JP2014222702A - ガスを供給する方法、及びプラズマ処理装置 - Google Patents

ガスを供給する方法、及びプラズマ処理装置 Download PDF

Info

Publication number
JP2014222702A
JP2014222702A JP2013101411A JP2013101411A JP2014222702A JP 2014222702 A JP2014222702 A JP 2014222702A JP 2013101411 A JP2013101411 A JP 2013101411A JP 2013101411 A JP2013101411 A JP 2013101411A JP 2014222702 A JP2014222702 A JP 2014222702A
Authority
JP
Japan
Prior art keywords
gas
flow rate
valve
supplying
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013101411A
Other languages
English (en)
Other versions
JP6027490B2 (ja
Inventor
智之 水谷
Tomoyuki Mizutani
智之 水谷
辻本 宏
Hiroshi Tsujimoto
宏 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2013101411A priority Critical patent/JP6027490B2/ja
Priority to KR1020157028892A priority patent/KR102109229B1/ko
Priority to PCT/JP2014/062184 priority patent/WO2014185300A1/ja
Priority to US14/783,981 priority patent/US9947510B2/en
Priority to TW103116752A priority patent/TWI616946B/zh
Publication of JP2014222702A publication Critical patent/JP2014222702A/ja
Application granted granted Critical
Publication of JP6027490B2 publication Critical patent/JP6027490B2/ja
Priority to US15/889,900 priority patent/US20180166257A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

【課題】プラズマ処理装置において、流量制御器の上限流量に制限されることなく、付加ガスの供給開始時に大きな流量の付加ガスを供給することができ、スループットを向上できる方法を提供する。【解決手段】ガスを供給する方法は、処理ガスを第1の分岐ライン及び第2の分岐ラインを介して中央ガス導入部及び周辺ガス導入部にそれぞれ供給する工程と、付加ガス用のガスラインにおいて下流側のバルブを閉じて、当該バルブと上流の流量制御器との間の管に付加ガスを充填する工程と、付加ガスの充填後にバルブを開放する工程と、バルブの開放後に、高周波電源から上部電極及び下部電極の一方に高周波電力を供給する工程と、を含む。【選択図】図3

