その結果、車両が大気圧Pの小さな場所に移動したときに、車両が走行を停止してしまうという問題がある。
図8は、実施の形態1における、大気圧Pに対する電圧指令VH*の上限の設定例を表わす図である。
V1(P)、V2(P)、V3(P)、ΔD、MAX_VHは、図5、図7に示すものと同様である。実施の形態1では、図7を用いて説明したような、車両が大気圧Pの小さな場所に移動したときに車両が走行を停止してしまうという問題を回避するために、大気圧PがP1未満となると間欠昇圧モード制御を禁止に設定する。大気圧PがP1以上のときには、間欠昇圧モード制御を許可に設定する。
大気圧Pに対する電圧指令VH*の上限値は、U_VHC(P)上の電圧に設定される(図8の実線参照)。すなわち、間欠昇圧モード制御が許可に設定された範囲(P≧P1)では、大気圧Pに対する電圧指令VH*の上限値は、V3(P)とMAX_VHの小さい方であるMAX_VHに設定される。間欠昇圧モード制御が禁止に設定された範囲(P<P1)の範囲では、大気圧Pに対する電圧指令VH*の上限値は、V2(P)とMAX_VHの小さい方の電圧に設定される。これによって、車両の走行環境の大気圧Pにおいて、電圧指令VH*の上限値が、車両が走行可能なシステム電圧VHの最小値MIN_VHよりも小さくなり、車両が走行を停止してしまう状態を防止できる。
図9は、実施の形態1における、コンバータ200の昇圧制御の手順を表わすフローチャートである。図9のフローチャートが、図3のフローチャートが相違する点は、ステップST2とステップST3の間に、ステップSTAを含む点である。図10は、ステップSTAの手順を表わすフローチャートである。
図10を参照して、ステップS101において、大気圧PがP1以上のときには、処理がステップS102に進み、大気圧PがP1未満のときには、処理がステップS104に進む。
ステップS102において、制御装置500は、間欠昇圧モード制御を許可に設定する。その後、ステップS103において、制御装置500は、大気圧Pに対する電圧指令VH*の上限値を図8に示すV3(P)とMAX_VHの小さい方であるMAX_VHに設定し、処理を図9のステップST3に進ませる。
ステップS104において、制御装置500は、間欠昇圧モード制御を禁止に設定する。その後、ステップS105において、制御装置500は、大気圧Pに対する電圧指令VH*の上限値を図8に示すV2(P)とMAX_VHの小さい方の電圧に設定し、処理を図9のステップST1に進ませる。
以上のように、本実施の形態によれば、大気圧Pが低い環境下(P<P1)では、間欠昇圧制御が実行されないので、システム電圧VHが破壊閾値VH_Tを超え、第1MG110または第2MG120が破壊されるという事態を防止できるとともに、大気圧が低い環境下でも、車両を走行させることができる。
[実施の形態2]
実施の形態1では、間欠昇圧モードの昇圧停止期間において、システム電圧VHと指令電圧VH*との乖離を許す限界値ΔVHは、固定値V0とした。これに対して、大気圧が低下したときに、ΔVHをV0よりも小さくすることによって、システム電圧VHが破壊閾値VH_Tを超えないようにすることが考えられる。しかしながら、ΔVHを小さくしすぎると、コンバータ200の昇圧が再開される頻度が高くなり、損失電力の低減効果が得られなくなる。実施の形態2では、かつ大気圧が小さいときにΔVHを小さくすることによってコンバータ200が昇圧停止中にシステム電圧VHが故障閾値VH_Tを超えないようにするととももに、損失電力の低減効果を確保する。
図11は、実施の形態2における、大気圧Pに対する間欠昇圧モードの限界値ΔVHの設定例を表わす図である。
P≧P1の範囲では、ΔVH(P)は、実施の形態1と同じく固定値V0に設定される。P1は、実施の形態1におけるP1(V3(P1)=MAX_VHを満たす)と同じである。P2≦P<P1の範囲では、ΔVH(P)は、線形で増加する。P<P2の範囲では、間欠昇圧モードの設定が禁止される。したがって、ΔVH(P)は設定されない。
P2およびP2≦P<P1の範囲でのVH(P)の傾きは、間欠昇圧モードによる損失電力低減効果を損なわず、かつ車両が走行停止とならないような値が実験などによって特定されて設定される。
図12は、実施の形態2における、大気圧Pに対する電圧指令VH*の上限の設定例を表わす図である。
V1(P)は、大気圧Pの環境下において、第1MG110または第2MG120が破壊されることがないシステム電圧VHの最大値を表わす。V2(P)は、第1MG110または第2MG120に耐電圧に対してマージン(余裕)を設けるもので、V1(P)の電圧よりもマージンΔDだけ小さい電圧を表わす。コンバータ200が出力可能なシステム電圧VHの最大値がMAX_VHである。V4(P)は、V2(P)の電圧よりも図11に示すΔVH(P)だけ小さい電圧である。
車両が大気圧Pの小さな場所に移動したときに車両が走行を停止してしまうという問題を回避するために、大気圧PがP2未満となると間欠昇圧モード制御が禁止に設定される。大気圧PがP2以上のときには、間欠昇圧モード制御が許可に設定される。
