JP2014238143A - Valve device and valve device manufacturing method - Google Patents

Valve device and valve device manufacturing method Download PDF

Info

Publication number
JP2014238143A
JP2014238143A JP2013121235A JP2013121235A JP2014238143A JP 2014238143 A JP2014238143 A JP 2014238143A JP 2013121235 A JP2013121235 A JP 2013121235A JP 2013121235 A JP2013121235 A JP 2013121235A JP 2014238143 A JP2014238143 A JP 2014238143A
Authority
JP
Japan
Prior art keywords
valve
sliding contact
bush
contact surface
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013121235A
Other languages
Japanese (ja)
Other versions
JP6157937B2 (en
Inventor
大輔 ▲辻▼
大輔 ▲辻▼
Daisuke Tsuji
進藤 蔵
Kura Shindo
蔵 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013121235A priority Critical patent/JP6157937B2/en
Priority to KR1020140067401A priority patent/KR101624977B1/en
Priority to US14/296,621 priority patent/US20140361208A1/en
Priority to EP14171328.9A priority patent/EP2811211B1/en
Priority to IN1523DE2014 priority patent/IN2014DE01523A/en
Publication of JP2014238143A publication Critical patent/JP2014238143A/en
Application granted granted Critical
Publication of JP6157937B2 publication Critical patent/JP6157937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/10Welded housings
    • F16K27/102Welded housings for lift-valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/001Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seat
    • F16K25/005Particular materials for seats or closure elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K25/00Details relating to contact between valve members and seat
    • F16K25/04Arrangements for preventing erosion, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making
    • Y10T29/49412Valve or choke making with assembly, disassembly or composite article making

Abstract

PROBLEM TO BE SOLVED: To inhibit heat gain at a time of forming a padding portion on a movable member, to inhibit occurrence of adhesive wear on a slide contact surface, and to improve wear resistance to extend service life.SOLUTION: A valve device includes a padding portion integrally provided on a slide contact surface of either a valve rod 205 serving as a movable member or a valve element 204. The padding portion is formed by generating a pulsed discharge between an electrode formed of a compact mainly containing a metal and a treatment target portion of either the valve rod 205 or the valve element 204, and welding and depositing a material of the electrode on a surface of the treatment target portion. The valve device includes a surface layer integrally provided on a slide contact surface of a bush 201 serving as a stationary member or a sleeve. The surface layer is formed by forming a first coating film by a surface hardening heat treatment by means of a metal infiltration method. The slide contact surface of either the valve rod 205 or the valve element 204 and the slide contact surface of either the bush 201 or the sleeve slidably contact each other according to a valve opening/closing operation.

Description

本発明の実施形態は、弁装置およびその製造方法に関する。   Embodiments described herein relate generally to a valve device and a manufacturing method thereof.

火力発電プラント等の蒸気タービンには、蒸気の流入を制御するために、主蒸気止め弁,蒸気加減弁,再熱蒸気止め弁,中間阻止弁,タービンバイパス弁等の種々の弁装置が付設されている。   Steam turbines such as thermal power plants are equipped with various valve devices such as a main steam stop valve, a steam control valve, a reheat steam stop valve, an intermediate stop valve, and a turbine bypass valve in order to control the inflow of steam. ing.

上記弁装置においては、可動部材とこれに摺接する静止部材、例えば弁棒とブッシュとの材料の組み合わせとして、耐摩耗性を増加させて耐用年数を長くする目的で、例えばブッシュ材料を12%クロム鋼、弁棒の材料をニッケル30〜50%オーステナイト系耐熱合金とし、かつそれら部材の表面硬化熱処理方法として窒化処理を施すことが広く知られている。   In the valve device, as a combination of a movable member and a stationary member that is in sliding contact with the movable member, for example, a valve stem and a bush, the bush material is made of, for example, 12% chromium for the purpose of increasing wear resistance and extending the service life. It is widely known that steel and valve stem are made of nickel 30-50% austenitic heat-resistant alloy, and nitriding is performed as a surface hardening heat treatment method for these members.

特開平6−101769号公報JP-A-6-101769

近年、火力発電プラント等の高効率化が押し進められ、蒸気温度は、593℃、600℃、610℃というように上昇してきている。今後は、蒸気温度が700℃以上となることが考えられる。   In recent years, higher efficiency of thermal power plants and the like has been pushed forward, and the steam temperature has increased to 593 ° C., 600 ° C., 610 ° C., and the like. In the future, it is conceivable that the steam temperature will be 700 ° C. or higher.

一方で、弁装置の可動部材とこれに摺接する静止部材、例えば弁棒とブッシュとの接触面に施される窒化処理は、高温の下では、金属表面が活性化状態となり、雰囲気中の高温水蒸気と反応して酸化皮膜を生成しやすい。生成した酸化皮膜は、弁の繰返し開閉動作の度に剥離を起こし、剥離片が弁棒の摺動により表面の凹部に局部的に堆積してブッシュとの間隙を埋め、弁棒のスティックを発生させる。また、弁棒とブッシュとの接触面に形成される窒化層は、その窒化処理温度に因り約500℃以上で分解し、軟化する性質を持ち、また窒化層の厚さが極めて薄いと窒化層が無くなり、摩耗が急激に進展する等、弁の動作不調の要因となる。   On the other hand, the nitriding treatment applied to the contact surface between the movable member of the valve device and the stationary member that is in sliding contact with the movable member, for example, the valve stem and the bush, becomes a metal surface in an activated state at a high temperature, and the high temperature in the atmosphere. It easily reacts with water vapor to form an oxide film. The generated oxide film peels off each time the valve is repeatedly opened and closed, and the peeled pieces are deposited locally in the recesses on the surface by sliding the valve stem, filling the gap with the bush and generating the stick on the valve stem. Let Also, the nitride layer formed on the contact surface between the valve stem and the bush has a property of decomposing and softening at about 500 ° C. or more depending on the nitriding temperature, and if the nitride layer is extremely thin, the nitride layer This causes a malfunction of the valve, such as a rapid increase in wear.

この窒化処理を改善する目的から、静止部材となるブッシュなどの摺接面に、コバルト基硬質合金を肉盛り溶接にて形成する技術が採用されるようになってきた。一般的なコバルト基硬質合金は、コバルトを主成分とし、30%程度のクロム,4〜15%のタングステンを含有する合金で、耐摩耗性に優れた材料として広く知られているが、コバルトを多く含むので耐酸化性にも高い特性を持っている。   In order to improve this nitriding treatment, a technique has been adopted in which a cobalt-based hard alloy is formed by overlay welding on a sliding contact surface such as a bush serving as a stationary member. A general cobalt-based hard alloy is an alloy containing cobalt as a main component, about 30% chromium, and 4 to 15% tungsten, and is widely known as a material having excellent wear resistance. Since it contains many, it has high characteristics in oxidation resistance.

しかし、このようなコバルト基硬質合金を、可動部材となる弁棒の摺接面に肉盛り溶接にて形成すると、弁棒の形状が長尺の丸棒であることから、製造途中に許容できない曲がりが発生しやすくなる。この曲がり発生の原因は、肉盛り溶接による入熱量が大きいことにある。更には、この場合、可動部材となる弁棒の摺接面に形成された金属材料が、静止部材となるブッシュの摺接面に形成された金属材料と同種となることから、滑り運動(摺動)に際して凝着摩耗が発生しやすい。例えば弁棒とブッシュの構造においては、弁の開閉に際し弁棒には蒸気力が作用するため、弁棒がブッシュの内面(摺動面)に押し付けられ、摺動面の面圧が過大に上昇しながら摺動することになり、凝着摩耗が発生しやすい状態となる。   However, when such a cobalt-based hard alloy is formed by overlay welding on the sliding contact surface of the valve stem serving as the movable member, the shape of the valve stem is a long round bar, which is not acceptable during production. Bending is likely to occur. The cause of this bending is that the heat input by overlay welding is large. Furthermore, in this case, since the metal material formed on the sliding contact surface of the valve rod serving as the movable member is the same type as the metal material formed on the sliding contact surface of the bush serving as the stationary member, sliding motion (sliding) Adhesive wear is likely to occur during operation. For example, in the structure of the valve stem and bush, steam force acts on the valve stem when opening and closing the valve, so the valve stem is pressed against the inner surface (sliding surface) of the bush, and the surface pressure of the sliding surface increases excessively. However, it will be in a state where adhesive wear is likely to occur.

このようなことから、可動部材に肉盛部を形成する際の入熱量を抑えるとともに、摺接面における凝着摩耗の発生を抑え、耐摩耗性を向上させることが可能な技術の提示が望まれる。   For this reason, it is desirable to present a technique capable of suppressing the amount of heat input when forming the built-up portion on the movable member, suppressing the occurrence of adhesive wear on the sliding contact surface, and improving the wear resistance. It is.