Description

本発明の実施形態は、ガスを供給する方法、及びプラズマ処理装置に関するものである。
半導体デバイスといった電子デバイスの製造においては、被処理体に対する処理の一種としてプラズマ処理が行われることがある。プラズマ処理では、処理容器内にガスが供給され、当該ガスのプラズマが生成される。このプラズマに被処理体が晒されることにより、被処理体に対する成膜又はエッチングといった処理が行われる。このようなプラズマ処理を実施するためのプラズマ処理装置の一種として、容量結合型の平行平板プラズマ処理装置が知られている。
平行平板プラズマ処理装置は、処理容器、載置台、及び、シャワーヘッドを備えている。載置台は処理容器内に設けられており、下部電極を構成している。シャワーヘッドは、処理容器内にガスを供給するための構造体であり、上部電極を構成している。このプラズマ処理装置では、処理容器内にガスが供給され、上部電極又は下部電極に高周波電力が供給される。これによって、処理容器内においてガスのプラズマが生成される。
ところで、プラズマ処理においては、被処理体の処理の面内均一性が重要な要素となっている。プラズマ処理の面内均一性を向上させるための一手法として、被処理体の中央領域と周辺領域に対してガス種及び/又は流量の異なるガスをそれぞれ供給する技術が提案されている。かかる技術は、特許文献1に記載されている。
特許文献1に記載された技術では、シャワーヘッドの内部空間が二つのガス拡散室に区切られている。二つのガス拡散室には、処理ガスのソースから第1分岐管及び第2分岐管を介して処理ガスがそれぞれ供給される。また、第2分岐管には、付加ガスのソースから延びる付加ガス供給管が接続されている。この付加ガス供給管は、付加ガスの流量を制御するための流量制御器を含んでいる。特許文献1の技術では、処理ガスが第1分岐管及び第2分岐管に供給された後、予め設定された流量(以下、「処理流量」という)よりも大きな先出し流量に設定された付加ガスが、付加ガス供給管に供給される。これにより、付加ガス供給管の圧力が急速に高められる。しかる後に、付加ガスの流量が処理流量に戻される。次いで、高周波電力が上部電極に供給され、プラズマが生成される。これにより、特許文献1の技術では、処理容器内に供給される付加ガスの流量が処理流量に到達するために要する時間を短縮させている。
特開2007−208194号公報
しかしながら、流量制御器は、制御可能な最大出力流量に上限を有する。より詳細には、最大出力流量の大きな流量制御器は、被処理体の処理時の流量の範囲における制御性能が劣る。したがって、被処理体の処理時の処理流量を高精度に制御するためには、最大出力流量の小さな流量制御器を用いる必要がある。このように、先出し流量の大きさには限界が存在するので、先出し流量を大きな流量に設定することができないことがある。よって、先出し流量で付加ガスを流す時間を長くとる必要が生じ得る。先出し流量で付加ガスを流す時間が長くなると、これに応じて高周波電力の供給前に処理ガスを流す時間も長くなる。また、特許文献1に記載された技術では、先出し流量で付加ガスを流し始めてから処理流量に安定するまでの時間も長くなる。したがって、特許文献1に記載された技術では、処理に利用されず無駄になる処理ガスの量が多くなり得る。また、先出し流量で付加ガスを流し始めてから処理流量に安定するまでの時間が長くなると、スループットも低下する。かかる背景から、流量制御器の上限流量に制限されることなく、付加ガスの供給開始時に大きな流量の付加ガスを供給することが必要となっている。
一側面においては、被処理体を処理するためのプラズマ処理装置の処理容器内にガスを供給する方法が提供される。プラズマ処理装置は、処理容器と、処理容器内に設けられ、下部電極を構成する載置台と、載置台の上方に設けられ、上部電極を構成するシャワーヘッドと、上部電極及び下部電極の一方に高周波電力を供給する高周波電源と、シャワーヘッドに処理ガス及び付加ガスを供給するためのガス供給系と、を備える。シャワーヘッドは、載置台の中央領域に対面する中央ガス導入部、及び、載置台の中央領域よりも外側の領域に対面する周辺ガス導入部、を含む。ガス供給系は、処理ガスを供給する第1のガスソースと、付加ガスを供給する第2のガスソースと、第1のガスソースからの処理ガスを中央ガス導入部及び周辺ガス導入部にそれぞれ供給する第1の分岐ライン及び第2の分岐ラインと、第2のガスソースを第2の分岐ラインに接続するガスラインであり、流量制御器、該流量制御器と第2の分岐ラインとの間に設けられたバルブ、流量制御器とバルブの間に設けられた管を含む該ガスラインと、を有する。この方法は、処理ガスを第1の分岐ライン及び第2の分岐ラインを介して中央ガス導入部及び周辺ガス導入部にそれぞれ供給する工程と、バルブを閉じて前記管に付加ガスを充填する工程と、付加ガスの充填後にバルブを開放する工程と、バルブの開放後に、高周波電源から上部電極及び下部電極の一方に高周波電力を供給する工程と、を含む。
上記方法では、付加ガス供給のためのガスラインにおける下流側のバルブを閉じることによって、当該下流側のバルブと上流の流量制御器との間の管に付加ガスを充填する。したがって、流量制御器の最大流量に制限されることなく、付加ガスを高い圧力で前記管に充填することが可能である。このように充填された高い圧力の付加ガスを、バルブの開放によって放出することができるので、付加ガスの供給開始時に大きな流量の付加ガスを一時的に供給することが可能である。また、この方法によれば、付加ガスを処理流量まで安定させる時間を短くすることが可能である。さらに、付加ガスを管に充填する工程は、処理ガスの供給とは独立した期間に行うことが可能である。よって、上記方法によれば、処理ガスの無駄を抑制でき、且つ、スループットを向上させることが可能となる。
一形態においては、付加ガスを充填する工程は、被処理体を交換する期間内に行われてもよい。この形態の方法は、充填する工程の後、流量制御器を閉じる工程を更に含み得る。この形態によれば、被処理体を交換する期間中に付加ガスを管に充填しておくことができる。よって、スループットは、付加ガスの充填に要する時間に依存しなくなる。
以上説明したように、本発明の一側面によれば、流量制御器の上限流量に制限されることなく、付加ガスの供給開始時に大きな流量の付加ガスを供給することが可能となる。
一実施形態に係るプラズマ処理装置を概略的に示す断面図である。 一実施形態に係るガス供給系を示す図である。 一実施形態に係るガス供給方法を説明するためのタイミングチャートである。 処理容器内での付加ガスの濃度の時間変化を、先出し流量を用いる従来の方法と一実施形態の方法について比較説明するための図である。 図4は、別の実施形態に係る処理ガス供給方法の一例を示すタイミングチャートである。 実験例及び比較実験例1〜2において求めた遅延時間を示すグラグである。
以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
まず、一実施形態に係るプラズマ処理装置について説明する。図1は、一実施形態に係るプラズマ処理装置を概略的に示す断面図である。なお、図1において、プラズマ処理装置のガス供給系は、省略されている。