大気圧Pに対する電圧指令VH*の上限値は、U_VHD(P)上の電圧に設定される(図12の実線参照)。すなわち、間欠昇圧モード制御が許可に設定された範囲(P≧P2)では、大気圧Pに対する電圧指令VH*の上限値は、V4(P)とMAX_VHの小さい方に設定される。
間欠昇圧モード制御が禁止に設定された範囲(P<P2)のうち、P3≦P<P2の範囲では、大気圧Pに対する電圧指令VH*の上限値を、V2(P)とMAX_VHの小さい方の電圧であるV2(P)に設定することも可能であるが、そうすると、P2での電圧指令VH*の上限値U_VHD(P2)を超えてしまうことになり、逆転現象が生じる。そこで、この範囲の電圧指令VH*の上限値は、P2での電圧指令の上限値と同一とする。ここで、P3は、V2(P3)=U_VHD(P2)を満たす値である。
P<P3の範囲では、大気圧Pに対する電圧指令VH*の上限値は、V2(P)とMAX_VHの小さい方の電圧であるV2(P)に設定される。これによって、車両の走行が想定される大気圧Pの範囲内において、電圧指令VH*の上限値がシステム電圧VHの最小値MIN_VHよりも小さくなり、車両が走行を停止してしまう状態を防止できる。
図13は、実施の形態2における、コンバータ200の昇圧制御の手順を表わすフローチャートである。図13のフローチャートが、図3のフローチャートが相違する点は、ステップST2とステップST3の間に、ステップSTBを含む点である。図14は、ステップSTBの手順を表わすフローチャートである。
図14を参照して、ステップS201において、大気圧PがP1以上のときには、処理がステップS202に進み、大気圧PがP1未満のときには、処理がステップS205に進む。
ステップS202において、制御装置500は、間欠昇圧モード制御を許可に設定する。その後、ステップS203において、制御装置500は、間欠昇圧モードでのΔVHを図11に示す固定値V0に設定する。その後、ステップS204において、制御装置500は、大気圧Pに対する電圧指令VH*の上限値を図12に示すV4(P)とMAX_VHの小さい方であるMAX_VHに設定し、処理を図13のステップST3に進ませる。
ステップS205において、大気圧PがP1未満でかつP2以上のときには、処理がステップS206に進み、大気圧PがP2未満のときには、処理がステップS209に進む。
ステップS206において、制御装置500は、間欠昇圧モード制御を許可に設定する。その後、ステップS207において、制御装置500は、間欠昇圧モードでのΔVHを図11に示すように、固定値V0よりも小さく、かつ大気圧Pが小さくなるにつれて小さくなるように変化する値に設定する。その後、ステップS208において、制御装置500は、大気圧Pに対する電圧指令VH*の上限値を図12に示すV4(P)とMAX_VHの小さい方であるV4(P)に設定し、処理を図13のステップST3に進ませる。
ステップS209において、制御装置500は、間欠昇圧モード制御を禁止に設定する。その後、ステップS210において、制御装置500は、大気圧Pに対する電圧指令VH*の上限値を図12に示すように、V4(P2)(P3≦P<P2の範囲のとき)、またはV2(P)(P<P3のとき)に設定し、処理を図13のステップST1に進ませる。
以上のように、本実施の形態によれば、大気圧Pが低い環境下(P<P2)では、間欠昇圧制御が実行されないので、システム電圧VHが破壊閾値VH_Tを超え、第1MG110または第2MG120が破壊されるという事態を防止できるとともに、大気圧が低い環境下でも、車両を走行させることができる。
また、P2≦P<P1の環境下では、大気圧Pが小さくなるほど、間欠昇圧モードでのΔVHを小さく設定するので、大気圧Pが小さくなるほど、昇圧停止期間中のシステム電圧VHの増加許容量を小さくでき、システム電圧VHが破壊閾値VH_Tを超えないようにすることができる。また、P2≦P<P1の環境下で、指令電圧VH*の上限値をΔVHに応じた値に設定することによって、指令電圧VH*が大きくなりすぎて、システム電圧VHが破壊閾値VH_Tを超えたり、指令電圧VH*が小さくなりすぎて、車両が走行不能になる状態を防止できる。
本発明は、上記の実施形態に限定されるものではない。たとえば、本発明の実施の形態では、間欠昇圧モード制御を禁止に設定した場合には、連続昇圧モードで動作させることとしたが、これに限定するものではない。間欠昇圧モード制御を禁止に設定した場合でも、昇圧でなく降圧が必要なときには、コンバータに降圧を実行させ、昇降圧が不要なときには、コンバータの昇降圧を停止させることになる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
100 エンジン、110 第1MG、120 第2MG、112,122 中性点、130 動力分割機構、131 サンギヤ、132 リングギヤ、133 ピニオンギヤ、134 キャリア、135 リングギヤ軸(駆動軸)、140 減速機、150 バッテリ、152 電池センサ、160 駆動輪、170 PM−ECU、172 MG−ECU、180 電圧センサ、200 コンバータ、210,220 インバータ、230 SMR、500 制御装置、PL1,PL2 正極線、GL 接地線、Q1〜Q8 スイッチング素子、D1〜D8 ダイオード、C1,C2 コンデンサ、L リアクトル。

