JP2014500522A - 2つの液体チャンバを有する可変焦点レンズ - Google Patents

2つの液体チャンバを有する可変焦点レンズ Download PDF

Info

Publication number
JP2014500522A
JP2014500522A JP2013535225A JP2013535225A JP2014500522A JP 2014500522 A JP2014500522 A JP 2014500522A JP 2013535225 A JP2013535225 A JP 2013535225A JP 2013535225 A JP2013535225 A JP 2013535225A JP 2014500522 A JP2014500522 A JP 2014500522A
Authority
JP
Japan
Prior art keywords
auxiliary
chamber
housing
lens
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013535225A
Other languages
English (en)
Inventor
ケアン トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optotune AG
Original Assignee
Optotune AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optotune AG filed Critical Optotune AG
Publication of JP2014500522A publication Critical patent/JP2014500522A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00403Producing compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Lens Barrels (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

可変焦点レンズは、レンズの光軸(A)に沿って互いに可動なハウジング(1)とアクチュエータ(8)とを有する。主膜(15)は第1のチャンバ(24,26)と第2のチャンバ(30,32)との間に配置されており、第1及び第2のチャンバには、同じ密度であるが異なる屈折率を有する液体が充填されている。第1及び第2の補助膜(19,17)は、体積補償のために提供されている。第1の補助膜(19)は、第1のチャンバ(24,26)の壁部を形成しており、第2の補助膜(17)は、第2のチャンバ(30,32)の壁部を形成し、補助膜のうちの少なくとも一方又は両方は、外側において環境に面している。