図1に示すプラズマ処理装置10は、処理容器12を備えている。処理容器12は、一実施形態においては、略円筒形状を有している。処理容器12は、例えば、アルミニウム合金により構成されており、電気的に接地されている。また、処理容器12の内壁面には、アルマイト処理が施されている。なお、処理容器12の内壁面は、イットリウム酸化膜によって被覆されていてもよい。この処理容器12は、その内部空間として、処理空間PSを画成している。
処理容器12内には、載置台14が設けられている。一実施形態においては、載置台14は、サセプタ16、サセプタ支持台18、及び、静電チャック20を含んでいる。載置台14は、絶縁板21を介して処理容器12の底部上に設けられている。
サセプタ16は、例えば、アルミニウムから構成された円盤形状を有しており、下部電極を構成している。このサセプタ16は、サセプタ支持台18を介して、絶縁板21上に搭載されている。
サセプタ16上には、静電チャック20が設けられている。静電チャック20は、絶縁膜の内層として設けられた電極膜20aを有している。電極膜20aには、直流電源22が電気的に接続されている。静電チャック20は、直流電源22から電極膜20aに印加される直流電圧によってクーロン力を発生し、当該クーロン力によって被処理体(以下、「ウエハ」という)Wを吸着するようになっている。
サセプタ16上且つ静電チャック20の周囲には、フォーカスリング24が設けられている。なお、サセプタ16及びサセプタ支持台18の外周面には、円筒形状の内壁部材26が取り付けられている。この内壁部材26は、例えば、石英から構成される。
サセプタ支持台18の内部には、冷媒室28が形成されている。冷媒室28は、例えば、サセプタ支持台18の内部において、周縁部分から中央部分に向けて螺旋状に延在し、中央部分から周縁部分に向けて螺旋状に延在している。冷媒室28には、配管30a及び30bを介して、処理容器12の外部に設けられたチラーユニットに接続される。この冷媒室28には、冷媒、例えば、冷媒液又は冷却水が循環するよう供給される。これにより、サセプタ16上のウエハWの温度を制御することが可能となっている。
また、載置台14には、サセプタ支持台18、サセプタ16、及び静電チャック20を貫通するように形成されたガス供給ライン32が形成されている。このガス供給ライン32は、静電チャック20の上面まで延在している。ガス供給ライン32には、Heガスといった伝熱ガスが供給される。これにより、ウエハWと静電チャック20の上面との間に、伝熱ガスが供給されるようになっている。
載置台14の上方には、上部電極34が設けられている。上部電極34は、サセプタ16と略平行に設けられている。上部電極34と載置台14との間には、上述した処理空間PSが画成されている。
上部電極34は、内側電極部36及び外側電極部38を有している。内側電極部36は、内部に空洞を有する略円盤形状に構成されている。外側電極部38は、内側電極部36を囲む環形状を有している。内側電極部36と外側電極部38との間には、環状の誘電体42が介在している。また、外側電極部38と処理容器12の内壁面との間には、環状に延在する絶縁性遮蔽部材44が介在している。
外側電極部38には、給電筒52、コネクタ50、上部給電棒48、整合器46を介して第1高周波電源54が電気的に接続されている。第1高周波電源54は、プラズマの生成に適した周波数、例えば、40MHz以上の周波数の高周波電力を発生する。この高周波電力は、例えば、60MHzである。
給電筒52は、上部において縮径された略円筒形状を有している。給電筒52の下端部は、外側電極部38に接続されている。給電筒52の上側中央部は、コネクタ50を介して上部給電棒48に接続されている。上部給電棒48の上端部は整合器46の出力側に接続されている。この整合器46は、第1高周波電源54に接続されている。整合器46は、第1高周波電源54の内部インピーダンスと負荷インピーダンスを整合させるための回路を有している。
給電筒52に外側は、接地導体55によって覆われている。この接地導体55は、例えば、処理容器12の外径と同様の外径をもった円筒形状に構成されている。接地導体55の下端部は、処理容器12の側壁上部に接続されている。また、接地導体55の上側中央部は開口しており、当該開口に上部給電棒48が通されている。この接地導体55の上側中央部と上部給電棒48との間には、絶縁部材56が介在している。
内側電極部36は、一実施形態のシャワーヘッドを構成している。一実施形態においては、内側電極部36は、電極板60と電極支持体62を含んでいる。電極板60は、略円盤形状を有している。この電極板60には、多数のガス噴射口60aが形成されている。電極板60は、電極支持体62に着脱可能に支持されている。電極支持体62は、内部に空洞63を画成する円盤形状に構成されており、電極板60と略同一の直径を有している。
一実施形態においては、電極支持体62の内部の空洞63は、略環形状の隔壁64によって二つのガス拡散室63a,63bに区画されている。ガス拡散室63aは、載置台14の中央領域の上方において延在しており、ガス拡散室63bは、当該中央領域の外側の領域の上方において延在している。この電極支持体62の底壁には、ガス噴射口60aにそれぞれ連通する多数の孔が設けられている。かかる構成のシャワーヘッドにおいて、ガス拡散室63a、並びに、当該ガス拡散室63aに接続する孔及びガス噴射口60aは中央ガス導入部を構成している。この中央ガス導入部は、載置台14の中央領域、即ち、ウエハWの中央領域に対面し、当該ウエハWの中央領域に向けてガスを供給する。また、ガス拡散室63b、並びに、当該ガス拡散室63bに接続する孔及びガス噴射口60aは周辺ガス導入部を構成している。周辺ガス導入部は、中央領域よりも外側の載置台14の領域、即ち、ウエハWの中央領域よりも外側の領域、例えば、エッジ領域に対面しており、当該外側の領域に向けてガスを供給する。なお、図1に示した形態においては、周辺ガス導入部の個数は一つであるが、二以上の周辺ガス導入部が同心状に設けられていてもよい。
図1に示すように、電極支持体62の上面には、下部給電筒70が接続している。下部給電筒70は、上部給電棒48にコネクタ50を介して接続されている。下部給電筒70の途中には、可変コンデンサ72が設けられている。この可変コンデンサ72の静電容量を調整することによって、第1高周波電源54からの高周波電力に基づいて外側電極部38の直下に発生する電界強度と内側電極部36の直下に発生する電界強度の相対的な比率を調整することが可能となっている。なお、図1に示すプラズマ処理装置では、上部電極34にプラズマ生成用の第1高周波電源54が電気的に接続されているが、第1高周波電源54は、サセプタ16、即ち、下部電極に接続されていてもよい。
処理容器12の底部には、排気口74が形成されている。排気口74は、排気管76を介して排気装置78に接続されている。排気装置78は、例えば、圧力調整器及び減圧ポンプを備え得る。この排気装置78によって処理容器12の内部空間を排気することで、処理容器12の内部空間を所望の真空度に減圧することができる。
また、サセプタ16には、整合器80を介して第2高周波電源82が接続されている。第2高周波電源82は、イオン引き込み用の高周波電力を発生する。第2高周波電源82によって発生される高周波電力の周波数は、例えば、2MHz〜20MHzの範囲にあり、例えば、2MHzである。
