JP2014207086A - Negative electrode for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery using the same - Google Patents

Negative electrode for nickel-hydrogen secondary battery, and nickel-hydrogen secondary battery using the same Download PDF

Info

Publication number
JP2014207086A
JP2014207086A JP2013082980A JP2013082980A JP2014207086A JP 2014207086 A JP2014207086 A JP 2014207086A JP 2013082980 A JP2013082980 A JP 2013082980A JP 2013082980 A JP2013082980 A JP 2013082980A JP 2014207086 A JP2014207086 A JP 2014207086A
Authority
JP
Japan
Prior art keywords
negative electrode
nickel
secondary battery
storage alloy
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013082980A
Other languages
Japanese (ja)
Other versions
JP6120362B2 (en
Inventor
石田 潤
Jun Ishida
潤 石田
拓也 甲斐
Takuya Kai
拓也 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
FDK Twicell Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Twicell Co Ltd filed Critical FDK Twicell Co Ltd
Priority to JP2013082980A priority Critical patent/JP6120362B2/en
Publication of JP2014207086A publication Critical patent/JP2014207086A/en
Application granted granted Critical
Publication of JP6120362B2 publication Critical patent/JP6120362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for a nickel-hydrogen secondary battery which allows good balance between cycle life and self discharge characteristics to be achieved; and a nickel-hydrogen secondary battery using the negative electrode.SOLUTION: A nickel-hydrogen secondary battery 2 comprises: an exterior can 10; and an electrode group 22 which is housed in the exterior can 10 together with an alkaline electrolyte in an airtight condition. The electrode group 22 includes a separator 28, and a positive electrode 24 and a negative electrode 26 which are put together with the separator interposed therebetween. The negative electrode 26 includes a negative electrode base composed of a sheet of metal material, and a negative electrode mixture held by the negative electrode base. The negative electrode mixture includes a hydrogen-absorbable alloy and aluminum fluoride.

Description

本発明は、ニッケル水素二次電池用の負極及びこの負極を用いたニッケル水素二次電池に関する。   The present invention relates to a negative electrode for a nickel metal hydride secondary battery and a nickel metal hydride secondary battery using the negative electrode.

ニッケル水素二次電池は、ニッケルカドミウム二次電池に比べて高容量で、且つ、環境安全性にも優れているという点から、各種のポータブル機器やハイブリッド電気自動車等、さまざまな用途に使用されるようになっている。このように、さまざまな用途が見出されたことによりニッケル水素二次電池に対しては、より使い勝手を良くするため、サイクル寿命特性や自己放電特性の向上が望まれている。   Nickel metal hydride secondary batteries are used in various applications such as various portable devices and hybrid electric vehicles because they have higher capacity and better environmental safety than nickel cadmium secondary batteries. It is like that. As described above, since various uses are found, it is desired to improve cycle life characteristics and self-discharge characteristics for nickel-hydrogen secondary batteries in order to improve usability.

ここで、サイクル寿命特性を向上させたニッケル水素二次電池としては、例えば、特許文献1に示されたニッケル水素二次電池が知られている。このニッケル水素二次電池においては、水素吸蔵合金を含む負極中に撥水性を有するフッ素樹脂を含有させている。これにより、水素吸蔵合金とアルカリ電解液との接触は適度に制限され、充放電を繰り返した場合に水素吸蔵合金がアルカリ電解液により酸化されて劣化することが防止される。その結果、ニッケル水素二次電池のサイクル寿命特性は向上する。   Here, as a nickel metal hydride secondary battery with improved cycle life characteristics, for example, a nickel metal hydride secondary battery disclosed in Patent Document 1 is known. In this nickel metal hydride secondary battery, a fluorine resin having water repellency is contained in the negative electrode including the hydrogen storage alloy. Accordingly, the contact between the hydrogen storage alloy and the alkaline electrolyte is moderately limited, and the hydrogen storage alloy is prevented from being oxidized and deteriorated by the alkaline electrolyte when charging and discharging are repeated. As a result, the cycle life characteristics of the nickel hydride secondary battery are improved.

また、水素吸蔵合金の表面を処理することにより耐酸化性を向上させることも試みられている。例えば、水素吸蔵合金の表面をフッ化水素で処理する方法が知られている。この方法によれば、水素吸蔵合金の表面に耐酸化性に優れた被覆層が形成され、水素吸蔵合金の耐酸化性が向上するので、水素吸蔵合金がアルカリ電解液により酸化されて劣化することが防止される。その結果、ニッケル水素二次電池のサイクル寿命特性は向上する。   Attempts have also been made to improve oxidation resistance by treating the surface of the hydrogen storage alloy. For example, a method of treating the surface of a hydrogen storage alloy with hydrogen fluoride is known. According to this method, a coating layer excellent in oxidation resistance is formed on the surface of the hydrogen storage alloy, and the oxidation resistance of the hydrogen storage alloy is improved, so that the hydrogen storage alloy is oxidized and deteriorated by the alkaline electrolyte. Is prevented. As a result, the cycle life characteristics of the nickel hydride secondary battery are improved.

特開2009−176708号公報JP 2009-176708 A

しかしながら、上記したようなサイクル寿命の向上を企図して開発されたニッケル水素二次電池においては、以下に示すような問題がある。   However, the nickel hydride secondary battery developed with the aim of improving the cycle life as described above has the following problems.

まず、上記したようなニッケル水素二次電池においては、自己放電特性を改善することに関して全く検討されていない。つまり、かかる電池は、自己放電が大きいことから、放置期間が長いと残存容量が減少し、使用する直前に再度充電する必要がある。   First, in the nickel hydride secondary battery as described above, no consideration has been given to improving self-discharge characteristics. That is, since such a battery has a large self-discharge, the remaining capacity decreases if the standing period is long, and it is necessary to recharge immediately before use.

また、サイクル寿命特性を向上させるべくフッ化水素で水素吸蔵合金の表面を処理する場合、このフッ化水素が強酸であるため、取り扱いに注意が必要であり、処理後の洗浄や、廃液の処理にも手間がかかり煩雑である。   In addition, when treating the surface of a hydrogen storage alloy with hydrogen fluoride to improve cycle life characteristics, the hydrogen fluoride is a strong acid, so care must be taken in handling, cleaning after treatment and treatment of waste liquid. It is troublesome and cumbersome.

一方、上記したフッ素樹脂を負極に含有させる方法は、フッ素樹脂を負極合剤に混合するだけでよく、製造性に優れているものの、水素吸蔵合金の耐酸化性の改善効果は未だ十分なものとはなっていない。   On the other hand, the above-mentioned method of incorporating the fluororesin into the negative electrode is only required to mix the fluororesin into the negative electrode mixture and is excellent in manufacturability, but the effect of improving the oxidation resistance of the hydrogen storage alloy is still sufficient. It is not.

これらのことから、より簡便に、且つ、十分にサイクル寿命特性が改善されており、しかも、自己放電特性に優れているニッケル水素二次電池の開発が望まれている。   From these facts, it is desired to develop a nickel-hydrogen secondary battery that has improved cycle life characteristics more easily and sufficiently, and that is excellent in self-discharge characteristics.

本発明は、上記の事情に基づいてなされたものであり、その目的とするところは、サイクル寿命特性と自己放電特性との両立が図れるニッケル水素二次電池用の負極及びこの負極を用いたニッケル水素二次電池を提供することにある。   The present invention has been made based on the above circumstances, and the object of the present invention is to provide a negative electrode for a nickel-hydrogen secondary battery capable of achieving both cycle life characteristics and self-discharge characteristics, and nickel using the negative electrode. The object is to provide a hydrogen secondary battery.

本発明によれば、シート状の金属材からなる負極基板と、前記負極基板に保持される負極合剤と、を備え、前記負極合剤は、水素吸蔵合金及びフッ化アルミニウムを含む、ことを特徴とするニッケル水素二次電池用の負極が提供される。   According to the present invention, comprising: a negative electrode substrate made of a sheet-like metal material; and a negative electrode mixture held on the negative electrode substrate, wherein the negative electrode mixture contains a hydrogen storage alloy and aluminum fluoride. A negative electrode for a nickel-metal hydride secondary battery is provided.

また、前記負極合剤は、前記フッ化アルミニウムの含有量が前記水素吸蔵合金100質量部に対して0.1質量部以上1.0質量部以下である構成とすることが好ましい。   Moreover, it is preferable that the negative electrode mixture has a content of the aluminum fluoride of 0.1 parts by mass or more and 1.0 part by mass or less with respect to 100 parts by mass of the hydrogen storage alloy.

また、前記水素吸蔵合金は、一般式:Ln1-xMgxNiy-zz(ただし、式中、Lnは、Zr及び希土類元素から選ばれる少なくとも一つの元素、Mは、V、Nb、Ta、Cr、Mo、Fe、Ga、Zn、Sn、In、Cu、Al、Si、PおよびBから選ばれる少なくとも一つの元素、添字x、y、zは、それぞれ、0.05≦x≦0.30、3.3≦y≦3.6、0≦z≦0.30を示す)で表される組成を有している構成とすることが好ましい。 Further, the hydrogen storage alloy has the general formula: Ln 1-x Mg x Ni yz M z ( In the formula, Ln is at least one element selected from Zr and rare earth elements, M is V, Nb, Ta , Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Al, Si, P, and B, the subscripts x, y, and z each have 0.05 ≦ x ≦ 0. 30, 3.3 ≦ y ≦ 3.6, 0 ≦ z ≦ 0.30) is preferable.

