JP2015049451A - 画像形成装置および画像形成方法 - Google Patents

画像形成装置および画像形成方法 Download PDF

Info

Publication number
JP2015049451A
JP2015049451A JP2013182298A JP2013182298A JP2015049451A JP 2015049451 A JP2015049451 A JP 2015049451A JP 2013182298 A JP2013182298 A JP 2013182298A JP 2013182298 A JP2013182298 A JP 2013182298A JP 2015049451 A JP2015049451 A JP 2015049451A
Authority
JP
Japan
Prior art keywords
bow
image forming
correction
registration
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013182298A
Other languages
English (en)
Inventor
聡司 宮島
Soji Miyajima
聡司 宮島
植田 忠行
Tadayuki Ueda
忠行 植田
笹本 能史
Yoshifumi Sasamoto
能史 笹本
西川 英史
Hidefumi Nishikawa
英史 西川
卓信 志岐
Takanobu Shiki
卓信 志岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013182298A priority Critical patent/JP2015049451A/ja
Publication of JP2015049451A publication Critical patent/JP2015049451A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

【課題】ボウのプロファイルを高精度に推定する。
【解決手段】制御部は、ボウ以外のカラーレジスト補正を実行する(S100)。レジスト補正が終了したら、スキュー調整モータを駆動して第2のレンズに傾きを付加した後(S110)、第2のレンズを介して感光体ドラム上にレジストマークの潜像を書き込む(S120)。レジストセンサは、センサ奥位置においてレジストマークMを検出する(S130)。制御部は、センサ奥位置での測定値とセンサ奥位置O4での理想プロファイルの理想値との差分であるずれ量を算出し(S140)、算出したずれ量に基づいてセンサ奥位置でのずれ量に対応付けられた中央位置でのずれ量を第1のテーブルから取得する(S160)。制御部は、センサ前位置でのずれ量を算出し、センサ奥位置、センサ前位置および中央位置での各ずれ量に基づいてボウのプロファイルを推定する(S170)。
【選択図】図13