また、図1に示すように、内側電極部36には、ローパスフィルタ84が電気的に接続されている。ローパスフィルタ84は、第1高周波電源54からの高周波を遮断して、第2高周波電源82からの高周波をグランドに通すためのものである。一方、下部電極を構成するサセプタ16には、ハイパスフィルタ86が電気的に接続されている。ハイパスフィルタ86は、第1高周波電源54からの高周波をグランドに通すためのものである。
次いで、図2を参照する。図2は、一実施形態に係るガス供給系を示す図である。図1に示したプラズマ処理装置10は、図2に示すガス供給系GSを備え得る。ガス供給系GSは、メインガス供給部MPと付加ガス供給部APとを含んでいる。
メインガス供給部MPは、一以上のガスソース(第1のガスソース)を含み得る。一実施形態においては、メインガス供給部MPは、図2に示すように、三つのガスソースMGS1,MGS2,MGS3を含んでいる。これらガスソースMGS1,MGS2、MGS3は、それぞれ、エッチング用のガスのソース、反応生成物の堆積を制御するためのガスのソース、キャリアガスのソースであり得る。例えば、シリコン酸化膜をエッチングする場合には、ガスソースMGS1は、フルオロカーボン系ガス、即ち、フルオロカーボンガス及び/又はフルオロハイドロカーボンガスのソースであり得る。フルオロカーボン系ガスとしては、CF、C、C、CといったCガスを用いることが可能である。また、ガスソースMGS2は、例えば、Oガスのソースであり得る。また、ガスソースMGS3は、希ガス、例えば、Arガスのソースであり得る。
ガスソースMGS1は、バルブMV11、マスフローコントローラといった流量制御器MC1、バルブMV12を介して、共通ガスラインMLに接続されている。ガスソースMGS2は、バルブMV21、マスフローコントローラといった流量制御器MC2、バルブMV22を介して、共通ガスラインMLに接続されている。また、ガスソースMGS3は、バルブMV31、マスフローコントローラといった流量制御器MC3、バルブMV32を介して、共通ガスラインMLに接続されている。
共通ガスラインMLは、フロースプリッタといった分流量調整器FSに接続されている。分流量調整器FSは、共通ガスラインMLから供給されるガスを適宜に設定される流量比で、二以上の分岐ラインに分岐させる。分流量調整器FSは、例えば、バルブFV11、マスフローコントローラといった流量制御器FC1、バルブFV12、バルブFV21、マスフローコントローラといった流量制御器FC2、及び、バルブFV22を含み得る。分流量調整器FS内では、共通ガスラインMLからのガスは二つのラインに分岐される。一方のラインは、バルブFV11、流量制御器FC1、及び、バルブFV12を含み、第1の分岐ラインBL1に接続されている。この第1の分岐ラインBL1は、シャワーヘッドのガス拡散室63aに接続されている。他方のラインは、バルブFV21、流量制御器FC2、バルブFV22を含んでおり、第2の分岐ラインBL2に接続されている。この分岐ラインBL2は、ガス拡散室63bに接続されている。したがって、メインガス供給部MPは、中央ガス導入部及び周辺ガス導入部に対して、設定された流量比で処理ガスを供給することが可能である。
図2に示すように、付加ガス供給部APは、一以上のガスソース(第2のガスソース)を含み得る。一実施形態においては、付加ガス供給部APは、図2に示すように、三つのガスソースAGS1,AGS2,AGS3を含んでいる。これらガスソースAGS1,AGS2、AGS3は、それぞれ、エッチング促進用のガスのソース、反応生成物の堆積を制御するためのガスのソース、キャリアガスのソースであり得る。例えば、シリコン酸化膜をエッチングする場合には、ガスソースAGS1は、フルオロカーボン系ガス、即ち、フルオロカーボンガス及び/又はフルオロハイドロカーボンガスのソースであり得る。フルオロカーボン系ガスとしては、CF、C、C、CといったCガスを用いることができる。また、ガスソースAGS2は、例えば、Oガスのソースであり得る。また、ガスソースAGS3は、希ガス、例えば、Arガスのソースであり得る。なお、ガスソースAGS1,AGS2、AGS3は、その他の任意のガスのガスソースであってもよい。
ガスソースAGS1は、バルブAV11、マスフローコントローラといった流量制御器AC1、バルブAV12を介して、ガスラインALに接続されている。ガスソースAGS2は、バルブAV21、マスフローコントローラといった流量制御器AC2、バルブAV22を介して、ガスラインALに接続されている。また、ガスソースAGS3は、バルブAV31、マスフローコントローラといった流量制御器AC3、バルブAV32を介して、ガスラインALに接続されている。なお、バルブAV11、流量制御器AC1、バルブAV12、バルブAV21、流量制御器AC2、バルブAV22、バルブAV31、流量制御器3C1、バルブAV32、及び、ガスラインALは、付加ガスのソース、即ち、ガスソースAGS1,AGS2、AGS3を第2の分岐ラインBLに接続する一実施形態のガスラインを構成している。
ガスラインALは、第2の分岐ラインBL2の途中に接続されている。したがって、付加ガス供給部APから供給される付加ガスは、第2の分岐ラインBL2とガスラインALとの合流地点において、処理ガスと混合される。これにより、ガス拡散室63bを含む周辺ガス導入部には、処理ガスと付加ガスの混合ガスが供給される。
以下、図2と共に図1も参照する。プラズマ処理装置10は、更に制御部C10を備えている。制御部C10は、キーボードといった入力装置、各種レシピ及び制御プログラムをする記憶装置、及び、中央処理装置を備えたコンピュータ装置であり得る。制御部C10は、高周波電源54からの高周波電力の供給、及びその停止、並びに、高周波電力の大きさを制御するために、高周波電源54に制御信号を送出する。制御部C10は、高周波電源82からの高周波電力の供給、及びその停止、並びに、高周波電力の大きさを制御するよう、高周波電源82に制御信号を送出する。また、制御部C10は、排気装置78の排気量を制御するために、排気装置78に制御信号を送出し得る。さらに、制御部C10は、バルブMV11、MV12、MV21、MV22、MV31、MV33の開閉、流量制御器MC1、MC2、MC3の出力流量を制御するために、これらバルブ及び流量制御器に制御信号を送出する。これにより、制御部C10はメインガス供給部MPから供給される処理ガス中のガス種及び一以上のガスの流量比を調整することができる。また、制御部C10は、バルブFV11、FV12、FV21、FV22の開閉、及び、流量制御器FC1、FC2の出力流量を制御するために、これらバルブ及び流量制御器に制御信号を送出する。これにより、制御部C10は、分流量調整器FSの分流比を制御することができる。さらに、制御部C10は、バルブAV11、AV12、AV21、AV22、AV31、AV33の開閉、流量制御器AC1、AC2、AC3の出力流量を制御するために、制御信号を送出する。これにより、制御部C10は、付加ガス供給部APからの付加ガスのガス種及び一以上のガスの流量比を調整することができる。