また、本発明によれば、外装缶と、前記外装缶内にアルカリ電解液とともに密閉状態で収容された電極群とを備え、前記電極群は、セパレータを介して重ね合わされた正極及び負極からなり、前記負極は、上記したニッケル水素二次電池用の負極であることを特徴とするニッケル水素二次電池が提供される。
また、前記アルカリ電解液は、NaOHを溶質の主体として含むアルカリ電解液である構成とすることが好ましい。
In addition, according to the present invention, an outer can and an electrode group housed in an airtight state together with an alkaline electrolyte in the outer can, the electrode group is composed of a positive electrode and a negative electrode stacked with a separator interposed therebetween. The nickel hydride secondary battery is provided, wherein the negative electrode is a negative electrode for the nickel hydride secondary battery described above.
The alkaline electrolyte is preferably an alkaline electrolyte containing NaOH as a main solute.

本発明のニッケル水素二次電池用の負極は、負極合剤が負極添加剤としてフッ化アルミニウムを含んでいる。このフッ化アルミニウムは、アルカリ電解液と反応して加水分解し、それによりアルミニウムとフッ素が生じる。このアルミニウムは負極近傍に高濃度で存在することにより、水素吸蔵合金とアルカリ電解液との腐食反応を抑制する。一方、フッ素は、アルカリ電解液との腐食反応により活性となった水素吸蔵合金の表面に作用してフッ化物を形成する。かかるフッ化物は、水素吸蔵合金の表面を覆い水素吸蔵合金の耐酸化性を高める。これにより、得られる電池のサイクル寿命特性が向上する。また、上記したフッ素が作用した水素吸蔵合金の表面においては、充電状態における水素のガス化反応が抑制されるので、電池の自己放電反応を抑えることができる。このように、負極合剤に負極添加剤としてフッ化アルミニウムを添加すると、得られる電池のサイクル寿命特性と自己放電特性の両立を十分に図ることができる。   In the negative electrode for a nickel metal hydride secondary battery of the present invention, the negative electrode mixture contains aluminum fluoride as a negative electrode additive. This aluminum fluoride reacts with the alkaline electrolyte and is hydrolyzed, thereby producing aluminum and fluorine. This aluminum is present in a high concentration in the vicinity of the negative electrode, thereby suppressing the corrosion reaction between the hydrogen storage alloy and the alkaline electrolyte. On the other hand, fluorine acts on the surface of the hydrogen storage alloy activated by the corrosion reaction with the alkaline electrolyte to form fluoride. Such fluoride covers the surface of the hydrogen storage alloy and improves the oxidation resistance of the hydrogen storage alloy. Thereby, the cycle life characteristic of the battery obtained is improved. In addition, since the hydrogen gasification reaction in the charged state is suppressed on the surface of the hydrogen storage alloy on which fluorine has acted, the self-discharge reaction of the battery can be suppressed. As described above, when aluminum fluoride is added as a negative electrode additive to the negative electrode mixture, both the cycle life characteristics and the self-discharge characteristics of the obtained battery can be sufficiently achieved.

また、フッ化アルミニウムは、フッ化水素よりも取り扱いが容易である。そして、負極の製造に際しても、フッ化アルミニウムを負極合剤に混合する工程及び電池組み立て後にアルカリ電解液へフッ化アルミニウムの溶解を促す加熱保持処理の工程が追加される程度であり、フッ化アルミニウムを用いることに煩雑性はともなわない。このように、本発明によれば、簡便に、ニッケル水素二次電池のサイクル寿命特性及び自己放電特性を改善することができる。   Aluminum fluoride is easier to handle than hydrogen fluoride. And in the production of the negative electrode, a step of mixing aluminum fluoride with the negative electrode mixture and a step of heat holding treatment for promoting dissolution of aluminum fluoride in the alkaline electrolyte after battery assembly are added. There is no complication in using. Thus, according to the present invention, the cycle life characteristics and the self-discharge characteristics of the nickel metal hydride secondary battery can be easily improved.

本発明の一実施形態に係るニッケル水素二次電池を部分的に破断して示した斜視図である。It is the perspective view which fractured | ruptured and showed the nickel-hydrogen secondary battery which concerns on one Embodiment of this invention.

以下、本発明に係るニッケル水素二次電池(以下、単に電池と称する)2を、図面を参照して説明する。   Hereinafter, a nickel-hydrogen secondary battery (hereinafter simply referred to as a battery) 2 according to the present invention will be described with reference to the drawings.

本発明が適用される電池2としては特に限定されないが、例えば、図1に示すAAサイズの円筒型の電池2に本発明を適用した場合を例に説明する。   The battery 2 to which the present invention is applied is not particularly limited. For example, a case where the present invention is applied to an AA size cylindrical battery 2 shown in FIG. 1 will be described as an example.

図1に示すように、電池2は、上端が開口した有底円筒形状をなす外装缶10を備えている。外装缶10は導電性を有し、その底壁35は負極端子として機能する。外装缶10の開口には、封口体11が固定されている。この封口体11は、蓋板14及び正極端子20を含み、外装缶10を封口するとともに正極端子20を提供する。蓋板14は、導電性を有する円板形状の部材である。外装缶10の開口内には、蓋板14及びこの蓋板14を囲むリング形状の絶縁パッキン12が配置され、絶縁パッキン12は外装缶10の開口縁37をかしめ加工することにより外装缶10の開口縁37に固定されている。即ち、蓋板14及び絶縁パッキン12は互いに協働して外装缶10の開口を気密に閉塞している。   As shown in FIG. 1, the battery 2 includes an outer can 10 having a bottomed cylindrical shape with an open upper end. The outer can 10 has conductivity, and its bottom wall 35 functions as a negative electrode terminal. A sealing body 11 is fixed to the opening of the outer can 10. The sealing body 11 includes a cover plate 14 and a positive electrode terminal 20, and seals the outer can 10 and provides the positive electrode terminal 20. The cover plate 14 is a disk-shaped member having conductivity. A cover plate 14 and a ring-shaped insulating packing 12 surrounding the cover plate 14 are disposed in the opening of the outer can 10, and the insulating packing 12 is formed by caulking the opening edge 37 of the outer can 10. It is fixed to the opening edge 37. That is, the lid plate 14 and the insulating packing 12 cooperate with each other to airtightly close the opening of the outer can 10.

ここで、蓋板14は中央に中央貫通孔16を有し、そして、蓋板14の外面上には中央貫通孔16を塞ぐゴム製の弁体18が配置されている。更に、蓋板14の外面上には、弁体18を覆うようにしてフランジ付き円筒形状をなす金属製の正極端子20が電気的に接続されている。この正極端子20は弁体18を蓋板14に向けて押圧している。なお、正極端子20には、図示しないガス抜き孔が開口されている。   Here, the cover plate 14 has a central through hole 16 in the center, and a rubber valve body 18 that closes the central through hole 16 is disposed on the outer surface of the cover plate 14. Further, a metal positive electrode terminal 20 having a flanged cylindrical shape is electrically connected to the outer surface of the cover plate 14 so as to cover the valve element 18. The positive terminal 20 presses the valve body 18 toward the lid plate 14. The positive electrode terminal 20 has a gas vent hole (not shown).

通常時、中央貫通孔16は弁体18によって気密に閉じられている。一方、外装缶10内にガスが発生し、その内圧が高まれば、弁体18は内圧によって圧縮され、中央貫通孔16を開き、この結果、外装缶10内から中央貫通孔16及び正極端子20のガス抜き孔を介して外部にガスが放出される。つまり、中央貫通孔16、弁体18及び正極端子20は電池のための安全弁を形成している。   Normally, the central through hole 16 is hermetically closed by the valve body 18. On the other hand, if gas is generated in the outer can 10 and its internal pressure increases, the valve body 18 is compressed by the internal pressure and opens the central through hole 16. As a result, the central through hole 16 and the positive electrode terminal 20 are opened from the outer can 10. Gas is released to the outside through the vent holes. That is, the central through hole 16, the valve body 18, and the positive electrode terminal 20 form a safety valve for the battery.

外装缶10には、電極群22が収容されている。この電極群22は、それぞれ帯状の正極24、負極26及びセパレータ28からなり、これらは正極24と負極26との間にセパレータ28が挟み込まれた状態で渦巻状に巻回されている。即ち、セパレータ28を介して正極24及び負極26が互いに重ね合わされている。電極群22の最外周は負極26の一部(最外周部)により形成され、外装缶10の内周壁と接触している。即ち、負極26と外装缶10とは互いに電気的に接続されている。   An electrode group 22 is accommodated in the outer can 10. Each of the electrode groups 22 includes a strip-like positive electrode 24, a negative electrode 26, and a separator 28, which are wound in a spiral shape with the separator 28 sandwiched between the positive electrode 24 and the negative electrode 26. That is, the positive electrode 24 and the negative electrode 26 are overlapped with each other via the separator 28. The outermost periphery of the electrode group 22 is formed by a part of the negative electrode 26 (the outermost periphery) and is in contact with the inner peripheral wall of the outer can 10. That is, the negative electrode 26 and the outer can 10 are electrically connected to each other.