Description

本発明は、画像形成装置および画像形成方法に関する。
従来から、複数の画像形成ユニットを直列に配置したタンデム型の画像形成装置が広く利用されている。タンデム型の画像形成装置では、画像形成ユニットを構成する各感光体ドラムに形成された各色のトナー像を中間転写体上に順に重ね合わせることにより画像(カラー画像)を形成している。そのため、各色のトナー像を中間転写体上の転写位置で重ね合わせる際に、トナー像の位置ずれ(色ずれ)が発生してしまう場合がある。
そこで、中間転写体に転写されるトナー像の位置ずれを補正するために、画像形成装置においてはカラーレジスト補正が行われている。カラーレジスト補正では、中間転写体上に形成した各色の補正用パターン(以下、レジストマークという)をセンサにより検知し、センサの検知結果に基づいてレジストマークの位置ずれ量を算出した後、算出した位置ずれ量に基づいて画像の位置ずれ補正を行っている。
カラーレジスト補正のうちボウ補正に関して、特許文献1には、転写体ベルト上に色ずれ検出パターンを形成し、これを色ずれパターン検出センサにより各色の曲り量を測定した後、その基準走査線のデータと該基準走査線に対する他の色の走査線曲がり補正値をメモリに格納する画像形成装置が記載されている。
特開2007−219256号公報
しかしながら、上記特許文献1に記載のボウ補正では、以下のような問題がある。すなわち、特許文献1では、3つの検出センサを用い、各検出センサにより測定した3つのパターンの測定値に基づいてボウを算出している。この引用文献1によれば、検出センサの個数に応じたボウの測定値は取得できるが、検出センサが配置されていない位置でのボウの測定値は得ることができないので、検出センサの個数以上の高精度なボウのプロファイルを推定することができないという問題がある。
これに対し、多数の検出センサを用いることで高精度にボウのプロファイルを推定することも考えられるが、検出センサの設置スペースが必要になると共に、コストが高くなってしまうという問題がある。
そこで、本発明は、上記課題に鑑みてなされたものであり、その目的は、ボウのプロファイルを高精度に推定することが可能な画像形成装置および画像形成方法を提供することにある。
本発明に係る画像形成装置は、上記課題を解決するために、レーザ光を光学素子を介して照射する書込部と、書込部からのレーザ光が主走査方向に沿って照射される感光体と、感光体に照射されたレーザ光に基づく補正用パターンが転写される中間転写体と、中間転写体に形成された補正用パターンを検出する複数の検出部と、複数の検出部により検出された補正用パターンの検出結果に基づいて画像の位置ずれ補正を行う制御部と、光学素子の傾きを調整する調整部と、を備え、制御部は、ボウ補正を行う場合、調整部を制御して光学素子を傾けた後に、書込部を制御して中間転写体に補正用パターンを転写し、当該転写後に検出部により検出された補正用パターンの測定値とボウが発生していない画像の理想値との副走査方向における差分を算出し、算出した差分に基づいてボウを推定するものである。
また、本発明に係る画像形成方法は、光源と感光体との間に設けられた光学素子の傾きを調整する第1のステップと、光源からのレーザ光を光学素子を介して感光体上に主走査方向に沿って照射する第2のステップと、感光体に照射されたレーザ光により形成される補正用パターンを中間転写体に転写する第3のステップと、中間転写体に転写された補正用パターンを検出する第4のステップと、補正用パターンの検出結果に基づいて画像の位置ずれ補正を行う第5のステップと、を有し、第5のステップでは、検出した補正用パターンの測定値とボウが発生していない画像の理想値との副走査方向における差分を算出し、算出した差分に基づいてボウを推定するものである。
本発明において、感光体表面でレーザ光が移動(走査)する方向を主走査方向とし、主走査方向に直交する感光体の回転方向や中間転写体の移動方向を副走査方向とする。
本発明によれば、傾きが付加された光学素子を介して形成された補正用パターンの副走査方向のずれ量(差分)を算出することができるので、この副走査方向のずれ量を用いることで高精度にボウのプロファイルを推定することができる。
本発明の一実施形態に係る画像形成装置の構成例を示す図である。 書込部の構成例を示す図である。 レジストセンサおよびレジストマークの構成例を示す図である。 画像形成装置のブロック構成例を示す図である。 第1のテーブルの構成例を示す図である。 第2のテーブルの構成例を示す図である。 副走査方向の位置ずれ補正を説明するための図である。 ボウ補正を説明するための図である。 第1のテーブルの算出の方法の一例を説明するための図である(その1)。 第1のテーブルの算出の方法の一例を説明するための図である(その2)。 第1のテーブルの算出の方法の一例を説明するための図である(その3)。 第1のテーブルの算出の方法の一例を説明するための図である(その4)。 本発明の第1の実施の形態に係る第1および第2のテーブルを用いてボウのプロファイルを推定する場合における画像形成装置の動作例を示すフローチャートである。 ボウのプロファイルを推定する推定方法の一例を説明するための図である(その1)。 ボウのプロファイルを推定する推定方法の一例を説明するための図である(その2)。 本発明の第1の実施の形態に係るずれ量の線形性に基づいてボウのプロファイルを推定する場合における画像形成装置の動作例を示すフローチャートである。 ボウのプロファイルを推定する推定方法の一例を説明するための図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、図面の寸法比率は、説明の都合上拡張されており、実際の比率と異なる場合がある。
<第1の実施の形態>
[画像形成装置の構成例]
本発明に係る画像形成装置100は、ボウ成分を推定する手段として書込部3の光学系の傾きを調整するスキュー調整機構350を利用し、光学系の傾き量をスキュー調整機構350により変化させた後にレジストマークMを中間転写ベルト8上に書き込み、書き込んだレジストマークMの副走査方向D2のずれ量を算出することで画像のボウのプロファイルを高精度に推定することを可能としている。本例では、ボウのプロファイルを推定するモードをボウ推定モードと呼ぶ。
図1は、本発明に係る画像形成装置100の構成の一例を示している。図1に示すように、画像形成装置100は、タンデム型の画像形成装置と称されるものであり、自動原稿搬送部80と装置本体102とを備えている。自動原稿搬送部80は、装置本体102の上部に取り付けられ、搬送台上にセットされた用紙を搬送ローラー等により装置本体102の画像読取部90に送り出す。
装置本体102は、画像読取部90と、画像形成部10と、中間転写ベルト8と、レジストセンサ110,120と、給紙部20と、定着部44と、自動用紙反転搬送ユニット60(Auto Duolex Unit:以下ADUという)とを有している。画像読取部90は、原稿台上に載置された原稿を走査露装置の光学系により走査露光し、CCD(Charge Coupled Devices)イメージセンサにより走査した原稿の画像を光電変換して画像情報信号を生成する。画像情報信号は、図示しない画像処理部によりアナログ処理、アナログ/ディジタル(以下A/Dという)変換処理、シューディング補正、画像圧縮処理等行われた後に、画像形成部10に出力される。
画像形成部10は、電子写真方式により画像を形成するものであり、イエロー(Y)色の画像を形成する画像形成ユニット10Yと、マゼンタ(M)色の画像を形成する画像形成ユニット10Mと、シアン(C)色の画像を形成する画像形成ユニット10Cと、黒(K)色の画像を形成する画像形成ユニット10Kとを有している。この例では、それぞれ共通する機能名称、例えば、符号10の後ろに形成する色を示すY,M,C,Kを付して表記する。
画像形成ユニット10Yは、感光体ドラム1Yと、その周囲に配置される帯電部2Y、書込部(露光部)3Y、現像部4Yおよびクリーニング部6Yを有している。画像形成ユニット10Mは、感光体ドラム1Mと、その周囲に配置される帯電部2M、書込部3M、現像部4Mおよびクリーニング部6Mを有している。画像形成ユニット10Cは、感光体ドラム1Cと、その周囲に配置される帯電部2C、書込部3C、現像部4Cおよびクリーニング部6Cを有している。画像形成ユニット10Kは、感光体ドラム1Kと、その周囲に配置される帯電部2K、書込部3K、現像部4Kおよびクリーニング部6Kを有している。
画像形成ユニット10Y,10M,10C,10Kにおけるそれぞれの感光体ドラム(像担持体)1Y,1M,1C,1K、帯電部2Y,2M,2C,2K、書込部3Y,3M,3C,3K、現像部4Y,4M,4C,4K、クリーニング部6Y,6M,6C,6Kは、それぞれ共通する内容の構成である。以下、特に、区別が必要な場合を除き、Y,M,C,Kを付さずに表記することとする。
帯電部2は、感光体ドラム1の表面をほぼ一様に帯電する。書込部3は、例えばLEDアレイと結像レンズとを有するLPH(LED Print Head)や、ポリゴンミラー方式のレーザ露光走査装置により構成され、画像情報信号に基づいて感光体ドラム1上をレーザ光により走査して静電潜像を形成する。現像部4は、感光体ドラム1上に形成された静電潜像をトナーにより現像する。これにより、感光体ドラム1上に可視画像であるトナー像が形成される。