Description

本発明は、異なる屈折率を有する液体が充填された第1及び第2のチャンバを有する可変焦点レンズに関する。2つのチャンバは主膜によって分離されている。レンズは、ハウジングと、アクチュエータとを有する。ハウジングに対するアクチュエータの軸方向移動は、主膜を変形させる。
本発明は、このようなレンズを製造する方法にも関する。
背景技術
このタイプのレンズは、国際公開第2008/020356号に示されている。レンズは、異なる屈折率を有するが、同様の密度を有する異なる液体が充填された、密閉してシールされた2つのチャンバを有する。チャンバは、変形可能な膜によって分離されている。この設計の利点は、重力によって生ぜしめられる膜変形の減少にある。しかしながら、国際公開第2008/020356号に記載された設計は、アクチュエータが容易にアクセス可能ではないので、磁界を介した膜への間接的な力伝達を必要とする。さらに、このタイプのレンズを製造することは困難である。特に、チャンバから残留空気を除去することが困難であることが分かっている。
発明の開示
本発明によって解決される課題は、さらに容易に製造することができるレンズを提供することである。この課題は、請求項1記載のレンズによって解決される。
したがって、レンズは、第1の液体が充填された第1のチャンバと、第2の液体が充填された第2のチャンバとを有し、前記第2の液体は、前記第1の液体とは異なる光学的特性、特に屈折率を有する。主膜は、前記第2のチャンバから前記第1のチャンバを分離しており、前記第1及び第2の液体と接触している。主膜は、可変焦点レンズの光軸と交差するレンズ面を形成している。第1の補助膜は、第1のチャンバの第1の壁部を形成しており、第2の補助膜は、前記第2のチャンバの第1の壁部を形成している。レンズは、少なくとも前記第1及び/又は前記第2のチャンバの第2の壁部を形成するハウジングを有する。レンズは、さらに、前記膜のうちの少なくとも一方に結合されたアクチュエータを有する。アクチュエータとハウジングとは、光軸に対して平行な方向に互いに移動可能であり、アクチュエータとハウジングとの相互移動は、前記膜を変形させ、これにより、レンズの焦点長さを変化させる。
前記補助膜のうちの少なくとも一方は、環境空気に面しており、これにより、少なくとも1つのチャンバからの残留空気は、補助膜を通じた拡散によって逃げ出す。他方のチャンバからの残留空気は、前記他方のチャンバの補助膜も空気に面しているならば前記補助膜を通って逃げ出すことができるか、又は製造プロセス中に他方のチャンバのみが充填されているときに主膜又は補助膜を通って逃げ出すことができる。空気拡散プロセスを加速させるために、製造中に加熱、真空又はCO2などの小分子プロセスガスを用いることができる。
有利には、レンズは、主膜及び補助膜を形成する箔を有する。すなわち、全ての膜が1つの箔によって形成されている。これは製造プロセスを著しく単純化する。
箔及び/又はあらゆる膜を、作動中にしわになるのを防止しかつ重力の効果をさらに減じるために、予め引っ張られた状態でハウジングに取り付けることができる。
有利な実施の形態において、ハウジングは、第1の領域において主膜に結合されたホルダを有し、前記第1の領域はレンズの光軸の周囲に延びている。この場合、第1及び第2の補助膜を前記ホルダの半径方向外側に、すなわちホルダよりも光軸からより大きな半径方向距離に配置することが特に有利であり、これにより、主膜の光学的に関係する部分を、補助膜の光学的に関係しない部分から分離する。
レンズを製造する方法は、有利には、
第2のチャンバに前記第2の液体を充填するステップと、
箔を通るガスの拡散を利用することによって第2のチャンバからあらゆる残留ガスを除去するステップと、
第1のチャンバに前記第1の液体を充填するステップと、
箔を通るガスの拡散を利用することによって第1のチャンバからあらゆる残留ガスを除去するステップと、を含み、前記箔は前記膜を形成している。
この方法は、以下のことを利用する。つまり、製造プロセスの少なくとも幾つかのステップにおいて、各チャンバは、箔を介して環境と接触しており、これにより、残留ガスは、箔を通って拡散することができ、これにより、液体を残すことができる。製造中、箔の変形した状態において箔に液体を充填し、次いで、充填された箔にチャンバを取り付けることによって箔をシールすることも可能であり、これにより、捕捉されたガスが、箔を通る拡散によってチャンバから出る際に、箔は弛緩する。
発明の以下の詳細な説明を検討した場合、発明はより理解され、上記に示されたもの以外の目的が明らかになるであろう。このような説明は、添付の図面を参照する。
可変焦点レンズの第1の実施の形態の斜視断面図である。 可変焦点レンズの第2の実施の形態の斜視断面図である。 図2のレンズの分解図である。
発明を実施するための態様
定義:
"半径方向"という用語は、レンズの光軸に対して垂直な方向を表すと理解される。
"軸方向"という用語は、レンズの光軸に対して平行な方向を表すと理解される。
"剛性"及び"可撓性"という用語は、互いの関係において用いられる。レンズの膜は、ハウジング及びアクチュエータよりも少なくとも一桁だけさらに可撓性でありかつさらに剛性でない。
"液体"という用語は、水、油等の、流れることができる、気体でない物質を表す。この用語は、極めて粘性の液体も含む。液体の別の例は後述する。
第1の実施の形態:
図1の可変焦点レンズの実施の形態は、光軸Aに関して実質的に回転対称の設計である。可変焦点レンズは、ハウジング1を有する。ハウジング1は、第1の円形の開口3を備えた半径方向に延びた底部2と、軸方向に延びた円筒状の外壁4と、軸方向に延びた円筒状の内壁若しくはホルダ5とを有する。透明の第1の窓6がハウジング1に保持されており、第1の円形の開口3を閉鎖している。
レンズはさらに、アクチュエータ8を有する。アクチュエータ8は、第2の円形の開口10を備えた半径方向に延びた上部9と、軸方向に延びた円筒状の外壁11とを有する。透明な第2の窓12が、アクチュエータ8に保持されており、第2の円形の開口10を閉鎖している。透明な第2の窓12と、上部9とは、1つの材料から形成することもでき、1つの構成部材であることができる。
可撓性かつ弾性の箔14が、ハウジング1とアクチュエータ8との間に延びており、複数の膜を形成している。これらの膜は、以下のものを含む:
−ハウジング1のホルダ5に懸吊された主膜15。主膜15は、環状の第1の領域16においてハウジング1のホルダ5の上端部に結合されている。
−第1の補助膜19。第1の補助膜19は、実質的に環状であり、第2の領域18と第3の領域20との間に延びている。第2の領域18は、アクチュエータ8の外壁11の下端部によって形成されており、第3の領域20は、ハウジング1の外壁4の上端部によって形成されている。
−第2の補助膜17。第2の補助膜17は、実質的に環状であり、第1の領域16と第2の領域18との間に延びている。