そして、外装缶10内には、電極群22の一端と蓋板14との間に正極リード30が配置されている。詳しくは、正極リード30は、その一端が正極24に接続され、その他端が蓋板14に接続されている。従って、正極端子20と正極24とは、正極リード30及び蓋板14を介して互いに電気的に接続されている。なお、蓋板14と電極群22との間には円形の上部絶縁部材32が配置され、正極リード30は絶縁部材32に設けられたスリット39を通して延びている。また、電極群22と外装缶10の底部との間にも円形の下部絶縁部材34が配置されている。   In the outer can 10, a positive electrode lead 30 is disposed between one end of the electrode group 22 and the lid plate 14. Specifically, the positive electrode lead 30 has one end connected to the positive electrode 24 and the other end connected to the lid plate 14. Therefore, the positive electrode terminal 20 and the positive electrode 24 are electrically connected to each other via the positive electrode lead 30 and the cover plate 14. A circular upper insulating member 32 is disposed between the cover plate 14 and the electrode group 22, and the positive electrode lead 30 extends through a slit 39 provided in the insulating member 32. A circular lower insulating member 34 is also disposed between the electrode group 22 and the bottom of the outer can 10.

更に、外装缶10内には、所定量のアルカリ電解液(図示せず)が注入されている。このアルカリ電解液は、電極群22に含浸され、正極24と負極26との間での充放電反応を進行させる。このアルカリ電解液としては、NaOHを溶質の主体として含むアルカリ電解液を用いることが好ましい。具体的には、水酸化ナトリウム水溶液を用いる。本発明においては、アルカリ電解液の溶質は、NaOHが主体として含まれていればよく、NaOHが単独で含まれる態様であっても、NaOHに加え、例えば、KOH及びLiOHのうちの少なくとも一方を含んでいる態様であってもよい。ここで、アルカリ電解液の溶質としてKOHやLiOHも含む場合、NaOHの量は、これらKOHやLiOHの量よりも多くする。このようなNaOHを主体とするアルカリ電解液を用いた電池は、優れた自己放電特性を発揮する。   Further, a predetermined amount of alkaline electrolyte (not shown) is injected into the outer can 10. The alkaline electrolyte is impregnated in the electrode group 22 to advance a charge / discharge reaction between the positive electrode 24 and the negative electrode 26. As the alkaline electrolyte, an alkaline electrolyte containing NaOH as a main solute is preferably used. Specifically, an aqueous sodium hydroxide solution is used. In the present invention, the solute of the alkaline electrolyte only needs to contain NaOH as a main component, and even if NaOH is contained alone, in addition to NaOH, for example, at least one of KOH and LiOH is contained. The aspect which contains may be sufficient. Here, when KOH and LiOH are also included as the solute of the alkaline electrolyte, the amount of NaOH is larger than the amount of these KOH and LiOH. A battery using such an alkaline electrolyte mainly composed of NaOH exhibits excellent self-discharge characteristics.

セパレータ28の材料としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものを用いることができる。具体的には、スルホン化処理が施されてスルホン基が付与されたポリオレフィン繊維を主体とする不織布を用いることが好ましい。ここで、スルホン基は、硫酸又は発煙硫酸等の硫酸基を含む酸を用いて不織布を処理することにより付与される。このようなスルホン基を有する繊維を含むセパレータを用いた電池は、優れた自己放電特性を発揮する。   As a material of the separator 28, for example, a polyamide fiber nonwoven fabric or a polyolefin fiber nonwoven fabric such as polyethylene or polypropylene provided with a hydrophilic functional group can be used. Specifically, it is preferable to use a non-woven fabric mainly composed of polyolefin fibers that have been subjected to sulfonation treatment and are provided with sulfone groups. Here, the sulfone group is imparted by treating the nonwoven fabric with an acid containing a sulfuric acid group such as sulfuric acid or fuming sulfuric acid. A battery using a separator including such a fiber having a sulfone group exhibits excellent self-discharge characteristics.

正極24は、多孔質構造を有する導電性の正極基体と、この正極基体の空孔内に保持された正極合剤とからなる。   The positive electrode 24 is composed of a conductive positive electrode substrate having a porous structure and a positive electrode mixture held in the pores of the positive electrode substrate.

このような正極基体としては、例えば、ニッケルめっきが施された網状、スポンジ状若しくは繊維状の金属体、あるいは、発泡ニッケル(ニッケルフォーム)を用いることができる。   As such a positive electrode substrate, for example, a net-like, sponge-like or fibrous metal body plated with nickel, or foamed nickel (nickel foam) can be used.

正極合剤は、正極活物質粒子、導電材、正極添加剤及び結着剤を含む。この結着剤は、正極活物質粒子、導電材及び正極添加剤を結着させると同時に正極合剤を正極基体に結着させる働きをなす。ここで、結着剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、PTFE(ポリテトラフルオロエチレン)ディスパージョン、HPC(ヒドロキシプロピルセルロース)ディスパージョンなどを用いることができる。   The positive electrode mixture includes positive electrode active material particles, a conductive material, a positive electrode additive, and a binder. This binder serves to bind the positive electrode active material particles, the conductive material, and the positive electrode additive and at the same time bind the positive electrode mixture to the positive electrode substrate. Here, as the binder, for example, carboxymethylcellulose, methylcellulose, PTFE (polytetrafluoroethylene) dispersion, HPC (hydroxypropylcellulose) dispersion, and the like can be used.

正極活物質粒子は、水酸化ニッケル粒子又は高次水酸化ニッケル粒子である。なお、これら水酸化ニッケル粒子には、亜鉛、マグネシウム及びコバルトのうちの少なくとも一種を固溶させることが好ましい。   The positive electrode active material particles are nickel hydroxide particles or higher order nickel hydroxide particles. In addition, it is preferable to dissolve at least one of zinc, magnesium, and cobalt in these nickel hydroxide particles.

導電材としては、例えば、コバルト酸化物(CoO)やコバルト水酸化物(Co(OH)2)などのコバルト化合物及びコバルト(Co)から選択された1種又は2種以上を用いることができる。この導電材は、必要に応じて正極合剤に添加されるものであり、添加される形態としては、粉末の形態のほか、正極活物質の表面を覆う被覆の形態で正極合剤に含まれていてもよい。 As the conductive material, for example, one or more selected from cobalt compounds such as cobalt oxide (CoO) and cobalt hydroxide (Co (OH) 2 ) and cobalt (Co) can be used. This conductive material is added to the positive electrode mixture as necessary, and is added to the positive electrode mixture in the form of a powder and a coating covering the surface of the positive electrode active material. It may be.

正極添加剤は、正極の特性を改善するために添加されるものであり、例えば、酸化イットリウム、酸化亜鉛等を用いることができる。   The positive electrode additive is added to improve the characteristics of the positive electrode. For example, yttrium oxide, zinc oxide, or the like can be used.

正極活物質粒子は、例えば、以下のようにして製造することができる。
まず、硫酸ニッケルの水溶液を調製する。この硫酸ニッケル水溶液に水酸化ナトリウム水溶液を徐々に添加して反応させることにより水酸化ニッケル粒子を析出させる。ここで、水酸化ニッケル粒子に亜鉛、マグネシウム及びコバルトを固溶させる場合は、所定組成となるよう硫酸ニッケル、硫酸亜鉛、硫酸マグネシウム及び硫酸コバルトを秤量し、これらの混合水溶液を調製する。得られた混合水溶液を攪拌しながら、この混合水溶液に水酸化ナトリウム水溶液を徐々に添加して反応させることにより水酸化ニッケルを主体とし、亜鉛、マグネシウム及びコバルトを固溶した正極活物質粒子を析出させる。
The positive electrode active material particles can be produced, for example, as follows.
First, an aqueous solution of nickel sulfate is prepared. Nickel hydroxide particles are precipitated by gradually adding a sodium hydroxide aqueous solution to the nickel sulfate aqueous solution for reaction. Here, when zinc, magnesium and cobalt are dissolved in nickel hydroxide particles, nickel sulfate, zinc sulfate, magnesium sulfate and cobalt sulfate are weighed so as to have a predetermined composition, and a mixed aqueous solution thereof is prepared. While stirring the resulting mixed aqueous solution, a sodium hydroxide aqueous solution is gradually added to the mixed aqueous solution to cause the reaction, thereby precipitating positive electrode active material particles mainly composed of nickel hydroxide and containing zinc, magnesium and cobalt as solid solutions. Let

正極24は、例えば、以下のようにして製造することができる。
まず、上記したようにして得られた正極活物質粒子からなる正極活物質粉末、導電材、正極添加剤、水及び結着剤を含む正極合剤ペーストを調製する。得られた正極合剤ペーストは、例えば発泡ニッケル(ニッケルフォーム)に充填され、乾燥させられる。乾燥後、水酸化ニッケル粒子等が充填された発泡ニッケル(ニッケルフォーム)は、ロール圧延されてから裁断される。これにより、正極合剤を担持した正極24が作製される。
The positive electrode 24 can be manufactured as follows, for example.
First, a positive electrode mixture paste including a positive electrode active material powder composed of positive electrode active material particles obtained as described above, a conductive material, a positive electrode additive, water, and a binder is prepared. The obtained positive electrode mixture paste is filled in, for example, foamed nickel (nickel foam) and dried. After drying, foamed nickel (nickel foam) filled with nickel hydroxide particles or the like is roll-rolled and then cut. Thereby, the positive electrode 24 carrying the positive electrode mixture is produced.