中間転写ベルト8は、複数のローラーにより張架されると共に走行可能に支持されている。一次転写ローラーが動作すると、中間転写ベルト8が走行し、中間転写ベルト8の画像転写位置に各感光体ドラム1に形成されたトナー像が転写される(一次転写)。また、中間転写ベルト8上には、色ずれ補正を行うカラーレジスト補正時に、ブラックのレジストマークMK、シアンのレジストマークMC、マゼンダのレジストマークMMおよびイエローのレジストマークMYが形成される(図3参照)。なお、以下では、レジストマークMK,MC,MM,MYを総称してレジストマークMと呼ぶ場合もある。
レジストセンサ110,120は、検出部の一例であり、中間転写ベルト8の感光体ドラム1等が配置された側とは反対側のベルト面上に配置されている。レジストセンサ110,120は、カラーレジスト補正を行う場合に、中間転写ベルト8上に転写されたレジストマークMを検出する。なお、レジストセンサ110,120を設ける位置は、上記位置に限定されることはなく、例えば、画像形成ユニット10Kの下方等に配置しても良い。
給紙部20は、A3やA4等の用紙Pが収容された複数の給紙トレイ20A,20Bを有している。各給紙トレイ20A,20Bから搬送ローラー22,24,26,28等によって搬送された用紙Pは、ループ作成ローラー30を経由してレジストローラー32に搬送される。なお、給紙トレイの数は3つに限定されるものではない。また、必要に応じて大容量の用紙Pを収容することが可能な大容量給紙装置を単数または複数連結させても良い。
レジストローラー32は、駆動ローラーおよび従動ローラーを有し、ループ作成ローラー30によって用紙Pの先端が突き当てられることでループを形成して用紙Pの斜行を補正する。用紙Pは所定のタイミングで二次転写部34に搬送される。二次転写部34では、中間転写ベルト8の画像形成位置に転写されたカラー画像が、給紙部20から搬送されてくる用紙Pの表面に一括転写される(2次転写)。2次転写された用紙Pは定着部44に搬送される。
定着部44は、加圧ローラーと加熱ローラーとを有している。定着部44は、二次転写部34でトナー像が転写された用紙Pに加圧、加熱処理を行うことにより用紙P表面のトナー像を用紙Pに定着させる。
定着部44の用紙搬送方向の下流側には、用紙Pの搬送経路を排紙経路側またはADU60側に切り替えるための搬送路切替部48が設けられている。搬送路切替部48は、例えばソレノイドやモータ等から構成され、選択されている印刷モード(片面印刷モード、両面印刷モード等)に基づいて搬送経路の切り替え制御を行う。
片面印刷モードで片面の印刷が終了した用紙P、または、両面印刷モードで両面の印刷が終了した用紙Pは、定着部44で定着処理が施された後、定着部44よりも用紙搬送方向の下流側に設けられた排紙ローラー46により排紙トレイ上に排出される。
また、両面印刷モードで用紙Pを画像形成部10に再給紙する場合、表面側に画像が形成された用紙Pは、搬送路切替部48を経由してADU60に搬送される。ADU60に搬送された用紙Pは、搬送ローラー62等を介してスイッチバック経路に搬送される。スイッチバック経路では、ADUローラー64の逆回転制御により用紙Pの後端を先頭にしてUターン経路部に搬送され、Uターン経路部に設けられた搬送ローラー66,68等によりレジストローラー32に用紙Pの表裏反転された状態で再給紙される。
レジストローラー32に再給紙された用紙Pは、用紙Pの表面側の場合と同様の画像形成処理が行われる。画像形成部10により裏面に画像が転写された用紙Pは、定着部44で定着処理が行われた後に、搬送路切替部48および排紙ローラー46を介して排紙トレイ上に排出される。
[書込部の構成例]
次に、本発明に係る書込部(走査光学装置)3の構成例について説明する。図2Aは、書込部3の概略構成の一例を示している。書込部3は、図2Aに示すように、レーザ光源300と、光学系310と、ポリゴンミラー320と、第1のレンズ330と、光学素子の一例である第2のレンズ340と、スキュー調整機構350とを備えている。なお、電子写真方式に用いられるこの種の書込部3の各光学素子の構成や動作は公知であるため、詳細な説明については省略する。
レーザ光源300は、例えばレーザダイオードから構成され、レーザ光を光学系310に照射する。光学系310は、例えばコリメータレンズ等を含み、レーザ光源300から照射されたレーザ光をポリゴンミラー320の反射面に集光させる。ポリゴンミラー320は、図示しないモータの駆動により回転し、レーザ光を主走査方向D1に等角速度で偏向する。
偏向されたレーザ光は、収差補正機能等を有する第1のレンズ330および第2のレンズ340を通過して感光体ドラム1上に結像される。なお、第1のレンズ330としては、例えばf(θ)レンズを用いることができる。第2のレンズ340としては、例えばシリンドリカルレンズを用いることができる。
スキュー調整機構350は、調整部の一例であり、第2のレンズ340の姿勢制御を行うことでレーザ光により感光体ドラム1表面に書き込まれる潜像の傾きを補正する。スキュー調整機構350は、第2のレンズ340の一端側に設けられた偏芯カムと、偏芯カムに接続されたステッピングモータとを有している(図示省略)。スキュー調整機構350は、ステッピングモータの駆動に基づいて偏芯カムを回転させることで第2のレンズ340の他端側を支点として一端側を副走査方向D2に上下動させて第2のレンズ340の傾きを調整する。
図2Bは、スキュー補正を説明するための図である。スキューが発生している場合、感光体ドラム1の表面に照射されるレーザ光Laは、図2Bの破線で示すように、副走査方向D2に所定角度で傾いて走査される。スキュー調整機構350によりスキュー補正が行われると、図2Bの実線で示すように、感光体ドラム1の表面に照射されるレーザ光Lbは、主走査方向D1に沿って走査される。
[レジストセンサおよびレジストマークの構成例]
次に、レジストセンサ110,120およびレジストマークMK,MC,MM,MYについて説明する。図3は、レジストセンサ110,120およびレジストマークMK,MC,MM,MYの構成(位置関係)の一例を示している。レジストセンサ110,120は、図3に示すように、中間転写ベルト8の上方であって、中間転写ベルト8の主走査方向D1の印字領域の両端側のそれぞれに対応した位置に設けられている。
ブラックのレジストマークMK、シアンのレジストマークMC、マゼンダのレジストマークMMおよびイエローのレジストマークMYは、レジストセンサ110,112を通過する中間転写ベルト8上の位置であって、かつ、中間転写ベルト8の副走査方向D2(移動方向)に沿って順番に形成されている。
具体的には、中間転写ベルト8の主走査方向D1の一方の端部側には、レジストマークMK1,MK2が副走査方向D2に沿って形成される。中間転写ベルト8の主走査方向D1の他方の端部側には、レジストマークMK3,MK4が副走査方向D2に沿って形成される。なお、本例では、各色のレジストマークMを2個ずつ形成した例を説明したが、これに限定されることはない。
各レジストマークMK,MC,MM,MYは、主走査方向D1に延びる基線L1と、主走査方向D1に対して斜め方向(例えば45°)に延びる斜線L2とが組み合わされた略フ字形状から構成されている。本例では、レジストマークMを構成する基線L1と斜線L2とを離間させた構成としているが、基線L1と斜線L2とを接続した構成とすることもできる。
[画像形成装置のブロック構成例]
次に、本発明に係る画像形成装置100のブロック構成例について説明する。図4は、画像形成装置100のブロック構成の一例を示している。図4に示すように、画像形成装置100は、装置全体の動作を制御するための制御部50を備えている。
制御部50は、CPU(Central Processing Unit)52と、制御ソフトウェア(プログラム)の格納およびデータの保管を行うROM(Read Only Memory)54と、CPU52のワークエリアを構成するRAM56(Random Access Memory)とを有している。CPU52は、ROM54から読み出したソフトウェアやデータをRAM56上に展開してソフトウェアを実行することにより画像形成装置100の各部の動作を制御してカラーレジスト補正や画像形成処理を行う。なお、CPUに代えて、DSP(Digital Signal Processor)を用いることもできる。
制御部50には、レジストセンサ110,120と、書込部3と、記憶部130と、スキュー調整モータ352と、中間転写ベルト駆動モータ150と、温度測定部140とがそれぞれ接続されている。
レジストセンサ110,120は、例えばフォトセンサから構成され、中間転写ベルト8上に形成された各レジストマークMを検出し、検出により得られた検出信号(測定値)を制御部50に供給する。
書込部3は、レーザ光を出力する光源やポリゴンミラーを駆動するポリゴンモータを有している。ポリゴンモータは、制御部50からの駆動信号に基づいて駆動してポリゴンミラー320を高速回転させることでレーザ光を感光体ドラム1上に走査させる。
記憶部130は、例えば不揮発性の半導体メモリやHDD(Hard Disk Drive)から構成され、後述するボウのプロファイルを推定する際に用いられる第1のテーブルTB1および第2のテーブルTB2等を格納している。
スキュー調整モータ352は、例えばステッピングモータから構成され、制御部50から供給される駆動信号(パルス信号)に基づいて駆動して第2のレンズ340の副走査方向D2の傾きを調整する。
