JP2015119543A - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP2015119543A
JP2015119543A JP2013261011A JP2013261011A JP2015119543A JP 2015119543 A JP2015119543 A JP 2015119543A JP 2013261011 A JP2013261011 A JP 2013261011A JP 2013261011 A JP2013261011 A JP 2013261011A JP 2015119543 A JP2015119543 A JP 2015119543A
Authority
JP
Japan
Prior art keywords
voltage battery
relay
battery system
electric motor
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013261011A
Other languages
English (en)
Other versions
JP6303477B2 (ja
Inventor
正治 加藤
Masaharu Kato
正治 加藤
守洋 長嶺
Morihiro Nagamine
守洋 長嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013261011A priority Critical patent/JP6303477B2/ja
Publication of JP2015119543A publication Critical patent/JP2015119543A/ja
Application granted granted Critical
Publication of JP6303477B2 publication Critical patent/JP6303477B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Protection Of Generators And Motors (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】 発電中にリレーをオンからオフに切り替えたときのロードダンプを抑制できる車両の制御装置を提供する。
【解決手段】 駆動/回生用電動機2と、駆動/回生用電動機2に結合された高電圧バッテリ11と、駆動/回生用電動機2と高電圧バッテリ12との間に介装されたメインリレー24と、を有する高電圧バッテリ系と、車両の運転状態に応じてメインリレー24のON/OFFを制御する制御コントローラ17と、事前予測可能な高電圧バッテリ系の状態に基づいて、メインリレー24のONからOFFへの切り替えが必要であるか否かを判定する切り替え要否判定部17aと、を備え、制御コントローラ17は、駆動/回生用電動機2での発電中、切り替え要否判定部17aにより事前予測可能な高電圧バッテリ系の状態に基づきメインリレー24のONからOFFへの切り替えが必要であると判定された場合には、駆動/回生用電動機2の発電を徐々に止める。
【選択図】 図2

Description

本発明は、車両の制御装置に関する。
特許文献1には、電動機を有する高電圧バッテリ系と高電圧バッテリとの間にリレーを介装した車両の制御装置が開示されている。
特開2001-069683号公報
高電圧バッテリ系は、安全性の観点から、高電圧バッテリの高温状態や過充電状態、高電圧バッテリ系のショート(短絡)による過電流状態を検出した場合、リレーをOFFして高電圧バッテリを高電圧バッテリ系から切り離す必要がある。
ところが、電動機の発電中にリレーがオフされると、高電圧バッテリが高電圧バッテリ系から切り離されることで、電動機の発電電力が行き場を失って高電圧バッテリ系の電圧が急上昇する、いわゆるロードダンプが発生し、電動機が破損するおそれがあった。
本発明の目的は、発電中にリレーをオンからオフに切り替えたときのロードダンプを抑制できる車両の制御装置を提供することにある。
本発明では、電動機での発電中、事前予測可能な高電圧バッテリ系の状態に基づきリレーのオンからオフへの切り替えが必要であると判定された場合には、電動機の発電を徐々に止める。
よって、リレーのオンからオフへの切り替えを事前に予測して発電機の発電を徐々に止めることにより、発電中にリレーをオンからオフに切り替えたときのロードダンプを抑制できるとともに、発電停止に伴って車両の減速度が急変することを抑制できる。
実施例1のハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図である。 実施例1の駆動系の電気回路図である。 実施例1の制御コントローラ17によるメインリレー制御処理の流れを示すフローチャートである。 実施例1の事前予測可能な高電圧バッテリ系の状態に基づいてメインリレー24のOFFが必要であると判定された場合のタイムチャートである。 実施例1の事前予測不能な高電圧バッテリ系の状態に基づいてメインリレー24のOFFが必要であると判定された場合のタイムチャートである。 実施例2の制御コントローラ17によるメインリレー制御処理の流れを示すフローチャートである。
〔実施例1〕