本発明は上記実情に鑑みてなされたものであり、可動部材に肉盛部を形成する際の入熱量を抑えるとともに、摺接面における凝着摩耗の発生を抑え、耐摩耗性を向上させて耐用年数を長くすることが可能な弁装置およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and suppresses the amount of heat input when forming the built-up portion on the movable member, suppresses the occurrence of adhesive wear on the sliding contact surface, and improves the wear resistance. It is an object of the present invention to provide a valve device capable of extending the service life and a manufacturing method thereof.

一実施形態による弁装置は、可動部材となる弁棒もしくは弁体の摺接面に肉盛部を一体に備え、前記肉盛部は、金属を主成分とする成形体により構成される電極と前記弁棒もしくは前記弁体の被処理部との間にパルス状の放電を発生させて前記電極の材料を前記被処理部の表面に溶着させ堆積させて形成されたものであり、静止部材となるブッシュもしくはスリーブの摺接面に表面層を一体に備え、前記表面層は、金属浸透法による表面硬化熱処理によって第1の皮膜を形成してなるものであり、前記弁棒もしくは前記弁体の摺接面と前記ブッシュもしくは前記スリーブの摺接面とが、弁の開閉動作に伴って摺接する。   A valve device according to an embodiment includes a built-in part integrally on a sliding surface of a valve rod or a valve body serving as a movable member, and the built-up part includes an electrode formed of a molded body mainly composed of metal, It is formed by generating a pulsed discharge between the valve stem or the processed portion of the valve body and depositing the electrode material on the surface of the processed portion, A surface layer is integrally provided on the sliding contact surface of the bush or sleeve, and the surface layer is formed by forming a first film by a surface hardening heat treatment by a metal infiltration method. The sliding contact surface and the sliding contact surface of the bush or the sleeve are in sliding contact with the opening / closing operation of the valve.

本発明によれば、可動部材に肉盛部を形成する際の入熱量を抑えるとともに、摺接面における凝着摩耗の発生を抑え、耐摩耗性を向上させて耐用年数を長くすることが可能となる。   According to the present invention, it is possible to suppress the amount of heat input when forming the built-up portion on the movable member, suppress the occurrence of adhesive wear on the sliding contact surface, improve the wear resistance, and extend the service life. It becomes.

第1の実施形態の製造方法により製造した部材を用いた弁装置の構成例を示す断面図。Sectional drawing which shows the structural example of the valve apparatus using the member manufactured by the manufacturing method of 1st Embodiment. 被処理部に肉盛部を形成するための製造装置の構成を示す図。The figure which shows the structure of the manufacturing apparatus for forming the build-up part in a to-be-processed part. 被処理部に肉盛部を形成する具体的な製造方法の一例を示す断面図(その1)。Sectional drawing which shows an example of the specific manufacturing method which forms the build-up part in a to-be-processed part (the 1). 被処理部に肉盛部を形成する具体的な製造方法の一例を示す断面図(その2)。Sectional drawing which shows an example of the specific manufacturing method which forms the build-up part in a to-be-processed part (the 2). 被処理部に表面層を形成する具体的な製造方法の一例を示す断面図(その1)。Sectional drawing which shows an example of the specific manufacturing method which forms a surface layer in a to-be-processed part (the 1). 被処理部に表面層を形成する具体的な製造方法の一例を示す断面図(その2)。Sectional drawing which shows an example of the specific manufacturing method which forms a surface layer in a to-be-processed part (the 2). 第4の実施形態の製造方法により製造した部材を用いた弁装置の構成例を示す断面図。Sectional drawing which shows the structural example of the valve apparatus using the member manufactured by the manufacturing method of 4th Embodiment.

以下、実施の形態について、図面を参照して説明する。   Hereinafter, embodiments will be described with reference to the drawings.

(第1の実施形態)
最初に第1の実施形態について説明する。
(First embodiment)
First, the first embodiment will be described.

図1は、第1の実施形態における弁装置、ここでは図示しない高圧タービンの前段に設置され、流入する蒸気量を制御することで高圧タービンの回転数を制御するために使用される蒸気加減弁を例として示した断面図である。   FIG. 1 is a steam control valve that is installed in a preceding stage of a valve device according to a first embodiment, not shown here, and used to control the rotational speed of a high-pressure turbine by controlling the amount of steam that flows in. It is sectional drawing which showed as an example.

蒸気加減弁は、蒸気弁本体200、ブッシュ201、上蓋202、蒸気の出口としての弁座203、弁体204、弁棒205、蒸気の入口である開口207、蒸気の出口である開口208、弁棒205及び弁体204の挿入口である開口209、を有する。蒸気弁本体200では、開口209を通じて蒸気室210内に挿入された弁棒205の軸方向の動きにより弁体204にて弁座203の開口208を開閉する。上蓋202は、蒸気弁本体200の開口209の上部に固定されており、蒸気弁本体200の上面を閉塞するものである。上蓋202の上方には油圧駆動機構206が設置されており、油圧駆動機構206には弁棒205が下方(鉛直方向)に向けて連結されている。この弁棒205は、油圧駆動機構206により上下に往復動作するようになっている。蒸気加減弁では、上蓋202の貫穴口が弁棒205との摺動面となることから、この部分に摩擦に強い金属を素材とする円筒状のブッシュ201が挿着されており、軸方向に動く弁棒205が横ぶれしないようにブッシュ201にてガイドするものである。弁体204は弁座203に当接して弁座203の開口を開閉するように設けられている。この弁体204は、弁棒205の先端部に設けられている。   The steam control valve includes a steam valve body 200, a bush 201, an upper lid 202, a valve seat 203 as a steam outlet, a valve body 204, a valve rod 205, an opening 207 as a steam inlet, an opening 208 as a steam outlet, a valve An opening 209 which is an insertion port for the rod 205 and the valve body 204 is provided. In the steam valve main body 200, the valve body 204 opens and closes the opening 208 of the valve seat 203 by the axial movement of the valve rod 205 inserted into the steam chamber 210 through the opening 209. The upper lid 202 is fixed to the upper part of the opening 209 of the steam valve main body 200 and closes the upper surface of the steam valve main body 200. A hydraulic drive mechanism 206 is installed above the upper lid 202, and a valve rod 205 is connected to the hydraulic drive mechanism 206 downward (vertical direction). The valve rod 205 is reciprocated up and down by a hydraulic drive mechanism 206. In the steam control valve, the through hole of the upper lid 202 becomes a sliding surface with the valve rod 205, and thus a cylindrical bush 201 made of a metal resistant to friction is inserted into this portion, and the axial direction is The moving valve rod 205 is guided by the bush 201 so that it does not shake sideways. The valve body 204 is provided so as to contact the valve seat 203 and open and close the opening of the valve seat 203. The valve body 204 is provided at the tip of the valve rod 205.

ここでは、可動部材となる弁棒205を例にとり、その摺接面に耐摩耗性に優れたコバルト基硬質合金を肉盛りする方法について説明する。なお、この場合の摺接面は弁棒205の外面にある。   Here, taking a valve rod 205 serving as a movable member as an example, a method for depositing a cobalt-based hard alloy having excellent wear resistance on the sliding contact surface will be described. In this case, the sliding surface is on the outer surface of the valve stem 205.

図2は、被処理部に肉盛を施す放電加工法を示す概念図である。   FIG. 2 is a conceptual diagram showing an electric discharge machining method for overlaying a portion to be processed.

図2に示すように、放電加工機に備えられる電気絶縁性のある液体L(又は気中)において、電極101は直流電源103の陰極と接続され、また直流電源103の陽極に接続された被処理部100との間に微小間隙を保持した状態で、直流電源103の電圧を当該電極101と当該被処理部100との間で印加又は印加を停止することによりパルス状の放電を発生させて、その放電エネルギーにより、当該電極101の材料を当該被処理部100の表面に溶着させ、堆積させる。ここで、被処理部100とは、図1における弁棒205又はブッシュ201の摺動しながら接する摺接面を意味しており、弁棒205とブッシュ201の少なくとも一方の摺接面に肉盛部102を一体的に備え、肉盛部102は金属を主成分とする成形体により構成される電極と弁棒205又はブッシュ201からなる被処理部との間にパルス状の放電を発生させて電極の材料を被処理部の表面に溶着させ堆積させることによって肉盛部102を形成したものであり、電極の材料としてコバルト基硬質合金を用いた。一般的なコバルト基硬質合金は、コバルトを主成分とし、30%程度のクロム,4〜15%のタングステンを含有する合金で、耐摩耗性に優れた材料として広く知られているが、コバルトを多く含んでいるので耐酸化性にも高い特性を持っている。   As shown in FIG. 2, in the electrically insulating liquid L (or in the air) provided in the electric discharge machine, the electrode 101 is connected to the cathode of the DC power supply 103 and connected to the anode of the DC power supply 103. A pulsed discharge is generated by applying or stopping the application of the voltage of the DC power source 103 between the electrode 101 and the processing target 100 while maintaining a minute gap with the processing unit 100. The material of the electrode 101 is welded and deposited on the surface of the processing object 100 by the discharge energy. Here, the portion to be processed 100 means a sliding contact surface that contacts the valve stem 205 or the bush 201 in FIG. 1 while sliding, and builds up on at least one sliding contact surface of the valve stem 205 and the bush 201. Part 102 is integrally provided, and build-up part 102 generates a pulse-like discharge between an electrode formed of a molded body mainly composed of metal and a part to be processed including valve stem 205 or bush 201. The build-up portion 102 was formed by welding and depositing an electrode material on the surface of the processing target, and a cobalt-based hard alloy was used as the electrode material. A general cobalt-based hard alloy is an alloy containing cobalt as a main component, about 30% chromium, and 4 to 15% tungsten, and is widely known as a material having excellent wear resistance. Because it contains a lot, it has high oxidation resistance.