主膜15と第2の補助膜17とがホルダ5に結合されている第1の領域16は、光軸Aの周囲に延びている。第1の領域16は、主膜15とホルダ5との間及び第2の補助膜17とホルダ5との間のシーリング結合を形成している。
第1及び第2の補助膜17,19がアクチュエータ8に結合されている第2の領域18も、光軸Aの周囲に延びており、アクチュエータ8と両補助膜17,19との間のシーリング結合を形成している。
最後に、第1の補助膜19がハウジング1に結合されている第3の領域20も、光軸Aの周囲に延びており、ハウジング1と第1の補助膜19との間のシーリング結合を形成している。
図1から分かるように、第2の領域18は、第1の領域16よりも光軸Aからより大きな距離に位置しており、第3の領域20は、第2の領域18よりも光軸Aからより大きな距離に位置している。この実施の形態において、全ての領域16,18,20は、光軸Aに対して実質的に同心状であり、第1及び第2の補助膜19,17の環状のレイアウトを生じている。
第1及び第3の領域16,20は、有利には、光軸Aに対して垂直に延びた共通の平面に位置しており、これにより、膜を形成した箔をハウジング1に取り付けることをより容易にしている。この平面に関する第2の領域18の軸方向位置は、アクチュエータ8とハウジング1との相互の位置に依存する。
少なくとも1つの通路22がホルダ5に又はホルダ5と第1の窓6との間に形成されており、主膜15と窓6との間のスペース24と、第1の補助膜19とハウジング1との間の少なくとも1つのスペース26との間の連通を提供している。(この実施の形態において、スペース26は、第2の補助膜17とハウジング1との間の領域へも延びている。)同様に、少なくとも1つの通路28が、ハウジング1のホルダ5の上部と、アクチュエータ8又は第2の窓12との間に形成されており、主膜15と第2の窓12との間のスペース30と、第2の補助膜17とアクチュエータ8との間のスペース32との連通を提供している。
スペース24及び26は、共同で"第1のチャンバ"を形成しているのに対し、スペース30及び32は共同で"第2のチャンバ"を形成している。第1のチャンバ24,26には、第1の屈折率を有する第1の液体が充填されており、第2のチャンバ30,32には、第2の異なる屈折率を有する第2の液体が充填されている。両液体は、有利には、実質的に等しい密度、すなわち20%以上異ならない、特に10%以上異ならない密度を有し、有利には2つの液体は不混和性であるが、それが必要であるわけではない。
アクチュエータ8は、光軸Aに沿ってハウジング1に対して可動である。この目的のために、ハウジング1又はアクチュエータ8又はその両方を移動させる機構40を設けることができる。機構40は、手で操作される機構であるか又は電気的に操作される機構であることができる。電気的に操作される機構は、以下のアクチュエータタイプのうちの1つ以上を含むことができる:
−電磁アクチュエータ
−ピエゾアクチュエータ
−スクリュードライブアクチュエータ
−電気的活性ポリマアクチュエータ
−静電アクチュエータ
−リニアモータ
−ステッパモータ
−電気モータ。
アクチュエータ8がハウジング1に対して軸方向に移動させられると、スペース26及び32の体積は互いに逆に変化し、これは、ひいては第1及び第2の液体をそれぞれスペース24及び30へ半径方向に流入又はスペース24及び30から流出させ、これにより、主膜15の変形を生じさせる。これは、レンズの焦点長さを変化させる。
図1から分かるように、第1の補助膜19は、第2の補助膜17よりも光軸Aからより大きな半径方向距離に配置されている。
第1の補助膜19は上側において環境空気と隣接しているのに対し、下側は第1の液体に面している。第1の補助膜19は、第1のチャンバ24,26の第1の壁部を形成している。
第2の補助膜17は、上側において第2の液体に隣接しているのに対し、下側は第1の液体と接触している。第2の補助膜17は、第2のチャンバ30,32の第1の壁部を形成している。図1の実施の形態において、第2の補助膜17は、第1のチャンバ24,26の壁部をも形成している。
特に、補助膜19,17のうちの少なくとも一方、有利には両補助膜19,17は、ハウジング1及び/又はホルダ8における又はそれら間の適切な開口21によって環境と接触している。
ハウジング1は、すなわちその底壁2及び外壁4によって、第1のチャンバ24,26の第2の壁部を形成している。窓6は、第1のチャンバ24,26の第3の壁部を形成している。
同様に、アクチュエータ8は、すなわちその上壁9及び外壁11によって、第2のチャンバ30,32の第2の壁部を形成している一方で、窓12は最終的に第2のチャンバ30,32の第3の壁部を形成している。
これにより、第1のチャンバ24,26及び第2のチャンバ30,32は、(ハウジング1と、アクチュエータ8と、それぞれの窓6及び12とによってそれぞれ形成された)剛性の壁部と、補助膜によって形成された可撓性の壁部セクションとによって包囲されている。ハウジング1に対するアクチュエータ8の移動の際、各チャンバの剛性の壁部の間の距離が変化し、両チャンバにおける一定の体積を維持するために補助膜が変形させられ、これにより、液体をスペース24,30内へ又はスペース24,30から移動させ、主膜15を変形させる。
第2の実施の形態:
第2の実施の形態が図2及び図3に示されている。以下において、第1の実施の形態に対する相違点のみが説明される。
第2の実施の形態において、第1及び第2の補助膜19,17は、一方の膜が他方の膜よりも光軸Aからより大きな距離に位置するように環状のレイアウトに配置されていない。むしろ、図2及び図3に示したように、第1及び第2の補助膜19,17は、方位角方向で見た場合に交互の形式で共通の環状領域に配置されている。第1及び第2の補助膜19,17は、ハウジング1の半径方向壁部40a,40bにおいて隣接している。
図示のように、ハウジング1は、互いに堅く結合された第1の下側の部分1a及び第2の上側の部分1bと、これらの間に配置された膜を形成する箔とを備えた、二部形式を有する。両部分1a,1bは、共同で内壁部分5a,5bによってホルダ5を形成している。半径方向部分40a,40bは、それぞれ内壁部分5a,5bから半径方向に延びている。
2つの壁部40aの各対は外壁部分4aによって相互接続されており、2つの壁部40bの各対は外壁部分4bによって相互接続されている。すなわち、複数のスペース26及び32が形成されている。各スペース26は、2つの半径方向壁部40aと、半径方向壁部40aを接続する外壁部分4aと、底部2と、第1の補助膜19とによって包囲されている。各スペース32は、2つの半径方向壁部40bと、半径方向壁部40bを接続する外壁部分4bと、ハウジング1の上側の部分42と、第2の補助膜17とによって包囲されている。