図1は、実施例1のハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図である。図1のハイブリッド車両は、エンジン1および駆動/回生用電動機2(電動機,第1電動機)を動力源として搭載され、エンジン1は、スタータモータ3または始動/発電用電動機4(電動機,第2電動機)により始動する。エンジン1は、Vベルト式の無段変速機5を介して駆動輪6に適宜切り離し可能に駆動結合する。
無段変速機5のバリエータCVTは、プライマリプーリ7と、セカンダリプーリ8と、これらプーリ7,8間に掛け渡したVベルト9(無端可撓部材)とからなるVベルト式無段変速機構である。なお、Vベルト9は複数のエレメントを無端ベルトによって束ねる構成を採用したが、チェーン方式等であってもよく特に限定しない。プライマリプーリ7はトルクコンバータT/Cを介してエンジン1のクランクシャフトに結合し、セカンダリプーリ8はクラッチCLおよびファイナルギヤ組10を順次介して駆動輪6に結合する。なお、本実施例にあっては、動力伝達経路を断接する要素(クラッチやブレーキ等)を総称してクラッチと記載する。クラッチCLが締結状態のとき、エンジン1からの動力はトルクコンバータT/Cを経てプライマリプーリ7へ入力され、その後Vベルト9、セカンダリプーリ8、クラッチCLおよびファイナルギヤ組10を順次経て駆動輪6に達し、ハイブリッド車両の走行に供される。
エンジン動力伝達中、プライマリプーリ7のプーリV溝幅を小さくしつつ、セカンダリプーリ8のプーリV溝幅を大きくすることで、Vベルト9とプライマリプーリ7との巻き掛け円弧径を大きくすると同時にセカンダリプーリ8との巻き掛け円弧径を小さくする。これにより、バリエータCVTはHigh側プーリ比(High側変速比)へのアップシフトを行う。High側変速比へのアップシフトを限界まで行った場合、変速比は最高変速比に設定される。
逆にプライマリプーリ7のプーリV溝幅を大きくしつつ、セカンダリプーリ8のプーリV溝幅を小さくすることで、Vベルト9とプライマリプーリ7との巻き掛け円弧径を小さくすると同時にセカンダリプーリ8との巻き掛け円弧径を大きくする。これにより、バリエータCVTはLow側プーリ比(Low側変速比)へのダウンシフトを行う。Low側変速比へのダウンシフトを限界まで行った場合、変速は最低変速比に設定される。
駆動/回生用電動機2はファイナルギヤ組10を介して駆動輪6に常時結合され、駆動/回生用電動機2は、高電圧バッテリ11の電力により図外のインバータを介して駆動される。駆動/回生用電動機2は、上記のモータ駆動の他に回生制動の用にも供する。この回生制動時はインバータが、駆動/回生用電動機2に回生制動力分の発電負荷をかけることにより、駆動/回生用電動機2を発電機として作用させ、発電電力を高電圧バッテリ11に充電する。
始動/発電用電動機4は、高電圧バッテリ11の電力によりインバータを介して駆動される。始動/発電用電動機4は、上記のエンジン始動の他に発電機としても機能する。発電時はインバータが、始動/発電用電動機4に発電負荷をかけることにより、始動/発電用電動機4を発電機として作用させ、発電電力を高電圧バッテリ11に充電する。
駆動/回生用電動機2、始動/発電用電動機4および高電圧バッテリ11は高電圧ライン12を介して接続されている。
スタータモータ3は、低電圧ライン13を介して供給される低電圧バッテリ14の電力により駆動される。低電圧ライン13には、低電圧系負荷15(電気負荷)とDC/DCコンバータ16とが接続されている。低電圧系負荷15は、一般的な車両に搭載される電装品等である。DC/DCコンバータ16は、低電圧ライン13と高電圧ライン12との間に介装されている。DC/DCコンバータ16は、高電圧を降圧して低電圧バッテリ14を充電すると共に、低電圧系負荷15に電力を供給する。低電圧バッテリ14は、車両が急加速を行なうなどで高電圧バッテリ11が大電力を放電している時に低電圧系負荷15へ電力を供給したり、高電圧バッテリ11やDC/DCコンバータ16が異常となった場合に低電圧系負荷15に電力を供給したりするバックアップ電源としての役割を有する。
実施例1のハイブリッド車両は、クラッチCLを解放すると共にエンジン1を停止させた状態で駆動/回生用電動機2を駆動することで、駆動/回生用電動機2の動力のみがファイナルギヤ組10を経て駆動輪6に達し、駆動/回生用電動機2のみによる電気走行モード(EVモード)で走行を行う。この間、クラッチCLを解放することで、停止状態のエンジン1およびバリエータCVTのフリクションを低減し、EV走行中の無駄な電力消費を抑制する。
上記のEVモードによる走行状態において、エンジン1をスタータモータ3または始動/発電用電動機4により始動させると共にクラッチCLを締結させると、エンジン1からの動力がトルクコンバータT/C、プライマリプーリ7、Vベルト9、セカンダリプーリ8、クラッチCLおよびファイナルギヤ組10を順次経て駆動輪6に達するようになり、ハイブリッド車両はエンジン1および駆動/回生用電動機2によるハイブリッド走行モード(HEVモード)で走行する。
制御コントローラ17(リレー制御手段)は、ハイブリッド車両の走行モード選択、エンジン1の出力制御、駆動/回生用電動機2の回転方向制御および出力制御、スタータモータ3の出力制御、バリエータCVTの変速制御、クラッチCLの締結、解放制御、高電圧バッテリ11の充放電制御、DC/DCコンバータ16の駆動制御等を行う。