この放電加工法では、電極の粒子単位で母材を溶融して肉盛部を形成することから、被処理部の母材への入熱が少ないため、被処理部を変形させずに肉盛りを行うことができる。更に電極成分が被処理部と溶け合って接合しているので、肉盛部と被処理部の母材との密着性が高く肉盛部が剥離することがない。また、この放電加工法は入熱が少ないことから、被処理部の母材表層に熱影響部(HAZ: Heat-Affected Zone)を形成しない。一般的な溶接方法では、母材の表層1〜3mm程度が熱影響部として形成され、母材本来の組織とは異なる結晶粒の粗大化、それに伴う熱処理時の再熱割れ(SR割れ)や残留応力による経年的な割れが発生するが、本実施形態の放電加工法によれば、入熱に起因する母材表層の熱影響部の形成を防止でき、欠陥の少ない高品質な製品を製造できる。   In this electrical discharge machining method, the base material is melted in units of electrode particles to form a built-up portion. Therefore, since the heat input to the base material of the processed portion is small, the build-up is performed without deforming the processed portion. It can be performed. Furthermore, since the electrode component is melted and bonded to the portion to be processed, the adhesion between the build-up portion and the base material of the portion to be processed is high, and the build-up portion does not peel off. In addition, since this electric discharge machining method has little heat input, a heat affected zone (HAZ: Heat-Affected Zone) is not formed on the surface of the base material of the portion to be processed. In a general welding method, a surface layer of about 1 to 3 mm of the base material is formed as a heat-affected zone, and coarsening of crystal grains different from the original structure of the base material, accompanying reheat cracking (SR cracking) during heat treatment, Aged cracking due to residual stress occurs, but according to the electrical discharge machining method of this embodiment, it is possible to prevent the formation of the heat-affected zone of the base material surface layer due to heat input, and manufacture high-quality products with few defects it can.

次に、図3A,図3Bを参照して、被処理部100に肉盛部102を形成する具体的な製造方法の一例を説明する。   Next, with reference to FIG. 3A and FIG. 3B, an example of a specific manufacturing method for forming the build-up portion 102 in the processing target portion 100 will be described.

図3Aは、被処理部(素材)に図2に示す放電加工機を用いて、肉盛部102を形成した状態を示している。放電加工法により形成される肉盛部102は、電極101の材料の粒子が被処理部100の表面から拡散浸透した拡散浸透層102aと、この拡散層には電極101の材料の粒子が溶着して堆積した堆積層102bを含んでいる。   FIG. 3A shows a state in which the built-up portion 102 is formed on the portion to be processed (material) using the electric discharge machine shown in FIG. The build-up portion 102 formed by the electric discharge machining method has a diffusion / penetration layer 102a in which particles of the material of the electrode 101 are diffused and penetrated from the surface of the treated portion 100, and particles of the material of the electrode 101 are welded to the diffusion layer. The deposited layer 102b deposited in this manner is included.

拡散浸透層102aは、被処理部100にコバルト基硬質合金を放電加工により肉盛りしたものであるため、組成比が厚さ方向へ傾斜的に変化する傾斜組成の溶融部が生成されている。ここでは、適正な放電条件を選択することにより、母材への入熱量を制限すべく溶融部となる拡散浸透層102aの厚さは、20μm以下であって最小1μm以上、望ましくは5μm以上とすることが好ましい。溶融部を有する傾斜組成は、傾斜機能材料となり被処理部100の母材と接する境界近傍の線膨張係数は略等しくなり、線膨張係数の差がほとんど生じないため、肉盛部102の残留応力を解消することができる。この結果、被処理部100の表面に施した肉盛部102の亀裂の発生を防止することができる。堆積層102bは、放電加工を採用したことに起因する堆積層102bの厚さに制限はないが、コバルト基硬質合金の持つ耐摩耗性や耐酸化性を有効に発揮させるためにもその厚みは50μm〜300μm程度が望ましい。   Since the diffusion / penetration layer 102a is formed by depositing a cobalt-based hard alloy on the portion 100 to be processed by electric discharge machining, a melted portion having a gradient composition in which the composition ratio changes in the thickness direction is generated. Here, by selecting an appropriate discharge condition, the thickness of the diffusion / penetration layer 102a serving as a melting portion is limited to 20 μm or less and a minimum of 1 μm or more, preferably 5 μm or more, in order to limit the amount of heat input to the base material. It is preferable to do. Since the gradient composition having the melted portion becomes a functionally gradient material, the linear expansion coefficients in the vicinity of the boundary in contact with the base material of the processed portion 100 are substantially equal, and there is almost no difference in the linear expansion coefficients. Can be eliminated. As a result, it is possible to prevent the occurrence of cracks in the built-up portion 102 applied to the surface of the processing target portion 100. The thickness of the deposited layer 102b is not limited to the thickness of the deposited layer 102b resulting from the adoption of electric discharge machining, but the thickness is not limited in order to effectively exhibit the wear resistance and oxidation resistance of the cobalt-based hard alloy. About 50 μm to 300 μm is desirable.

ここで、電極101は、金属を主成分とする粉末をプレスにより圧縮もしくは加熱処理して成形した成形体により構成される成形電極であるが、その他公知の製造方法によって成形しても差し支えない。   Here, the electrode 101 is a molded electrode formed of a molded body formed by compressing or heat-treating a powder containing metal as a main component by a press, but may be molded by other known manufacturing methods.

電極101の材料としては、耐熱衝撃性と耐酸化性を有し、被処理部の母材よりも硬度の高いコバルト基硬質合金もしくはニッケル基硬質合金が適するが、これら以外にも、高温度において優れた耐酸化性を示す例えば窒化クロム(CrN)、窒化チタンアルミウム(TiAlN)、窒化チタンタングステン(Ti−w)N、炭化チタンモリブデン(Ti−Mo)C、窒化クロムケイ素(CrSiN)および窒化チタンケイ素(TiSiN)等のファインセラミックス材が挙げられる。   As a material of the electrode 101, a cobalt base hard alloy or a nickel base hard alloy having a thermal shock resistance and an oxidation resistance and having a hardness higher than that of the base material of the processing target is suitable. For example, chromium nitride (CrN), titanium aluminum nitride (TiAlN), titanium tungsten nitride (Ti-w) N, titanium carbide (Ti-Mo) C, chromium silicon nitride (CrSiN) and titanium nitride exhibiting excellent oxidation resistance Fine ceramic materials such as silicon (TiSiN) can be used.

これらファインセラミックスの粉末、または当該粉末と前述の硬質合金とを混合した粉末から成形される電極101も考えられるが、今後の更なる蒸気条件の上昇に伴い新たな材料が開発されても、本実施形態の放電加工による製造方法によれば、肉盛部は傾斜機能材料となり得るため、適用可能なことは言うまでもない。   An electrode 101 formed from these fine ceramic powders or a powder obtained by mixing the powder and the above-mentioned hard alloy is also conceivable. However, even if new materials are developed as the steam conditions further increase, Needless to say, according to the manufacturing method by electric discharge machining according to the embodiment, the built-up portion can be a functionally gradient material, and thus can be applied.

ここで、弁棒205の材料は例えばクロム−モリブデン鋼,クロム−モリブデン−バナジウム鋼,クロム−モリブデン−タングステン−バナジウム鋼,9%クロム鋼,12%クロム鋼,ニッケル基やコバルト基の高温耐熱合金等が選定されるが、これら既存の材料に限定されることなく、今後の更なる蒸気条件の上昇に伴い新たな材料が開発されても、本実施形態による製造方法が適用可能なことは言うまでもない。   Here, the material of the valve stem 205 is, for example, chromium-molybdenum steel, chromium-molybdenum-vanadium steel, chromium-molybdenum-tungsten-vanadium steel, 9% chromium steel, 12% chromium steel, nickel base or cobalt base high temperature heat resistant alloy. However, the present invention is not limited to these existing materials, and it goes without saying that the manufacturing method according to this embodiment can be applied even if new materials are developed as the steam conditions further increase in the future. Yes.