次に、負極26について説明する。
負極26は、帯状をなす導電性の負極基板(芯体)を有し、この負極基板に負極合剤が保持されている。
負極基板は、貫通孔が分布されたシート状の金属材からなり、例えば、パンチングメタルシートや、金属粉末を型成形して焼結した焼結基板を用いることができる。負極合剤は、負極基板の貫通孔内に充填されるばかりでなく、負極基板の両面上にも層状にして保持されている。
Next, the negative electrode 26 will be described.
The negative electrode 26 has a conductive negative electrode substrate (core body) having a strip shape, and a negative electrode mixture is held on the negative electrode substrate.
The negative electrode substrate is made of a sheet-like metal material in which through holes are distributed. For example, a punched metal sheet or a sintered substrate obtained by molding and sintering metal powder can be used. The negative electrode mixture is not only filled in the through holes of the negative electrode substrate, but also held in layers on both surfaces of the negative electrode substrate.

負極合剤は、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子、負極添加剤としてのフッ化アルミニウム、導電材及び結着剤を含む。この結着剤は水素吸蔵合金粒子、負極添加剤及び導電材を互いに結着させると同時に負極合剤を負極基板に結着させる働きをなす。ここで、結着剤としては親水性若しくは疎水性のポリマー等を用いることができ、導電材としては、カーボンブラックや黒鉛を用いることができる。   The negative electrode mixture includes hydrogen storage alloy particles capable of occluding and releasing hydrogen as a negative electrode active material, aluminum fluoride as a negative electrode additive, a conductive material, and a binder. This binder serves to bind the hydrogen storage alloy particles, the negative electrode additive, and the conductive material to each other and at the same time bind the negative electrode mixture to the negative electrode substrate. Here, a hydrophilic or hydrophobic polymer or the like can be used as the binder, and carbon black or graphite can be used as the conductive material.

水素吸蔵合金粒子における水素吸蔵合金としては、希土類元素、Mg、Niを含み、且つ、Co及びMnを除いた組成の希土類−Mg−Ni系水素吸蔵合金を用いることが好ましい。この希土類−Mg−Ni系水素吸蔵合金は、具体的には、以下に示す一般式(I)で表される組成を有している。
Ln1-xMgxNiy-zz・・・(I)
ただし、一般式(I)中、Lnは、Zr及び希土類元素から選ばれる少なくとも一つの元素、Mは、V、Nb、Ta、Cr、Mo、Fe、Ga、Zn、Sn、In、Cu、Al、Si、PおよびBから選ばれる少なくとも一つの元素、添字x、y、zは、それぞれ、0.05≦x≦0.30、3.3≦y≦3.6、0≦z≦0.30である条件を満たすことを要する。なお、上記した希土類元素は、具体的に、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luを示す。
As the hydrogen storage alloy in the hydrogen storage alloy particles, it is preferable to use a rare earth-Mg—Ni-based hydrogen storage alloy containing a rare earth element, Mg, Ni and excluding Co and Mn. Specifically, this rare earth-Mg—Ni-based hydrogen storage alloy has a composition represented by the following general formula (I).
Ln 1-x Mg x Ni yz M z (I)
However, in general formula (I), Ln is at least one element selected from Zr and rare earth elements, M is V, Nb, Ta, Cr, Mo, Fe, Ga, Zn, Sn, In, Cu, Al , Si, P and B, the suffixes x, y and z are 0.05 ≦ x ≦ 0.30, 3.3 ≦ y ≦ 3.6, and 0 ≦ z ≦ 0. It is necessary to satisfy the condition of 30. In addition, the above-mentioned rare earth elements specifically indicate Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

ここで、本発明に係る水素吸蔵合金は、Co及びMnを除いた組成を有することから、セパレータへの導電性物質の析出が少なく、自己放電特性の向上に貢献する。また、本発明に係る水素吸蔵合金は、一般式(I)におけるLn及びMgをA成分とし、Ni及びMをB成分としたき、AB2型サブユニット及びAB5型サブユニットが積層されてなるA27型構造又はA519型構造をとる、いわゆる超格子構造をなしている。このような超格子構造をなす希土類−Mg−Ni系の水素吸蔵合金は、AB5型合金の特徴である水素の吸蔵放出が安定しているという長所と、AB2型合金の特徴である水素の吸蔵量が大きいという長所とを併せ持っている。このため、本発明に係る水素吸蔵合金は、水素吸蔵能力に優れるので、得られる電池2の高容量化に貢献する。 Here, since the hydrogen storage alloy according to the present invention has a composition excluding Co and Mn, there is little precipitation of the conductive material on the separator, which contributes to the improvement of the self-discharge characteristics. In addition, the hydrogen storage alloy according to the present invention is formed by laminating AB 2 type subunits and AB 5 type subunits when Ln and Mg in the general formula (I) are used as A components and Ni and M are used as B components. A so-called superlattice structure having an A 2 B 7 type structure or an A 5 B 19 type structure is formed. The rare earth-Mg—Ni-based hydrogen storage alloy having such a superlattice structure is advantageous in that the storage and release of hydrogen, which is a characteristic of the AB 5 type alloy, is stable, and the hydrogen, which is a characteristic of the AB 2 type alloy It has the advantage of having a large amount of occlusion. For this reason, since the hydrogen storage alloy which concerns on this invention is excellent in hydrogen storage capacity, it contributes to high capacity | capacitance of the battery 2 obtained.

次に、上記した水素吸蔵合金粒子は、例えば、以下のようにして得られる。
まず、所定の組成となるよう金属原材料を秤量して混合し、この混合物を例えば誘導溶解炉で溶解した後、冷却してインゴットにする。得られたインゴットに、900〜1200℃の不活性ガス雰囲気下にて5〜24時間加熱する熱処理を施す。この後、室温まで冷却したインゴットを粉砕し、篩分けにより所望粒径に分級することにより、水素吸蔵合金粒子が得られる。
Next, the hydrogen storage alloy particles described above are obtained, for example, as follows.
First, metal raw materials are weighed and mixed so as to have a predetermined composition, and this mixture is melted in an induction melting furnace, for example, and then cooled to an ingot. The obtained ingot is subjected to heat treatment by heating for 5 to 24 hours in an inert gas atmosphere at 900 to 1200 ° C. Thereafter, the ingot cooled to room temperature is pulverized and classified to a desired particle size by sieving to obtain hydrogen storage alloy particles.

負極添加剤としてのフッ化アルミニウムは、粉末の状態で供給される。このフッ化アルミニウムは、アルカリ電解液と緩やかに反応して加水分解するため、アルカリ電解液による水素吸蔵合金の腐食反応の進行とフッ化アルミニウムの加水分解がほぼ同時に進行する。これにより、アルカリ電解液中に溶解したアルミニウムは、負極近傍に高濃度で存在することになる。このように、負極近傍にアルミニウムが高濃度で存在すると、水素吸蔵合金がアルカリ電解液により腐食される腐食反応が抑制されるとともに、アルカリ電解液との腐食反応により活性になった水素吸蔵合金の表面をフッ化物が覆い、水素吸蔵合金の耐酸化性を高めると考えられる。また、フッ素が作用した水素吸蔵合金表面は、充電状態における水素のガス化反応が抑制される。このため、水素吸蔵合金表面にフッ素が作用すると電池の自己放電反応が抑制されると考えられる。   Aluminum fluoride as a negative electrode additive is supplied in a powder state. Since this aluminum fluoride reacts slowly with the alkaline electrolyte and is hydrolyzed, the progress of the corrosion reaction of the hydrogen storage alloy by the alkaline electrolyte and the hydrolysis of the aluminum fluoride proceed almost simultaneously. Thereby, the aluminum melt | dissolved in alkaline electrolyte exists in high concentration in the negative electrode vicinity. Thus, when aluminum is present in a high concentration in the vicinity of the negative electrode, the corrosion reaction in which the hydrogen storage alloy is corroded by the alkaline electrolyte is suppressed, and the hydrogen storage alloy activated by the corrosion reaction with the alkaline electrolyte is suppressed. It is thought that the surface covers the surface with fluoride and enhances the oxidation resistance of the hydrogen storage alloy. Moreover, the hydrogen gasification reaction in the charge state is suppressed on the surface of the hydrogen storage alloy on which fluorine has acted. For this reason, it is considered that the self-discharge reaction of the battery is suppressed when fluorine acts on the surface of the hydrogen storage alloy.