温度センサ18は、高電圧バッテリ11の温度を検出する。電流センサ19は、高電圧ライン12の電流値を検出する。電圧センサ20は、高電圧ライン12の電圧値を検出する。各センサ18,19,20により検出された温度、電流値および電圧値は、制御コントローラ17へ送られる。
図2は、実施例1の駆動系の電気回路図である。
駆動/回生用電動機2および始動/発電用電動機4には、脈動抑制のための平滑コンデンサ21,22が並列に設けられている。リレー回路23は、メインリレー(リレー)24とプリチャージリレー25とを有する。両リレー24,25はいずれもa接点(常開接点)を有する。プリチャージリレー25には、抵抗26が直列に設けられている。高電圧ライン12に接続された駆動/回生用電動機2、始動/発電用電動機4、高電圧バッテリ11およびリレー回路23(メインリレー24、プリチャージリレー25)により高電圧バッテリ系が構成される。また、低電圧ライン13に接続されたスタータモータ3、低電圧バッテリ14および低電圧系負荷15により低電圧バッテリ系が構成される。
制御コントローラ17は、イグニッションスイッチがONされると、まずプリチャージリレー25をON(閉)してからメインリレー24をONし、プリチャージリレー25をOFF(開)する。これは、電源供給/負荷起動時に発生する極端な突入電流を抑制するためである。一方、イグニッションスイッチがOFFされると、メインリレー24をOFFする。
制御コントローラ17は、高電圧バッテリ11の温度、高電圧ライン12の電流および電圧を監視し、安全性の観点から、高電圧バッテリ11が高温となったとき、高電圧バッテリ11が過充電状態となったとき、または高電圧ライン12がショート(短絡状態)して過電流状態となったときには、メインリレー24をOFFし、高電圧バッテリ11を高電圧ライン12から切り離す。制御コントローラ17は、各センサ18,19,20により検出された温度、電流値および電圧値に基づき、上記メインリレー24のONからOFFへの切り替えの要否を判定する切り替え要否判定部17a(切り替え要否判定手段)を備える。
図3は、実施例1の制御コントローラ17によるメインリレー制御処理の流れを示すフローチャートである。この処理は、イグニッションスイッチONによりメインリレー24がONとなった後であって、駆動/回生用電動機2の発電中に実施される。
ステップS1では、高電圧バッテリ11の温度、高電圧ライン12の電流および電圧を読み込む。
ステップS2では、切り替え要否判定部17aにおいて、メインリレー24の即時OFFが必要であるか否かを判定し、YESの場合にはステップS3,S4へ進み、NOの場合にはステップS9へ進む。ここでは、以下の3条件の少なくとも1つが成立している場合に、メインリレー24の即時OFFが必要であると判定する。
1.温度≧即時OFF温度閾値
2.電流値≧即時OFF電流閾値
3.電圧値≧即時OFF電圧閾値
ここで、各即時OFF閾値は、高電圧ライン12がショートして過電流状態となったことを判定可能な値とする。
ステップS3では、メインリレー24をOFFする。
ステップS4では、DC/DCコンバータ16を動作させる。
ステップS5では、駆動/回生用電動機2の発電量をダウン(徐々に止める)させる。
ステップS6では、スタータモータ3または始動/発電用電動機4を作動させる。
ステップS7では、クラッチCLを締結させる。
ステップS8では、DC/DCコンバータ16および始動/発電用電動機4を停止させる。
ステップS9では、切り替え要否判定部17aにおいて、メインリレー24のOFFが必要であるか否かを判定し、YESの場合にはステップS10へ進み、NOの場合にはステップS1へ進む。ここでは、以下の3条件の少なくとも1つが成立している場合に、メインリレー24のOFFが必要であると判定する。
1.温度≧OFF温度閾値
2.電流値≧OFF電流閾値
3.電圧値≧OFF電圧閾値
ここで、各OFF閾値は、高電圧バッテリ11が高温状態となること、または高電圧バッテリ11が過充電状態となることが予測可能な値であり、各OFF閾値は、各即時OFF閾値よりも低い値とする。
ステップS10では、駆動/回生用電動機2の発電量をダウンさせる。
ステップS11では、エンジン1を始動させる。エンジン1を始動させる方法は任意であり、例えば、スタータモータ3の作動、始動/発電用電動機4の作動、クラッチCLの締結が挙げられる。
ステップS12では、メインリレー24をOFFする。
ステップS13では、メインリレー24の再ONが可能であるか否かを判定し、YESの場合にはステップS14へ進み、NOの場合にはステップS13を繰り返す。ここでは、以下の3条件が全て成立している場合に、メインリレー24の再ONが可能であると判定する。
1.温度≦再ON温度閾値
2.電流値≦再ON電流閾値
3.電圧値≦再ON電圧閾値
ここで、各再ON閾値は、制御ハンチング回避のために、各OFF閾値よりも低い値とする。
ステップS14では、メインリレー24をON(再ON)する。
次に、作用を説明する。
図4は、実施例1の事前予測可能な高電圧バッテリ系の状態に基づいてメインリレー24のOFFが必要であると判定された場合のタイムチャートである。
時点t1では、イグニッションスイッチがONされたため、メインリレー24がONされる。