図3Bは、肉盛した後の肉盛部102において、肉盛部102の表面に電極の粒子が堆積して生じた歪な凹凸を機械加工、たとえば研削盤や研磨盤等により所定の形状や寸法および幾何公差を有するように、表面粗さ(最大高さ粗さ)Rzが12.5より細かく仕上げた状態を示している。   FIG. 3B shows that in the build-up portion 102 after the build-up, the distorted unevenness generated by the deposition of electrode particles on the surface of the build-up portion 102 is machined, for example, with a predetermined shape or The surface roughness (maximum height roughness) Rz is finished finer than 12.5 so as to have dimensional and geometrical tolerances.

次に、弁の開閉動作に伴って弁棒205と摺接する静止部材のブッシュ201を例にとり、その摺接面にクロマイジング処理を施す様子を説明する。なお、この場合の摺接面はブッシュ201の内面にあり、クロマイジング処理を施す面はブッシュ201の内面にある。   Next, a state where the chromizing process is performed on the sliding contact surface of the bush 201 as a stationary member that is in sliding contact with the valve stem 205 in accordance with the opening / closing operation of the valve will be described. In this case, the slidable contact surface is on the inner surface of the bush 201, and the surface to be subjected to the chromizing process is on the inner surface of the bush 201.

ここで、クロマイジング処理などのような金属の拡散現象を利用して、表面から他の金属を拡散浸透させて合金層をつくる金属浸透法は、金属被処理物に対してクロムなどの金属を含む粉末を混合して非酸化性雰囲気中で加熱し、金属被処理物の原子間にクロムなどの原子を浸透させ、表面を合金層(例えば鉄とクロムとの合金)にする。   Here, the metal infiltration method, which uses metal diffusion phenomenon such as chromizing treatment to diffuse and infiltrate other metals from the surface to form an alloy layer, is a metal penetration method. The contained powder is mixed and heated in a non-oxidizing atmosphere, and atoms such as chromium are infiltrated between the atoms of the metal object to form an alloy layer (for example, an alloy of iron and chromium).

この場合、浸透する金属は被処理物と直接接触することによって被処理物表面に移行するものと、浸透促進剤として少量加えられるハロゲン化物によって気相でハロゲン化金属が生成され、それが被処理物表面に析出定着した後に浸透するものとがある。   In this case, the permeating metal is transferred to the surface of the object by direct contact with the object to be processed, and the halide added in a small amount as a penetration accelerator generates a metal halide in the gas phase, which is treated. Some of them penetrate after being deposited and fixed on the surface of the object.

いずれにしても、素材の金属と拡散浸透したクロムとが合金として一体化しているので、メッキ法のように剥離することはなく、また化学蒸着法(CVD)のように特殊な処理装置の必要性もない。しかも基本的には母材金属材料の物理的特性を特に変化させることなく表面層を均一に処理できるという特徴を有する。   In any case, the material metal and the diffusion-penetrated chromium are integrated as an alloy, so they do not peel off as with plating, and require special processing equipment such as chemical vapor deposition (CVD). There is no sex. In addition, basically, the surface layer can be uniformly treated without particularly changing the physical characteristics of the base metal material.

図4A,図4Bを参照して、具体的な製造方法の一例を説明する。   An example of a specific manufacturing method will be described with reference to FIGS. 4A and 4B.

まず被処理面となるブッシュ201の内面を洗浄するためホーニング作業を行った後、図4Aに示すようにブッシュ201を反応容器307内の浸炭剤308に埋没させ、約1000〜1200℃で一定時間熱処理し、炉冷,空冷を行う。その後、浸炭処理面の洗浄,保護のための処理を行い浸炭処理が完了する。浸炭剤308には木炭粉末に炭酸バリウムを混合したものを使用する。この処理により約100〜200μmの浸炭層が形成できる。   First, a honing operation is performed to clean the inner surface of the bush 201 as the surface to be treated, and then the bush 201 is buried in the carburizing agent 308 in the reaction vessel 307 as shown in FIG. Heat treatment, furnace cooling and air cooling. Thereafter, the carburized surface is cleaned and protected to complete the carburizing process. As the carburizing agent 308, charcoal powder mixed with barium carbonate is used. By this treatment, a carburized layer of about 100 to 200 μm can be formed.

次にクロマイジング処理を行う。浸炭層を形成したブッシュ201に再度ホーニング作業を行った後、図4Bに示すようにクロム,酸化アルミニウム,塩化アンモニウムの粉末剤からなる粉末パック剤309中に埋没させ、約1050〜1250℃で一定時間熱処理を行う。このときの加熱雰囲気はアルゴンガス雰囲気とする。その後、ブッシュ201内面の洗浄,保護のための処理を行い、クロマイジング処理が完了する。この処理により約20〜30μmのクロムカーバイド層(CrC)が形成できる。クロマイジング処理後、調質処理として真空雰囲気下にて約1000〜1200℃で焼き入れ、約600〜800℃で焼き戻し処理を行う。   Next, a chromizing process is performed. After the honing operation is performed again on the bush 201 in which the carburized layer is formed, as shown in FIG. 4B, the bush 201 is buried in a powder pack 309 made of a powder of chromium, aluminum oxide, and ammonium chloride, and is constant at about 1050 to 1250 ° C. Perform time heat treatment. The heating atmosphere at this time is an argon gas atmosphere. Thereafter, the inner surface of the bush 201 is cleaned and protected, and the chromizing process is completed. By this treatment, a chromium carbide layer (CrC) of about 20 to 30 μm can be formed. After the chromizing treatment, a tempering treatment is performed by quenching at about 1000 to 1200 ° C. in a vacuum atmosphere and tempering at about 600 to 800 ° C.

最後にホーニング作業を行い、所定の寸法および幾何公差を有するように、表面粗さ(最大高さ粗さ)Rzが12.5より細かく仕上げ、一連のクロマイジング処理工程が終了となる。   Finally, a honing operation is performed to finish the surface roughness (maximum height roughness) Rz finer than 12.5 so as to have predetermined dimensions and geometrical tolerances, and a series of chromizing treatment steps is completed.

以上から、ブッシュ201にクロマイジング処理を施した結果、摺接面となるブッシュ201の内面には、第1の皮膜となるクロムカーバイド層(CrC)が形成される。クロムカーバイド層(CrC)は、コバルト基硬質合金と同様、耐酸化,耐摩耗性に優れた皮膜であり、例えばブッシュ201の材料が12Cr鋼の場合、常温硬さ1550HV,高温(600℃)硬さ1100HVと高温でも高硬度を維持しているため、摺接面に施した場合、耐摩耗性を向上させることができる。また、耐酸化特性においても酸化増量は非常に小さいため、摺接面の耐酸化特性を向上させることができ、高温蒸気条件下において酸化スケールの生成を防止できる。なお、クロマイジング処理を施した表面は非常に硬く、加工性が悪くなるので、摺接面にのみ処理する。またクロマイジング処理を施さない部位については浸炭防止剤を塗布し、摺接面以外での反応が起きないように考慮する必要がある。   From the above, as a result of chromizing the bush 201, a chromium carbide layer (CrC) serving as the first film is formed on the inner surface of the bush 201 serving as the sliding contact surface. The chromium carbide layer (CrC) is a film excellent in oxidation resistance and wear resistance as in the case of the cobalt-based hard alloy. For example, when the material of the bush 201 is 12Cr steel, the normal temperature hardness is 1550 HV and the high temperature (600 ° C.) is hard. Since the high hardness is maintained even at a high temperature of 1100 HV, wear resistance can be improved when applied to the sliding contact surface. Moreover, since the oxidation increase is very small in the oxidation resistance characteristics, the oxidation resistance characteristics of the sliding surface can be improved, and generation of oxide scale can be prevented under high temperature steam conditions. In addition, since the surface which performed the chromizing process is very hard and workability worsens, it processes only to a slidable contact surface. Moreover, it is necessary to consider the site | part which does not perform a chromizing process by apply | coating a carburizing inhibitor and preventing reaction other than a sliding contact surface.

ここで、ブッシュ201の材料は12%クロム鋼以外に例えばクロム−モリブデン鋼,クロム−モリブデン−バナジウム鋼,クロム−モリブデン−タングステン−バナジウム鋼,9%クロム鋼,ニッケル基やコバルト基の高温耐熱合金等が選定されるが、これら既存の材料に限定されることなく、鋼種としてのフェライト系あるいはマルテンサイト系あるいはオーステナイト系のいずれかからなる耐熱合金鋼を適用することが可能である。また、今後の更なる蒸気条件の上昇に伴い新たな材料が開発されても、本実施形態による製造方法が適用可能なことは言うまでもない。   Here, the material of the bush 201 is, for example, chromium-molybdenum steel, chromium-molybdenum-vanadium steel, chromium-molybdenum-tungsten-vanadium steel, 9% chromium steel, nickel-based or cobalt-based high-temperature heat-resistant alloy in addition to 12% chromium steel. However, the present invention is not limited to these existing materials, and it is possible to apply a heat-resistant alloy steel made of any of ferritic, martensitic, and austenitic steel types. Further, it goes without saying that the manufacturing method according to the present embodiment can be applied even if new materials are developed as the steam conditions further increase.