これにより、この設計においては、複数のスペース26及び複数のスペース32、並びに複数の第1及び第2の補助膜19,17が設けられている。一方の側において、各補助膜は環境空気に面しているのに対し、他方の側では、各補助膜はそれぞれの液体に面している。すなわち、第1の補助膜19は、上側において空気に面しており、第2の補助膜17は下側において空気に面している。
再び、中央のスペース24及び30をそれぞれスペース26及び32に接続するための通路22及び28が設けられている。
アクチュエータ8も、互いに固定結合された2つの部材8a,8bからそれぞれ形成されている。アクチュエータ8は、環状本体44を形成しており、この環状本体44から、複数のアーム46a,46bが、内方へ、半径方向壁部40a,40bの間において、それぞれ第1及び第2の補助膜19及び17に接触するように延びている。図2及び図3の実施の形態において、アクチュエータ8の下側部材8aに取り付けられた複数の下側アーム46aが設けられており、これらの下側アーム46aは、第2の補助膜17の下側に結合されている。また、アクチュエータの上側部材8bに取り付けられた複数の上側アーム46bが設けられており、これらの上側アーム46bは、第1の補助膜19の上側に結合されている。
図1の実施の形態とは対照的に、両方の窓6及び12がハウジング1に結合されている。すなわち、レンズは、焦点長さを変化させる場合でも一定の軸方向延びを有する。ハウジング1及び窓12がただ一つの部材であることも可能である。
各窓6,12は、この場合にも、それぞれの第1及び第2のチャンバのための"第3の壁部"を形成しており、第1の壁部は補助膜19又は17によって形成されており、第2の壁部はハウジング1によって形成されている。この実施の形態の利点は、よりコンパクトな半径方向設計、及び可動なアクチュエータからのレンズ部分の分離である。
注意:
上記実施の形態において、可変焦点レンズは、実質的に回転対称の設計を有する。特に、主膜によって被覆された中央領域は、レンズの光軸に関して回転対称であり、これにより、レンズに回転対称の特性を提供する。しかしながら、異なる設計を用いることができることに注意しなければならない。特に、補助膜の領域における回転対称設計の厳しい必要性はない。補助膜を、主膜からのあらゆる半径方向及び軸方向距離に配置することもでき、主膜を完全に又は部分的に包囲することができる。また、例えば円柱レンズの場合、主膜の領域は通常、回転対称ではない。
上記実施の形態において、アクチュエータ8は、補助膜の両方に結合されている。しかしながら、例えば図2及び図3の実施の形態において、アクチュエータ8は、補助膜の一方のみに結合されていてもよい。
以下に提案される材料及び製造方法は、図1から図3までに記載された全ての実施の形態に当てはまる。
選択的に、ハウジング1と、アクチュエータ8と、窓6及び12とは、適切な形状の光学素子を含むことができる。適切な形状の光学素子は例えば以下のものである:
−球面レンズ(凸面及び凹面);
−フレネルレンズ;
−円柱レンズ;
−非球面レンズ(凸面及び凹面);
−フラット;
−ミラー;
−正方形、三角形、ライン又はピラミッド;
−あらゆるマイクロ構造(例えばマイクロレンズアレイ、回折格子、ホログラム)又はナノ構造(例えば反射防止膜)を、ハウジング1と、窓6及び12と、アクチュエータ8と、可撓性の箔14とに組み込むことができる。反射防止層が可撓性の箔の少なくとも1つの面に提供される場合、反射防止層は、有利には、伝達される光の波長よりも小さなサイズを有する微細構造によって形成される。通常、このサイズは、赤外線用途の場合に5μmよりも小さく、近赤外線用途の場合に1μmよりも小さく、可視光を用いる用途の場合に200nmよりも小さくてよい。
例えば、反射防止膜を形成するために、以下の方法のいずれかを用いることができる:
−注型、特に射出成形/モールドプロセシング;
−例えばナノメートルサイズの構造をホットエンボスすることによるナノインプリント;
−エッチング(例えば化学的又はプラズマ);
−スパッタリング;
−ホットエンボス;
−ソフトリソグラフィ(すなわちポリマを予め成形された基板上に注型する);
−化学的セルフアセンブリ(例えば、"Surface tension-powered self-assembly of microstructures-the state-of the-art",R.R.A Syms, E.M.Yeatman, V.M.Bright, G.M.Whitesides, Journal of Microelectro-mechanical Systems 12(4), 2003, pp.387-417を参照);
電磁界案内式パターン成形(例えば"Electro-magnetic field guided pattern forming", L.Seemann, A.Stemmer, 及びN.Naujoks, Nano Lett., 7(10), 3007-3012, 2007.10.1021/n10713373を参照)。
ハウジング1、アクチュエータ8、及び窓6及び12のための材料は、例えば以下のものを含む又はから成ることができる:
−PMMA;
−ガラス;
−PS;
−プラスチック;
−ポリマ;
−結晶材料、特に単結晶材料;
−金属。
例えば、ハウジング1、アクチュエータ8及び窓6及び12を形成及び構成するために、以下の方法のいずれかを適用することができる:
−研削;
−射出成形;
−フライス削り;
−鋳造。
第1及び第2の液体のための材料は、透明、半透明、吸収性又は反射性であることができ、例えば、以下のものを含む又はから成る:
−油;
−溶剤;
−イオン液体;
−液体金属;
−ディスパージョン。
弾性の箔14のための材料は、例えば、以下のものを含む又はから成る:
−ゲル(Liteway TMによる光学的ゲルOG−1001);
−エラストマ(TPE、LCE、シリコーン、例えばPDMS Sylgard 186、ポリアクリレート、ウレタン);
−熱可塑性樹脂(ABS、PA、PC、PMMA、PET、PE、PP、PS、PVCなど)。
調節可能な光学レンズは、以下のような様々な用途において利用することができる:
−例えば、ビーマ及び手持ち形装置におけるマクロプロジェクタ及びマイクロプロジェクタ用のプロジェクタの光学的部分における適用のための、投影装置;
−ディスプレイ;顕微鏡;
−カメラ;監視カメラ;
−あらゆる種類のカメラを有するビジョンシステム;
−研究用途において;
−フォロプタ;
−レンズアセンブリ;
−店舗、小売店、美術館又は家庭用途のための照明のようなライティング用途;
−テレコミュニケーション用途(振幅変調)。
有利には、箔14は、気体に対して、特に製造中に環境気体として使用される気体に対して透過性又は半透性であり、これにより、第1又は第2のチャンバに閉じ込められた気体の気泡は、膜を通じて容易に拡散することができる。
現時点で好適な発明の実施の形態が示されかつ説明されているが、発明は、それに限定されず、以下の請求項の範囲において様々に具体化及び実施されてよいことが明瞭に理解されるべきである。