以下、プラズマ処理装置10における制御の具体例と共に、一実施形態に係るガス供給方法について、図3を参照しつつ説明する。図3は、一実施形態に係るガス供給方法を説明するためのタイミングチャートである。なお、図3において、「RF」は、高周波電源54によって発生される高周波電力の状態を示しており、RFが高レベルであることは、上部電極34に高周波電源54からの高周波電力が供給されていることを示している。一方、RFが低レベルであることは、上部電極34に対する高周波電源54の供給が停止されていることを示している。図3において、「MPG」は、メインガス供給部MPの処理ガスの状態を示しており、MPGが高レベルであることは、中央ガス導入部及び周辺ガス導入部に処理ガスが供給されていることを示しており、MPGが低レベルであることは、中央ガス導入部及び周辺ガス導入部に対するメインガス供給部MPからの処理ガスの供給が停止されていることを示している。図3において、「AC」は、流量制御器AC1、AC2、AC3のうち、この方法で利用される一以上の流量制御器の出力流量を示している。ACのレベルが最も低いレベルであることは、流量制御器の出力流量が0であることを示している。また、図3において、「AV2」は、付加ガス供給部APの流量制御器に対して下流側に設けられたバルブAV12、AV22、AV32のうち、この方法で利用される一以上の下流側バルブの状態を示している。AV2が高レベルであることは、下流側バルブが開かれていることを示しており、AV2が低レベルであることは、下流側バルブが閉じられていることを示している。また、図3において、APGは、付加ガス供給部APから供給される付加ガスの第2の分岐ラインBL2における実際の流量を示している。
(メインガス供給工程)
一実施形態に係るガス供給方法では、メインガス供給工程が行われる。図3のタイミングチャートに示された例では、この工程は、時刻tからtまで継続している。このメインガス供給工程においては、制御部C10は第1制御を実行する。具体的には、バルブMV11及びMV12の組、バルブMV21及びMV22の組、並びに、バルブMV31及びMV32の組のうち、選択された組のバルブが開かれる。また、流量制御器MC1、MC2、及びMC3のうち選択された流量制御器の出力流量が設定される。また、バルブFV11、FV12、FV21、及びバルブFV22が開かれ、流量制御器FC1及びFC2の出力流量が設定される。このメインガス供給工程では、シャワーヘッドの中央ガス導入部及び周辺ガス導入部から処理容器12内に処理ガスが供給される。
(付加ガス充填工程)
付加ガス充填工程は、図3のタイミングチャートに示された例では、時刻tからtまで継続している。付加ガス充填工程では、制御部C10は第2制御を実行する。具体的には、付加ガス供給部APの流量制御器に対して下流側に設けられたバルブAV12、AV22、AV32のうち、本方法において利用される下流側バルブが閉じられる。また、付加ガス供給部APの流量制御器AC1、AC2、AC3のうち本方法において利用される流量制御器の出力流量が、ウエハWの処理時のガスの流量、即ち処理流量よりも大きく設定される。これにより、付加ガス供給部APの下流側バルブと流量制御器との間の管AFに、ガスが充填される。なお、付加ガス充填工程の実施期間は、メインガス供給工程の実施期間からは独立している。したがって、メインガス供給工程の開始時tは、付加ガス供給工程の開始時tよりも前であってもよく、付加ガス供給工程の開始時tと同じであってもよい。
(バルブ開放工程)
バルブ開放工程は、付加ガス充填工程の後に実行される。図3のタイミングチャートに示された例では、バルブ開放工程は時刻tにおいて開始している。このバルブ開放工程では、制御部C10は、第3制御を実行する。具体的には、付加ガス供給部APの流量制御器に対して下流側に設けられたAV12、AV22、AV32のうち、ガス充填のために閉じられていた下流側バルブが開かれる。これにより、付加ガス充填工程において管AFに充填されていたガスが第2の分岐ラインBL2に向けて放出される。また、付加ガス供給部APの流量制御器AC1、AC2、AC3のうち本方法において利用される流量制御器の出力流量が、ウエハWの処理時のガスの流量、即ち処理流量に設定される。この処理流量は、付加ガス充填工程での流量よりも低い流量に設定される。
(高周波電力供給工程)
次いで、本方法では、高周波電力供給工程が行われる。高周波電力供給工程は、バルブ開放工程の開始時からある期間の経過後、即ち、バルブ開放工程の開始時から処理容器12内における付加ガスの濃度が安定するまでの期間の経過後に行われる。図3のタイミングチャートに示された例では、この工程は、時刻tから時刻tの間、継続している。この工程では、制御部C10は、第4制御を実行する。具体的には、制御部C10は、高周波電源54に高周波電力を発生させて当該高周波電力を上部電極34に与える。なお、この工程では、高周波電源82からの高周波電力がサセプタ16に与えられてもよい。これにより、処理容器12内の処理空間PSにおいてプラズマが生成される。処理容器12内に収容されていたウエハWは、この工程によってプラズマに晒される。
そして、本方法では、高周波電力供給工程の終了時に、高周波電源54からの上部電極34への高周波電力の供給が停止される。また、メインガス供給部MPからの処理ガスの供給が停止される。また、付加ガス供給部APからの付加ガスの供給が停止される。また、高周波電源82からの高周波電力の供給がなされている場合には、当該高周波電力の供給も停止される。その後、ウエハWは、処理容器12内から搬送ロボットによって取り出され、別のウエハWが搬送ロボットによって処理容器12内に収容される。
上述したように、一実施形態の方法、又はプラズマ処理装置10による制御によれば、付加ガス供給部APの下流側バルブを閉じることによって、付加ガス供給部APの流量制御器と下流側バルブとの間の管AFにガスを充填することが可能である。したがって、流量制御器の最大流量に制限されることなく、管AFに高い圧力でガスを充填することが可能である。管AFに充填されたガスを下流側バルブを開放して放出すると、ガスラインAL及び第2の分岐ラインBL2における付加ガスの流量を急速に安定させることが可能となる。延いては、処理容器12内における付加ガスの濃度を急速に安定させることが可能となる。これにより、処理ガスの無駄が削減される。また、プラズマ処理のスループットが改善される。
ここで、図4を参照する。図4は、処理容器内での付加ガスの濃度の時間変化を、先出し流量を用いる従来の方法と一実施形態の方法について比較説明するための図である。図4において、(a)の領域には、従来の方法を用いた場合の処理容器内での付加ガスの濃度の時間変化が示されており、(b)の領域には、一実施形態の方法を用いた場合の処理容器内での付加ガスの濃度の時間変化が示されている。なお、図4の表記方法は、以下に説明する点を除けば、図3の表記方法と同様である。
従来の方法では、図4の(a)において実線で示すように、付加ガス供給部APの流量制御器の出力流量が、期間TWPにおいて先出し流量に設定され、その直後に、付加ガス供給部APの流量制御器が処理流量に設定される。従来の方法では、先出し流量に出力流量が設定されても、図4の(a)において参照符号AGの点線で示すように、処理容器12内の付加ガスの濃度が上昇するまでに長い時間を要し、また、処理流量に出力流量が設定されてから処理容器12内の付加ガスの濃度が安定するまでの期間TDPの時間長、即ち遅延時間TDPも長くなる。