時点t2では、温度、電流値または電圧値のいずれかがOFF閾値に達したため、時点t2からt3までの区間では、駆動/回生用電動機2の発電を徐々に止める。
時点t3では、メインリレー24をOFFする。
時点t4では、温度、電流値および電圧値が全てOFF閾値を下回ったため、駆動/回生用電動機2の発電量を復帰させる。
時点t5では、温度、電流値および電圧値が全て再ON閾値まで低下したため、メインリレー24をONする。
図5は、実施例1の事前予測不能な高電圧バッテリ系の状態に基づいてメインリレー24のOFFが必要であると判定された場合のタイムチャートである。
時点t1では、イグニッションスイッチがONされたため、メインリレー24がONされる。
時点t2では、温度、電流値または電圧値のいずれかが即時OFF閾値に達したため、メインリレー24をOFFすると同時に、DC/DCコンバータ16を動作させる。また、時点t2からt3までの区間では、駆動/回生用電動機2の発電を徐々に止める。
時点t3では、温度、電流値および電圧値が全てOFF閾値に達する。
時点t4では、温度、電流値および電圧値が全て再ON閾値まで低下したため、メインリレー24をONする。
制御コントローラ17は、高電圧バッテリ11が高温となったとき、高電圧バッテリ11が過充電状態となったとき、または高電圧ライン12がショートしたときには、メインリレー24をOFFし、高電圧バッテリ11を高電圧バッテリ系から遮断することにより、高電圧バッテリ11を保護している。
ここで、例えば下り坂をEVモードで走行している場合など、駆動/回生用電動機2で発電を行っている状態で上記のような現象が発生し、メインリレー24をOFFした場合、高電圧バッテリ11が高電圧ライン12から切り離されることで、駆動/回生用電動機2の発電電力が行き場を失って高電圧ライン12の電圧が急上昇する、いわゆるロードダンプが発生し、駆動/回生用電動機2が破損するおそれがあった。
これに対し、実施例1では、駆動/回生用電動機2での発電中、ステップS9において、温度、電流値または電圧値が対応するOFF閾値に達した場合、すなわち、事前予測可能な高電圧バッテリ系の状態(高電圧バッテリ11の高温状態、過充電状態)に基づいてメインリレー24のOFFが必要であると判定された場合には、ステップS10へと進み、駆動/回生用電動機2の発電を徐々に止める。
つまり、実施例1では、高電圧バッテリ11の高温状態または高電圧バッテリ11の可充電状態によりメインリレー24を即時OFFしなければならない状況を事前予測し、駆動/回生用電動機2の発電を徐々に止めることにより、発電停止によって車両の減速度が急変することを伴うことなく、駆動/回生用電動機2の発電中にメインリレー24をONからOFFに切り替えたときのロードダンプを抑制できる。
さらに、続くステップS11で高電圧バッテリ11を高電圧ライン12から切り離す前にエンジン1の始動を完了させることで、車両の動力源を駆動/回生用電動機2からエンジン1に切り替えることができ、車両の走行性能を維持できる。
実施例1では、駆動/回生用電動機2での発電中、ステップS2において、温度、電流値または電圧値が対応する即時OFF閾値に達した場合、すなわち、事前予測不能な高電圧バッテリ系の状態(高電圧ライン12のショートによる過電流状態)に基づいてメインリレー24の即時OFFが必要であると判定された場合には、ステップS3でメインリレー24をOFFすると共に、ステップS4でDC/DCコンバータ16を動作させる。
つまり、実施例1では、高電圧ライン12のショートのように、メインリレー24を即時OFFしなければならない状況を事前に予測できない場合には、メインリレー24のOFFと同時に、DC/DCコンバータ16を動作させることにより、駆動/回生用電動機2の発電電力を低電圧バッテリ系に逃し、低電圧系負荷15で消費させることができる。よって、メインリレー24をONからOFFに切り替えたときのロードダンプを抑制できる。また、高電圧バッテリ11が高電圧ライン12から切り離された後でも低電圧ライン13に電力を供給することができるため、作動中の低電圧系負荷15が停止するのを回避できる。
また、続くステップS5では駆動/回生用電動機2の発電を徐々に止めることにより、ロードダンプ抑制効果を高めることができる。さらに、ステップS6ではスタータモータ3または始動/発電用電動機4を動作させ、ステップS7ではクラッチCLをONすることにより、エンジン1を始動させることができるため、車両の動力源を駆動/回生用電動機2からエンジン1に切り替えることができ、車両の走行性能を維持できる。
以上説明したように、実施例1にあっては以下に列挙する効果を奏する。
(1) 駆動/回生用電動機2と、駆動/回生用電動機2に結合された高電圧バッテリ11と、駆動/回生用電動機2と高電圧バッテリ11との間に介装されたメインリレー24と、を有する高電圧バッテリ系と、車両の運転状態に応じてメインリレー24のON/OFFを制御する制御コントローラ17と、事前予測可能な高電圧バッテリ系の状態に基づいて、メインリレー24のONからOFFへの切り替えが必要であるか否かを判定する切り替え要否判定部17aと、を備え、制御コントローラ17は、駆動/回生用電動機2での発電中、切り替え要否判定部17aにより事前予測可能な高電圧バッテリ系の状態に基づきメインリレー24のONからOFFへの切り替えが必要であると判定された場合には、駆動/回生用電動機2の発電を徐々に止める。