Claims (19)

  1. 可変焦点レンズであって、
    第1の液体が充填された第1のチャンバ(24,26)と、
    第2の液体が充填された第2のチャンバ(30,32)であって、前記第2の液体は、前記第1の液体とは異なる光学的特性を有する、第2のチャンバと、
    前記第1及び前記第2のチャンバ(24,26;30,32)を分離しかつ前記第1及び第2の液体と接触した主膜(15)であって、該主膜(15)は、前記可変焦点レンズの光軸(A)と交差するレンズ面を形成している、主膜(15)と、
    前記第1のチャンバ(24,26)の第1の壁部を形成する第1の補助膜(19)と、
    前記第2のチャンバ(30,32)の第1の壁部を形成する第2の補助膜(17)と、
    少なくとも前記第1及び/又は前記第2のチャンバ(30,32)の第2の壁部を形成するハウジング(1)と、
    前記膜のうちの少なくとも1つに結合されたアクチュエータ(8)と、を備え、
    前記補助膜(19,17)のうちの少なくとも1つが環境空気に面しており、
    前記アクチュエータ(8)と、前記ハウジング(1)とは、前記光軸(A)に対して平行な方向に互いに可動であり、前記アクチュエータ(8)と、前記ハウジング(1)との互いの移動は、前記膜を変形させることを特徴とする、可変焦点レンズ。
  2. 前記主膜(15)と前記補助膜(19,17)とを形成する箔(14)を備える、請求項1記載のレンズ。
  3. 前記補助膜(19,17)のうちの少なくとも1つは、前記ハウジング(1)及び/又はホルダ(8)における又はハウジング(1)及び/又はホルダ(8)の間の開口(21)によって環境に接続されている、請求項1又は2記載のレンズ。
  4. 前記箔(14)は、気体に対して透過性又は半透性である、請求項1から3までのいずれか1項記載のレンズ。
  5. 前記主膜(15)及び/又は前記補助膜(19,17)は、予め引っ張られている、請求項1から4までのいずれか1項記載のレンズ。
  6. 前記第1及び前記第2の液体は、不混和性である、請求項1から5までのいずれか1項記載のレンズ。
  7. 前記アクチュエータ(8)は、前記補助膜(19,17)のうちの少なくとも1つに結合されている、請求項1から6までのいずれか1項記載のレンズ。
  8. 前記アクチュエータ(8)は、前記第1及び前記第2の補助膜(19,17)に結合されている、請求項7記載のレンズ。
  9. 前記ハウジング(1)は、前記光軸(A)の周囲に延びた第1の領域(16)において前記主膜(15)に結合されたホルダ(5;5a,5b)を有する、請求項1から8までのいずれか1項記載のレンズ。
  10. 前記アクチュエータ(8)は、前記光軸(A)の周囲に延びた第2の領域(18)において前記第1及び前記第2の補助膜(19,17)に結合されており、前記第2の領域(18)は、前記第1の領域(16)よりも前記光軸(A)からより大きな距離に位置している、請求項9記載のレンズ。
  11. 前記ハウジング(1)は、前記光軸(A)の周囲に延びた第3の領域(20)において前記第1の補助膜(19)に結合されており、前記第3の領域(20)は、前記第2の領域(18)よりも前記光軸(A)からより大きな距離に位置しており、特に、前記第1及び第3の領域(16,20)は、前記光軸(A)に対して垂直に延びた共通の平面に配置されている、請求項10記載のレンズ。
  12. 前記第1及び前記第2の補助膜(19,17)は、前記光軸(A)から所定の半径方向距離に配置されている、請求項1から11までのいずれか1項記載のレンズ。
  13. 前記第1の補助膜(19)は、前記第2の補助膜(17)よりも前記光軸(A)からより大きな半径方向距離に配置されている、請求項1から12までのいずれか1項記載のレンズ。
  14. 前記第1及び前記第2の補助膜(19,17)は、前記光軸(A)の周囲の環状領域に配置されており、前記第1及び第2の補助膜(19,17)は、前記ハウジング(1)の半径方向壁部(40a,40b)において隣接している、請求項1から12までのいずれか1項記載のレンズ。
  15. 前記アクチュエータ(8)は、前記半径方向壁部(40a,40b)の間において半径方向内方へ延びておりかつ前記第1及び/又は第2の補助膜(19,17)に接触したアーム(46a,46b)を有する、請求項14記載のレンズ。
  16. 前記ハウジング(1)は、第1の部分(1a)及び第2の部分(1b)を有し、前記第1の部分(1a)と前記第2の部分(1b)との間に配置された膜を形成する箔を備える、請求項14又は15記載のレンズ。
  17. 前記ハウジング(1)は、前記第1のチャンバ(24,26)の前記第2の壁部を形成しており、前記アクチュエータ(8)は、前記第2のチャンバ(30,32)の前記第2の壁部を形成している、請求項1から16までのいずれか1項記載のレンズ。
  18. さらに、前記第1のチャンバ(24,26)の第3の壁部を形成しておりかつ前記ハウジング(1)に取り付けられた第1の窓(6)と、
    前記第2のチャンバ(30,32)の第3の壁部を形成しておりかつ前記アクチュエータ(8)に取り付けられた第2の窓(12)と、を備える、請求項1から17までのいずれか1項記載のレンズ。
  19. 請求項1から18までのいずれか1項記載の可変焦点レンズを製造する方法であって、
    第2のチャンバ(30,32)に前記第2の液体を充填するステップと、
    箔(14)を通過する気体の拡散を利用することによって第2のチャンバ(30,32)からあらゆる残留気体を除去するステップと、
    第1のチャンバ(24,26)に前記第1の液体を充填するステップと、
    箔(14)を通過する気体の拡散を利用することによって第1のチャンバからあらゆる残留気体を除去するステップと、を含み、
    前記箔は前記膜を形成していることを特徴とする、請求項1から18までのいずれか1項記載の可変焦点レンズを製造する方法。
JP2013535225A 2010-10-26 2010-10-26 2つの液体チャンバを有する可変焦点レンズ Pending JP2014500522A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2010/000270 WO2012055049A1 (en) 2010-10-26 2010-10-26 Variable focus lens having two liquid chambers