一方、図4の(b)に示すように、一実施形態の方法では、期間TWFの付加ガス充填工程の経過後に、付加ガス供給部APの流量制御器の出力流量が処理流量に設定され、付加ガス供給部APの下流側バルブが開放される。これにより、図4の(b)において参照符号AGの点線で示すように、処理容器12内の付加ガスの濃度が安定するまでの期間が短くなる。即ち、付加ガス供給部APの下流側バルブを開放し、且つ、付加ガス供給部APの流量制御器の出力流量を処理流量に設定してから処理容器12内の付加ガスの濃度が安定するまでの期間TD、即ち遅延時間TDが短くなる。これは、バルブの開放により流量制御器の上限出力流量を超える高い流量の付加ガスを一時的に流すことができるからである。このように、一実施形態の方法では、遅延時間TDを短縮できるので、処理ガスの無駄を抑制し、スループットを改善することが可能となる。
なお、上述した実施形態では、付加ガス充填工程とメインガス供給工程とが部分的に並行して行われている。しかしながら、付加ガス充填工程は、メインガス供給工程とは異なる期間に行われてもよい。図5は、別の実施形態に係る処理ガス供給方法の一例を示すタイミングチャートである。図5においては、「ウエハ交換」は、プラズマ処理装置がウエハ交換中であるか否かを示しており、高レベルにある期間は、ウエハの交換が行われている期間を示している。
図5に示すように、別の実施形態においては、ウエハWの交換が時刻tから時刻tの間に行われている。また、時刻tから時刻tの期間内の時刻tから時刻tの期間において付加ガス充填工程が行われている。即ち、ウエハWの交換中に付加ガス充填工程が行われている。そして、付加ガス充填工程の終了時である時刻tにおいて、付加ガス供給部APの流量制御器の流量が0に設定される。これは、管AFに充填されたガスの逆流を防止するためである。なお、付加ガス供給部APの流量制御器の流量が0に設定された状態は、バルブ開放工程の開始時の時刻tまでの期間において継続する。
そして、時刻tにおいてウエハの交換が完了し、その後の時刻tからメインガス供給工程が開始される。図5に示す方法のその後の手順は、図3に示す方法と同様である。以上説明したように、図5に示す方法によれば、メインガス供給工程とは完全に独立した期間であるウエハ交換の期間中に、付加ガス充填工程が行われている。即ち、付加ガス充填工程は、スループットに影響を与えない期間に行われる。したがって、図5に示す方法によれば、スループットを更に向上させることが可能となる。
(実験例及び比較実験例1〜2)
以下、一実施形態に係るガス供給方法の評価のために行った実験例及び比較実験例1〜2について説明する。実験例及び比較実験例1〜2では、プラズマ処理装置10を用い、処理ガスとして40sccmのCガス、1400sccmのArガス、10sccmのOガスを用い、付加ガスとしてOガスを用いた。また、実験例及び比較実験例1〜2では、処理ガスを分流比50:50でガス拡散室63a、63bに供給した。
実験例では、処理ガスの供給中に、付加ガス充填工程を行い、次いで、付加ガス供給部APの下流側のバルブを開放し、同時に、付加ガス供給部APの流量制御器の出力流量を処理流量に設定した。また、実験例では、付加ガス供給部APの流量制御器の出力流量を処理流量に設定するタイミングに同期させて、高周波電源54から上部電極34に高周波電力を供給した。実験例では、これら一連の工程を含むプラズマ処理を、複数回行った。また、実験例では、付加ガス充填時の付加ガス供給部APの流量制御器の出力流量/付加ガス充填の期間をパラメータとして種々に変更し、具体的には、複数回のプラズマ処理の各々において、付加ガス充填時の付加ガス供給部APの流量制御器の出力流量/付加ガス充填の期間を20sccm/10秒、20sccm/15秒、20sccm/20秒、15sccm/40秒の何れかに設定した。また、実験例では、付加ガス供給部APの流量制御器の出力流量として設定する付加ガスの処理流量もパラメータとして用い、当該付加ガスの処理流量を複数回のプラズマ処理において異ならせた。
比較実験例1では、処理ガスの供給中に、付加ガス供給部APの流量制御器の出力流量を変更することなく一定の処理流量で付加ガスを供給した。比較実験例1においても、付加ガス供給部APの流量制御器の出力流量を処理流量に設定するタイミングに同期させて、高周波電源54から上部電極34に高周波電力を供給した。また、比較実験例1においても、これら一連の工程を含むプラズマ処理を、複数回行った。また、比較実験例1においても、付加ガス供給部APの流量制御器の出力流量として設定する付加ガスの処理流量をパラメータとして用い、当該付加ガスの処理流量を複数回のプラズマ処理において異ならせた。
比較実験例2では、処理ガスの供給中に、付加ガス供給部APの流量制御器の出力流量を40sccmの先出し流量に設定し、これを2秒間継続し、続いて、付加ガス供給部APの流量制御器の出力流量を、処理流量に設定した。比較実験例2においても、付加ガス供給部APの流量制御器の出力流量を処理流量に設定するタイミングに同期させて、高周波電源54から上部電極34に高周波電力を供給した。また、比較実験例2においても、これら一連の工程を含むプラズマ処理を、複数回行った。また、比較実験例2においても、付加ガス供給部APの流量制御器の出力流量として設定する付加ガスの処理流量をパラメータとして用い、当該付加ガスの処理流量を複数回のプラズマ処理において異ならせた。
実験例では、複数回のプラズマ処理の各々において処理容器12内のプラズマの発光を観察し、付加ガス供給部APの流量制御器の出力流量を処理流量に設定してからプラズマの発光が安定するまでの時間、即ち、遅延時間(図4の遅延時間「TD」を参照)を求めた。また、比較実験例1〜2においても、複数回のプラズマ処理の各々において、付加ガス供給部APの流量制御器の出力流量を処理流量に設定してからプラズマの発光が安定するまでの時間(図4の遅延時間「TDP」を参照)を求めた。図6に、実験例及び比較実験例1〜2において求めた遅延時間を示す。なお、図6において、横軸は、付加ガスの処理流量を示しており、縦軸は遅延時間を示している。
図6に示すように、実験例によれば、一定の流量の付加ガスを流し続けた比較実験例1よりも、遅延時間が小さくなることが確認された。また、先出し流量を用いた比較実験例2では、付加ガスの処理流量が12sccm以上となると、先出し流量を用いる効果が失われることが確認された。一方、実験例によれば、付加ガスの処理流量によらず、遅延時間が短縮されることが確認された。
10…プラズマ処理装置、12…処理容器、14…載置台、16…サセプタ、20…静電チャック、34…上部電極、36…内側電極部(シャワーヘッド)、38…外側電極部、54…高周波電源、63a,63b…ガス拡散室、82…高周波電源、C10…制御部、GS…ガス供給系、MP…メインガス供給部、MGS1,MGS2,MGS3…ガスソース、MV11,MV12,MV21,MV22,MV31,MV32…バルブ、MC1,MC2,MC3…流量制御器、ML…共通ガスライン、FS…分流量調整器、FC1,FC2…流量制御器、FV11,FV12,FV21,FV22…バルブ、BL1…第1の分岐ライン、BL2…第2の分岐ライン、AP…付加ガス供給部、AL…ガスライン、AGS1,AGS2,AGS3…ガスソース、AV11,AV21,AV31…バルブ(上流側バルブ)、AC1,AC2,AC3…流量制御器、AV12,AV22,AV32…バルブ(下流側バルブ)、AF…管(充填用)。