Claims (3)

  1. 蓄電装置と、
    電動機と、
    前記蓄電装置と前記電動機に接続され、前記蓄電装置の電圧を昇圧して前記電動機に供給する昇圧コンバータと、
    前記昇圧コンバータを連続的に作動させる連続昇圧モードと、前記昇圧コンバータを間欠的に作動させる間欠昇圧モードとで前記昇圧コンバータを制御する制御装置とを備え、
    前記制御装置は、大気圧が第1の所定値以上のときには、前記間欠昇圧モードで前記昇圧コンバータを制御することを許可し、前記大気圧が前記第1の所定値未満のときには、前記間欠昇圧モードで前記昇圧コンバータを制御することを禁止する、車両の電源装置。
  2. 前記制御装置は、前記間欠昇圧モード時の前記昇圧コンバータの昇圧停止時に、前記昇圧コンバータの出力電圧と、前記昇圧コンバータの出力電圧の指令電圧との差が閾値以上となったときに、前記昇圧コンバータの昇圧を再開させ、
    前記制御装置は、前記大気圧が前記第1の所定値よりも大きな第2の所定値以上のときには、前記閾値を固定値に設定し、
    前記制御装置は、前記大気圧が前記第1の所定値以上かつ前記第2の所定値未満の範囲にあるときには、前記閾値を、前記固定値以下で、かつ前記大気圧が小さくなるにつれて、小さくなる値に設定する、請求項1記載の車両の電源装置。
  3. 前記制御装置は、前記大気圧が前記第2の所定値以上のときには、前記指令電圧の上限値を前記昇圧コンバータが出力可能な電圧の最大値に設定し、
    前記制御装置は、前記大気圧が前記第1の所定値以上かつ前記第2の所定値未満の範囲にあるときには、前記指令電圧の上限値を前記閾値に基づいて設定する、請求項2記載の車両の電源装置。
JP2013265625A 2013-12-24 2013-12-24 車両の電源装置 Active JP5949749B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013265625A JP5949749B2 (ja) 2013-12-24 2013-12-24 車両の電源装置
US15/107,130 US9694696B2 (en) 2013-12-24 2014-12-02 Power supply device of vehicle
PCT/JP2014/006022 WO2015097993A1 (en) 2013-12-24 2014-12-02 Power supply device of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265625A JP5949749B2 (ja) 2013-12-24 2013-12-24 車両の電源装置

Publications (2)

Publication Number Publication Date
JP2015122888A true JP2015122888A (ja) 2015-07-02
JP5949749B2 JP5949749B2 (ja) 2016-07-13

Family

ID=52273455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265625A Active JP5949749B2 (ja) 2013-12-24 2013-12-24 車両の電源装置

Country Status (3)

Country Link
US (1) US9694696B2 (ja)
JP (1) JP5949749B2 (ja)
WO (1) WO2015097993A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181201A1 (ja) * 2018-03-22 2019-09-26 ローム株式会社 スイッチング制御回路