Publications (1)

Publication Number Publication Date
JP2014500522A true JP2014500522A (ja) 2014-01-09

Family

ID=43971198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013535225A Pending JP2014500522A (ja) 2010-10-26 2010-10-26 2つの液体チャンバを有する可変焦点レンズ

Country Status (6)

Country Link
US (1) US8947784B2 (ja)
EP (1) EP2633341B1 (ja)
JP (1) JP2014500522A (ja)
KR (1) KR20130139952A (ja)
CN (1) CN103180762A (ja)
WO (1) WO2012055049A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021525902A (ja) * 2018-05-30 2021-09-27 マジック リープ, インコーポレイテッドMagic Leap,Inc. 小型の可変焦点構成
US11737832B2 (en) 2019-11-15 2023-08-29 Magic Leap, Inc. Viewing system for use in a surgical environment
US11756335B2 (en) 2015-02-26 2023-09-12 Magic Leap, Inc. Apparatus for a near-eye display
US11762222B2 (en) 2017-12-20 2023-09-19 Magic Leap, Inc. Insert for augmented reality viewing device
US11762623B2 (en) 2019-03-12 2023-09-19 Magic Leap, Inc. Registration of local content between first and second augmented reality viewers
US11776509B2 (en) 2018-03-15 2023-10-03 Magic Leap, Inc. Image correction due to deformation of components of a viewing device
US11790554B2 (en) 2016-12-29 2023-10-17 Magic Leap, Inc. Systems and methods for augmented reality
US11856479B2 (en) 2018-07-03 2023-12-26 Magic Leap, Inc. Systems and methods for virtual and augmented reality along a route with markers
US11874468B2 (en) 2016-12-30 2024-01-16 Magic Leap, Inc. Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light
US11885871B2 (en) 2018-05-31 2024-01-30 Magic Leap, Inc. Radar head pose localization
US11927759B2 (en) 2017-07-26 2024-03-12 Magic Leap, Inc. Exit pupil expander
US11953653B2 (en) 2017-12-10 2024-04-09 Magic Leap, Inc. Anti-reflective coatings on optical waveguides
US11960661B2 (en) 2018-08-03 2024-04-16 Magic Leap, Inc. Unfused pose-based drift correction of a fused pose of a totem in a user interaction system
US12001013B2 (en) 2018-07-02 2024-06-04 Magic Leap, Inc. Pixel intensity modulation using modifying gain values
US12016719B2 (en) 2019-08-22 2024-06-25 Magic Leap, Inc. Patient viewing system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201508145RA (en) * 2012-03-30 2015-10-29 Johnson & Johnson Vision Care Method and apparatus for a variable power ophthalmic lens
ES2535126B1 (es) 2013-10-01 2016-03-17 Consejo Superior De Investigaciones Científicas (Csic) Instrumento miniaturizado simulador de visión simultánea
KR102177133B1 (ko) 2014-01-31 2020-11-10 매직 립, 인코포레이티드 멀티-포컬 디스플레이 시스템 및 방법
WO2015117039A1 (en) 2014-01-31 2015-08-06 Magic Leap, Inc. Multi-focal display system and method
KR102225563B1 (ko) * 2014-05-30 2021-03-08 매직 립, 인코포레이티드 가상 및 증강 현실의 초점 평면들을 생성하기 위한 방법들 및 시스템
EP3149939A4 (en) 2014-05-30 2018-02-21 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
DE102015209418A1 (de) 2015-05-22 2016-11-24 Robert Bosch Gmbh Scanvorrichtung und Scanverfahren
FR3053800B1 (fr) 2016-07-08 2019-06-07 Laclaree Verres ophtalmiques avec controle dynamique de focale
US9977216B2 (en) 2016-07-14 2018-05-22 Microsoft Technology Licensing, Llc Passive lens athermalization using liquid lens
US10786959B2 (en) * 2016-07-18 2020-09-29 Johnson & Johnson Vision Care, Inc Mold for contact lens with non-rotationally symmetric rim or edge
KR102318638B1 (ko) * 2016-08-12 2021-10-29 옵토튠 컨슈머 아게 특히 자동 초점 및 이미지 안정화 기능을 가진 광학 장치, 특히 카메라
CN110546543B (zh) * 2017-02-09 2022-03-08 康宁股份有限公司 液体透镜
CN106990459B (zh) * 2017-05-09 2018-11-09 宁波大学 一种具有多层结构的柔性可调透镜及变倍光学***
EP3647758B1 (en) 2017-06-28 2024-05-08 Consejo Superior de Investigaciones Científicas (CSIC) Device for determining the optical power of lenses and measurement method
US20210325575A1 (en) * 2018-02-10 2021-10-21 Optotune Ag Orientation independent coma compensating liquid lens
CN110441903A (zh) * 2018-05-04 2019-11-12 中强光电股份有限公司 可变焦距光学元件
KR20190133544A (ko) * 2018-05-23 2019-12-03 엘지이노텍 주식회사 액체 렌즈 및 이를 포함하는 렌즈 어셈블리
EP3584610A1 (en) * 2018-06-19 2019-12-25 Essilor International Tunable optical system and method for determining the geometry of a cover glass in said tunable optical system
DE102019202707A1 (de) 2019-02-28 2020-09-17 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Verbrennungsmotors, Steuergerät, und elektrisch angetriebene Ladeeinrichtung
GB2588466A (en) * 2019-10-25 2021-04-28 Coopervision Int Ltd Tuneable ophthalmic lens
US20230134656A1 (en) * 2019-12-20 2023-05-04 Optotune Consumer Ag Liquid lens having a fixed lens shaping element and a movable transparent window

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014926A2 (en) * 2000-08-15 2002-02-21 Nanostream, Inc. Optical devices with fluidic systems
WO2009021344A1 (en) * 2007-08-11 2009-02-19 Optotune Ag Liquid lens system