Claims (3)

  1. 被処理体を処理するためのプラズマ処理装置の処理容器内にガスを供給する方法であって、
    前記プラズマ処理装置は、
    前記処理容器と、
    前記処理容器内に設けられ、下部電極を構成する載置台と、
    前記載置台の上方に設けられ、上部電極を構成するシャワーヘッドと、
    前記上部電極及び下部電極の一方に高周波電力を供給する高周波電源と、
    前記シャワーヘッドに処理ガス及び付加ガスを供給するためのガス供給系と、
    を備え、
    前記シャワーヘッドは、前記載置台の中央領域に対面する中央ガス導入部、及び、前記載置台の中央領域よりも外側の領域に対面する周辺ガス導入部、を含み、
    前記ガス供給系は、
    前記処理ガスを供給する第1のガスソースと、
    前記付加ガスを供給する第2のガスソースと、
    前記第1のガスソースからの処理ガスを前記中央ガス導入部及び前記周辺ガス導入部にそれぞれ供給する第1の分岐ライン及び第2の分岐ラインと、
    前記第2のガスソースを前記第2の分岐ラインに接続するガスラインであり、流量制御器、該流量制御器と前記第2の分岐ラインとの間に設けられたバルブ、及び該流量制御器と該バルブとの間に設けられた管を含む該ガスラインと、
    を有し、該方法は、
    前記処理ガスを前記第1の分岐ライン及び前記第2の分岐ラインを介して前記中央ガス導入部及び前記周辺ガス導入部にそれぞれ供給する工程と、
    前記バルブを閉じて前記管に前記付加ガスを充填する工程と、
    前記付加ガスの充填後に前記バルブを開放する工程と、
    前記バルブの開放後に、前記高周波電源から前記上部電極及び前記下部電極の一方に高周波電力を供給する工程と、
    を含む方法。
  2. 前記付加ガスを充填する工程は、被処理体を交換する期間内に行われ、
    前記充填する工程の後、前記流量制御器を閉じる工程を更に含む、
    請求項1に記載の方法。
  3. 被処理体を処理するためのプラズマ処理装置であって、
    処理容器と、
    前記処理容器内に設けられ、下部電極を構成する載置台と、
    前記載置台の上方に設けられ、上部電極を構成するシャワーヘッドと、
    前記上部電極及び下部電極の一方に高周波電力を供給する高周波電源と、
    前記シャワーヘッドに処理ガス及び付加ガスを供給するためのガス供給系と、
    制御部と、
    を備え、
    前記シャワーヘッドは、前記載置台の中央領域に対面する中央ガス導入部、及び、前記載置台の中央領域よりも外側の領域に対面する周辺ガス導入部、を含み、
    前記ガス供給系は、
    前記処理ガスを供給する第1のガスソースと、
    前記付加ガスを供給する第2のガスソースと、
    前記第1のガスソースからの処理ガスを前記中央ガス導入部及び前記周辺ガス導入部にそれぞれ供給する第1の分岐ライン及び第2の分岐ラインと、
    前記第2のガスソースを前記第2の分岐ラインに接続するガスラインであり、流量制御器、該流量制御器と前記第2の分岐ラインとの間に設けられたバルブ、及び該流量制御器と該バルブとの間に設けられた管を含む該ガスラインと、
    を有し、
    前記制御部は、
    前記処理ガスを前記第1の分岐ライン及び前記第2の分岐ラインを介して前記中央ガス導入部及び前記周辺ガス導入部にそれぞれ供給する第1制御と、
    前記バルブを閉じて前記管に前記付加ガスを充填する第2制御と、
    前記付加ガスの充填後に前記バルブを開放する第3制御と、
    前記バルブの開放後に、前記高周波電源から前記上部電極及び前記下部電極の一方に高周波電力を供給する第4制御と、
    を実行する、プラズマ処理装置。
JP2013101411A 2013-05-13 2013-05-13 ガスを供給する方法、及びプラズマ処理装置 Active JP6027490B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013101411A JP6027490B2 (ja) 2013-05-13 2013-05-13 ガスを供給する方法、及びプラズマ処理装置
KR1020157028892A KR102109229B1 (ko) 2013-05-13 2014-05-02 가스를 공급하는 방법 및 플라즈마 처리 장치
PCT/JP2014/062184 WO2014185300A1 (ja) 2013-05-13 2014-05-02 ガスを供給する方法、及びプラズマ処理装置
US14/783,981 US9947510B2 (en) 2013-05-13 2014-05-02 Method for supplying gas, and plasma processing apparatus
TW103116752A TWI616946B (zh) 2013-05-13 2014-05-12 氣體供給方法及電漿處理裝置
US15/889,900 US20180166257A1 (en) 2013-05-13 2018-02-06 Method for supplying gas, and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101411A JP6027490B2 (ja) 2013-05-13 2013-05-13 ガスを供給する方法、及びプラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2014222702A true JP2014222702A (ja) 2014-11-27
JP6027490B2 JP6027490B2 (ja) 2016-11-16