このフッ化アルミニウムの含有量は、少なすぎると上記したような効果が小さくなり、逆に、多すぎると充放電反応に寄与する水素吸蔵合金の量が減り実質的に負極容量が減少するため、水素吸蔵合金100質量部に対して0.1質量部以上、1.0質量部以下の範囲に設定することが好ましい。   If the content of this aluminum fluoride is too small, the effects as described above are reduced, and conversely, if it is too large, the amount of the hydrogen storage alloy contributing to the charge / discharge reaction is reduced and the negative electrode capacity is substantially reduced. It is preferable to set in the range of 0.1 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass of the hydrogen storage alloy.

ここで、従来のように、フッ化水素により水素吸蔵合金の表面を処理する場合、水素吸蔵合金の表面は、充放電反応に関与しない物質からなる被覆層で完全に覆われるため、充放電の反応性が低下する。これに対し、本発明に係るフッ化アルミニウムは、アルカリ電解液と水素吸蔵合金との腐食反応で生じた酸化層(水酸化物+Ni微粒子)に作用し、水素吸蔵合金の表面に水素吸蔵合金の構成元素のフッ化物又はフッ化アルミニウムとして存在する。この酸化層においては、充放電反応に関与しないフッ化アルミニウムの近傍には、充放電反応の触媒とされるNi微粒子が存在するため、充放電反応は阻害されない。   Here, when the surface of the hydrogen storage alloy is treated with hydrogen fluoride as in the prior art, the surface of the hydrogen storage alloy is completely covered with a coating layer made of a substance that does not participate in the charge / discharge reaction. Reactivity is reduced. On the other hand, the aluminum fluoride according to the present invention acts on an oxide layer (hydroxide + Ni fine particles) generated by the corrosion reaction between the alkaline electrolyte and the hydrogen storage alloy, and the surface of the hydrogen storage alloy has a hydrogen storage alloy. It exists as a constituent element fluoride or aluminum fluoride. In this oxide layer, Ni fine particles serving as a catalyst for the charge / discharge reaction are present in the vicinity of the aluminum fluoride that is not involved in the charge / discharge reaction, and therefore the charge / discharge reaction is not inhibited.

また、負極26は、例えば、以下のようにして製造することができる。
まず、水素吸蔵合金粒子からなる水素吸蔵合金粉末、フッ化アルミニウム粉末、導電材、結着剤及び水を混練して負極合剤ペーストを調製する。得られた負極合剤ペーストは負極基板に塗着され、乾燥させられる。乾燥後、水素吸蔵合金粒子等が付着した負極基板はロール圧延及び裁断が施され、これにより負極26が作製される。
Moreover, the negative electrode 26 can be manufactured as follows, for example.
First, a negative electrode mixture paste is prepared by kneading hydrogen storage alloy powder made of hydrogen storage alloy particles, aluminum fluoride powder, a conductive material, a binder and water. The obtained negative electrode mixture paste is applied to the negative electrode substrate and dried. After drying, the negative electrode substrate to which the hydrogen storage alloy particles and the like are attached is subjected to roll rolling and cutting, whereby the negative electrode 26 is produced.

以上のようにして作製された正極24及び負極26は、セパレータ28を介在させた状態で、渦巻き状に巻回され、電極群22に形成される。   The positive electrode 24 and the negative electrode 26 manufactured as described above are spirally wound with the separator 28 interposed therebetween, and are formed in the electrode group 22.

このようにして得られた電極群22は、外装缶10内に収容される。引き続き、当該外装缶10内にはアルカリ電解液が所定量注入される。その後、電極群22及びアルカリ電解液を収容した外装缶10は、正極端子20を備えた蓋板14により封口され、本発明に係る電池2が得られる。得られた電池2は、初期活性化処理が施され、使用可能状態とされる。   The electrode group 22 thus obtained is accommodated in the outer can 10. Subsequently, a predetermined amount of alkaline electrolyte is injected into the outer can 10. Thereafter, the outer can 10 containing the electrode group 22 and the alkaline electrolyte is sealed by the cover plate 14 provided with the positive electrode terminal 20, and the battery 2 according to the present invention is obtained. The obtained battery 2 is subjected to an initial activation process and is in a usable state.

ここで、本発明においては、電池2を組み立て後、初期活性化処理を行う前に、得られた電池2を60℃の環境下に48時間放置する加熱保持処理を行うことが好ましい。この加熱保持処理を行うことにより、フッ化アルミニウムのアルカリ電解液への溶解が促進され、早期に上記したようなフッ化アルミニウムの加水分解反応を起こさせることが出来る状態にすることができる。   Here, in the present invention, after the battery 2 is assembled, before the initial activation process is performed, it is preferable to perform a heat holding process in which the obtained battery 2 is left in an environment of 60 ° C. for 48 hours. By performing this heating and holding treatment, dissolution of aluminum fluoride in the alkaline electrolyte is promoted, and the aluminum fluoride can be brought into a state capable of causing the hydrolysis reaction of aluminum fluoride as described above.

[実施例]
1.電池の製造
(実施例1)
[Example]
1. Production of battery (Example 1)

(1)水素吸蔵合金及び負極の作製
先ず、20質量%のLa、40質量%のNd、40質量%のPrを含む希土類成分を調製した。得られた希土類成分、Mg、Ni、Alを秤量して、これらがモル比で0.83:0.17:3.10:0.20の割合となる混合物を調製した。得られた混合物は、誘導溶解炉で溶解され、その溶湯が鋳型に流し込まれた後、室温まで冷却され水素吸蔵合金のインゴットとされた。このインゴットより採取したサンプルにつき、高周波プラズマ分光分析法(ICP)によって組成分析を行った。その結果、水素吸蔵合金の組成は、(La0.20Nd0.40Pr0.400.83Mg0.17Ni3.10Al0.20であった。
次いで、このインゴットに対し、温度1000℃のアルゴン雰囲気下にて10時間加熱する熱処理を施した。そして、熱処理後、室温まで冷却された水素吸蔵合金のインゴットをアルゴンガス雰囲気中で機械的に粉砕して篩分けし、所定粒径の水素吸蔵合金粒子からなる粉末を選別した。得られた水素吸蔵合金粒子の粒径を測定した結果、かかる水素吸蔵合金粒子の平均粒径は60μmであった。
(1) Production of Hydrogen Storage Alloy and Negative Electrode First, a rare earth component containing 20% by mass of La, 40% by mass of Nd, and 40% by mass of Pr was prepared. The obtained rare earth component, Mg, Ni, and Al were weighed to prepare a mixture in which these were in a molar ratio of 0.83: 0.17: 3.10: 0.20. The obtained mixture was melted in an induction melting furnace, and the molten metal was poured into a mold, and then cooled to room temperature to form a hydrogen storage alloy ingot. The sample collected from the ingot was subjected to composition analysis by high frequency plasma spectroscopy (ICP). As a result, the composition of the hydrogen storage alloy was (La 0.20 Nd 0.40 Pr 0.40 ) 0.83 Mg 0.17 Ni 3.10 Al 0.20 .
Next, heat treatment was performed on the ingot by heating in an argon atmosphere at a temperature of 1000 ° C. for 10 hours. After the heat treatment, the hydrogen storage alloy ingot cooled to room temperature was mechanically pulverized in an argon gas atmosphere and sieved to select a powder composed of hydrogen storage alloy particles having a predetermined particle size. As a result of measuring the particle size of the obtained hydrogen storage alloy particles, the average particle size of the hydrogen storage alloy particles was 60 μm.

得られた水素吸蔵合金の粉末100質量部に対し、フッ化アルミニウム0.5質量部、ポリアクリル酸ナトリウム0.4質量部、カルボキシメチルセルロース0.1質量部、スチレンブタジエンゴム(SBR)のディスバージョン(固形分50重量%)1.0質量部(固形分換算)、カーボンブラック1.0質量部、および水30質量部を添加して混練し、負極合剤のペーストを調製した。   Dispersion of 0.5 parts by weight of aluminum fluoride, 0.4 parts by weight of sodium polyacrylate, 0.1 parts by weight of carboxymethyl cellulose, and styrene butadiene rubber (SBR) with respect to 100 parts by weight of the obtained hydrogen storage alloy powder 1.0 parts by mass (solid content: 50% by weight), 1.0 part by mass of carbon black, and 30 parts by mass of water were added and kneaded to prepare a paste of a negative electrode mixture.

この負極合剤のペーストを負極基板としての鉄製の孔あき板の両面に均等、且つ、厚さが一定となるように塗布した。なお、この孔あき板は60μmの厚みを有し、その表面にはニッケルめっきが施されている。   The paste of the negative electrode mixture was applied to both sides of an iron perforated plate as a negative electrode substrate so that the thickness was uniform and constant. This perforated plate has a thickness of 60 μm, and its surface is plated with nickel.