尚、各熱処理工程での処理時間は形状や材質毎に異なり、一連のクロマイジング処理による皮膜の厚みは処理時間及び処理温度に依存する。   In addition, the processing time in each heat treatment process differs for every shape and material, and the thickness of the film by a series of chromizing processes depends on the processing time and the processing temperature.

この第1の実施形態によれば、可動部材については、被処理部100に例えばコバルト基硬質合金を放電加工により肉盛りし、その際に適正な放電条件を選択することにより、母材への入熱量を制限することができ、また、溶融部を有する傾斜組成を傾斜機能材料とすることができ、被処理部100の母材と接する境界近傍の線膨張係数を略等しくすることができるため、線膨張係数の差がほとんど生じず、肉盛部102の残留応力を解消することができ、被処理部100の表面に施した肉盛部102の亀裂の発生を防止することができる。   According to the first embodiment, with respect to the movable member, for example, a cobalt-based hard alloy is built up on the processing target 100 by electric discharge machining, and an appropriate discharge condition is selected at that time. The amount of heat input can be limited, and the gradient composition having the melted portion can be used as a functionally graded material, so that the linear expansion coefficient in the vicinity of the boundary contacting the base material of the portion to be processed 100 can be made substantially equal. The difference in linear expansion coefficient hardly occurs, the residual stress of the built-up portion 102 can be eliminated, and the occurrence of cracks in the built-up portion 102 applied to the surface of the processing target portion 100 can be prevented.

一方、静止部材については、例えばクロマイジング処理を施すことにより、摺接面には、第1の皮膜となるクロムカーバイド層が形成されるため、コバルト基硬質合金と同様、耐酸化,耐摩耗性に優れた皮膜となり、高温でも高硬度を維持することが可能となり、耐摩耗性を向上させることができ、耐酸化特性においても酸化増量は非常に小さいため、摺接面の耐酸化特性を向上させることができ、高温蒸気条件下において酸化スケールの生成を防止できる。   On the other hand, for the stationary member, for example, by performing chromizing treatment, a chrome carbide layer serving as the first film is formed on the sliding surface, so that the oxidation resistance and wear resistance are the same as in the case of the cobalt-based hard alloy. It is possible to maintain high hardness even at high temperatures, improve wear resistance, and the oxidation increase in the oxidation resistance is very small, improving the oxidation resistance of the sliding surface. It is possible to prevent the formation of oxide scale under high temperature steam conditions.

更に、可動部材と静止部材とではそれぞれ異なる種類の金属材料で皮膜が形成されており、かつ可動部材には相手材と凝着しにくい材料を用いて凝着しにくい皮膜が形成されており、静止部材にも相手材と凝着しにくい材料を用いて凝着しにくい皮膜が形成されているため、これらの組み合わせから凝着摩耗の発生を抑えることができ、耐摩耗性を向上させて耐用年数を長くすることができる。   Furthermore, the movable member and the stationary member are each formed with a film made of a different type of metal material, and the movable member is formed with a film that is difficult to adhere using a material that does not easily adhere to the counterpart material. Since the stationary member is made of a material that does not easily adhere to the counterpart material, it is possible to suppress the occurrence of adhesive wear from these combinations, improving wear resistance and durability. The number of years can be increased.

すなわち、従来においては、可動部材となる弁棒の摺接面に形成された金属材料が、静止部材となるブッシュの摺接面に形成された金属材料と同種であると、滑り運動(摺動)に際して凝着摩耗が発生しやすく、例えば弁棒とブッシュの構造においては、弁の開閉に際し弁棒には蒸気力が作用するため、弁棒がブッシュの内面(摺動面)に押し付けられ、摺動面の面圧が過大に上昇しながら摺動することになり、凝着摩耗が発生しやすい状態となっていたが、本実施形態によれば、静止部材および静止部材の摺接面に対してそれぞれ異種の金属材料を用いており、かつ前述した特定の材料を用いて特定の加工を施しているために、凝着摩耗の発生を抑えることができ、耐摩耗性を向上させて耐用年数を長くすることができる。   That is, conventionally, if the metal material formed on the sliding contact surface of the valve rod serving as the movable member is the same type as the metal material formed on the sliding contact surface of the bush serving as the stationary member, the sliding motion (sliding) For example, in the structure of a valve stem and a bush, steam force acts on the valve stem when the valve is opened and closed, so that the valve stem is pressed against the inner surface (sliding surface) of the bush, Although the sliding surface slides while the surface pressure is excessively increased, adhesion wear is likely to occur, but according to the present embodiment, the stationary member and the sliding surface of the stationary member are in contact with each other. On the other hand, different types of metal materials are used, and specific processing is performed using the above-mentioned specific materials, so it is possible to suppress the occurrence of adhesive wear and improve wear resistance and durability. The number of years can be increased.

(第2の実施形態)
第2の実施形態について説明する。ここでは、第1の実施形態と共通する部分の説明を省略し、異なる部分を中心に説明する。
(Second Embodiment)
A second embodiment will be described. Here, the description of parts common to the first embodiment is omitted, and different parts are mainly described.

第2の実施形態は、弁の開閉動作に伴って弁棒205と摺接する静止部材のブッシュ201の摺接面にチタナイジング処理を施こして第1の皮膜を形成したものである。なお、この場合の摺接面はブッシュ201の内面にある。   In the second embodiment, the first coating is formed by performing a titanizing process on the sliding contact surface of the bush 201 of the stationary member that is in sliding contact with the valve stem 205 in accordance with the opening / closing operation of the valve. In this case, the sliding contact surface is on the inner surface of the bush 201.

クロマイジング処理以外に摩耗しやすい環境下でも好適に使用するための表面硬化熱処理法として、第1の実施形態のような金属浸透法を用い、チタンを拡散するチタナイジング処理がある。すなわち、耐摩耗性向上のために表面にチタンを浸透させてチタンカーバイド層(TiC)を形成するものがある。チタンは比重が小さく軽量で、機械的強度、耐腐食性に優れているので、こうした表面硬化熱処理としては好適な素材といえる。   In addition to the chromizing treatment, there is a titanizing treatment that diffuses titanium by using the metal penetration method as in the first embodiment as a surface hardening heat treatment method that is preferably used even in an environment that is easily worn. That is, there is one that forms titanium carbide layer (TiC) by infiltrating titanium into the surface for improving wear resistance. Titanium has a small specific gravity, is light, and has excellent mechanical strength and corrosion resistance. Therefore, it can be said that titanium is a suitable material for such surface hardening heat treatment.

このようなチタンカーバイド層(TiC)を形成する技術は、チタン粉末を主剤とし、アルミナ粉末、塩化アンモニウム粉末などの処理剤内に、ブッシュ201を埋めて、水素ガス等の還元性ガス雰囲気下で加熱処理することにより形成する技術であり、第1の実施形態のクロマイジングのクロムをチタンに置き換えたものである。   The technology for forming such a titanium carbide layer (TiC) is to use titanium powder as a main agent, bury bush 201 in a treatment agent such as alumina powder, ammonium chloride powder and the like in a reducing gas atmosphere such as hydrogen gas. This is a technique formed by heat treatment, in which the chromizing chromium in the first embodiment is replaced with titanium.

チタンカーバイド層(TiC)は、非常に高硬質であるという特性を有しており、クロムカーバイト層(CrC)と同様に耐酸化,耐摩耗性に優れた酸化膜である。   The titanium carbide layer (TiC) has a characteristic of being extremely hard and is an oxide film having excellent oxidation resistance and wear resistance like the chromium carbide layer (CrC).

この第2の実施形態によれば、第1の実施形態と同様の効果を得ることができる。   According to the second embodiment, the same effects as those of the first embodiment can be obtained.

なお、第1の皮膜を形成する表面硬化熱処理法として、クロマイジング処理やチタナイジング処理以外の金属浸透法や、今後の技術革新により金属の拡散現象を利用した新たな拡散浸透技術が開発されても、本実施形態による製造方法と同様に適用可能なことは言うまでもない。   In addition, as a surface hardening heat treatment method for forming the first film, a metal infiltration method other than the chromizing and titanizing treatments and a new diffusion infiltration technology using a metal diffusion phenomenon due to future technological innovations are developed. Needless to say, the manufacturing method according to the present embodiment is applicable.

(第3の実施形態)
第3の実施形態について説明する。ここでは、第1の実施形態と共通する部分の説明を省略し、異なる部分を中心に説明する。
(Third embodiment)
A third embodiment will be described. Here, the description of parts common to the first embodiment is omitted, and different parts are mainly described.