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US60109A (en) 1866-11-27 woodward
US2062468A (en) 1934-07-26 1936-12-01 Edwin H Land Optical device
GB1327503A (en) 1971-02-05 1973-08-22 Bosch Gmbh Robert Optical lenses
US4494826A (en) 1979-12-31 1985-01-22 Smith James L Surface deformation image device
US4572616A (en) 1982-08-10 1986-02-25 Syracuse University Adaptive liquid crystal lens
US4783155A (en) 1983-10-17 1988-11-08 Canon Kabushiki Kaisha Optical device with variably shaped optical surface and a method for varying the focal length
JPS60220301A (ja) 1984-04-17 1985-11-05 Canon Inc 可変焦点光学素子
US4802746A (en) 1985-02-26 1989-02-07 Canon Kabushiki Kaisha Variable-focus optical element and focus detecting device utilizing the same
JPS62148903A (ja) 1985-12-24 1987-07-02 Canon Inc 可変焦点光学素子
JPH01166003A (ja) 1987-12-22 1989-06-29 Fuji Photo Film Co Ltd 光学素子
JPH01166004A (ja) 1987-12-22 1989-06-29 Fuji Photo Film Co Ltd 光学素子
US5138494A (en) 1990-05-07 1992-08-11 Stephen Kurtin Variable focal length lens
US5438486A (en) 1992-07-20 1995-08-01 Mcnair; Edward P. Headlights with variably shaped optical elements
JP3480071B2 (ja) 1994-10-13 2003-12-15 株式会社デンソー 可変焦点レンズ
US5999328A (en) 1994-11-08 1999-12-07 Kurtin; Stephen Liquid-filled variable focus lens with band actuator
JP3206420B2 (ja) 1996-02-22 2001-09-10 株式会社デンソー カメラ装置
US5774273A (en) 1996-08-23 1998-06-30 Vari-Lite, Inc. Variable-geometry liquid-filled lens apparatus and method for controlling the energy distribution of a light beam
CN1208633C (zh) * 1996-09-13 2005-06-29 约瑟华·戴维·西尔弗 制作可变焦距透镜的方法和其透镜及眼镜
JP3400270B2 (ja) 1996-11-08 2003-04-28 株式会社デンソー 積層型圧電アクチュエータおよび可変焦点レンズ装置
JPH11133210A (ja) 1997-10-30 1999-05-21 Denso Corp 可変焦点レンズ
US6040947A (en) 1998-06-09 2000-03-21 Lane Research Variable spectacle lens
JP4144079B2 (ja) 1998-09-04 2008-09-03 株式会社デンソー 可変焦点レンズ
US7646544B2 (en) 2005-05-14 2010-01-12 Batchko Robert G Fluidic optical devices
US7672059B2 (en) 2000-10-20 2010-03-02 Holochip Corporation Fluidic lens with electrostatic actuation
JP2002131513A (ja) 2000-10-27 2002-05-09 Fuji Photo Film Co Ltd 焦点距離可変レンズ
US7405884B2 (en) 2000-12-21 2008-07-29 Olympus Corporation Optical apparatus
GB0100031D0 (en) 2001-01-02 2001-02-14 Silver Joshua D Variable focus optical apparatus
JP2002357774A (ja) 2001-03-28 2002-12-13 Olympus Optical Co Ltd 可変焦点光学素子
US6747806B2 (en) 2001-04-19 2004-06-08 Creo Srl Method for controlling light beam using adaptive micro-lens
US6538823B2 (en) 2001-06-19 2003-03-25 Lucent Technologies Inc. Tunable liquid microlens
US6542309B2 (en) 2001-06-29 2003-04-01 The Boeing Company Flexible lens
JP3687585B2 (ja) 2001-10-05 2005-08-24 オムロン株式会社 焦点可変レンズ装置
US6715876B2 (en) 2001-11-19 2004-04-06 Johnnie E. Floyd Lens arrangement with fluid cell and prescriptive element
US6860601B2 (en) 2002-02-06 2005-03-01 John H. Shadduck Adaptive optic lens system and method of use
US6864951B1 (en) 2002-05-08 2005-03-08 University Of Central Florida Tunable electronic lens and prisms using inhomogeneous nano scale liquid crystal droplets
US20040001180A1 (en) 2002-07-01 2004-01-01 Saul Epstein Variable focus lens with internal refractive surface
US6966649B2 (en) 2002-08-12 2005-11-22 John H Shadduck Adaptive optic lens system and method of use
CN1732401A (zh) 2002-12-30 2006-02-08 皇家飞利浦电子股份有限公司 含有聚合物致动器的光学装置
US6891682B2 (en) 2003-03-03 2005-05-10 Lucent Technologies Inc. Lenses with tunable liquid optical elements
AU2004219674A1 (en) 2003-03-06 2004-09-23 Powervision, Inc. Adaptive optic lens and method of making
US7079203B1 (en) 2003-06-23 2006-07-18 Research Foundation Of The University Of Central Florida, Inc. Electrically tunable polarization-independent micro lens using polymer network twisted nematic liquid crystal
JP2005092175A (ja) 2003-08-08 2005-04-07 Olympus Corp 光学特性可変光学素子
WO2005040909A1 (en) 2003-10-09 2005-05-06 E-Vision, Llc Improved hybrid electro-active lens
US6859333B1 (en) 2004-01-27 2005-02-22 Research Foundation Of The University Of Central Florida Adaptive liquid crystal lenses
DE102004011026A1 (de) 2004-03-04 2005-09-29 Siemens Ag Adaptives optisches Element mit einem Polymeraktor
KR20060135930A (ko) 2004-03-31 2006-12-29 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 렌즈 장치와, 이 렌즈 장치를 포함하는 한 세트의 안경 및시스템과, 멀티 렌즈 장치와, 이 멀트 렌즈 장치를포함하는 줌 렌즈 시스템과, 이 줌 렌즈 시스템을 포함하는시스템과, 유체 순응 렌즈 장치 제조 방법과, 렌즈 장치작동 방법
US7453646B2 (en) 2004-03-31 2008-11-18 The Regents Of The University Of California Fluidic adaptive lens systems and methods
GB0407414D0 (en) 2004-04-01 2004-05-05 1 Ltd Variable focal length lens
GB0423564D0 (en) 2004-06-01 2004-11-24 Koninkl Philips Electronics Nv Optical element
US7298970B2 (en) 2004-08-30 2007-11-20 Eastman Kodak Company Zoom flash with variable focus lens
EP1812813A4 (en) 2004-11-05 2008-04-09 Univ California ADAPTIVE FLUID LENS SYSTEMS WITH PUMP SYSTEMS
US7142369B2 (en) 2005-01-21 2006-11-28 Research Foundation Of The University Of Central Florida, Inc. Variable focus liquid lens
US8885139B2 (en) 2005-01-21 2014-11-11 Johnson & Johnson Vision Care Adaptive electro-active lens with variable focal length
US7697214B2 (en) 2005-05-14 2010-04-13 Holochip Corporation Fluidic lens with manually-adjustable focus
CA2615361C (en) * 2005-07-15 2012-09-11 Research In Motion Limited Methods and apparatus for providing ptt data buffering support indications from mobile devices and ptt data buffering control by wireless networks
JP4697786B2 (ja) 2005-08-23 2011-06-08 セイコープレシジョン株式会社 可変焦点レンズとこれを用いた焦点調節装置及び撮像装置
US7382976B1 (en) 2005-09-09 2008-06-03 Avago Technologies Ecb4 Ip Pte Ltd Light source having a variable focal length
GB0522030D0 (en) * 2005-10-28 2005-12-07 Silver Joshua D Variable focus lens
AU2006307674B2 (en) 2005-10-28 2011-10-13 Adlens Ltd Variable focus lens
EP1816493A1 (en) 2006-02-07 2007-08-08 ETH Zürich Tunable diffraction grating
JP4209936B2 (ja) 2006-08-10 2009-01-14 パナソニック株式会社 可変焦点レンズ装置
WO2008020356A1 (en) 2006-08-15 2008-02-21 Koninklijke Philips Electronics N.V. Variable focus lens
JP2008058841A (ja) 2006-09-02 2008-03-13 Wakayama Univ 可変形状液体型の可変焦点レンズ
KR20080043106A (ko) 2006-11-13 2008-05-16 삼성전자주식회사 광학렌즈 및 그 제조방법
US7813047B2 (en) 2006-12-15 2010-10-12 Hand Held Products, Inc. Apparatus and method comprising deformable lens element
US7729068B2 (en) 2007-02-27 2010-06-01 Konica Minolta Holdings, Inc. Polymer actuator and optical unit
EP2075630A1 (en) 2007-12-28 2009-07-01 Varioptic Adaptative illumination device
FR2930352B1 (fr) 2008-04-21 2010-09-17 Commissariat Energie Atomique Membrane perfectionnee notamment pour dispositif optique a membrane deformable
WO2010015093A1 (en) 2008-08-08 2010-02-11 Optotune Ag Electroactive optical device
FR2938349B1 (fr) 2008-11-07 2011-04-15 Commissariat Energie Atomique Dispositif optique a membrane deformable a actionnement perfectionne
EP2239600A1 (en) 2010-06-02 2010-10-13 Optotune AG Adjustable optical lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014926A2 (en) * 2000-08-15 2002-02-21 Nanostream, Inc. Optical devices with fluidic systems
WO2009021344A1 (en) * 2007-08-11 2009-02-19 Optotune Ag Liquid lens system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11756335B2 (en) 2015-02-26 2023-09-12 Magic Leap, Inc. Apparatus for a near-eye display
US11790554B2 (en) 2016-12-29 2023-10-17 Magic Leap, Inc. Systems and methods for augmented reality
US11874468B2 (en) 2016-12-30 2024-01-16 Magic Leap, Inc. Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light
US11927759B2 (en) 2017-07-26 2024-03-12 Magic Leap, Inc. Exit pupil expander
US11953653B2 (en) 2017-12-10 2024-04-09 Magic Leap, Inc. Anti-reflective coatings on optical waveguides
US11762222B2 (en) 2017-12-20 2023-09-19 Magic Leap, Inc. Insert for augmented reality viewing device
US11776509B2 (en) 2018-03-15 2023-10-03 Magic Leap, Inc. Image correction due to deformation of components of a viewing device
US11908434B2 (en) 2018-03-15 2024-02-20 Magic Leap, Inc. Image correction due to deformation of components of a viewing device
JP2021525902A (ja) * 2018-05-30 2021-09-27 マジック リープ, インコーポレイテッドMagic Leap,Inc. 小型の可変焦点構成
US11885871B2 (en) 2018-05-31 2024-01-30 Magic Leap, Inc. Radar head pose localization
US12001013B2 (en) 2018-07-02 2024-06-04 Magic Leap, Inc. Pixel intensity modulation using modifying gain values
US11856479B2 (en) 2018-07-03 2023-12-26 Magic Leap, Inc. Systems and methods for virtual and augmented reality along a route with markers
US11960661B2 (en) 2018-08-03 2024-04-16 Magic Leap, Inc. Unfused pose-based drift correction of a fused pose of a totem in a user interaction system
US11762623B2 (en) 2019-03-12 2023-09-19 Magic Leap, Inc. Registration of local content between first and second augmented reality viewers
US12016719B2 (en) 2019-08-22 2024-06-25 Magic Leap, Inc. Patient viewing system
US11737832B2 (en) 2019-11-15 2023-08-29 Magic Leap, Inc. Viewing system for use in a surgical environment