中間転写ベルト駆動モータ150は、例えばステッピングモータから構成され、制御部50から供給される駆動信号(パルス信号)に基づいて駆動して転写ローラーを回転駆動させることで中間転写ベルト8を副走査方向D2に沿って移動させる。
温度測定部140は、画像形成装置100内に設置され、装置内の温度を測定して測定値を制御部50に供給する。測定値は、例えばボウ補正を行うタイミングであるか否かを判断する際等に用いられる。
[第1のテーブルの構成例]
次に、第1のテーブルTB1について説明する。図5は、第1のテーブルTB1の構成の一例を示している。第1のテーブルTB1は、ボウ推定モードで取得したセンサ奥位置でのボウのずれ量ΔVRから中央位置でのボウのずれ量ΔVCを取得するためのテーブルである。
第1のテーブルTB1には、センサ奥位置でのボウのずれ量ΔVRと、中央位置でのボウのずれ量ΔVCとが対応付けられて記憶される。例えば、センサ奥位置でのボウの副走査方向D2のずれ量ΔVRが「−0.20μm」である場合には、中央位置でのボウのずれ量ΔVCとしてMIN「950μm」、MAX「1050μm」が対応付けられて記憶される。第1のテーブルTB1の算出方法については後述する。
なお、第1のテーブルTB1では、センサ奥位置でのボウのずれ量ΔVRと中央位置でのボウのずれ量ΔVCとを対応付けたテーブルについて説明したが、これに限定されることはない。例えば、センサ前位置のボウのずれ量ΔVFと中央位置のボウのずれ量ΔVCとを対応付けたテーブルを作成しても良いし、センサ前位置およびセンサ奥位置の双方のずれ量ΔVF,ΔVRと中央位置のボウのずれ量ΔVRとを対応付けたテーブルを作成しても良い。
[第2のテーブルの構成例]
次に、第2のテーブルTB2について説明する。図6は、第2のテーブルTB2の構成の一例を示している。第2のテーブルTB2は、ボウ推定モードで取得したセンサ奥位置でのボウのずれ量ΔVRとその理想値とを比較する際に用いられるテーブルである。第2のテーブルTB2には、スキュー調整モータ352に供給するパルス信号のパルス数と、このパルス数で第2のレンズ340に傾きを付加した場合の理想プロファイルP2の理想値VIFX,VIRXとが対応付けられて記憶される(Xは0を含む正の整数)。
理想値VIFXとは、センサ前位置での基準位置から理想プロファイルP2までの距離(時間)である。理想値VIRXとは、センサ奥位置での基準位置から理想プロファイルP2までの距離である。例えば、スキュー調整モータ352のパルス数が「2000」の場合には、理想値VIFXとして「0.4μm」および理想値VIFXとして「2.0μm」がそれぞれ対応付けられて格納されている。
[カラーレジスト補正の具体例]
次に、カラーレジスト補正の一つである副走査方向D2のずれ量の算出例について説明する。図7は、副走査方向D2のずれ量の算出方法の一例を示している。以下では、レジストセンサ120側でのレジストマークMの検出例について説明し、ブラックのレジストマークMK3を基準マークとする。
レジストセンサ120は、ブラックのレジストマークMK3の基線L1を基準距離T0を基準として検出し、検出したレジストマークMK3の検出距離T1を制御部50に供給する。続けて、レジストセンサ120は、シアンのレジストマークMC3の基線L1を基準距離T0を基準として検出し、検出したレジストマークMC3の検出距離T2を制御部50に供給する。
制御部50は、検出距離T1,T2の差分距離TDを算出し、この算出した差分距離TDと、予め記憶させておいた理想の差分距離とを比較することで、シアンのレジストマークMC3のブラックのレジストマークMK3に対する副走査方向D2のずれ量を算出する。算出したずれ量は、副走査方向D2の補正値として以降の画像形成処理に反映される。
続けて、カラーレジスト補正の一つであるボウ補正について図7および図8を参照して説明する。図8は、2個のレジストセンサ110,120を用いてレジストマークMK1,MK3を検出した場合のレジストマークMK1,MK3の副走査方向D2のずれ量を示している。なお、図8において破線はボウのプロファイルを示している。
レジストセンサ110,120は、例えばブラックのレジストマークMK1,MK3の基線L1,L1を基準距離T0を基準として検出し、検出した各基線L1,L2の検出距離Ta,Tbを制御部50に供給する。制御部50は、各レジストセンサ110,120から供給された検出距離Ta,Tbに基づいてボウのプロファイルを推定する。
しかしながら、2つのレジストセンサ110,120を用いた場合には、センサ前位置およびセンサ奥位置でのレジストマークMK1,MK3のずれ量を得ることはできたとしても、中央位置でのレジストマークMのずれ量を得ることはできない。そのため、ボウの正確なプロファイルを得ることができないという問題がある。
そこで、本実施の形態では、以下に説明するように、書込部3の光学系に傾きを付加させた状態で中間転写ベルト8上にレジストマークMを形成してレジストマークMのボウのプロファイルと理想プロファイルとのそれぞれの副走査方向D2の変化量を測定等することでボウの中央位置のずれ量を取得する。これにより、2つのレジストセンサ110,120を用いた場合でも、ボウの中央位置でのずれ量を算出することができるので、ボウの正確なプロファイルを推定することができるようになる。
[第1のテーブルの作成方法例]
次に、上述した第1のテーブルTB1の作成方法の一例について説明する。図9、図10、図11および図12Aは、第1のテーブルTB1の作成方法の一例を説明するための図である。図12Bは、図12Aの要部Rの拡大図である。
本例では、図9に示すように、主走査方向D1に平行な基準となる線を基準線Oと呼ぶ。この基準線Oにおいて、第2のレンズ340の傾き(スキュー)調整時の回転の支点となる位置を基準位置O1とし、その反対側の端部を端部位置O2とし、レジストセンサ110が通過する位置をセンサ前位置O3とし、レジストセンサ120が通過する位置をセンサ奥位置O4とし、センサ前位置O3とセンサ奥位置O4との間の位置を中央位置O5とする。
また、基準位置O1からセンサ前位置O3までの距離を50mmとし、基準位置O1からセンサ奥位置O4までの距離を250mmとする。また、基準位置O1から中央位置O5までの距離を150mmとし、基準位置O1から端部位置O2までの距離を300mmとする。
光学系の第2のレンズ340等が歪んでいる場合、図9に示すように、中間転写ベルト8上に形成した画像において、センサ前位置O3での測定値VBF0およびセンサ奥位置O4での測定値VBR0に対して中央位置O5での測定値VBC0が副走査方向D2にずれるボウが発生する。具体的には、測定値VBF0,VBR0の副走査方向D2のずれ量は0mmであり、測定値VBC0の副走査方向D2のずれ量ΔVCは1mmである。本例では、このボウのプロファイルをプロファイルP1と呼ぶ。
一方、ボウのない理想的な第2のレンズ340を用いた場合、センサ前位置O3、センサ奥位置O4および中央位置O5での画像の副走査方向D2のずれ量は0mmとなる。本例では、図9に示すように、副走査方向D2に対してずれが生じない画像の状態を理想プロファイルP2と呼ぶ。この理想プロファイルP2において、レジストセンサ110により測定される測定値を理想値VIF0とし、レジストセンサ120により測定される測定値を理想値VIR0とする。
まず、スキュー調整モータ352を例えば2000パルスのパルス信号で駆動することで、第2のレンズ340を所定角度に傾ける。これに伴い、理想プロファイルP2は、図10に示すように、第2のレンズ340の傾き量に応じて基準位置O1を支点として傾斜する。
これにより、図11に示すように、センサ前位置O3では、理想プロファイルP2が副走査方向D2に0.4mm移動し、レジストセンサ110による測定値が理想値VIF1となる。また、センサ前位置O3での理想値VIF1は、三角形O1−O3−VIF1としたとき、底辺O1−O3が50mm、高さO3−VIF1が0.4mmとなるので、基準位置O1から50mm+1.6μmの位置となる。
また、センサ奥位置O4では、理想プロファイルP2が副走査方向D2に2mm移動し、レジストセンサ120による測定値が理想値VIR1となる。また、センサ奥位置O4での理想値VIR1は、図11に示すように、三角形O1−O4−VIR1としたとき、底辺O1−O4が250mm、高さO4−VIR1が2mmとなるので、基準位置O1から250mm+8μmの位置となる。
また、中間転写ベルト8上に形成される画像についても、図10に示すように、スキュー調整モータ352の動作量に応じて傾いて形成される。センサ前位置O3では、レジストセンサ110による測定値が測定値VBF1となる。センサ奥位置O4では、レジストセンサ120による測定値が測定値VBR1となる。
次に、第2のレンズ340を所定量傾けた場合における、ボウのプロファイルP1の理想プロファイルP2に対する副走査方向D2のずれ量を算出する。なお、図12Aは、図10に示した傾きが付加された理想プロファイルP2等を便宜上、水平方向に傾けて表している。
ここで、図12A,図12Bに示すように、ボウの円弧部分をボウの中央位置BCから接点PLを結ぶ斜辺(接線)Lとして考える。接点PLは、ボウのプロファイルP1と理想プロファイルP2との交点である。ボウの斜辺Lの傾きIは、三角形PL−PC−BCとしたとき、底辺PL−PCが100mm、高さPC−BCが1mmとなるので、1mm/100mm=0.01mm/1mmとなる。