第3の実施形態は、弁の開閉動作に伴って弁棒205と摺接する静止部材のブッシュ201の材料を、高温の蒸気条件下においても高い耐熱性を持ち、酸化スケールが付着しにくいニッケル基耐熱合金およびコバルト基耐熱合金を用い、ブッシュ201の摺接面にクロマイジング処理を施したものである。なお、この場合の摺接面はブッシュ201の内面にある。一般にクロム含有量が高い合金材も高い耐酸化特性を有していることが広く知られている。   In the third embodiment, the material of the bush 201 of the stationary member that is in sliding contact with the valve stem 205 in accordance with the opening / closing operation of the valve is made of a nickel base that has high heat resistance even under high-temperature steam conditions and hardly adheres to oxide scale. A heat-resistant alloy and a cobalt-base heat-resistant alloy are used, and the sliding contact surface of the bush 201 is subjected to chromizing treatment. In this case, the sliding contact surface is on the inner surface of the bush 201. In general, it is widely known that alloy materials having a high chromium content also have high oxidation resistance.

第1の実施形態による製造方法とは異なる、第3の実施形態による製造方法の一例を説明する。   An example of the manufacturing method according to the third embodiment, which is different from the manufacturing method according to the first embodiment, will be described.

ニッケル基耐熱合金或いはコバルト基耐熱合金のブッシュ201の摺動面を、クロム,酸化アルミニウム,塩化アンモニウムの粉末剤からなる粉末パック剤中に埋没させ、約1050〜1250℃で一定時間熱処理を行い、クロム富化層(クロムリッチ層)を形成する。   The sliding surface of the nickel-base heat-resistant alloy or cobalt-base heat-resistant alloy bush 201 is embedded in a powder pack made of chromium, aluminum oxide, and ammonium chloride powder, and heat-treated at a temperature of about 1050 to 1250 ° C. for a certain period of time. A chromium-enriched layer (chrome-rich layer) is formed.

その後、ブッシュ201の摺動面を1000〜1100℃の近傍の大気中で加熱して熱処理を施して表面層に金属浸透法による第1の皮膜を形成するとともに、第1の皮膜の直下に内部酸化により生成されたCr(酸化クロム)の粒子を微細に分散させる。 Thereafter, the sliding surface of the bushing 201 is heated in the air in the vicinity of 1000 to 1100 ° C. and subjected to heat treatment to form a first film by a metal infiltration method on the surface layer, and inside the first film just below the first film The particles of Cr 2 O 3 (chromium oxide) produced by oxidation are finely dispersed.

その後、切削、研磨等により第1の皮膜を除去して表面を露出させ、第2の皮膜となるCr(酸化クロム)による酸化膜をブッシュ201の摺動面に得ることが出来る。 Thereafter, the first film is removed by cutting, polishing or the like to expose the surface, and an oxide film made of Cr 2 O 3 (chromium oxide) serving as the second film can be obtained on the sliding surface of the bush 201.

Cr(酸化クロム)は、蒸気タービン設備の運転中に新たな(酸化膜の次の)酸化物の生成が抑制され、より高温、又は長期間での使用が可能となり、更にはCr(酸化クロム)は潤滑性を有するため、摺動性を向上させることができる。また、Cr(酸化クロム)は不動態であり、熱に安定であるため、Cr(酸化クロム)の酸化膜が高温下で破壊、腐食されることがない。 Cr 2 O 3 (chromium oxide) suppresses the generation of new oxide (next to the oxide film) during operation of the steam turbine facility, and can be used at higher temperatures or for longer periods. Since 2 O 3 (chromium oxide) has lubricity, slidability can be improved. Further, since Cr 2 O 3 (chromium oxide) is passive and stable to heat, the oxide film of Cr 2 O 3 (chromium oxide) is not broken or corroded at high temperature.

なお、粉末パック剤の材料を変更することにより更に有効な第2の皮膜が今後開発されても、本実施形態による製造方法と同様に適用可能なことは言うまでもない。   Needless to say, even if a more effective second film is developed in the future by changing the material of the powder pack agent, it can be applied in the same manner as the manufacturing method according to the present embodiment.

ここでニッケル基耐熱合金としては、ニッケル−クロム合金やニッケル−クロム−鉄合金、ニッケル−クロム−モリブデン合金等のニッケルを主たる成分とした鉄の合金が用いられ、例えばインコネルが挙げられるが、これら既存の材料に限定されることなく、今後の更なる蒸気条件の上昇に伴い新たな材料が開発されても、本実施形態による製造方法が適用可能なことは言うまでもない。   Here, as the nickel-based heat-resistant alloy, an alloy of iron containing nickel as a main component such as a nickel-chromium alloy, a nickel-chromium-iron alloy, or a nickel-chromium-molybdenum alloy is used, and examples thereof include Inconel. Needless to say, the manufacturing method according to this embodiment can be applied even if a new material is developed as the steam condition further increases in the future without being limited to the existing material.

(第4の実施形態)
第4の実施形態について説明する。ここでは、第1の実施形態と共通する部分の説明を省略し、異なる部分を中心に説明する。
(Fourth embodiment)
A fourth embodiment will be described. Here, the description of parts common to the first embodiment is omitted, and different parts are mainly described.

図5は、図1に示す第1の実施形態である蒸気加減弁のその他の構造を示し、特に弁体周辺部の部分断面図である。なお、第4の実施形態に係る弁装置の基本部分は、図1に示す第1の実施形態と同様であるため、同じ機能を有する部品には同じ符号を用いており、その説明を省略する。従って以下では、第1の実施形態と異なる部分を中心に説明する。   FIG. 5 shows another structure of the steam control valve according to the first embodiment shown in FIG. 1, and is a partial cross-sectional view particularly around the valve body. In addition, since the basic part of the valve apparatus which concerns on 4th Embodiment is the same as that of 1st Embodiment shown in FIG. 1, the same code | symbol is used for the component which has the same function, The description is abbreviate | omitted. . Therefore, the following description will focus on the parts that are different from the first embodiment.

図5の蒸気加減弁は、弁棒205と弁棒205に連動する弁体412を軸方向に作動させ、弁の開度を変化させることで蒸気流量の調整機能を有する。一連の動作の中で、弁棒205は上蓋410内部に設置されたブッシュ201を、弁体412はスリーブ411をそれぞれガイドとして作動する。   The steam control valve in FIG. 5 has a function of adjusting the steam flow rate by operating the valve rod 205 and the valve body 412 linked to the valve rod 205 in the axial direction to change the opening of the valve. In a series of operations, the valve rod 205 operates with the bush 201 installed inside the upper lid 410, and the valve body 412 operates with the sleeve 411 as a guide.

スリーブ411は、図示しない蒸気弁本体200の内部にて上蓋410に固定されている。弁体412は図示しない弁座203に当接するように設けられ、弁棒205の先端部に組み立てられている。   The sleeve 411 is fixed to the upper lid 410 inside the steam valve main body 200 (not shown). The valve body 412 is provided so as to abut on a valve seat 203 (not shown), and is assembled at the tip of the valve rod 205.

図1に示す第1の実施形態では、弁開閉に伴って動作する可動部材としての弁棒205とこの弁棒205に摺接する静止部材としてのブッシュ201とを含む弁装置であったが、第4の実施形態では、可動部材として弁体412、静止部材としてスリーブ411を適用したものである。すなわち、弁体412の外面とスリーブ411の内面によって摺接面を構成している。   In the first embodiment shown in FIG. 1, the valve device includes a valve rod 205 as a movable member that operates as the valve is opened and closed and a bush 201 as a stationary member that is in sliding contact with the valve rod 205. In the fourth embodiment, a valve body 412 is applied as a movable member, and a sleeve 411 is applied as a stationary member. That is, the outer surface of the valve body 412 and the inner surface of the sleeve 411 constitute a sliding surface.

弁体412とスリーブ411から構成される摺動部には、第1の実施形態から第3の実施形態に基づき、可動部材となる弁体の摺接面に肉盛部を一体に備え、静止部材となるスリーブの摺接面に表面層を一体に備え、この表面層は第1の皮膜および第2の皮膜が形成されている。   The sliding portion composed of the valve body 412 and the sleeve 411 is integrally provided with a built-up portion on the sliding contact surface of the valve body serving as a movable member, based on the first to third embodiments. A surface layer is integrally provided on the slidable contact surface of the sleeve serving as a member, and a first film and a second film are formed on the surface layer.

この第4の実施形態によれば、第1〜第3の実施形態と同様の効果を得ることができる。   According to the fourth embodiment, the same effects as those of the first to third embodiments can be obtained.