このように、メインリレー24のONからOFFへの切り替えが必要となることを事前に予測し、メインリレー24をONからOFFへと切り替える前に発電機の発電量を徐々に低下させて発電を停止させることにより、駆動/回生用電動機2の発電中にメインリレー24をONからOFFに切り替えたときのロードダンプを抑制できるとともに、駆動/回生用電動機2の急激な電圧変動を抑えて車両の減速度が急変することを抑制できる(発電を停止させるに際して、ステップ的に停止させてしまうと、急激な電圧変動が発生して車両の減速度が急変してしまう)。
(2) 車両の低電圧系負荷15が結合され、高電圧バッテリ11よりも電圧が低い低電圧バッテリ14を有する低電圧バッテリ系と、低電圧バッテリ系と高電圧バッテリ系との間に介装されたDC/DCコンバータ16と、をさらに備え、切り替え要否判定部17aは、事前予測不能な高電圧バッテリ系の状態に基づいて、メインリレー24のONからOFFへの切り替えが必要であるか否かを判定し、制御コントローラ17は、駆動/回生用電動機2での発電中、切り替え要否判定部17aにより事前予測不能な高電圧バッテリ系の状態に基づきメインリレー24のONからOFFへの切り替えが必要であると判定された場合には、メインリレー24をONからOFFに切り替えると共に、DC/DCコンバータ16を動作させる。
よって、駆動/回生用電動機2の発電電力を低電圧バッテリ系に逃し、低電圧系負荷15で消費させることにより、メインリレー24をONからOFFに切り替えたときのロードダンプを抑制できる。また、高電圧バッテリ11が高電圧ライン12から切り離された後でも低電圧ライン13に電力を供給することができるため、作動中の低電圧系負荷15が停止するのを回避できる。
(3) 駆動/回生用電動機2と、駆動/回生用電動機2に結合された高電圧バッテリ11と、駆動/回生用電動機2と高電圧バッテリ11との間に介装されたメインリレー24と、を有する高電圧バッテリ系と、低電圧系負荷15が結合され、高電圧バッテリ11よりも電圧が低い低電圧バッテリ14を有する低電圧バッテリ系と、低電圧バッテリ系と高電圧バッテリ系との間に介装されたDC/DCコンバータ16と、車両の運転状態に応じてメインリレー24のON/OFFを制御する制御コントローラ17と、事前予測不能な高電圧バッテリ系の状態に基づいて、メインリレー24のONからOFFへの切り替えが必要であるか否かを判定する切り替え要否判定部17aと、を備え、制御コントローラ17は、駆動/回生用電動機2での発電中、切り替え要否判定部17aによりメインリレー24のONからOFFへの切り替えが必要であると判定された場合には、メインリレー24をONからOFFに切り替えると共に、DC/DCコンバータを動作させる。
よって、駆動/回生用電動機2の発電電力を低電圧バッテリ系に逃し、低電圧系負荷15で消費させることにより、メインリレー24をONからOFFに切り替えたときのロードダンプを抑制できる。また、高電圧バッテリ11が高電圧ライン12から切り離された後でも低電圧ライン13に電力を供給することができるため、作動中の低電圧系負荷15が停止するのを回避できる。
〔実施例2〕
実施例2は、メインリレー制御処理のみ実施例1と相違するため、構成の図示および説明は省略する。
図6は、実施例2の制御コントローラ17によるメインリレー制御処理の流れを示すフローチャートである。なお、図3に示した実施例1と同じ処理を行うステップには、同一のステップ番号を付して説明を省略する。
ステップS21では、始動/発電用電動機4を動作(力行運転)させる。
ステップS22では、始動/発電用電動機4を停止させる。
次に、作用を説明する。
実施例2では、駆動/回生用電動機2での発電中、ステップS2において、温度、電流値または電圧値が対応する即時OFF閾値に達した場合、すなわち、事前予測不能な高電圧バッテリ系の状態に基づいてメインリレー24の即時OFFが必要であると判定された場合には、ステップS3でメインリレー24をOFFすると共に、ステップS21で始動/発電用電動機4を動作させる。
つまり、高電圧ライン12のショートのように、メインリレー24を即時OFFしなければならない状況を事前に予測できない場合には、メインリレー24のOFFと同時に、始動/発電用電動機4を動作させることにより、駆動/回生用電動機2の発電電力を始動/発電用電動機4で消費させることができる。よって、メインリレー24をONからOFFに切り替えたときのロードダンプを抑制できる。また、駆動/回生用電動機2の動作によりエンジン1を始動させることができるため、車両の動力源を駆動/回生用電動機2からエンジン1に切り替えることができ、車両の走行性能を維持できる。
以上説明したように、実施例2にあっては実施例1の効果(1)に加え、以下に列挙する効果を奏する。
(4) 高電圧バッテリ系は、エンジン1と接続された始動/発電用電動機4を有し、切り替え要否判定部17aは、事前予測不能な高電圧バッテリ系の状態に基づいて、メインリレー24のONからOFFへの切り替えが必要であるか否かを判定し、制御コントローラ17は、駆動/回生用電動機2での発電中、切り替え要否判定部17aにより事前予測不能な高電圧バッテリ系の状態に基づきメインリレー24のONからOFFへの切り替えが必要であると判定された場合には、メインリレー24をONからOFFに切り替えると共に、始動/発電用電動機4を動作させる。