ボウのセンサ前位置O3での理想プロファイルP2に対する副走査方向D2のずれ量ΔVFは、図12Bに示すように、上記三角形と相似形である三角形PL−VIF1−VBF1を考えたとき、その高さVIF1−VBF1で表すことができる。そこで、上記三角形PL−PC−BCの傾きIの関係を用いると、底辺PL−VIF1は1.6μm(図11参照)となるので、高さVIF1−VBF1は0.016μmとなる。つまり、ずれ量ΔVFは、0.016μmとなる。
上述した例では、センサ前位置O3でのボウの副走査方向D2のずれ量ΔVFを算出した例について説明したが、センサ奥位置O4でのボウのずれ量ΔVRについても上述した方法と同様の方法により算出することができる。
なお、本例のように第2のレンズ340等の光学系に傾きを付加した場合、基本的にはセンサ奥位置O4でのボウの副走査方向D2のずれ量ΔVRの方が大きくなるため、センサ奥位置O4でのずれ量ΔVRに基づいて中央位置O5のボウを推定する方が好ましい場合がある。本例の場合、センサ奥位置O4でのずれ量ΔVRは、センサ前位置O3でのずれ量ΔVFの5倍となる。そのため、上述した図5では、センサ奥位置O4でのボウのずれ量ΔVRと中央位置O5でのボウのずれ量ΔVCとに基づいた第1のテーブルTB1を作成している。
このようにして、算出したセンサ奥位置O4でのずれ量ΔVRと、予め測定されている中央位置O5でのずれ量ΔVCとを対応付けることで図5に示した第1のテーブルTB1を作成することができる。これにより、設計やコストの観点から2個のレジストセンサ110,120を用いた場合でも、第2のレンズ340に傾斜を付加した状態のセンサ奥位置O4でのずれ量ΔVRを算出することで、第1のテーブルTB1からボウの中央位置O5でのずれ量ΔVCを取得することができる。その結果、少ない個数のレジストセンサを用いた場合であっても、精度の高いボウ全体のプロファイルP1を推定することができる。
なお、上記第1のテーブルTB1の算出方法は一例であり、中央位置O5でのずれ量ΔVC、センサ前位置O3でのずれ量ΔVF、センサ奥位置O4でのずれ量ΔVRの全てを実測により取得し、取得した各ずれ量ΔVC,ΔVF,ΔVRをそれぞれ対応付けて第1のテーブルTB1を作成しても良い。
[画像形成装置の動作例]
次に、上述した第1のテーブルTB1および第2のテーブルTB2を用いてボウのプロファイルP1を推定する場合における画像形成装置100の動作例について説明する。なお、本例では、色毎にカラーレジスト補正を行うが、各色のカラーレジスト補正は共通しているので、以下では各色のカラーレジスト補正をまとめて説明している。
図13は、第1のテーブルTB1等を用いてボウのプロファイルP1を推定する場合の画像形成装置100の動作の一例を示すフローチャートである。図14は、第2のレンズ340に傾きを付加する前のボウ(レジストマークM)のプロファイルP1および理想プロファイルP2を模式的に示している。図15は、第2のレンズ340に傾きを付加した場合のボウのプロファイルP1および理想プロファイルP2を模式的に示している。
図13に示すように、ステップS100で制御部50は、画像形成装置100の電源がオンされると、カラーレジスト補正を実行する。制御部50は、書込部3等を制御して感光体ドラム1上にレジストマークMの像を書き込むことで中間転写ベルト8上にレジストマークMを転写させる。レジストセンサ110,120は、中間転写ベルト8上に転写されたレジストマークMのそれぞれを読み取る。
制御部50は、レジストセンサ110,120により読み取られたレジストマークMに基づいて書き込み位置の補正を行う。具体的には、ボウ補正以外の、主走査印字開始位置、全体倍率、部分倍率、主走査高次位置ずれ、副走査印字開始位置、副走査高次位置ずれ等のボウ補正と異なる補正を行う。この補正により、ボウ以外の主走査方向D1や副走査方向D2等の画像の位置ずれを予め補正できる。
ボウ補正以外のカラーレジスト補正が終了したら、ステップS110で制御部50は、スキュー調整モータ352を一定量駆動することで第2のレンズ340を所定角度に傾斜させる。例えば、制御部50は、スキュー調整モータ352に2000パルスのパルス信号を出力することにより第2のレンズ340を一定量傾斜させる。
第2のレンズ340に傾きが付加されたら、ステップS120で制御部50は、書込部3を制御してレーザ光を第2のレンズ340を介して感光体ドラム1上に照射することでレジストマークMの像を感光体ドラム1上に書き込む。これにより、レジストマークMは、第2のレンズ340の傾き量に応じて中間転写ベルト8上に傾いて形成され、図14および図15に示すように、ボウのプロファイルP1も傾斜する。また、理想プロファイルP2も第2のレンズ340の傾き量に応じて所定の傾きが付加される。
ステップS130でレジストセンサ120は、センサ奥位置O4での中間転写ベルト8上に転写されたレジストマークMを検出し、この検出により得られた測定値VBR1を制御部50に供給する。測定値VBR1は、例えば基準距離T0(図7参照)からレジストマークMまでの距離である。
ステップS140で制御部50は、センサ奥位置O4でレジストセンサ120により測定された測定値VBR1と、センサ奥位置O4でのボウがない場合の理想プロファイルP2の理想値VIR1との差分であるずれ量ΔVR1を算出する。理想値VIR1は、スキュー調整モータ352のパルス数に応じて第2のテーブルTB2から読み出される。制御部50は、ずれ量ΔVR1を算出したら、このずれ量ΔVR1を記憶部130に格納する。なお、ずれ量ΔVR1が0(0≒ΔVR0)の場合には、ボウが発生していないと判断することができる。この場合には、以下に説明する工程を行わずに次工程の画像形成処理に進む。
ステップS150で制御部50は、予め設定されたマーク検出回数を実行したか否かを判断する。マーク検出回数とは、第2のレンズ340に傾斜を付加してレジストマークMを形成してからレジストマークMを測定するまでの間の動作(S110〜S140)の回数である。マーク検出回数が複数回に設定されている場合には、算出した複数のずれ量の平均値ΔVRavrが算出される。マーク検出回数を複数回に設定してずれ量の平均値ΔVRavrを算出することで、推定するボウのばらつきを防止することができる。
制御部50は、予め設定されたマーク検出回数を実行したと判断した場合にはステップS160に進む。一方、制御部50は、予め設定されたマーク検出回数を実行していないと判断した場合にはステップS110に戻り、上述した第2のレンズ340の傾き付与、レジストマークMの形成および測定動作を実行する。
ステップS160で制御部50は、記憶部130に格納したずれ量ΔVR1と第1のテーブルTB1のずれ量ΔVR2000とを比較し、ずれ量ΔVR1と一致するずれ量ΔVR2000に対応付けられた中央位置O5のずれ量ΔVCを第1のテーブルTB1から取得する。例えば、図12Aおよび図12Bで説明したように、ずれ量ΔVR1が「−0.02(−0.016)μm」である場合には、ボウの中央位置O5のずれ量ΔVCとして「50〜150μm」を取得する。ボウのプロファイルP1の推定の際には、例えば「50〜150μm」の中間値となる「100μm」を用いることができる。
ステップS170で制御部50は、レジストマークMのボウのプロファイル(曲線)P1を推定する。制御部50は、図15に示すように、センサ前位置O3においてレジストセンサ110により測定された測定値VBF1と、センサ前位置O3でのボウがない場合の理想プロファイルP2の理想値VIF1との差分であるずれ量ΔVF1を算出する。理想値VIF1は、スキュー調整モータ352のパルス数に応じて第2のテーブルTB2から読み出される。
制御部50は、中央位置O5でのずれ量ΔVCと、センサ前位置O3でのずれ量ΔVF1と、センサ奥位置O4でのずれ量ΔVR1とに基づいてレジストマークMのボウのプロファイルP1を推定する。例えば、中央位置O5のずれ量ΔVCとセンサ前位置O3のずれ量ΔVF1とからその間のずれ量を補間し、中央位置O5のずれ量ΔVCとセンサ奥位置O4のずれ量ΔVR1とからその間のずれ量を補間することで、ボウ全体のプロファイルを推定する。
ステップS180で制御部50は、推定したボウのプロファイルP1に基づいてカラーレジスト補正を再度実行する。制御部50は、ステップS170で推定したボウのプロファイルP1を考慮し、画像全体(全色)での副走査書き出し位置の最適化を行う。
なお、上述した例では、電源オン時の安定化処理時にボウのプロファイルを推定するボウ推定モードを実行したが、このボウ推定モードの実行は上記タイミングに限定されることはない。例えば、画像形成装置100内の温度変化に基づいてボウ推定モードを実行するようにしても良い。これは、ボウは画像形成装置100内の温度等の環境変化によっても発生する場合があるからである。
具体的には、画像形成装置100の例えば中間転写ベルト8近傍に設置した温度測定部140による測定結果により画像形成装置100内の温度上昇が確認された場合に、ボウ推定モードを実行することができる。また、プリント枚数が所定枚数に達した場合やポリゴンモータの駆動時間が所定時間に達した場合に、画像形成装置100内の温度が規定温度に上昇したと判断してボウ推定モードを実行するようにしても良い。