以上詳述したように、各実施形態によれば、可動部材に肉盛部を形成する際の入熱量を抑えるとともに、摺接面における凝着摩耗の発生を抑え、耐摩耗性を向上させて耐用年数を長くすることが可能となる。   As described above in detail, according to each embodiment, while suppressing the amount of heat input when forming the built-up portion on the movable member, the occurrence of adhesive wear on the sliding contact surface is suppressed, and the wear resistance is improved. The service life can be extended.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

100…被処理部、101…電極、102…肉盛部、102a…拡散浸透層、102b…堆積層、103…直流電源、200…蒸気弁本体、201…ブッシュ、202…上蓋、203…弁座、204…弁体、205…弁棒、206…油圧駆動機構、307…反応容器、308…浸炭剤、309…粉末パック剤、410…上蓋、411…スリーブ、412…弁体。   DESCRIPTION OF SYMBOLS 100 ... To-be-processed part, 101 ... Electrode, 102 ... Overlay part, 102a ... Diffusion penetration layer, 102b ... Deposition layer, 103 ... DC power supply, 200 ... Steam valve main body, 201 ... Bush, 202 ... Top lid, 203 ... Valve seat , 204 ... Valve body, 205 ... Valve rod, 206 ... Hydraulic drive mechanism, 307 ... Reaction vessel, 308 ... Carburizing agent, 309 ... Powder pack agent, 410 ... Upper lid, 411 ... Sleeve, 412 ... Valve body.

Claims (6)

可動部材となる弁棒もしくは弁体の摺接面に肉盛部を一体に備え、
前記肉盛部は、金属を主成分とする成形体により構成される電極と前記弁棒もしくは前記弁体の被処理部との間にパルス状の放電を発生させて前記電極の材料を前記被処理部の表面に溶着させ堆積させて形成されたものであり、
静止部材となるブッシュもしくはスリーブの摺接面に表面層を一体に備え、
前記表面層は、金属浸透法による表面硬化熱処理によって第1の皮膜を形成してなるものであり、
前記弁棒もしくは前記弁体の摺接面と前記ブッシュもしくは前記スリーブの摺接面とが、弁の開閉動作に伴って摺接することを特徴とする弁装置。
A built-up portion is integrally provided on the sliding surface of the valve rod or valve body that is a movable member,
The build-up portion generates a pulsed discharge between an electrode formed of a molded body mainly composed of metal and the valve stem or a portion to be processed of the valve body, thereby applying the material of the electrode to the portion to be covered. It is formed by welding and depositing on the surface of the processing part,
A surface layer is integrally provided on the sliding contact surface of the bush or sleeve that becomes a stationary member,
The surface layer is formed by forming a first film by a surface hardening heat treatment by a metal infiltration method,
The valve device characterized in that the sliding contact surface of the valve rod or the valve body and the sliding contact surface of the bush or the sleeve are in sliding contact with the opening / closing operation of the valve.
可動部材となる弁棒もしくは弁体の摺接面に肉盛部を一体に備え、
前記肉盛部は、金属を主成分とする成形体により構成される電極と前記弁棒もしくは前記弁体の被処理部との間にパルス状の放電を発生させて前記電極の材料を前記被処理部の表面に溶着させ堆積させて形成されたものであり、
静止部材となるブッシュもしくはスリーブの摺接面に表面層を一体に備え、
前記表面層は、金属浸透法による表面硬化熱処理によって第1の皮膜を形成した後、第1の皮膜を除去することにより表面を露出させて第2の皮膜を形成してなるものであり、
前記弁棒もしくは前記弁体の摺接面と前記ブッシュもしくは前記スリーブの摺接面とが、弁の開閉動作に伴って摺接することを特徴とする弁装置。
A built-up portion is integrally provided on the sliding surface of the valve rod or valve body that is a movable member,
The build-up portion generates a pulsed discharge between an electrode formed of a molded body mainly composed of metal and the valve stem or a portion to be processed of the valve body, thereby applying the material of the electrode to the portion to be covered. It is formed by welding and depositing on the surface of the processing part,
A surface layer is integrally provided on the sliding contact surface of the bush or sleeve that becomes a stationary member,
The surface layer is formed by forming a first film by surface hardening heat treatment by a metal infiltration method, and then exposing the surface by removing the first film to form a second film.
The valve device characterized in that the sliding contact surface of the valve rod or the valve body and the sliding contact surface of the bush or the sleeve are in sliding contact with the opening / closing operation of the valve.
静止部材となる前記ブッシュもしくは前記スリーブの前記表面層の第1の皮膜は、
少なくともクロマイジング処理によるクロムカーバイト層(CrC)、およびチタナイジング処理によるチタンカーバイト層(TiC)のいずれか
を含む金属浸透法による表面硬化熱処理によって形成されたこと
を特徴とする請求項1又は2に記載の弁装置。
The first film of the surface layer of the bush or the sleeve to be a stationary member is
3. The surface hardening heat treatment is performed by a metal penetration method including at least one of a chromium carbide layer (CrC) by a chromizing treatment and a titanium carbide layer (TiC) by a titanizing treatment. The valve device described in 1.
静止部材となる前記ブッシュおよび前記スリーブの前記表面層の第2の皮膜は、
少なくともCr(酸化クロム)を含み形成されたこと
を特徴とする請求項2又は3に記載の弁装置。
The second film of the surface layer of the bush and the sleeve to be a stationary member,
The valve device according to claim 2 or 3, wherein the valve device includes at least Cr 2 O 3 (chromium oxide).
弁の開閉に伴って可動部材と静止部材との摺接面が摺接する弁装置の製造方法であって、
電気絶縁性のある液中又は気中において、金属を主成分とする成形体により構成される電極と前記可動部材の被処理部との間にパルス状の放電を発生させて前記電極の材料を前記被処理部の表面に溶着させ堆積させることによって、前記可動部材の摺接面に肉盛部を形成し、
浸炭剤中に埋没させ一定時間熱処理し、次にクロムもしくはチタンを含む粉末剤中に埋没させ一定時間熱処理し、その後調質熱処理、焼き戻し熱処理を施す金属浸透法による表面硬化熱処理によって、前記静止部材の摺接面に耐酸化特性と硬さを有する第1の皮膜を形成する
ことを特徴とする弁装置の製造方法。
A method for manufacturing a valve device in which a sliding contact surface between a movable member and a stationary member slides in accordance with opening and closing of the valve,
In an electrically insulating liquid or in the air, a pulsed discharge is generated between an electrode composed of a molded body containing a metal as a main component and a portion to be processed of the movable member, and the material of the electrode is changed. By depositing and depositing on the surface of the to-be-processed part, a built-up part is formed on the sliding surface of the movable member,
It is immersed in a carburizing agent and heat-treated for a certain period of time, then buried in a powder containing chromium or titanium and heat-treated for a certain period of time, and then subjected to a surface hardening heat treatment by a metal penetration method in which a tempering heat treatment and a tempering heat treatment are performed. A method of manufacturing a valve device, comprising forming a first film having oxidation resistance and hardness on a sliding surface of a member.
弁の開閉に伴って可動部材と静止部材との摺接面が摺接する弁装置の製造方法であって、
電気絶縁性のある液中又は気中において、金属を主成分とする成形体により構成される電極と前記可動部材の被処理部との間にパルス状の放電を発生させて前記電極の材料を前記被処理部の表面に溶着させ堆積させることによって、前記可動部材の摺接面に肉盛部を形成し、
クロムもしくはチタンを含む粉末剤中に埋没させ一定時間熱処理し、その後再び熱処理を施して金属浸透法による第1の皮膜を形成した後、第1の皮膜を切削もしくは研磨により除去して表面を露出させて第2の皮膜を前記静止部材の摺接面に形成する
ことを特徴とする弁装置の製造方法。
A method for manufacturing a valve device in which a sliding contact surface between a movable member and a stationary member slides in accordance with opening and closing of the valve,
In an electrically insulating liquid or in the air, a pulsed discharge is generated between an electrode composed of a molded body containing a metal as a main component and a portion to be processed of the movable member, and the material of the electrode is changed. By depositing and depositing on the surface of the to-be-processed part, a built-up part is formed on the sliding surface of the movable member,
It is buried in a powder containing chromium or titanium and heat-treated for a certain period of time, and then heat-treated again to form a first film by a metal penetration method, and then the first film is removed by cutting or polishing to expose the surface. Then, the second film is formed on the sliding contact surface of the stationary member. A method for manufacturing a valve device.
JP2013121235A 2013-06-07 2013-06-07 Valve device and manufacturing method thereof Active JP6157937B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013121235A JP6157937B2 (en) 2013-06-07 2013-06-07 Valve device and manufacturing method thereof
KR1020140067401A KR101624977B1 (en) 2013-06-07 2014-06-03 Valve device and manufacturing method of the same
US14/296,621 US20140361208A1 (en) 2013-06-07 2014-06-05 Valve apparatus and method of manufacturing the same
EP14171328.9A EP2811211B1 (en) 2013-06-07 2014-06-05 Valve apparatus and method of manufacturing the same
IN1523DE2014 IN2014DE01523A (en) 2013-06-07 2014-06-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013121235A JP6157937B2 (en) 2013-06-07 2013-06-07 Valve device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014238143A true JP2014238143A (en) 2014-12-18
JP6157937B2 JP6157937B2 (en) 2017-07-05

Family

ID=51178640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121235A Active JP6157937B2 (en) 2013-06-07 2013-06-07 Valve device and manufacturing method thereof

Country Status (5)