よって、駆動/回生用電動機2の発電電力を始動/発電用電動機4で消費させることができるため、メインリレー24をONからOFFに切り替えたときのロードダンプを抑制できる。また、エンジン1を始動させることができるため、車両の動力源を駆動/回生用電動機2からエンジン1に切り替えることができ、車両の走行性能を維持できる。
(5) 駆動輪6と接続された駆動/回生用電動機2と、エンジン1と接続された始動/発電用電動機4と、駆動/回生用電動機2に結合された高電圧バッテリ11と、駆動/回生用電動機2と高電圧バッテリ11との間に介装されたメインリレー24と、を有する高電圧バッテリ系と、低電圧系負荷15が結合され、高電圧バッテリ11よりも電圧が低い低電圧バッテリ14を有する低電圧バッテリ系と、低電圧バッテリ系と高電圧バッテリ系との間に介装されたDC/DCコンバータ16と、車両の運転状態に応じてメインリレー24のON/OFFを制御する制御コントローラ17と、事前予測不能な高電圧バッテリ系の状態に基づいて、メインリレー24のONからOFFへの切り替えが必要であるか否かを判定する切り替え要否判定部17aと、を備え、制御コントローラ17は、駆動/回生用電動機2での発電中、切り替え要否判定部17aによりメインリレー24のONからOFFへの切り替えが必要であると判定された場合には、メインリレー24をONからOFFに切り替えると共に、始動/発電用電動機4を動作させる。
よって、駆動/回生用電動機2の発電電力を始動/発電用電動機4で消費させることができるため、メインリレー24をONからOFFに切り替えたときのロードダンプを抑制できる。エンジン1を始動させることができるため、車両の動力源を駆動/回生用電動機2からエンジン1に切り替えることができ、車両の走行性能を維持できる。
(他の実施例)
以上、本発目を実施するための形態を、実施例に基づいて説明したが、本発明の具体的な構成は、実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
実施例では、駆動/回生用電動機2の発電中にメインリレー24をONからOFFに切り替える場合について説明したが、始動/発電用電動機4の発電中にメインリレー24をONからOFFに切り替える場合についても、本発明を適用でき、実施例と同様の作用効果を得ることができる。この場合、事前予測不能な高電圧バッテリ系の状態に基づいてメインリレー24の即時OFFが必要であると判定された場合には、メインリレー24をOFFする際、DC/DCコンバータ16を動作させる。
1 エンジン
2 駆動/回生用電動機(電動機,第1電動機)
3 スタータモータ
4 始動/発電用電動機(電動機,第2電動機)
5 無段変速機
6 駆動輪
7 プライマリプーリ
8 セカンダリプーリ
9 Vベルト
10 ファイナルギヤ組
11 高電圧バッテリ
12 高電圧ライン
13 低電圧ライン
14 低電圧バッテリ
15 低電圧系負荷(電気負荷)
16 DC/DCコンバータ
17 制御コントローラ(リレー制御手段)
17a 切り替え要否判定部(切り替え要否判定手段)
18 温度センサ
19 電流センサ
20 電圧センサ
21 平滑コンデンサ
23 リレー回路
24 メインリレー(リレー)
25 プリチャージリレー
26 抵抗

Claims (5)

  1. 電動機と、前記電動機に結合された高電圧バッテリと、前記電動機と前記高電圧バッテリとの間に介装されたリレーと、を有する高電圧バッテリ系と、
    車両の運転状態に応じて前記リレーのオン/オフを制御するリレー制御手段と、
    事前予測可能な前記高電圧バッテリ系の状態に基づいて、前記リレーのオンからオフへの切り替えが必要であるか否かを判定する切り替え要否判定手段と、
    を備え、
    前記リレー制御手段は、前記電動機での発電中、前記切り替え要否判定手段により前記事前予測可能な前記高電圧バッテリ系の状態に基づき前記リレーのオンからオフへの切り替えが必要であると判定された場合には、前記電動機の発電を徐々に止めることを特徴とする車両の制御装置。
  2. 請求項1に記載の車両の制御装置において、
    車両の電気負荷が結合され、前記高電圧バッテリよりも電圧が低い低電圧バッテリを有する低電圧バッテリ系と、
    前記低電圧バッテリ系と前記高電圧バッテリ系との間に介装されたDC/DCコンバータと、
    をさらに備え、
    前記切り替え要否判定手段は、事前予測不能な前記高電圧バッテリ系の状態に基づいて、前記リレーのオンからオフへの切り替えが必要であるか否かを判定し、
    前記リレー制御手段は、前記電動機での発電中、前記切り替え要否判定手段により前記事前予測不能な前記高電圧バッテリ系の状態に基づき前記リレーのオンからオフへの切り替えが必要であると判定された場合には、前記リレーをオンからオフに切り替えると共に、前記DC/DCコンバータを動作させることを特徴とする車両の制御装置。
  3. 請求項1に記載の車両の制御装置において、
    前記電動機は、駆動輪と接続された第1電動機であり、
    前記高電圧バッテリ系は、エンジンと接続された第2電動機を有し、
    前記切り替え要否判定手段は、事前予測不能な前記高電圧バッテリ系の状態に基づいて、前記リレーのオンからオフへの切り替えが必要であるか否かを判定し、