ペーストの乾燥後、水素吸蔵合金の粉末が付着した孔あき板を更にロール圧延して体積当たりの合金量を高めた後、裁断し、希土類−Mg−Ni系水素吸蔵合金を含むAAサイズ用の負極26を作成した。   After the paste is dried, the perforated plate to which the hydrogen storage alloy powder is attached is further rolled to increase the amount of alloy per volume, and then cut and cut for AA size containing rare earth-Mg-Ni based hydrogen storage alloy. A negative electrode 26 was prepared.

(2)正極の作製
ニッケルに対して亜鉛3質量%、マグネシウム0.4質量%、コバルト1質量%となるように、硫酸ニッケル、硫酸亜鉛、硫酸マグネシウム及び硫酸コバルトを秤量し、これらを、アンモニウムイオンを含む1N(規定度)の水酸化ナトリウム水溶液に加え、混合水溶液を調整した。得られた混合水溶液を攪拌しながら、この混合水溶液に10N(規定度)の水酸化ナトリウム水溶液を徐々に添加して反応させ、ここでの反応中、pHを13〜14に安定させて、水酸化ニッケルを主体とし、亜鉛、マグネシウム及びコバルトを固溶した水酸化ニッケル粒子を生成させた。
(2) Preparation of positive electrode Nickel sulfate, zinc sulfate, magnesium sulfate and cobalt sulfate were weighed so as to be 3% by mass of zinc, 0.4% by mass of magnesium and 1% by mass of cobalt with respect to nickel. In addition to a 1N (normality) aqueous sodium hydroxide solution containing ions, a mixed aqueous solution was prepared. While stirring the obtained mixed aqueous solution, a 10N (normality) aqueous sodium hydroxide solution was gradually added to the mixed aqueous solution to cause a reaction. During the reaction, the pH was stabilized at 13 to 14 and water was added. Nickel hydroxide particles mainly composed of nickel oxide and solid-dissolved in zinc, magnesium and cobalt were produced.

得られた水酸化ニッケル粒子を10倍の量の純水で3回洗浄した後、脱水、乾燥した。なお、得られた水酸化ニッケル粒子は、平均粒径が10μmの球状をなしている。   The obtained nickel hydroxide particles were washed three times with 10 times the amount of pure water, then dehydrated and dried. The obtained nickel hydroxide particles have a spherical shape with an average particle diameter of 10 μm.

次に、上記したように作製した水酸化ニッケル粒子からなる正極活物質粉末100質量部に、水酸化コバルトの粉末10質量部を混合し、更に、0.5質量部の酸化イットリウム、0.3質量部の酸化亜鉛、40質量部のHPCディスバージョン液を混合して正極合剤ペーストを調製し、この正極合剤ペーストを正極基体としてのシート状の発泡ニッケル(ニッケルフォーム)に塗着・充填した。正極合剤が付着した発泡ニッケルを乾燥後、ロール圧延した。圧延加工された正極合剤が付着した発泡ニッケルは、所定形状に裁断され、AAサイズ用の正極24に形成された。この正極24は、正極容量が2000mAhとなるように正極合剤を担持している。   Next, 10 parts by mass of cobalt hydroxide powder was mixed with 100 parts by mass of the positive electrode active material powder made of nickel hydroxide particles produced as described above, and further 0.5 parts by mass of yttrium oxide, 0.3 parts by mass. A positive electrode mixture paste is prepared by mixing 40 parts by mass of zinc oxide and 40 parts by mass of HPC dispersion liquid, and this positive electrode mixture paste is applied to and filled in sheet-like foamed nickel (nickel foam) as a positive electrode substrate. did. The foamed nickel to which the positive electrode mixture was adhered was dried and then rolled. The foamed nickel to which the positive electrode mixture that had been rolled was adhered was cut into a predetermined shape and formed on the positive electrode 24 for AA size. The positive electrode 24 carries a positive electrode mixture so that the positive electrode capacity is 2000 mAh.

(3)ニッケル水素二次電池の組み立て
得られた正極24及び負極26をこれらの間にセパレータ28を挟んだ状態で渦巻状に巻回し、電極群22を作製した。ここでの電極群22の作製に使用したセパレータ28はスルホン化処理が施されたポリプロピレン繊維製不織布から成り、その厚みは0.1mm(目付量53g/m2)であった。
(3) Assembly of Nickel Metal Hydride Battery The obtained positive electrode 24 and negative electrode 26 were spirally wound with a separator 28 sandwiched between them, and an electrode group 22 was produced. The separator 28 used for the production of the electrode group 22 here was made of a nonwoven fabric made of polypropylene fiber subjected to sulfonation treatment, and its thickness was 0.1 mm (weight per unit area 53 g / m 2 ).

一方、NaOH、LiOH及びKOHを含む水溶液からなるアルカリ電解液を準備した。ここで、NaOHの濃度は7.0N(規定度)、LiOHの濃度は0.02N(規定度)、KOHの濃度は0.8N(規定度)とした。   On the other hand, an alkaline electrolyte composed of an aqueous solution containing NaOH, LiOH and KOH was prepared. Here, the concentration of NaOH was 7.0 N (normality), the concentration of LiOH was 0.02 N (normality), and the concentration of KOH was 0.8 N (normality).

次いで、有底円筒形状の外装缶10内に上記した電極群22を収納するとともに、準備したアルカリ電解液を所定量注液した。この後、封口体11で外装缶10の開口を塞ぎ、公称容量2000mAhのAAサイズのニッケル水素二次電池2を組み立てた。このニッケル水素二次電池を電池aと称する。ここで、公称容量は、0.2Aで16時間充電後、0.2Aで電池電圧が1.0Vになるまで放電した際の電池の放電容量とした。
(4)加熱保持処理
電池aに対し、60℃の環境下で48時間保持する加熱保持処理を施した。
Next, the electrode group 22 described above was housed in the bottomed cylindrical outer can 10 and a predetermined amount of the prepared alkaline electrolyte was injected. Thereafter, the opening of the outer can 10 was closed with the sealing body 11, and the AA size nickel-hydrogen secondary battery 2 having a nominal capacity of 2000 mAh was assembled. This nickel metal hydride secondary battery is referred to as battery a. Here, the nominal capacity was defined as the battery discharge capacity when discharged at 0.2 A until the battery voltage reached 1.0 V after charging for 16 hours at 0.2 A.
(4) Heating and holding treatment The battery a was subjected to a heating and holding treatment for 48 hours in an environment of 60 ° C.

(5)初期活性化処理
加熱保持処理後の電池aに対し、温度25℃の環境下にて、200mA(0.1It)の充電電流で16時間の充電を行った後に、400mA(0.2It)の放電電流で電池電圧が0.5Vになるまで放電させる初期活性化処理を2回繰り返した。このようにして、電池aを使用可能状態とした。
(5) Initial activation treatment The battery a after the heat holding treatment was charged for 16 hours with a charging current of 200 mA (0.1 It) in an environment at a temperature of 25 ° C., and then 400 mA (0.2 It). The initial activation treatment for discharging until the battery voltage becomes 0.5 V with the discharge current of 2) was repeated twice. In this way, the battery a was made usable.

(実施例2)
フッ化アルミニウムの添加量を1.0質量部としたこと以外は、実施例1の電池aと同様にしてニッケル水素二次電池(電池b)を作製した。
(Example 2)
A nickel-hydrogen secondary battery (battery b) was produced in the same manner as the battery a of Example 1 except that the amount of aluminum fluoride added was 1.0 part by mass.

(比較例1)
フッ化アルミニウムを添加しないこと以外は、実施例1の電池aと同様にしてニッケル水素二次電池(電池c)を作製した。
(Comparative Example 1)
A nickel-hydrogen secondary battery (battery c) was produced in the same manner as the battery a of Example 1 except that aluminum fluoride was not added.

(比較例2)
フッ化アルミニウムの代わりに水酸化アルミニウムを0.5質量部添加したこと以外は、実施例1の電池aと同様にしてニッケル水素二次電池(電池d)を作製した。
(Comparative Example 2)
A nickel-hydrogen secondary battery (battery d) was produced in the same manner as the battery a of Example 1 except that 0.5 parts by mass of aluminum hydroxide was added instead of aluminum fluoride.

(比較例3)
フッ化アルミニウムの代わりに酸化アルミニウム(α−Al23)を0.5質量部添加したこと以外は、実施例1の電池aと同様にしてニッケル水素二次電池(電池e)を作製した。
(Comparative Example 3)
A nickel-hydrogen secondary battery (battery e) was produced in the same manner as the battery a of Example 1 except that 0.5 parts by mass of aluminum oxide (α-Al 2 O 3 ) was added instead of aluminum fluoride. .