以上説明したように、第1の形態によれば、2つのレジストセンサ110,120を用いた場合でも、第2のレンズ340に傾きを付与して形成したレジストマークMのセンサ奥位置O4での副走査方向D2のずれ量ΔVR1を算出することで、ボウのプロファイルP1の中央位置O5でのずれ量ΔVCを第1のテーブルTB1から取得できる。これにより、使用するレジストセンサ110,120の個数以上の測定値を得ることができるので、少ないレジストセンサの個数でも高精度にボウ全体のプロファイルP1を推定することができる。その結果、ボウ補正を高精度に行うことができ、良好な画像を得ることができる。
また、2つのレジストセンサ110,120によりボウのプロファイルP1を推定することができるので、3つのレジストセンサを用いてボウのプロファイルを推定する場合と比べてコストの削減を図ることができると共に、省スペース化も図ることができる。また、レジストマークMを形成する個数も少なくすることができるので、トナー消費量の削減も図ることができる。
また、第1の実施の形態によれば、スキャナ機能を搭載していないプリンタ機においても、2つのレジストセンサ構成で正確なボウのプロファイルP1を推定することができる。
<第2の実施の形態>
第2の実施の形態では、上述した副走査方向D2のずれ量の線形性を用いてボウのプロファイルP1を推定する点において上記実施の形態と相違している。なお、その他の画像形成装置100の構成および機能等は、上記第1の実施の形態と同様であるため、共通の構成要素には同一の符号を付し、詳細な説明は省略する。
以下に、ずれ量ΔVRの線形性を用いてボウのプロファイルP1を推定する場合における画像形成装置100の動作例について説明する。図16は、ずれ量の線形性等を用いてボウのプロファイルP1を推定する場合の画像形成装置100の動作の一例を示すフローチャートである。図17は、第2のレンズ340に傾きを付加した場合の中間転写ベルト8上のボウのプロファイルP1および理想プロファイルP2を模式的に示している。なお、第1のテーブルTB1等を用いてボウのプロファイルP1を推定する場合と共通する部分についての説明は、上述した図14および図15を参照して説明する。
まず、図16に示すように、ステップS200で制御部50は、画像形成装置100の電源がオンされると、ボウ補正以外のカラーレジスト補正を実行する。次に、ステップS210で制御部50は、スキュー調整モータ352を一定量駆動することにより第2のレンズ340を所定角度に傾斜させる。
ステップS220で制御部50は、書込部3等を制御してレーザ光を第2のレンズ340を介して感光体ドラム1上に照射することでレジストマークMの像を感光体ドラム1上に書き込む。これにより、図14および図15に示すように、レジストマークMは第2のレンズ340の傾き量に応じて中間転写ベルト8上に傾いて転写され、理想プロファイルP2は第2のレンズ340の傾き量に応じて所定の傾きが付加される。このとき、理想プロファイルP2と基準線Oとのなす角度は角度θ1となる。
ステップS230でレジストセンサ120は、センサ奥位置O4での中間転写ベルト8上に転写されたレジストマークMを基準距離T0(図7参照)を基準として検出し、この検出により得られたセンサ奥位置O4での測定値VBR1を制御部50に供給する。
ステップS240で制御部50は、センサ奥位置O4でレジストセンサ120により測定された測定値VBR1と、センサ奥位置O4での理想プロファイルP2の理想値VIR1との差分であるずれ量ΔVR1を算出する。制御部50は、ずれ量ΔVR1を算出したら、このずれ量ΔVR1を記憶部130に格納する。
ステップS250で制御部50は、予め設定されたマーク検出回数を実行したか否かを判断する。本例では、複数のずれ量ΔVRに基づく線形性を用いてボウのプロファイルP1を推定するため、マーク検出回数は複数回に設定される。以下では、マーク検出回数を例えば2回に設定した例について説明する。そのため、この場合には、制御部50は、設定したマーク検出回数を実行していないと判断してステップS210に戻る。
ステップS210に戻り制御部50は、スキュー調整モータ352を駆動することで第2のレンズ340を現在の位置からさらに副走査方向D2に移動させて傾きを付加する。
ステップS220で制御部50は、書込部3を制御してレーザ光を第2のレンズ340を介して感光体ドラム1上に照射することでレジストマークMの像を感光体ドラム1上に書き込む。これにより、図17に示すように、レジストマークM(ボウのプロファイルP1)は、前回の転写位置よりもさらに傾斜した位置に形成される。また、理想プロファイルP2も、第2のレンズ340の傾斜に伴い前回の位置よりもさらに傾斜した位置に移動する。このとき、理想プロファイルP2と基準線Oとのなす角度は、角度θ1よりも大きい角度θ2となる。
ステップS230でレジストセンサ120は、センサ奥位置O4での中間転写ベルト8上に形成されたレジストマークMを基準距離T0(図7参照)を基準として検出し、この検出により得られたセンサ奥位置O4でのレジストマークMの測定値VBR2(図17参照)を制御部50に供給する。測定値VBR2は、測定値VBR1よりもさらにずれた(大きな)値となる。
ステップS240で制御部50は、センサ奥位置O4でレジストセンサ120により測定された測定値VBR2とセンサ奥位置O4での理想プロファイルP2の理想値VIR2との差分であるずれ量ΔVR2(図17参照)を算出する。制御部50は、ずれ量ΔVR2を算出したら、このずれ量ΔVR2を記憶部130に格納する。
ステップS250で制御部50は、予め設定されたマーク検出回数を実行したか否かを判断する。制御部50は、本例ではマーク検出回数が2回に設定されているので、マーク検出回数を実行したと判断してステップS260に進む。
ステップS260で制御部50は、記憶部130に格納したずれ量ΔVR1,ΔVR2から副走査方向D2のずれ量の線形性(傾き)を算出し、算出した線形性からボウの中央位置O5での副走査方向D2のずれ量ΔVCを算出する。例えば、予め実測等により得た線形性とボウの中央位置O5でのずれ量ΔVCとが対応付けられたテーブルを用意しておき、算出した線形性からテーブルを参照することで中央位置O5でのずれ量ΔVCを取得する。また、ずれ量ΔVCを算出するための式を予め用意し、この式に線形性の数値を代入することでずれ量ΔVCを算出するようにしても良い。
ステップS270で制御部50は、レジストマークMのボウのプロファイルP1を推定する。制御部50は、中央位置O5でのずれ量ΔVCと、センサ前位置O3でのずれ量ΔVF1と、センサ奥位置O4でのずれ量ΔVR1とに基づいてレジストマークMのボウのプロファイルP1を推定する。
ステップS280で制御部50は、推定したボウのプロファイルP1に基づいてカラーレジスト補正を再度実行する。制御部50は、推定したボウのプロファイルP1を考慮し、画像全体での副走査書き出し位置の最適化を行う。
以上説明したように、第2の実施の形態によれば、ずれ量ΔVRの線形性を用いてボウのプロファイルP1を推定する場合でも、上記第1の実施の形態と同様の作用効果を奏することができる。また、第2の実施の形態によれば、マーク検出回数の設定回数を多く設定することで、これに応じてずれ量ΔVRも多く取得できるので、より詳細なボウの線形性を算出することができ、その結果、精度の高いボウのプロファイルP1を得ることができる。
なお、本発明の技術範囲は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。上記実施の形態では、2個のレジストセンサ110,120を用いてボウのプロファイルP1を推定したが、これに限定されることはない。3個以上のレジストセンサを用いた場合でも本発明に係るボウのプロファイルP1の推定方法を適用することができる。
例えば、3個のレジストセンサを用いる場合、レジストセンサ110,120の間の中央位置O5にレジストセンサを設置する。また、例えば、中央位置O5とセンサ奥位置O4との間の中間位置での副走査方向D2のずれ量と、センサ奥位置O4でのずれ量とを対応付けたテーブルを用意する。
制御部50は、第2のレンズ340に傾きを付与して形成されたレジストマークMの各位置での検出結果に基づく測定値と、理想プロファイルP2の理想値との差分である副走査方向D2のずれ量を算出する。続けて、制御部50は、算出したずれ量から上記テーブルを参照することで、ボウの中間位置でのずれ量を取得する。また、センサ前位置O3と中央位置O5との間の中間位置についても、上述した方法と同様の方法によりボウのずれ量を算出できる。
これにより、3つのレジストセンサを用いた場合には、ボウのプロファイルP1の5カ所のずれ量を取得することができるので、低コストかつ省スペース化を実現しつつ高精度にボウのプロファイルP1を推定することができる。
また、上述した実施の形態では、ボウが左右対称に発生しているものについて説明したが、これに限定されることはない。例えば、一方の端部(片側)のみにボウが発生している場合等ついても本発明のボウ推定モードを適用することができる。
1 感光体ドラム(感光体)
3 書込部
8 中間転写ドラム(中間転写体)
50 制御部
100 画像形成装置
110,120 レジストセンサ(検出部)
340 第2のレンズ(光学素子)
350 スキュー調整機構(調整部)
M,MY,MC,MM,MK レジストマーク(補正用パターン)