Family

ID=51898279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101411A Active JP6027490B2 (ja) 2013-05-13 2013-05-13 ガスを供給する方法、及びプラズマ処理装置

Country Status (5)

Country Link
US (2) US9947510B2 (ja)
JP (1) JP6027490B2 (ja)
KR (1) KR102109229B1 (ja)
TW (1) TWI616946B (ja)
WO (1) WO2014185300A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207409A (ja) * 2015-04-21 2016-12-08 株式会社日立ハイテクノロジーズ プラズマ処理装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9275869B2 (en) * 2013-08-02 2016-03-01 Lam Research Corporation Fast-gas switching for etching
JP6603586B2 (ja) * 2016-01-19 2019-11-06 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
KR20170127724A (ko) * 2016-05-12 2017-11-22 삼성전자주식회사 플라즈마 처리 장치
JP7122102B2 (ja) * 2017-11-08 2022-08-19 東京エレクトロン株式会社 ガス供給システム及びガス供給方法
CN114121585B (zh) * 2020-08-26 2023-10-31 中微半导体设备(上海)股份有限公司 一种等离子体处理装置及气体供应方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945624A (ja) * 1995-07-27 1997-02-14 Tokyo Electron Ltd 枚葉式の熱処理装置
JP2000091320A (ja) * 1998-09-10 2000-03-31 Foi:Kk プラズマ処理装置
JP2007184329A (ja) * 2006-01-04 2007-07-19 Tokyo Electron Ltd ガス供給装置,基板処理装置,ガス供給方法
JP2007208194A (ja) * 2006-02-06 2007-08-16 Tokyo Electron Ltd ガス供給装置,基板処理装置,ガス供給方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI334450B (en) * 2004-03-12 2010-12-11 Hitachi Int Electric Inc Wafer treatment device and the manufacturing method of semiconductor device
US7896967B2 (en) * 2006-02-06 2011-03-01 Tokyo Electron Limited Gas supply system, substrate processing apparatus and gas supply method
JP4911984B2 (ja) * 2006-02-08 2012-04-04 東京エレクトロン株式会社 ガス供給装置,基板処理装置,ガス供給方法及びシャワーヘッド
US20080078746A1 (en) * 2006-08-15 2008-04-03 Noriiki Masuda Substrate processing system, gas supply unit, method of substrate processing, computer program, and storage medium
JP5235293B2 (ja) * 2006-10-02 2013-07-10 東京エレクトロン株式会社 処理ガス供給機構および処理ガス供給方法ならびにガス処理装置
JP5192214B2 (ja) * 2007-11-02 2013-05-08 東京エレクトロン株式会社 ガス供給装置、基板処理装置および基板処理方法
JP5378706B2 (ja) 2008-05-22 2013-12-25 東京エレクトロン株式会社 プラズマ処理装置及びそれに用いられる処理ガス供給装置
KR20100002847A (ko) * 2008-06-30 2010-01-07 주식회사 에이디피엔지니어링 가스 공급장치 및 이를 이용한 기판 처리장치
JP2011192664A (ja) * 2010-03-11 2011-09-29 Tokyo Electron Ltd プラズマエッチング方法及びプラズマエッチング装置
KR20160065510A (ko) * 2014-12-01 2016-06-09 주식회사 사운들리 비가청 음파가 포함된 방송영상 파일 또는 스트리밍 패킷의 생성 방법 및 이 방법을 이용하는 텔레비전 방송 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945624A (ja) * 1995-07-27 1997-02-14 Tokyo Electron Ltd 枚葉式の熱処理装置
JP2000091320A (ja) * 1998-09-10 2000-03-31 Foi:Kk プラズマ処理装置
JP2007184329A (ja) * 2006-01-04 2007-07-19 Tokyo Electron Ltd ガス供給装置,基板処理装置,ガス供給方法
JP2007208194A (ja) * 2006-02-06 2007-08-16 Tokyo Electron Ltd ガス供給装置,基板処理装置,ガス供給方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207409A (ja) * 2015-04-21 2016-12-08 株式会社日立ハイテクノロジーズ プラズマ処理装置

Also Published As

Publication number Publication date
US20160064192A1 (en) 2016-03-03
US20180166257A1 (en) 2018-06-14
WO2014185300A1 (ja) 2014-11-20
US9947510B2 (en) 2018-04-17
KR102109229B1 (ko) 2020-05-11
TWI616946B (zh) 2018-03-01
KR20160006675A (ko) 2016-01-19
JP6027490B2 (ja) 2016-11-16
TW201507025A (zh) 2015-02-16

Similar Documents

Publication Publication Date Title
US10304691B2 (en) Method of etching silicon oxide and silicon nitride selectively against each other
JP6027490B2 (ja) ガスを供給する方法、及びプラズマ処理装置
US20200321200A1 (en) Plasma processing method including cleaning of inside of chamber main body of plasma processing apparatus
JP4895167B2 (ja) ガス供給装置,基板処理装置,ガス供給方法
US7815740B2 (en) Substrate mounting table, substrate processing apparatus and substrate processing method
KR101809150B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
JP5360069B2 (ja) プラズマ処理装置およびプラズマ処理方法
US9502219B2 (en) Plasma processing method
JP4357487B2 (ja) ガス供給装置,基板処理装置,ガス供給方法
JP2007214295A (ja) ガス供給装置,基板処理装置,ガス供給方法
TWI608515B (zh) Gas supply method and plasma processing apparatus
KR20070094477A (ko) 플라즈마 처리 장치 및 그것에 이용되는 전극
US9502537B2 (en) Method of selectively removing a region formed of silicon oxide and plasma processing apparatus
JP4911982B2 (ja) ガス供給装置,基板処理装置,ガス供給方法及びガス供給制御方法
KR102305374B1 (ko) 실리콘층을 에칭하는 방법 및 플라즈마 처리 장치
US20190237305A1 (en) Method for applying dc voltage and plasma processing apparatus
JP2006202833A (ja) ガス設定方法,ガス設定装置,エッチング装置及び基板処理システム
JP2019117876A (ja) エッチング方法
US11742180B2 (en) Plasma processing method and plasma processing apparatus
JP2014075281A (ja) プラズマ処理装置及び温度制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6027490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250