2.水素吸蔵合金及びニッケル水素二次電池の評価
(1)水素吸蔵合金の腐食反応の進行度合い
水素吸蔵合金がアルカリ電解液により腐食される腐食反応においては、水素が発生し、かかる水素は、負極の水素吸蔵合金に蓄積される。このため、無充電状態における水素吸蔵合金の腐食反応の速度は、電池の電圧の変化から推測することができる。このことから、所定温度の環境下で電池を保持し、電圧の変化を測定し、電圧が最大値になるまでの時間を測定することにより、水素吸蔵合金の腐食反応の進行度合いがわかる。ここで、電池a(実施例1)、電池b(実施例2)、電池c(比較例1)を60℃の環境下に保持し、電圧が最大値に達するまでの時間を測定した。その結果、電池aは12時間、電池bは28時間、電池cは4時間であった。
2. Evaluation of Hydrogen Storage Alloy and Nickel Metal Hydride Battery (1) Degree of Progress of Corrosion Reaction of Hydrogen Storage Alloy Hydrogen is generated in the corrosion reaction in which the hydrogen storage alloy is corroded by alkaline electrolyte, Accumulated in hydrogen storage alloy. For this reason, the rate of the corrosion reaction of the hydrogen storage alloy in the non-charged state can be estimated from the change in the voltage of the battery. From this, the degree of progress of the corrosion reaction of the hydrogen storage alloy can be determined by holding the battery in an environment of a predetermined temperature, measuring the change in voltage, and measuring the time until the voltage reaches the maximum value. Here, the battery a (Example 1), the battery b (Example 2), and the battery c (Comparative Example 1) were kept in an environment of 60 ° C., and the time until the voltage reached the maximum value was measured. As a result, battery a was 12 hours, battery b was 28 hours, and battery c was 4 hours.

(2)サイクル寿命特性
初期活性化処理済みの電池a〜電池eに対し、25℃の環境下にて、2000mA(1.0It)の充電電流で電池電圧が最大値に達した後、10mV低下するまで充電するいわゆる−ΔV制御での充電(以下、単に−ΔV充電という)を行い、その後、1時間放置した。
同一の環境下にて2000mA(1.0It)の放電電流で電池電圧が1.0Vになるまで放電した後、1時間放置した。
(2) Cycle life characteristics For batteries a to e which have been subjected to initial activation treatment, the battery voltage reaches a maximum value at a charging current of 2000 mA (1.0 It) in an environment of 25 ° C., and decreases by 10 mV. The battery was charged by so-called -ΔV control (hereinafter simply referred to as -ΔV charge), and then left for 1 hour.
The battery was discharged at a discharge current of 2000 mA (1.0 It) under the same environment until the battery voltage became 1.0 V, and then left for 1 hour.

上記した充放電のサイクルを1サイクルとする。ここで、第1回目のサイクルのときの放電容量を求め、このときの放電容量を初期容量とした。そして、各電池につき上記した充放電のサイクルを繰り返し、初期容量を100%としたとき、この初期容量に対する容量維持率が60%を下回るまでのサイクルの回数を数え、その回数をサイクル寿命とした。ここで、比較例1の電池cがサイクル寿命に至ったときのサイクル数を100として、各電池のサイクル寿命との比を求め、その結果をサイクル寿命特性比として表1に示した。このサイクル寿命特性比の値が大きいほどサイクル寿命特性に優れていることを示す。   The above charge / discharge cycle is defined as one cycle. Here, the discharge capacity at the first cycle was obtained, and the discharge capacity at this time was defined as the initial capacity. Then, the above-described charge / discharge cycle was repeated for each battery, and when the initial capacity was set to 100%, the number of cycles until the capacity maintenance rate with respect to the initial capacity fell below 60% was counted, and the number of times was defined as the cycle life. . Here, assuming that the number of cycles when the battery c of Comparative Example 1 reached the cycle life was 100, the ratio to the cycle life of each battery was determined, and the results are shown in Table 1 as the cycle life characteristic ratio. The larger the cycle life characteristic ratio value, the better the cycle life characteristic.

(3)自己放電特性
初期活性化処理済みの電池a〜電池eに対し、25℃の環境下にて、2000mA(1.0It)の充電電流で−ΔV充電を行い、充電終了後1時間放置した。その後、同一の環境下にて2000mA(1.0It)の放電電流で放電終止電圧が1.0Vになるまで放電させたときの電池の放電容量を測定した。このときの放電容量を初期容量とする。ついで、25℃の環境下にて、2000mA(1.0It)の充電電流で−ΔV充電を行い、その後、60℃の雰囲気下にて14日間放置したのち、25℃の環境下にて2000mA(1.0It)の放電電流で放電終止電圧が1.0Vになるまで放電させたときの電池の放電容量を測定した。このときの放電容量を放置後容量とする。そして、60℃の環境下にて14日間放置した際に自己放電した容量を自己放電容量(mAh)として(II)式より求めた。
(3) Self-discharge characteristics The batteries a to e which have been subjected to the initial activation treatment are charged with -ΔV at a charging current of 2000 mA (1.0 It) in an environment of 25 ° C. and left for 1 hour after the end of charging. did. Thereafter, the discharge capacity of the battery was measured when discharged at a discharge current of 2000 mA (1.0 It) under the same environment until the final discharge voltage reached 1.0 V. The discharge capacity at this time is defined as the initial capacity. Next, −ΔV charging was performed at a charging current of 2000 mA (1.0 It) in an environment of 25 ° C., and then allowed to stand for 14 days in an atmosphere of 60 ° C., and then 2000 mA ( The discharge capacity of the battery was measured when discharged at a discharge current of 1.0 It) until the final discharge voltage reached 1.0 V. The discharge capacity at this time is defined as the capacity after standing. And the capacity | capacitance which carried out self discharge when it was left to stand for 14 days in a 60 degreeC environment was calculated | required from (II) Formula as self-discharge capacity (mAh).

自己放電容量(mAh)=初期容量−放置後容量・・・(II)
そして、比較例1の自己放電容量を100として、各電池の自己放電容量との比を求め、その結果を自己放電容量比として表1に示した。ここで、この自己放電容量比の値が小さいほど長期間放置した場合でも自己放電を起こしづらく、自己放電特性に優れていることを示す。
Self-discharge capacity (mAh) = Initial capacity-Capacity after being left (II)
And the self-discharge capacity of the comparative example 1 was set to 100, ratio with the self-discharge capacity of each battery was calculated | required, and the result was shown in Table 1 as self-discharge capacity ratio. Here, the smaller the value of the self-discharge capacity ratio, the less self-discharge occurs even when left for a long period of time, indicating that the self-discharge characteristics are excellent.

Figure 2014207086
Figure 2014207086

(4)考察
(i)水素吸蔵合金の腐食反応の進行度合いの結果より、比較例1の4時間に対し、実施例1は12時間、実施例2は28時間と長く、フッ化アルミニウムが含まれる実施例1、2の電池a、bは、フッ化アルミニウムを含まない比較例1の電池cに比べ水素吸蔵合金の腐食反応が緩やかに起きていることが確認できた。つまり、負極にフッ化アルミニウムが添加されると水素吸蔵合金がアルカリ電解液に腐食され難くなるといえる。
(4) Consideration (i) From the result of the degree of progress of the corrosion reaction of the hydrogen storage alloy, Example 1 is longer than 12 hours and Example 2 is 28 hours compared with 4 hours of Comparative Example 1, and contains aluminum fluoride. The batteries a and b of Examples 1 and 2 confirmed that the corrosion reaction of the hydrogen storage alloy occurred more slowly than the battery c of Comparative Example 1 that did not contain aluminum fluoride. That is, it can be said that when aluminum fluoride is added to the negative electrode, the hydrogen storage alloy is hardly corroded by the alkaline electrolyte.

(ii)負極添加剤としてフッ化アルミニウムを含む実施例1及び実施例2の電池は、フッ化アルミニウムを含んでいない比較例1の電池に比べ、寿命特性、自己放電特性がともに優れている。つまり、フッ化アルミニウムが負極に添加されると、サイクル寿命が延び、自己放電が抑制されるといえる。 (Ii) The batteries of Example 1 and Example 2 containing aluminum fluoride as the negative electrode additive are superior in both life characteristics and self-discharge characteristics as compared with the battery of Comparative Example 1 not containing aluminum fluoride. That is, it can be said that when aluminum fluoride is added to the negative electrode, the cycle life is extended and self-discharge is suppressed.

(iii)一方、同じアルミニウム化合物でも、水酸化アルミニウムや酸化アルミニウムを負極添加剤として添加した比較例2及び比較例3の電池は、寿命特性及び自己放電特性の改善効果は、ほとんど得られていない。このことから、フッ化アルミニウムを添加することが、寿命特性及び自己放電特性の改善に有効であるといえる。 (Iii) On the other hand, even with the same aluminum compound, the batteries of Comparative Example 2 and Comparative Example 3 to which aluminum hydroxide or aluminum oxide was added as a negative electrode additive had almost no improvement effect on life characteristics and self-discharge characteristics. . From this, it can be said that adding aluminum fluoride is effective in improving the life characteristics and the self-discharge characteristics.

なお、本発明は、上記した実施形態及び実施例に限定されるものではなく、種々の変形が可能であり、例えば、ニッケル水素二次電池は、角形電池であってもよく、機械的な構造は格別限定されることはない。   The present invention is not limited to the above-described embodiments and examples, and various modifications are possible. For example, the nickel metal hydride secondary battery may be a prismatic battery and has a mechanical structure. Is not exceptionally limited.