Also Published As

Publication number Publication date
WO2012055049A1 (en) 2012-05-03
KR20130139952A (ko) 2013-12-23
CN103180762A (zh) 2013-06-26
EP2633341B1 (en) 2019-12-25
US8947784B2 (en) 2015-02-03
EP2633341A1 (en) 2013-09-04
US20130265647A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP2014500522A (ja) 2つの液体チャンバを有する可変焦点レンズ
US10345574B2 (en) Optical device with variable aperture
Zeng et al. Liquid tunable microlenses based on MEMS techniques
Jung et al. Monolithic polymer microlens arrays with high numerical aperture and high packing density
Agarwal et al. Polymer-based variable focal length microlens system
US7672059B2 (en) Fluidic lens with electrostatic actuation
Muller et al. Integrated optofluidic iris
Wang et al. Fabrication of hierarchical micro/nano compound eyes
Hong et al. Tunable microfluidic optical devices with an integrated microlens array
EP2282226A1 (en) Adjustable optical diaphragm
Jiang et al. Microlenses: Properties, Fabrication and Liquid Lenses
An et al. Spherically encapsulated variable liquid lens on coplanar electrodes
Wang et al. Design, fabrication and testing of a micromachined integrated tunable microlens
Wang et al. Compact variable-focusing microlens with integrated thermal actuator and sensor
Zhu et al. Fabrication of curved microlens array using a drop-on-demand droplet generator and polydimethylsiloxane replica mold
Zeng et al. Polydimethylsiloxane microlens arrays fabricated through liquid-phase photopolymerization and molding
US9810892B2 (en) Optical lens fabrication
Seo et al. Adjustable tilt angle of liquid microlens with four coplanar electrodes
Shao Polymer based microfabrication and its applications in optical MEMS and bioMEMS
Müller Tunable optofluidic apertures
Green et al. Fabrication of large area flexible PDMS waveguide sheets
Cao et al. Superhydrophobic Multifocal Microlens Array with Depth-of-Field Detection for a Humid Environment
Kokil et al. Optical and Optoelectronic Properties of Polymers and Their Nanoengineering Applications
Huang et al. Dynamically adjustable three-dimensional gray masks operated by electrostatic force modulation for the fabrication of microlens arrays in microchannels
Zeng et al. An endoscope utilizing tunable-focus microlenses actuated through infrared light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150105