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6248596B2 (ja) * 2013-12-10 2017-12-20 トヨタ自動車株式会社 ハイブリッド車両のモータ制御装置
JP6451692B2 (ja) * 2016-05-13 2019-01-16 トヨタ自動車株式会社 自動車
JP6503413B2 (ja) * 2017-05-31 2019-04-17 本田技研工業株式会社 Dc/dcコンバータおよび電気機器
JP7102781B2 (ja) * 2018-02-28 2022-07-20 株式会社デンソー 制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199769A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp 昇圧システムの故障診断装置、昇圧回路の制御装置および車両
US20090198397A1 (en) * 2006-09-08 2009-08-06 Toyota Jidosha Kabushiki Kaisha Control device for mobile unit
JP2010239791A (ja) * 2009-03-31 2010-10-21 Toyota Motor Corp 電気自動車
JP2012152079A (ja) * 2011-01-21 2012-08-09 Honda Motor Co Ltd 電動車両用電源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639916B2 (ja) * 2005-04-05 2011-02-23 トヨタ自動車株式会社 移動体の制御装置
JP2008131715A (ja) * 2006-11-20 2008-06-05 Toyota Motor Corp 電源装置、および電源装置を備える車両
JP2010124594A (ja) * 2008-11-19 2010-06-03 Toyota Motor Corp 車両用電動機の制御装置
JP5126630B2 (ja) 2009-06-02 2013-01-23 本田技研工業株式会社 負荷駆動システムの制御装置
JP2012157102A (ja) * 2011-01-24 2012-08-16 Toyota Motor Corp 車両駆動モータ制御装置
JP2012231644A (ja) * 2011-04-27 2012-11-22 Toyota Motor Corp 車両駆動モータの制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090198397A1 (en) * 2006-09-08 2009-08-06 Toyota Jidosha Kabushiki Kaisha Control device for mobile unit
JP2008199769A (ja) * 2007-02-13 2008-08-28 Toyota Motor Corp 昇圧システムの故障診断装置、昇圧回路の制御装置および車両
JP2010239791A (ja) * 2009-03-31 2010-10-21 Toyota Motor Corp 電気自動車
JP2012152079A (ja) * 2011-01-21 2012-08-09 Honda Motor Co Ltd 電動車両用電源装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181201A1 (ja) * 2018-03-22 2019-09-26 ローム株式会社 スイッチング制御回路
JPWO2019181201A1 (ja) * 2018-03-22 2021-02-04 ローム株式会社 スイッチング制御回路
JP7037637B2 (ja) 2018-03-22 2022-03-16 ローム株式会社 スイッチング制御回路
US11515788B2 (en) 2018-03-22 2022-11-29 Rohm Co., Ltd. Switching control circuit

Also Published As

Publication number Publication date
JP5949749B2 (ja) 2016-07-13
US9694696B2 (en) 2017-07-04
US20170036554A1 (en) 2017-02-09
WO2015097993A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP4737195B2 (ja) 負荷駆動装置、車両、および負荷駆動装置における異常処理方法
US8297391B2 (en) Power supply system, vehicle provided with the same, power supply system control method and computer-readable recording medium bearing program for causing computer to control the power supply system
JP4325637B2 (ja) 負荷駆動装置およびそれを備えた車両
US7939969B2 (en) Power supply system, vehicle with the same, temperature increase control method for power storage device and computer-readable recording medium bearing program causing computer to execute temperature increase control of power storage device
JP5900522B2 (ja) 車両の電源装置
JP5949749B2 (ja) 車両の電源装置
JP6117680B2 (ja) 車両の電源装置
JP2013207914A (ja) 電圧変換装置の制御装置
JP5928326B2 (ja) 電動車両および電動車両の制御方法
JP4245546B2 (ja) 動力出力装置およびそれを備えた車両
JP2015133770A (ja) 車両の電源装置
JP2013240162A (ja) 電圧変換装置
CN108688650B (zh) 混合动力车辆及其控制方法
JP2011172343A (ja) 駆動装置
JP2010098851A (ja) 電動車両
JP5928442B2 (ja) 車両の電源装置
JP2009261201A (ja) 電源システムおよびそれを備えた車両
JP6671402B2 (ja) 車両用電源装置
JP2014155298A (ja) 電源システムおよびそれを搭載した車両
WO2015107584A1 (en) Power supply apparatus of vehicle
JP2013211983A (ja) 電動車両および電動車両の制御方法
JP2010115056A (ja) 電源システムおよび車両
JP2015112990A (ja) ハイブリッド車両
JP2010246221A (ja) 駆動装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5949749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250