Country Link
US (1) US20140361208A1 (en)
EP (1) EP2811211B1 (en)
JP (1) JP6157937B2 (en)
KR (1) KR101624977B1 (en)
IN (1) IN2014DE01523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149832A1 (en) 2016-02-29 2017-09-08 グローブライド株式会社 Fishing line guide, fishing rod with said fishing line guide, and guide ring for said fishing line guide
JP2020011624A (en) * 2018-07-19 2020-01-23 日立オートモティブシステムズ株式会社 Steering device and manufacturing method of the same
WO2021192554A1 (en) * 2020-03-27 2021-09-30 三菱重工業株式会社 Oxidation-resistant alloy, and method for producing oxidation-resistant alloy

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10605110B2 (en) * 2015-10-14 2020-03-31 Mechanical Dynamics & Analysis Llc Bypass valve assembly for turbine generators
USD823992S1 (en) 2015-10-27 2018-07-24 Mechanical Dynamics & Analysis Llc Poppet valve
US10151397B2 (en) * 2016-11-30 2018-12-11 Fisher Controls International Llc Composite valve plugs and related methods
US10287648B2 (en) 2017-05-05 2019-05-14 Caterpillar Inc. Track bushing
KR101917028B1 (en) 2017-05-16 2018-11-08 두산중공업 주식회사 Valve module and steam turbine and power generation system having the same
CN107387776A (en) * 2017-07-17 2017-11-24 中国船舶重工集团公司第七0三研究所 A kind of bottom blowoff valve suitable for Turbo-charged Marine Boiler
JP6907086B2 (en) * 2017-09-28 2021-07-21 三菱重工コンプレッサ株式会社 Check valve and steam turbine
CN109454414A (en) * 2018-12-30 2019-03-12 安徽银龙泵阀股份有限公司 A kind of manufacturing process of high rigidity ball valve core

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243778A (en) * 1986-04-15 1987-10-24 Inoue Japax Res Inc Electrode for coating
JPS62255671A (en) * 1986-04-26 1987-11-07 Nippon Beeles- Kk Control valve
JPH05179459A (en) * 1991-12-26 1993-07-20 I N R Kenkyusho:Kk Electric discharge welding method
JPH0610114A (en) * 1992-06-26 1994-01-18 Ishikawajima Harima Heavy Ind Co Ltd Method for treating surface of high temperature sliding part of heat resistant alloy
JP2004019918A (en) * 2002-06-20 2004-01-22 Toshiba Corp Valve arrangement and method of manufacturing the valve arrangement
WO2004111305A1 (en) * 2003-06-11 2004-12-23 Mitsubishi Denki Kabushiki Kaisha Method of electrical discharge coating
JP2008275035A (en) * 2007-04-27 2008-11-13 Hitachi Ltd Steam valve for steam turbine
JP2010110794A (en) * 2008-11-07 2010-05-20 Toshiba Corp Method and apparatus for reforming and repairing surface of structural material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3811929A (en) * 1970-03-04 1974-05-21 Kito Kk Metallic cementation
JPS5986761A (en) * 1982-11-10 1984-05-19 Hitachi Ltd Steam valve
DE3403463A1 (en) * 1984-02-01 1985-08-08 Kraftwerk Union AG, 4330 Mülheim MATERIAL MATERIALS FOR HIGH-LOADED MACHINE ELEMENTS
US4787736A (en) * 1987-06-15 1988-11-29 Toyota Jidosha Kabushiki Kaisha Laser clad valve for internal combustion engine
AU2003237385A1 (en) * 2002-06-04 2003-12-19 Preco Laser Systems, Llc High energy beam cladding
WO2006052237A1 (en) 2004-11-05 2006-05-18 Petrolvalves Usa Metal valve stem seal and sealing system
US20080299306A1 (en) * 2007-05-30 2008-12-04 Caterpillar Inc. Multi-layer substrate and method of fabrication
CN101323944B (en) * 2008-06-16 2010-06-16 江阴市鑫宏科技有限公司 Boro-carburizing microalloying method of shearer cutter
US20120043490A1 (en) 2010-08-19 2012-02-23 Caterpillar Inc. Pre-oxidation of engine valves and seat inserts for improved life

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243778A (en) * 1986-04-15 1987-10-24 Inoue Japax Res Inc Electrode for coating
JPS62255671A (en) * 1986-04-26 1987-11-07 Nippon Beeles- Kk Control valve
JPH05179459A (en) * 1991-12-26 1993-07-20 I N R Kenkyusho:Kk Electric discharge welding method
JPH0610114A (en) * 1992-06-26 1994-01-18 Ishikawajima Harima Heavy Ind Co Ltd Method for treating surface of high temperature sliding part of heat resistant alloy
JP2004019918A (en) * 2002-06-20 2004-01-22 Toshiba Corp Valve arrangement and method of manufacturing the valve arrangement
WO2004111305A1 (en) * 2003-06-11 2004-12-23 Mitsubishi Denki Kabushiki Kaisha Method of electrical discharge coating
JP2008275035A (en) * 2007-04-27 2008-11-13 Hitachi Ltd Steam valve for steam turbine
JP2010110794A (en) * 2008-11-07 2010-05-20 Toshiba Corp Method and apparatus for reforming and repairing surface of structural material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149832A1 (en) 2016-02-29 2017-09-08 グローブライド株式会社 Fishing line guide, fishing rod with said fishing line guide, and guide ring for said fishing line guide
JP2020011624A (en) * 2018-07-19 2020-01-23 日立オートモティブシステムズ株式会社 Steering device and manufacturing method of the same
JP7109289B2 (en) 2018-07-19 2022-07-29 日立Astemo株式会社 Steering device and manufacturing method thereof
WO2021192554A1 (en) * 2020-03-27 2021-09-30 三菱重工業株式会社 Oxidation-resistant alloy, and method for producing oxidation-resistant alloy
JP2021155807A (en) * 2020-03-27 2021-10-07 三菱重工業株式会社 Antioxidation alloy, and production method of antioxidation alloy
JP7438812B2 (en) 2020-03-27 2024-02-27 三菱重工業株式会社 Oxidation-resistant alloy and method for producing oxidation-resistant alloy
US11951546B2 (en) 2020-03-27 2024-04-09 Mitsubishi Heavy Industries, Ltd. Oxidation resistant alloy and manufacturing method of oxidation resistant alloy

Also Published As

Publication number Publication date
EP2811211A3 (en) 2015-07-15
JP6157937B2 (en) 2017-07-05
EP2811211A2 (en) 2014-12-10
KR20140144140A (en) 2014-12-18
IN2014DE01523A (en) 2015-06-19
KR101624977B1 (en) 2016-05-27
EP2811211B1 (en) 2017-07-26
US20140361208A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP6157937B2 (en) Valve device and manufacturing method thereof
JP4307444B2 (en) Method for coating friction surface of high temperature member, high temperature member and electrode for discharge surface treatment
TWI258532B (en) Turbine component, gas turbine engine, method for manufacturing turbine component, surface processing method, vane component, metal component, and steam turbine engine
JP2009035811A (en) Corrosion resistant and wear resistant coating for magnetic steel
JP2018154918A (en) Process and printed article
JP2006037234A (en) Steam oxidation of powder metal component
US20140284509A1 (en) Valve apparatus, method of manufacturing valve apparatus, and method of repairing valve apparatus
JP2008274435A (en) Article having protective film, and method thereof
US20170101707A1 (en) Treated component
JP5303530B2 (en) Wear resistant device and method of processing the same
KR20010020087A (en) Ti alloy poppet valve and surface treatment thereof
JP2015158260A (en) Valve device and manufacturing method of the same
WO2005068670A1 (en) Engine part, high-temperature part, surface treatment method, gas-turbine engine, galling preventive structure, and method for producing galling preventive structure
JP2013249824A (en) Method for manufacturing member for steam turbine plant, member for steam turbine plant, governing valve and steam turbine
RU2655397C2 (en) Improved wear-resistance of high-temperature structural detail infused by cobalt coating
KR20220051855A (en) Oxidation-resistant alloy and gas turbine applications using the same
WO2005073426A1 (en) Nitriding method for improving surface characteristics of cobalt-chromium based alloys
EP2392687A1 (en) Method for manufacturing an oxidation resistant component with improved high temperature strength and corresponding oxidation resistant component with improved high temperature strength
JP4220186B2 (en) Valve device and manufacturing method thereof
JP2008275035A (en) Steam valve for steam turbine
JP5881537B2 (en) Steam turbine equipment member manufacturing method, steam turbine equipment member, steam control valve, steam turbine
JP2014238142A (en) Valve device and valve device manufacturing method
JP5490927B2 (en) Method for producing hardened aluminum material by cross-coupling reaction
JP4504691B2 (en) Turbine parts and gas turbines
JP2004183051A (en) Valve stem, production method therefor, and steam valve obtained by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170607

R151 Written notification of patent or utility model registration

Ref document number: 6157937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151