2 ニッケル水素二次電池
22 電極群
24 正極
26 負極
28 セパレータ
2 Nickel metal hydride secondary battery 22 Electrode group 24 Positive electrode 26 Negative electrode 28 Separator

Claims (5)

シート状の金属材からなる負極基板と、
前記負極基板に保持される負極合剤と、を備え、
前記負極合剤は、水素吸蔵合金及びフッ化アルミニウムを含む、ことを特徴とするニッケル水素二次電池用の負極。
A negative electrode substrate made of a sheet-like metal material;
A negative electrode mixture held on the negative electrode substrate,
The negative electrode for a nickel-metal hydride secondary battery, wherein the negative electrode mixture contains a hydrogen storage alloy and aluminum fluoride.
前記負極合剤は、前記フッ化アルミニウムの含有量が前記水素吸蔵合金100質量部に対して0.1質量部以上1.0質量部以下であることを特徴とする請求項1に記載のニッケル水素二次電池用の負極。   2. The nickel according to claim 1, wherein the content of the aluminum fluoride in the negative electrode mixture is 0.1 part by mass or more and 1.0 part by mass or less with respect to 100 parts by mass of the hydrogen storage alloy. Negative electrode for hydrogen secondary battery. 前記水素吸蔵合金は、
一般式:Ln1-xMgxNiy-zz(ただし、式中、Lnは、Zr及び希土類元素から選ばれる少なくとも一つの元素、Mは、V、Nb、Ta、Cr、Mo、Fe、Ga、Zn、Sn、In、Cu、Al、Si、PおよびBから選ばれる少なくとも一つの元素、添字x、y、zは、それぞれ、0.05≦x≦0.30、3.3≦y≦3.6、0≦z≦0.30を示す)で表される組成を有していることを特徴とする請求項1又は2に記載のニッケル水素二次電池用の負極。
The hydrogen storage alloy is
General formula: Ln 1-x Mg x Ni yz M z ( In the formula, Ln is at least one element selected from Zr and rare earth elements, M is, V, Nb, Ta, Cr , Mo, Fe, Ga , Zn, Sn, In, Cu, Al, Si, P, and B, the subscripts x, y, and z are 0.05 ≦ x ≦ 0.30 and 3.3 ≦ y ≦, respectively. The negative electrode for a nickel metal hydride secondary battery according to claim 1 or 2, wherein the negative electrode has a composition represented by 3.6 and 0≤z≤0.30.
外装缶と、前記外装缶内にアルカリ電解液とともに密閉状態で収容された電極群とを備え、
前記電極群は、セパレータを介して重ね合わされた正極及び負極からなり、
前記負極は、請求項1〜3の何れかに記載されたニッケル水素二次電池用の負極であることを特徴とするニッケル水素二次電池。
An outer can, and an electrode group housed in an enclosed state together with an alkaline electrolyte in the outer can,
The electrode group is composed of a positive electrode and a negative electrode superimposed via a separator,
The said negative electrode is a negative electrode for nickel hydride secondary batteries as described in any one of Claims 1-3, The nickel hydride secondary battery characterized by the above-mentioned.
前記アルカリ電解液は、NaOHを溶質の主体として含むアルカリ電解液であることを特徴とする請求項4に記載のニッケル水素二次電池。   The nickel-hydrogen secondary battery according to claim 4, wherein the alkaline electrolyte is an alkaline electrolyte containing NaOH as a main solute.
JP2013082980A 2013-04-11 2013-04-11 Negative electrode for nickel hydride secondary battery and nickel hydride secondary battery using the negative electrode Active JP6120362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013082980A JP6120362B2 (en) 2013-04-11 2013-04-11 Negative electrode for nickel hydride secondary battery and nickel hydride secondary battery using the negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013082980A JP6120362B2 (en) 2013-04-11 2013-04-11 Negative electrode for nickel hydride secondary battery and nickel hydride secondary battery using the negative electrode

Publications (2)

Publication Number Publication Date
JP2014207086A true JP2014207086A (en) 2014-10-30
JP6120362B2 JP6120362B2 (en) 2017-04-26

Family

ID=52120506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013082980A Active JP6120362B2 (en) 2013-04-11 2013-04-11 Negative electrode for nickel hydride secondary battery and nickel hydride secondary battery using the negative electrode

Country Status (1)

Country Link
JP (1) JP6120362B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190148723A1 (en) * 2017-11-10 2019-05-16 Fdk Corporation Negative electrode for nickel hydrogen secondary battery, and nickel hydrogen secondary battery including the negative electrode
CN113631302A (en) * 2019-03-26 2021-11-09 日本重化学工业株式会社 Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using the same as negative electrode, and vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134806A (en) * 1996-10-31 1998-05-22 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JPH1173955A (en) * 1997-08-28 1999-03-16 Sanyo Electric Co Ltd Metal-hydride alkaline storage battery and its manufacture
JP2000012012A (en) * 1998-06-26 2000-01-14 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery and its manufacture, hydrogen storage alloy electrode for the alkaline storage battery, and its manufacture
JP2001131604A (en) * 1999-11-09 2001-05-15 Benkan Corp Highly activated hydrogen storage material and its manufacturing method
JP2001148244A (en) * 1999-09-09 2001-05-29 Canon Inc Secondary battery and its manufacturing method
JP2007250250A (en) * 2006-03-14 2007-09-27 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP2013030345A (en) * 2011-07-28 2013-02-07 Fdk Twicell Co Ltd Nickel-hydrogen secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134806A (en) * 1996-10-31 1998-05-22 Matsushita Electric Ind Co Ltd Hydrogen storage alloy electrode and nickel-hydrogen storage battery
JPH1173955A (en) * 1997-08-28 1999-03-16 Sanyo Electric Co Ltd Metal-hydride alkaline storage battery and its manufacture
JP2000012012A (en) * 1998-06-26 2000-01-14 Sanyo Electric Co Ltd Hydrogen storage alloy for alkaline storage battery and its manufacture, hydrogen storage alloy electrode for the alkaline storage battery, and its manufacture
JP2001148244A (en) * 1999-09-09 2001-05-29 Canon Inc Secondary battery and its manufacturing method
JP2001131604A (en) * 1999-11-09 2001-05-15 Benkan Corp Highly activated hydrogen storage material and its manufacturing method
JP2007250250A (en) * 2006-03-14 2007-09-27 Sanyo Electric Co Ltd Nickel hydrogen storage battery
JP2013030345A (en) * 2011-07-28 2013-02-07 Fdk Twicell Co Ltd Nickel-hydrogen secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190148723A1 (en) * 2017-11-10 2019-05-16 Fdk Corporation Negative electrode for nickel hydrogen secondary battery, and nickel hydrogen secondary battery including the negative electrode
CN113631302A (en) * 2019-03-26 2021-11-09 日本重化学工业株式会社 Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using the same as negative electrode, and vehicle
CN113631302B (en) * 2019-03-26 2023-08-29 日本重化学工业株式会社 Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using same as negative electrode, and vehicle

Also Published As

Publication number Publication date
JP6120362B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6282007B2 (en) Nickel metal hydride secondary battery
JP2012134110A (en) Negative electrode for alkaline secondary battery, and alkaline secondary battery comprising the negative electrode
JP5959003B2 (en) Nickel metal hydride secondary battery and negative electrode for nickel metal hydride secondary battery
JP6573466B2 (en) Hydrogen storage alloy, negative electrode using the hydrogen storage alloy, and nickel-hydrogen secondary battery using the negative electrode
JP6112822B2 (en) Nickel metal hydride secondary battery
JP6422111B2 (en) Nickel metal hydride secondary battery
CN107408683B (en) Hydrogen storage alloy powder and nickel-hydrogen secondary battery using the same
JP6153156B2 (en) Hydrogen storage alloy and nickel metal hydride secondary battery using this hydrogen storage alloy
JP6120362B2 (en) Negative electrode for nickel hydride secondary battery and nickel hydride secondary battery using the negative electrode
JP6422017B2 (en) Hydrogen storage alloy, electrode and nickel metal hydride storage battery
JP6057369B2 (en) Nickel metal hydride secondary battery
JP2016149299A (en) Nickel hydrogen secondary battery
JP2009228096A (en) Hydrogen storage alloy
JP2019091533A (en) Negative electrode for nickel hydrogen secondary battery, and nickel hydrogen secondary battery including the same
JP6996960B2 (en) Nickel metal hydride rechargeable battery
JP2021157913A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery
JP2017021896A (en) Method for producing hydrogen storage alloy powder and nickel hydrogen secondary battery
WO2017169163A1 (en) Negative electrode for alkali secondary cell and alkali secondary cell including negative electrode
CN114203999B (en) Hydrogen storage alloy, negative electrode containing hydrogen storage alloy and nickel-hydrogen secondary battery containing negative electrode
JP7128069B2 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JP2012074299A (en) Nickel-hydrogen secondary battery
JP7125218B2 (en) Negative electrode for alkaline secondary battery and alkaline secondary battery
JP6573518B2 (en) Negative electrode for alkaline secondary battery and alkaline secondary battery using the negative electrode
JP6234190B2 (en) Nickel metal hydride secondary battery
JP2023136835A (en) Nickel hydrogen secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170323

R150 Certificate of patent or registration of utility model

Ref document number: 6120362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250