Claims (5)

  1. レーザ光を光学素子を介して照射する書込部と、
    前記書込部からの前記レーザ光が主走査方向に沿って照射される感光体と、
    前記感光体に照射された前記レーザ光に基づく補正用パターンが転写される中間転写体と、
    前記中間転写体に転写された前記補正用パターンを検出する複数の検出部と、
    複数の前記検出部により検出された前記補正用パターンの検出結果に基づいて画像の位置ずれ補正を行う制御部と、
    前記光学素子の傾きを調整する調整部と、を備え、
    前記制御部は、ボウ補正を行う場合、前記調整部を制御して前記光学素子を傾けた後に、前記書込部を制御して前記中間転写体に前記補正用パターンを転写し、当該転写後に前記検出部により検出された前記補正用パターンの測定値とボウが発生していない画像の理想値との副走査方向における差分を算出し、算出した前記差分に基づいてボウを推定する
    ことを特徴とする画像形成装置。
  2. 前記制御部は、前記ボウ補正を行う前に、当該ボウ補正とは異なるカラーレジスト補正を行う
    ことを特徴とする請求項1に記載の画像形成装置。
  3. 前記制御部は、前記画像形成装置内の温度変化に基づいて前記ボウ補正を行う
    ことを特徴とする請求項1または2に記載の画像形成装置。
  4. 複数の前記検出部は、前記中間転写体の主走査方向に設けられた
    ことを特徴とする請求項1から3の何れか一項に記載の画像形成装置。
  5. 光源と感光体との間に設けられた光学素子の傾きを調整する第1のステップと、
    前記光源からのレーザ光を前記光学素子を介して前記感光体上に主走査方向に沿って照射する第2のステップと、
    前記感光体に照射された前記レーザ光により形成される補正用パターンを中間転写体に転写する第3のステップと、
    前記中間転写体に転写された前記補正用パターンを検出する第4のステップと、
    前記補正用パターンの検出結果に基づいて画像の位置ずれ補正を行う第5のステップと、を有し、
    前記第5のステップでは、検出した前記補正用パターンの測定値とボウが発生していない画像の理想値との副走査方向における差分を算出し、算出した前記差分に基づいてボウを推定する
    ことを特徴とする画像形成方法。
JP2013182298A 2013-09-03 2013-09-03 画像形成装置および画像形成方法 Pending JP2015049451A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182298A JP2015049451A (ja) 2013-09-03 2013-09-03 画像形成装置および画像形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182298A JP2015049451A (ja) 2013-09-03 2013-09-03 画像形成装置および画像形成方法