    前記リレー制御手段は、前記第1電動機での発電中、前記切り替え要否判定手段により前記事前予測不能な前記高電圧バッテリ系の状態に基づき前記リレーのオンからオフへの切り替えが必要であると判定された場合には、前記リレーをオンからオフに切り替えると共に、前記第2電動機を動作させることを特徴とする車両の制御装置。
  4. 電動機と、前記電動機に結合された高電圧バッテリと、前記電動機と前記高電圧バッテリとの間に介装されたリレーと、を有する高電圧バッテリ系と、
    車両の電気負荷が結合され、前記高電圧バッテリよりも電圧が低い低電圧バッテリを有する低電圧バッテリ系と、
    前記低電圧バッテリ系と前記高電圧バッテリ系との間に介装されたDC/DCコンバータと、
    車両の運転状態に応じて前記リレーのオン/オフを制御するリレー制御手段と、
    事前予測不能な前記高電圧バッテリ系の状態に基づいて、前記リレーのオンからオフへの切り替えが必要であるか否かを判定する切り替え要否判定手段と、
    を備え、
    前記リレー制御手段は、前記電動機での発電中、前記切り替え要否判定手段により前記リレーのオンからオフへの切り替えが必要であると判定された場合には、前記リレーをオンからオフに切り替えると共に、前記DC/DCコンバータを動作させることを特徴とする車両の制御装置。
  5. 駆動輪と接続された第1電動機と、エンジンと接続された第2電動機と、前記第1電動機に結合された高電圧バッテリと、前記第1電動機と前記高電圧バッテリとの間に介装されたリレーと、を有する高電圧バッテリ系と、
    車両の電気負荷が結合され、前記高電圧バッテリよりも電圧が低い低電圧バッテリを有する低電圧バッテリ系と、
    前記低電圧バッテリ系と前記高電圧バッテリ系との間に介装されたDC/DCコンバータと、
    車両の運転状態に応じて前記リレーのオン/オフを制御するリレー制御手段と、
    事前予測不能な前記高電圧バッテリ系の状態に基づいて、前記リレーのオンからオフへの切り替えが必要であるか否かを判定する切り替え要否判定手段と、
    を備え、
    前記リレー制御手段は、前記第1電動機での発電中、前記切り替え要否判定手段により前記リレーのオンからオフへの切り替えが必要であると判定された場合には、前記リレーをオンからオフに切り替えると共に、前記第2電動機を動作させることを特徴とする車両の制御装置。
JP2013261011A 2013-12-18 2013-12-18 車両の制御装置 Expired - Fee Related JP6303477B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261011A JP6303477B2 (ja) 2013-12-18 2013-12-18 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261011A JP6303477B2 (ja) 2013-12-18 2013-12-18 車両の制御装置

Publications (2)

Publication Number Publication Date
JP2015119543A true JP2015119543A (ja) 2015-06-25
JP6303477B2 JP6303477B2 (ja) 2018-04-04

Family

ID=53531824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261011A Expired - Fee Related JP6303477B2 (ja) 2013-12-18 2013-12-18 車両の制御装置

Country Status (1)

Country Link
JP (1) JP6303477B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066625A1 (ja) * 2016-10-06 2018-04-12 株式会社デンソー 回転電機制御装置
JP2018061370A (ja) * 2016-10-06 2018-04-12 株式会社デンソー 電源システム制御装置
JP2018202915A (ja) * 2017-05-31 2018-12-27 株式会社Subaru 電動車両の制御装置
JP2019115219A (ja) * 2017-12-25 2019-07-11 株式会社Subaru 車両制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271603A (ja) * 1997-03-28 1998-10-09 Mitsubishi Motors Corp 電気自動車
JP2003230269A (ja) * 2002-01-30 2003-08-15 Toyota Motor Corp 負荷駆動装置、放電制御方法および放電制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2009278705A (ja) * 2008-05-12 2009-11-26 Toyota Motor Corp 電動車両の電源システムおよびその制御方法