Publications (1)

Publication Number Publication Date
JP2015049451A true JP2015049451A (ja) 2015-03-16

Family

ID=52699490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182298A Pending JP2015049451A (ja) 2013-09-03 2013-09-03 画像形成装置および画像形成方法

Country Status (1)

Country Link
JP (1) JP2015049451A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146615A (ja) * 2017-03-01 2018-09-20 コニカミノルタ株式会社 画像書込装置及び画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146615A (ja) * 2017-03-01 2018-09-20 コニカミノルタ株式会社 画像書込装置及び画像形成装置

Similar Documents

Publication Publication Date Title
JP4600498B2 (ja) 画像形成装置及び画像色ずれ補正方法
JP4869692B2 (ja) 画像形成装置、色ずれ補正方法および色ずれ補正プログラム
JP2006215524A (ja) 画像形成装置、画像形成方法、およびその方法をコンピュータに実行させるプログラム
JP2007133238A (ja) 画像形成装置および色ずれ補正方法
US7075561B2 (en) Image printing apparatus and color misregistration correction method
JP2011022172A (ja) 画像形成装置
US8437671B2 (en) Image forming apparatus, image forming method for image forming apparatus, and computer program product
JP2007155895A (ja) カラー画像形成装置
JP5929617B2 (ja) 印刷装置
JP5772335B2 (ja) 画像形成装置及び方法及びプログラム並びにコンピュータ読み取り可能な記憶媒体
JP4877371B2 (ja) 画像形成装置
JP2011248256A (ja) 画像形成装置
JP6069892B2 (ja) 画像形成装置
JP2015049451A (ja) 画像形成装置および画像形成方法
JP5636780B2 (ja) 画像形成装置
JP5460505B2 (ja) 光走査装置
JP5096789B2 (ja) 画像形成装置、画像書き出しタイミング設定方法
JP2016161815A (ja) 画像形成装置
JP2015194590A (ja) 画像形成装置、形成条件の調整方法、および、形成条件の調整プログラムを記憶した記憶媒体
JP2004258126A (ja) 画像形成装置、及びその画像書き出し位置調整方法
JP4164059B2 (ja) 画像形成装置
JP6156072B2 (ja) 画像形成装置
JP2012159605A (ja) 画像形成装置
JP2018066812A (ja) 画像形成装置
JP6439292B2 (ja) 画像形成装置