JP2010018183A (ja) * 2008-07-11 2010-01-28 Toyota Motor Corp ハイブリッド車両の制御システム及び制御方法
JP2013005590A (ja) * 2011-06-16 2013-01-07 Fuji Electric Co Ltd 電気自動車のモータ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271603A (ja) * 1997-03-28 1998-10-09 Mitsubishi Motors Corp 電気自動車
JP2003230269A (ja) * 2002-01-30 2003-08-15 Toyota Motor Corp 負荷駆動装置、放電制御方法および放電制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2009278705A (ja) * 2008-05-12 2009-11-26 Toyota Motor Corp 電動車両の電源システムおよびその制御方法
JP2010018183A (ja) * 2008-07-11 2010-01-28 Toyota Motor Corp ハイブリッド車両の制御システム及び制御方法
JP2013005590A (ja) * 2011-06-16 2013-01-07 Fuji Electric Co Ltd 電気自動車のモータ制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066625A1 (ja) * 2016-10-06 2018-04-12 株式会社デンソー 回転電機制御装置
JP2018061370A (ja) * 2016-10-06 2018-04-12 株式会社デンソー 電源システム制御装置
WO2018066624A1 (ja) * 2016-10-06 2018-04-12 株式会社デンソー 電源システム制御装置
JP2018202915A (ja) * 2017-05-31 2018-12-27 株式会社Subaru 電動車両の制御装置
JP2019115219A (ja) * 2017-12-25 2019-07-11 株式会社Subaru 車両制御装置
US11084399B2 (en) 2017-12-25 2021-08-10 Subaru Corporation Vehicle control apparatus

Also Published As

Publication number Publication date
JP6303477B2 (ja) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6387615B2 (ja) 車両の制御装置
CN107531231B (zh) 混合动力车辆的控制装置
RU2637076C2 (ru) Устройство управления запуском и способ управления запуском для гибридного транспортного средства
US10946751B2 (en) Power supply device for vehicle
EP1745967B1 (en) Vehicles
JP6303477B2 (ja) 車両の制御装置
US9421968B2 (en) System and method for controlling torque for hybrid vehicle
JP6491167B2 (ja) ハイブリッド車両の制御装置
JP5963826B2 (ja) エンジン始動装置
KR20160008224A (ko) 하이브리드 차량의 고장 판정 장치 및 그 고장 판정 방법
KR102105888B1 (ko) 하이브리드 차량의 제어 장치
JP2019205316A (ja) バッテリ放電制御装置
WO2015037502A1 (ja) ハイブリッド車の制御装置
JP2017061182A (ja) 車両用制御装置
JP4707750B2 (ja) 車両の変速機制御装置
CN107406067B (zh) 混合动力车辆的控制装置
JP2010220392A (ja) 充電システム
JP6860678B2 (ja) 車両の制御装置および車両の制御方法
JP5945628B2 (ja) ハイブリッド車両の故障判定装置及びその故障判定方法
JP2015174601A (ja) ハイブリッド車両の制御装置
JP2006220114A (ja) エンジン制御装置、車両の制御装置及びその制御方法
JP6630210B2 (ja) ハイブリッド車両の制御装置及びハイブリッド車両
KR20180100208A (ko) 자동 변속기의 이상 검출 장치
JP6364973B2 (ja) ハイブリッド車両の制御装置
JP2004282999A (ja) ハイブリッド車両の制御装置および制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R151 Written notification of patent or utility model registration

Ref document number: 6303477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees