JP2014192174A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2014192174A
JP2014192174A JP2013063331A JP2013063331A JP2014192174A JP 2014192174 A JP2014192174 A JP 2014192174A JP 2013063331 A JP2013063331 A JP 2013063331A JP 2013063331 A JP2013063331 A JP 2013063331A JP 2014192174 A JP2014192174 A JP 2014192174A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type semiconductor
semiconductor device
groove
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013063331A
Other languages
English (en)
Other versions
JP6036461B2 (ja
Inventor
Toru Oka
徹 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2013063331A priority Critical patent/JP6036461B2/ja
Priority to US14/179,412 priority patent/US9349856B2/en
Priority to CN201410055965.0A priority patent/CN104078504B/zh
Publication of JP2014192174A publication Critical patent/JP2014192174A/ja
Application granted granted Critical
Publication of JP6036461B2 publication Critical patent/JP6036461B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】トレンチを有する半導体装置の電気的特性を向上させる。
【解決手段】半導体装置は、上面を有する凸部が形成された第1のn型半導体層と;凸部の上面に接合された第1のp型半導体層と;第1のn型半導体層および第1のp型半導体層にわたって積層された第2のn型半導体層と;第2のn型半導体層に積層された第2のp型半導体層と;第2のp型半導体層に積層された第3のn型半導体層と;第3のn型半導体層から第2のp型半導体層と第2のn型半導体層とを貫通して第1のp型半導体層に至るまで落ち込んだ溝部とを備える。
【選択図】図1

Description

本発明は、半導体装置およびその製造方法に関する。
半導体装置(半導体デバイス、半導体素子)の構造として、トレンチ(溝部)にゲート電極を形成したトレンチゲート構造が知られている。特許文献1〜5には、トレンチゲート構造におけるトレンチの底部に発生する電界集中を緩和するために、イオン注入および熱拡散の少なくとも一方を用いて、トレンチ底部にp型半導体をフローティング領域として形成することが記載されている。これによって、半導体装置の耐電圧を向上させることができる。
特開平1−310576号公報 特開平10−98188号公報 特開2005−116822号公報 特開2007−158275号公報 特開2009−267029号公報
特許文献1〜5のトレンチゲート構造では、n型半導体層にp型半導体のドーパント(不純物)が拡散することによって、n型半導体層の電気的特性が劣化する(例えば、チャネル長およびオン抵抗の増加)という課題があった。特に、イオン注入によってp型半導体を形成することが困難である半導体(例えば、窒化ガリウム(GaN)に代表されるIII族窒化物半導体)に適用する場合、比較的に高温で長時間の加熱処理(例えば、900℃、60分)が必要となるため、n型半導体層における電気的特性の劣化が顕著であった。また、半導体装置におけるトレンチを用いた終端構造においても、トレンチゲート構造と同様の課題があった。
そのため、トレンチを有する半導体装置の電気的特性を向上させることが可能な技術が望まれていた。そのほか、半導体装置においては、微細化や、低コスト化、省資源化、製造の容易化、使い勝手の向上、耐久性の向上などが望まれていた。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、半導体装置が提供される。この半導体装置は、上面を有する凸部が、形成された第1のn型半導体層と;前記凸部の前記上面に積層された第1のp型半導体層と;前記第1のn型半導体層および前記第1のp型半導体層にわたって積層された第2のn型半導体層と;前記第2のn型半導体層に積層された第2のp型半導体層と;前記第2のp型半導体層に積層された第3のn型半導体層と;前記第3のn型半導体層から前記第2のp型半導体層と前記第2のn型半導体層とを貫通して前記第1のp型半導体層に至るまで落ち込んだ溝部とを備える。この形態によれば、第1のp型半導体層によって溝部における電界集中を緩和できる。その結果、半導体装置の電気的特性を向上させることができる。
(2)上記形態の半導体装置において、前記第1のn型半導体層は、前記第1のp型半導体層に対して、前記凸部の前記上面でのみ隣接してもよい。この形態によれば、第1のp型半導体層によって溝部における電界集中の緩和を効果的に実現できる。
(3)上記形態の半導体装置において、前記第2のn型半導体層は、前記凸部が突出する突出方向に向けて前記凸部および前記第1のp型半導体層に沿って***した第1の***部を有してもよく;前記第2のp型半導体層は、前記突出方向に向けて前記第1の***部に沿って***した第2の***部を有してもよく;前記第3のn型半導体層は、前記突出方向に向けて前記第2の***部に沿って***した第3の***部を有してもよい。この形態によれば、各***部を有する各半導体層に形成された溝部における電界集中を緩和できる。
(4)上記形態の半導体装置は、さらに、前記溝部に絶縁膜を介して形成された電極を備えてもよい。この形態によれば、絶縁膜を介して電極が形成された溝部における電界集中を緩和できる。
(5)上記形態の半導体装置において、前記第1のp型半導体層の厚みTp1は、0.1μm以上であってもよい。この形態によれば、第1のp型半導体層によって溝部における電界集中の緩和を効果的に実現できる。
(6)上記形態の半導体装置において、前記凸部の高さHn1と前記第1のp型半導体層の厚みTp1とを合わせた高さHmは、前記第2のn型半導体層の厚みTn2と前記第2のp型半導体層の厚みTp2と前記第3のn型半導体層の厚みTn3とを合わせた厚みTuよりも小さくてもよい。この形態によれば、凸部および第1のp型半導体層の上に形成される各半導体層の結晶品質を向上させることができる。
(7)上記形態の半導体装置において、前記第2のn型半導体層の厚みTn2は、前記第1のp型半導体層の厚みTp1以上であってもよい。この形態によれば、第2のn型半導体層の結晶品質を向上させることができる。
(8)上記形態の半導体装置において、前記第2のn型半導体層の厚みTn2は、0.2μm以上であってもよい。この形態によれば、第1のp型半導体層によって第2のn型半導体層に空乏層が広がることによるオン抵抗の増加を抑制できる。
(9)上記形態の半導体装置において、前記第2のn型半導体層の厚みTn2は、0.5μm以上であってもよい。この形態によれば、第1のp型半導体層によって第2のn型半導体層に空乏層が広がることによるオン抵抗の増加をさらに抑制できる。
(10)上記形態の半導体装置において、前記溝部は、前記第1のp型半導体層の内側に落ち込んだ形状を成してもよい。この形態によれば、溝部を形成する際、第1のp型半導体層に対する溝部の位置決めの容易化を図ることができる。
(11)上記形態の半導体装置において、前記第1のp型半導体層の側端と前記溝部の底面との間の距離w1は、0.5μm以下であってもよい。この形態によれば、第1のp型半導体層によって第2のn型半導体層に空乏層が広がることによるオン抵抗の増加を抑制できる。
(12)上記形態の半導体装置において、前記第1のp型半導体層の側端と前記溝部の底面との間の距離w1は、0.25μm以下であってもよい。この形態によれば、第1のp型半導体層によって第2のn型半導体層に空乏層が広がることによるオン抵抗の増加をさらに抑制できる。
(13)上記形態の半導体装置において、前記凸部および前記第1のp型半導体層は、前記溝部の底面よりも狭くてもよい。この形態によれば、第1のp型半導体層によって第2のn型半導体層に空乏層が広がることによるオン抵抗の増加をいっそう抑制できる。
(14)上記形態の半導体装置において、前記第1のp型半導体層の側端と前記溝部の底面との間の距離w2は、0.5μm以下であってもよい。この形態によれば、第1のp型半導体層によって溝部における電界集中の緩和を効果的に実現できる。
(15)上記形態の半導体装置は、さらに、前記第1のn型半導体層および前記第1のp型半導体層と、前記第2のn型半導体層との間に積層された他のn型半導体層を備えてもよい。この形態によれば、第2のn型半導体層の結晶品質を向上させることができる。
(16)上記形態の半導体装置は、さらに、前記第1のn型半導体層および前記第1のp型半導体層と、前記第2のn型半導体層との間に積層された真性半導体層を備えてもよい。この形態によれば、第2のn型半導体層の結晶品質を向上させることができる。
(17)上記形態の半導体装置において、前記第1のp型半導体層が広がる方向に沿った前記第1のp型半導体層を通る仮想平面上に、前記第2のp型半導体層が存在してもよい。この形態によれば、第1のp型半導体層および第2のp型半導体層によって溝部における電界集中をいっそう緩和することができる。
(18)上記形態の半導体装置において、前記第1のn型半導体層、前記第2のn型半導体層、前記第3のn型半導体層、前記第1のp型半導体層、および前記第2のp型半導体層は、窒化ガリウム(GaN)から主に成る半導体層であってもよい。この形態によれば、イオン注入によってp型半導体を形成することが困難であるGaN系の半導体装置において耐電圧を向上させることができる。
(19)本発明の一形態によれば、半導体装置の製造方法が提供される。この製造方法は、第1のn型半導体層を形成する工程と;前記第1のn型半導体層に第1のp型半導体層を結晶成長によって形成する工程と;前記第1のn型半導体層と前記第1のp型半導体層とに対するドライエッチングによって、前記第1のp型半導体層が上面に積層された凸部を前記第1のn型半導体層に形成する工程と;前記第1のn型半導体層および前記第1のp型半導体層の各表面上に第2のn型半導体層を結晶成長によって形成する工程と;前記第2のn型半導体層の表面上に第2のp型半導体層を結晶成長によって形成する工程と;前記第2のp型半導体層の表面上に第3のn型半導体層を結晶成長によって形成する工程と;前記第3のn型半導体層から前記第2のp型半導体層と前記第2のn型半導体層とを貫通して前記第1のp型半導体層に至るまで落ち込んだ溝部を、ドライエッチングによって形成する工程とを備える。この形態によれば、イオン注入および熱拡散を用いることなく、溝部における電界集中を緩和可能に第1のp型半導体層を形成できる。そのため、第1のp型半導体層のドーパントが第1のn型半導体層および第2のn型半導体層の少なくとも一方に拡散することによるオン抵抗の増加と、第2のp型半導体層のドーパントが第3のn型半導体層に拡散することによるオン抵抗の増加とを抑制できる。その結果、半導体装置の電気的特性を向上させることができる。
(20)上記形態における半導体装置の製造方法において、前記凸部を形成する工程は、前記ドライエッチングを行った後、前記第1のn型半導体層と前記第1のp型半導体層に対してウェットエッチングを行う工程を含んでもよい。この形態によれば、第1のn型半導体層および第1のp型半導体層の各表面におけるドライエッチングによる損傷をウェットエッチングによって緩和できるため、第2のn型半導体層の結晶成長を容易に行うことができる。
本発明は、半導体装置およびその製造方法以外の種々の形態で実現することも可能である。例えば、本願発明は、上記形態の半導体装置が組み込まれた電気機器、上記形態の半導体装置を製造する製造装置などの形態で実現することができる。
本発明の半導体装置によれば、第1のp型半導体層によって溝部における電界集中を緩和できる。その結果、半導体装置の電気的特性を向上させることができる。
本発明における半導体装置の製造方法によれば、イオン注入および熱拡散を用いることなく、溝部における電界集中を緩和可能に第1のp型半導体層を形成できる。そのため、第1のp型半導体層のドーパントが第1のn型半導体層および第2のn型半導体層の少なくとも一方に拡散することによるオン抵抗の増加と、第2のp型半導体層のドーパントが第3のn型半導体層に拡散することによるオン抵抗の増加とを抑制できる。その結果、半導体装置の電気的特性を向上させることができる。
第1実施形態における半導体装置の構成を模式的に示す断面図である。 溝部を中心に拡大した半導体装置の構成を模式的に示す断面図である。 半導体装置の製造方法を示す工程図である 製造途中にある半導体装置の構成を示す説明図である。 製造途中にある半導体装置の構成を示す説明図である。 製造途中にある半導体装置の構成を示す説明図である。 製造途中にある半導体装置の構成を示す説明図である。 製造途中にある半導体装置の構成を示す説明図である。 製造途中にある半導体装置の構成を示す説明図である。 評価試験に用いた半導体装置の構成を模式的に示す断面図である。 評価試験の結果を示す説明図である。 第2実施形態における半導体装置の構成を模式的に示す断面図である。 第3実施形態における半導体装置の構成を模式的に示す断面図である。 評価試験の結果を示す説明図である。 第4実施形態における半導体装置の構成を模式的に示す断面図である。 評価試験の結果を示す説明図である。 第5実施形態における半導体装置の構成を模式的に示す断面図である。 第6実施形態における半導体装置の構成を模式的に示す断面図である。
A.第1実施形態
A−1.半導体装置の構成
図1は、第1実施形態における半導体装置10の構成を模式的に示す断面図である。半導体装置10は、窒化ガリウム(GaN)を用いて形成されたGaN系の半導体装置である。本実施形態では、半導体装置10は、トレンチゲート型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であり、電力制御に用いられ、パワーデバイスとも呼ばれる。
半導体装置10は、基板110と、n型半導体層120と、p型半導体層130と、n型半導体層140と、p型半導体層150と、n型半導体層160と、電極210,230,250と、絶縁膜340とを備える。半導体装置10には、溝部170および凹部180が形成されている。半導体装置10は、溝部170に電極250を形成したトレンチゲート構造を有する。
図1には、相互に直交するXYZ軸が図示されている。図1のXYZ軸のうち、X軸は、基板110に対してn型半導体層120が積層する積層方向に沿った軸である。X軸に沿ったX軸方向のうち、+X軸方向は、基板110からn型半導体層120に向かう方向であり、−X軸方向は、+X軸方向に対向する方向である。図1のXYZ軸のうち、Y軸およびZ軸は、Z軸に直交すると共に相互に直交する軸である。Y軸に沿ったY軸方向のうち、+Y軸方向は、図1の紙面左から紙面右に向かう方向であり、−Y軸方向は、+Y軸方向に対向する方向である。Z軸に沿ったZ軸方向のうち、+Z軸方向は、図1の紙面手前から紙面奥に向かう方向であり、−Z軸方向は、+Z軸方向に対向する方向である。
半導体装置10の基板110は、Y軸およびZ軸に沿って広がる半導体層である。本実施形態では、基板110は、窒化ガリウム(GaN)から主に成り、n型半導体層120よりも高い濃度でケイ素(Si)をドナーとして含有する。他の実施形態では、本実施形態では、基板110の全域におけるSiの平均濃度は、1.0×1018cm-3以上である。
半導体装置10のn型半導体層120は、結晶成長によって形成された第1のn型半導体層である。n型半導体層120は、基板110の+X軸方向側に積層され、Y軸およびZ軸に沿って広がる。n型半導体層120は、窒化ガリウム(GaN)から主に成ると共に、n型半導体層160よりも低い濃度でケイ素(Si)をドナーとして含有する。本実施形態では、n型半導体層120の全域におけるSiの平均濃度は、1.0×1016cm-3以下である。n型半導体層120は、「n-−GaN」とも呼ばれる。
n型半導体層120は、+X軸方向側に向けて突出した凸部126を有する。凸部126は、+X軸方向側を向いた面である上面127を有する。凸部126の上面127には、p型半導体層130が積層されている。本実施形態では、凸部126は、Z軸方向に延びた台地状のメサ(mesa)構造をp型半導体層130とともに構成する。本実施形態では、メサ構造の断面形状は、+X軸方向側の幅と−X軸方向側の幅とが等しい矩形を成す。本実施形態では、凸部126は、ドライエッチングおよびウェットエッチングによってp型半導体層130とともに成形された構造である。
半導体装置10のp型半導体層130は、結晶成長によって形成された第1のp型半導体層である。p型半導体層130は、n型半導体層120における凸部126の上面127に積層され、Y軸およびZ軸に沿って広がる。p型半導体層130は、n型半導体層140によってp型半導体層150から分離されたフローティング(floating)領域である。p型半導体層130は、溝部170の−X軸方向側に隣接する。p型半導体層130は、窒化ガリウム(GaN)から主に成り、マグネシウム(Mg)をアクセプタとして含有する。本実施形態では、p型半導体層130の全域におけるMgの平均濃度は、1.0×1017cm-3以上1.0×1020cm-3以下である。
半導体装置10のn型半導体層140は、結晶成長によって形成された第2のn型半導体層である。n型半導体層140は、n型半導体層120およびp型半導体層130における+X軸方向側にわたって積層され、Y軸およびZ軸に沿って広がる。n型半導体層140は、窒化ガリウム(GaN)から主に成り、n型半導体層120と同程度の濃度でケイ素(Si)をドナーとして含有する。n型半導体層140は、「n-−GaN」とも呼ばれる。
n型半導体層140は、***部145を有する。***部145は、n型半導体層120の凸部126が突出する突出方向(+X軸方向)に向けて、凸部126およびp型半導体層130に沿って***した第1の***部である。本実施形態では、n型半導体層140は、***部145において溝部170によって分断されている。
半導体装置10のp型半導体層150は、結晶成長によって形成された第2のp型半導体層である。p型半導体層150は、n型半導体層140の+X軸方向側に積層され、Y軸およびZ軸に沿って広がる。p型半導体層150は、窒化ガリウム(GaN)から主に成り、マグネシウム(Mg)をアクセプタとして含有する。本実施形態では、p型半導体層150の全域におけるMgの平均濃度は、1.0×1017cm-3以上1.0×1020cm-3以下である。p型半導体層150は、「p−GaN」とも呼ばれる。
p型半導体層150は、***部155を有する。***部155は、+X軸方向に向けてn型半導体層140の***部145に沿って***した第2の***部である。本実施形態では、p型半導体層150は、***部155において溝部170によって分断されている。
半導体装置10のn型半導体層160は、結晶成長によって形成された第3のn型半導体層である。n型半導体層160は、p型半導体層150の+X軸方向側に積層され、Y軸およびZ軸に沿って広がる。n型半導体層160は、窒化ガリウム(GaN)から主に成り、n型半導体層120およびn型半導体層130よりも高い濃度でケイ素(Si)をドナーとして含有する。本実施形態では、n型半導体層160の全域におけるSiの平均濃度は、3.0×1018cm-3以上である。n型半導体層160は、「n+−GaN」とも呼ばれる。
n型半導体層160は、***部165を有する。***部165は、+X軸方向に向けてp型半導体層150の***部155に沿って***した第3の***部である。本実施形態では、n型半導体層160は、***部165において溝部170によって分断されている。
半導体装置10の溝部170は、n型半導体層160の+X軸方向側からp型半導体層150とn型半導体層140とを貫通しp型半導体層130に至るまで落ち込んだトレンチ(trench)である。本実施形態では、溝部170は、p型半導体層130の内側に落ち込んだ形状を成す。本実施形態では、溝部170は、Z軸方向に延びた形状を成す。本実施形態では、溝部170は、ドライエッチングで処理された後にウェットエッチングで処理されることによって形成される。
溝部170の表面には、n型半導体層160の+X軸方向側に至るまで、絶縁膜340が形成されている。本実施形態では、絶縁膜340は、二酸化ケイ素(SiO2)から成る。
半導体装置10の凹部180は、ドライエッチングおよびウェットエッチングによって形成され、n型半導体層160の+X軸方向側からp型半導体層150に至るまで落ち込んだリセス(recess)である。
半導体装置10の電極210は、基板110の−X軸方向側に形成されたドレイン電極である。本実施形態では、電極210は、チタン(Ti)から成る層にアルミニウム(Al)から成る層を積層した後に焼成することによって形成される。
半導体装置10の電極230は、凹部180に形成されたソース電極である。本実施形態では、電極230は、パラジウム(Pd)から成る層にチタン(Ti)から成る層とアルミニウム(Al)から成る層とを積層した後に焼成することによって形成される。
半導体装置10の電極250は、絶縁膜340を介して溝部170に形成されたゲート電極である。本実施形態では、電極250は、アルミニウム(Al)から成る。
図2は、溝部170を中心に拡大した半導体装置10の構成を模式的に示す断面図である。図2には、図1と同様にXYZ軸が図示されている。
溝部170は、溝部170の底面の端である部位172を有する。溝部170の−X軸方向側に位置する凸部126は、部位128を有する。凸部126の部位128は、凸部126が+X軸方向に突出する起点である。部位128は、凸部126の側端でもある。
本実施形態では、溝部170は、p型半導体層130の内側に落ち込んだ形状を成し、溝部170におけるY軸方向に沿った底面の幅Wtは、凸部126およびp型半導体層130のY軸方向に沿った幅Wmよりも小さい。言い換えると、凸部126およびp型半導体層130は、溝部170の底面よりも広い。
p型半導体層130の影響でn型半導体層140に空乏層が広がることによる半導体装置10のオン抵抗の増加を抑制する観点から、部位128と部位172との間におけるY軸方向に沿った距離w1は、0.5μm(マイクロメートル)以下であることが好ましく、0.25μm以下であることがさらに好ましい。本実施形態では、幅Wmは2.0μmであり、幅Wtは1.5μmであり、距離w1は0.25μmである。
p型半導体層130によって溝部170の部位172における電界集中を十分に緩和する観点から、p型半導体層130のX軸方向に沿った厚みTp1は、0.1μm以上であることが好ましい。凸部126およびp型半導体層130の上に形成される各半導体層の結晶品質を向上させる観点から、凸部126の高さHn1とp型半導体層130の厚みTp1とを合わせた高さHmは、n型半導体層140の厚みTn2とp型半導体層160の厚みTp2とn型半導体層160の厚みTn3とを合わせた厚みTuよりも小さいことが好ましい。
凸部126の周辺における結晶品質を確保する観点から、n型半導体層140のX軸方向に沿った厚みTn2は、p型半導体層130の厚みTp1以上であることが好ましい。p型半導体層130の影響でn型半導体層140に空乏層が広がることによる半導体装置10のオン抵抗の増加を抑制する観点から、n型半導体層140の厚みTn2は、0.2μm以上が好ましく、0.5μm以上がさらに好ましい。製造コストの観点から、n型半導体層140の厚みTn2は、1.0μm以下が好ましい。
A−2.半導体装置の製造方法
図3は、半導体装置10の製造方法を示す工程図である。半導体装置10を製造する際には、製造者は、まず、結晶成長によって基板110上にn型半導体層120を形成する(工程P112)。本実施形態では、製造者は、有機金属気相成長法(MOCVD)を実現するMOCVD装置を用いた結晶成長によって、n型半導体層120を形成する。本実施形態では、結晶成長(工程P112)によって形成されるn型半導体層120の厚みは、9.5μmである。
n型半導体層120を形成した後(工程P112)、製造者は、結晶成長によってn型半導体層120上にp型半導体層130を形成する(工程P114)。本実施形態では、製造者は、MOCVD装置を用いた結晶成長によってp型半導体層130を形成する。本実施形態では、製造者は、n型半導体層120における+X軸方向側の全面にp型半導体層130を形成する。本実施形態では、結晶成長(工程P114)によって形成されるp型半導体層130の厚みは、0.2μmである。
図4は、製造途中にある半導体装置10aの構成を示す説明図である。半導体装置10aは、n型半導体層120に対する結晶成長(工程P112)によって作製される。半導体装置10aは、基板110上にn型半導体層120とp型半導体層130とを順に積層した構造を有する。
図3の説明に戻り、p型半導体層130を形成した後(工程P114)、製造者は、n型半導体層120とp型半導体層130とに対するドライエッチングおよびウェットエッチングによって、p型半導体層130が上面127に積層された凸部126をn型半導体層120に形成する(工程P122)。本実施形態では、製造者は、p型半導体層130の+X軸方向側の表面のうち凸部126に対応する部分にエッチングマスクを形成した後、p型半導体層130の+X軸方向側から0.3μmの深さまでの部位を、ドライエッチングによって除去する。ドライエッチングに続いて、製造者は、ドライエッチングによって露出したn型半導体層120およびp型半導体層130の表面をウェットエッチングによって処理した後、n型半導体層120およびp型半導体層130の表面を洗浄する。ウェットエッチングに続いて、製造者は、エッチングマスクを除去した後、n型半導体層120およびp型半導体層130の表面を洗浄する。これらの処理を経て、n型半導体層120に凸部126が形成され、凸部126の上面127にp型半導体層130が残される。他の実施形態では、製造者は、ウェットエッチングを行うことなく、ドライエッチングのみで、凸部126およびp型半導体層130を形成してもよい。
図5は、製造途中にある半導体装置10bの構成を示す説明図である。半導体装置10bは、半導体装置10aに対するドライエッチングおよびウェットエッチング(工程P122)によって作製される。半導体装置10bは、+X軸方向側に凸部126が形成されたn型半導体層120を備える。凸部126の上面127には、p型半導体層130が積層されている。
図3の説明に戻り、ドライエッチングおよびウェットエッチング(工程P122)を行った後、製造者は、加熱処理(工程P128)を行う。加熱処理(工程P128)では、製造者は、酸素(O2)を含有する気体の中で、半導体装置10bを加熱(アニール)する。これによって、ドライエッチングによる各半導体層の損傷が回復するとともに、p型半導体層130のアクセプタであるMgが活性化する。本実施形態では、加熱処理(工程P128)に用いられる気体の温度は、800℃である。本実施形態では、加熱処理(工程P128)において半導体装置10bを加熱する時間は、5分間である。他の実施形態では、製造者は、加熱処理(工程P128)を実施しなくてもよい。
加熱処理(工程P128)を行った後、製造者は、n型半導体層120およびp型半導体層130における+X軸方向側の各表面上に、結晶成長によってn型半導体層140を形成する(工程P132)。本実施形態では、n型半導体層140は、n型半導体層120の凸部126と、p型半導体層130とに沿って+X軸方向側に***した形状に成る。他の実施形態では、n型半導体層140は、YZ平面に沿って一様に平坦な表面を+X軸方向側に有する形状に成ってもよい。
本実施形態では、製造者は、MOCVD装置を用いた結晶成長によってn型半導体層140を形成する。本実施形態では、製造者は、n型半導体層120およびp型半導体層130における+X軸方向側の全面にn型半導体層140を形成する。本実施形態では、結晶成長(工程P132)によって形成されるn型半導体層140の厚みは、0.5μmである。
図6は、製造途中にある半導体装置10cの構成を示す説明図である。半導体装置10cは、半導体装置10bに対する結晶成長(工程P132)によって作製される。本実施形態では、半導体装置10cは、***部145を有するn型半導体層140を備える。n型半導体層140の***部145は、n型半導体層120の凸部126と、p型半導体層130とに沿って+X軸方向側に***した部位である。
図3に説明に戻り、結晶成長(工程P132)を行った後、製造者は、n型半導体層140における+X軸方向側の表面上に、結晶成長によってp型半導体層150を形成する(工程P134)。本実施形態では、p型半導体層150は、n型半導体層140の***部145に沿って+X軸方向側に***した形状に成る。他の実施形態では、p型半導体層150は、YZ平面に沿って一様に平坦な表面を+X軸方向側に有する形状に成ってもよい。
本実施形態では、製造者は、MOCVD装置を用いた結晶成長によってp型半導体層150を形成する。本実施形態では、製造者は、n型半導体層140における+X軸方向側の全面にp型半導体層150を形成する。本実施形態では、結晶成長(工程P134)によって形成されるp型半導体層150の厚みは、1.0μmである。
図7は、製造途中にある半導体装置10dの構成を示す説明図である。半導体装置10dは、半導体装置10cに対する結晶成長(工程P134)によって作製される。本実施形態では、半導体装置10dは、***部155を有するp型半導体層150を備える。p型半導体層150の***部155は、n型半導体層140の***部145に沿って+X軸方向側に***した部位である。
図3に説明に戻り、結晶成長(工程P134)を行った後、製造者は、p型半導体層150における+X軸方向側の表面上に、結晶成長によってn型半導体層160を形成する(工程P136)。本実施形態では、n型半導体層160は、p型半導体層150の***部155に沿って+X軸方向側に***した形状に成る。他の実施形態では、n型半導体層160は、YZ平面に沿って一様に平坦な表面を+X軸方向側に有する形状に成ってもよい。
本実施形態では、製造者は、MOCVD装置を用いた結晶成長によってn型半導体層160を形成する。本実施形態では、製造者は、p型半導体層150における+X軸方向側の全面にn型半導体層160を形成する。本実施形態では、結晶成長(工程P136)によって形成されるn型半導体層160の厚みは、0.3μmである。
図8は、製造途中にある半導体装置10eの構成を示す説明図である。半導体装置10eは、半導体装置10dに対する結晶成長(工程P136)によって作製される。本実施形態では、半導体装置10eは、***部165を有するn型半導体層160を備える。n型半導体層160の***部165は、p型半導体層150の***部155に沿って+X軸方向側に***した部位である。
図3の説明に戻り、結晶成長(工程P136)を行った後、製造者は、ドライエッチングおよびウェットエッチングによって溝部170を形成する(工程P150)。本実施形態では、製造者は、n型半導体層160の+X軸方向側の表面のうち溝部170に対応する部分の周囲にエッチングマスクを形成した後、n型半導体層160からp型半導体層150とn型半導体層140とを貫通してp型半導体層130に至るまでの部位を、ドライエッチングによって除去する。ドライエッチングに続いて、製造者は、ドライエッチングによって露出した各半導体層の表面をウェットエッチングによって処理した後、各半導体層の表面を洗浄する。ウェットエッチングに続いて、製造者は、エッチングマスクを除去した後、各半導体層の表面を洗浄する。これらの処理を経て、溝部170が形成される。他の実施形態では、製造者は、ウェットエッチングを行うことなく、ドライエッチングのみで、溝部170を形成してもよい。
図9は、製造途中にある半導体装置10fの構成を示す説明図である。半導体装置10fは、半導体装置10eに対するドライエッチングおよびウェットエッチング(工程P150)によって作製される。半導体装置10fは、n型半導体層160からp型半導体層150とn型半導体層140とを貫通してp型半導体層130に至るまで落ち込んだ溝部170を備える。
図3の説明に戻り、溝部170を形成した後(工程P150)、製造者は、加熱処理(工程P160)を行う。加熱処理(工程P160)では、製造者は、酸素(O2)を含有する気体の中で、半導体装置10fを加熱(アニール)する。これによって、ドライエッチングによる各半導体層の損傷が回復するとともに、p型半導体層150のアクセプタであるMgが活性化する。本実施形態では、加熱処理(工程P160)に用いられる気体の温度は、800℃である。本実施形態では、加熱処理(工程P160)において半導体装置10eを加熱する時間は、5分間である。
加熱処理(工程P160)を行った後、製造者は、溝部170およびn型半導体層160の表面に絶縁膜340を形成する(工程P170)。
絶縁膜340を形成した後(工程P170)、製造者は、絶縁膜340を形成した半導体装置10fに電極210,230,250を形成する(工程P180)。これらの工程を経て、半導体装置10が完成する。
A−3.評価試験
図10は、評価試験に用いた半導体装置90の構成を模式的に示す断面図である。図10には、図1と同様にXYZ軸が図示されている。半導体装置90は、基板910と、n型半導体層920と、p型半導体層930と、n型半導体層940と、電極991,993,995と、絶縁膜994とを備える。半導体装置90には、溝部970および凹部980が形成されている。
半導体装置90の基板910は、半導体装置10の基板110と同様である。
半導体装置90のn型半導体層920は、凸部126が形成されていない点を除き、半導体装置10のn型半導体層120と同様である。
半導体装置90のp型半導体層930は、***部155が形成されていない点を除き、半導体装置10のp型半導体層150と同様である。
半導体装置90のn型半導体層940は、***部165が形成されていない点を除き、半導体装置10のn型半導体層160と同様である。
半導体装置90の溝部970は、n型半導体層940の+X軸方向側からp型半導体層930を貫通しn型半導体層920に至るまで落ち込んだトレンチである点を除き、半導体装置10の溝部170と同様である。
半導体装置90の凹部980は、n型半導体層940の+X軸方向側からp型半導体層930に至るまで落ち込んだリセスである点を除き、半導体装置10の凹部180と同様である。
半導体装置90の電極991,993,995は、半導体装置10の210,230,250とそれぞれ同様である。絶縁膜994は、溝部970およびn型半導体層940の表面に形成されている点を除き、半導体装置10の絶縁膜340と同様である。
図11は、評価試験の結果を示す説明図である。図11の評価試験では、試験者は、半導体装置10を試料1として用意し、半導体装置90を試料2として用意した。試験者は、各試料のオン抵抗および耐電圧を測定した。図11に示すように、半導体装置10の耐電圧は、1400〜1500V(ボルト)であり、半導体装置90の耐電圧は、800〜900Vであった。すなわち、半導体装置10の耐電圧は、半導体装置90に対して50%以上向上した。半導体装置10のオン抵抗は、半導体装置90に対して3〜5%の増大に留まった。
A−4.効果
以上説明した第1実施形態によれば、p型半導体層130によって溝部170における電界集中を緩和できる。その結果、半導体装置10の電気的特性を向上させることができる。また、イオン注入によってp型半導体を形成することが困難であるGaN系の半導体装置10において耐電圧を向上させることができる。
また、イオン注入および熱拡散を用いることなく、溝部170における電界集中を緩和可能にp型半導体層130を形成できる。そのため、p型半導体層130のドーパントがn型半導体層120およびn型半導体層140の少なくとも一方に拡散することによるオン抵抗の増加と、p型半導体層150のドーパントがn型半導体層160に拡散することによるオン抵抗の増加とを抑制できる。その結果、半導体装置10の電気的特性を向上させることができる。
B.第2実施形態
図12は、第2実施形態における半導体装置12の構成を模式的に示す断面図である。図12には、図1と同様にXYZ軸が図示されている。第2実施形態の半導体装置12は、電極230に変えて、p型半導体層150に適した電極232と、n型半導体層160に適した電極234とを備える点を除き、第1実施形態の半導体装置10と同様である。
本実施形態では、電極232は、パラジウム(Pd)から成る電極である。本実施形態では、電極234は、チタン(Ti)から成る層にアルミニウム(Al)から成る層を積層した後に焼成することによって形成される。
以上説明した第2実施形態によれば、第1実施形態と同様に、半導体装置12の電気的特性を向上させることができる。
C.第3実施形態
図13は、第3実施形態における半導体装置13の構成を模式的に示す断面図である。図13には、図1と同様にXYZ軸が図示されている。第3実施形態の半導体装置13は、幅Wtが幅Wmよりも大きい点を除き、第1実施形態の半導体装置10と同様である。言い換えると、第3実施形態の半導体装置13は、凸部126およびp型半導体層130が溝部170の底面よりも狭い点を除き、第1実施形態の半導体装置10と同様である。
p型半導体層130によって溝部170における電界集中の緩和を効果的に実現する観点から、部位128と部位172との間におけるY軸方向に沿った距離w2は、0.5μm以下であることが好ましい。本実施形態では、幅Wmは1.5μmであり、幅Wtは2.0μmであり、距離w2は0.25μmである。
図14は、評価試験の結果を示す説明図である。図14の評価試験では、試験者は、半導体装置13を試料3として用意し、半導体装置90を試料4として用意した。試験者は、各試料のオン抵抗および耐電圧を測定した。図14に示すように、半導体装置13の耐電圧は、1300〜1400Vであり、半導体装置90の耐電圧は、800〜900Vであった。すなわち、半導体装置13の耐電圧は、半導体装置90に対して40%以上向上した。半導体装置13のオン抵抗は、半導体装置90と同程度であった。
以上説明した第2実施形態によれば、第1実施形態と同様に、半導体装置13の電気的特性を向上させることができる。また、凸部126およびp型半導体層130が溝部170の底面よりも狭いため、p型半導体層130によってn型半導体層140に空乏層が広がることによるオン抵抗の増加をいっそう抑制できる。
D.第4実施形態
図15は、第4実施形態における半導体装置14の構成を模式的に示す断面図である。図15には、図1と同様にXYZ軸が図示されている。第4実施形態の半導体装置14は、p型半導体層130が広がる方向に沿ったp型半導体層130を通る仮想平面P(YZ平面)上にp型半導体層150が存在する点を除き、第1実施形態と同様である。仮想平面Pは、p型半導体層130が存在するX軸に沿った範囲内であれば、いずれの位置に設定してもよい。
図16は、評価試験の結果を示す説明図である。図16の評価試験では、試験者は、半導体装置14を試料5として用意し、半導体装置90を試料6として用意した。試験者は、各試料のオン抵抗および耐電圧を測定した。図16に示すように、半導体装置14の耐電圧は、1500〜1600Vであり、半導体装置90の耐電圧は、800〜900Vであった。すなわち、半導体装置14の耐電圧は、半導体装置90に対して60%以上向上した。半導体装置14のオン抵抗は、半導体装置90に対して3〜5%の増大に留まった。
以上説明した第3実施形態によれば、第1実施形態と同様に、半導体装置14の電気的特性を向上させることができる。また、p型半導体層130およびp型半導体層150によって溝部170における電界集中をいっそう緩和することができる。
E.第5実施形態
図17は、第5実施形態における半導体装置15の構成を模式的に示す断面図である。図17には、図1と同様にXYZ軸が図示されている。第5実施形態の半導体装置15は、半導体層135をさらに備える点を除き、第1実施形態の半導体装置10と同様である。
半導体装置15の半導体層135は、n型半導体層120およびp型半導体層130と、n型半導体層140との間に積層された半導体層であり、半導体層135をn型半導体層140の一部として捉えることもできる。本実施形態では、半導体層135は、n型半導体層140よりもドナー濃度が低い他のn型半導体層である。他の実施形態では、半導体層135は、p型半導体層130よりもドナー濃度が低い真性半導体層(アンドープ半導体層)であってもよいし、n型半導体層と真性半導体層との少なくとも一方から成る複数の半導体層であってもよい。
半導体装置15の製造者は、ドライエッチングおよびウェットエッチングによって、p型半導体層130が上面127に積層された凸部126を形成した後(工程P122)、n型半導体層140の形成(工程P132)に先立って、n型半導体層120およびp型半導体層130における+X軸方向側の各表面上に、結晶成長によって半導体層135を形成する。半導体層135の結晶を成長させる温度は、良好な結晶品質を得るために、n型半導体層140の結晶を成長させる温度よりも50℃〜100℃低い温度であることが好ましく、n型半導体層140の結晶を成長させる温度と同じ温度であってもよい。
半導体装置15の製造者は、半導体層135を形成した後、半導体層135における+X軸方向側の表面上に、結晶成長によってn型半導体層140を形成する(工程P132)。
以上説明した第5実施形態によれば、第1実施形態と同様に、半導体装置15の電気的特性を向上させることができる。また、p型半導体層130が上面127に積層された凸部126を形成するドライエッチングおよびウェットエッチング(工程P122)の影響によってn型半導体層120およびp型半導体層130の各表面に対する結晶成長が阻害される場合(例えば、表面モフォロジの荒れ、表面における異物の付着など)であっても、半導体層135を形成することによってn型半導体層140を容易に結晶成長させることができる。その結果、n型半導体層140の結晶品質を向上させることができる。
F.第6実施形態
図18は、第6実施形態における半導体装置16の構成を模式的に示す断面図である。図18には、図1と同様にXYZ軸が図示されている。第6実施形態の半導体装置16は、溝部170Fを用いた終端構造を有する点を除き、第1実施形態と同様である。半導体装置16は、終端構造として、溝部170Fの他、凸部126Fと、p型半導体層130Fと、***部145Fと、***部155Fと、***部165Fと、絶縁膜340Fとを備える。
第6実施形態の凸部126Fは、溝部170Fに対応する位置に設けられた点を除き、第1実施形態の凸部126と同様である。第6実施形態のp型半導体層130Fは、溝部170Fに対応する位置に設けられた点を除き、第1実施形態のp型半導体層130Fと同様である。凸部126Fの上面127Fには、p型半導体層130Fが積層されている。
第6実施形態の***部145F,155F,165Fは、溝部170Fに対応する位置に設けられた点を除き、第1実施形態の***部145,155,165と同様である。
第6実施形態の溝部170Fは、終端構造を構成するトレンチである点を除き、第1実施形態の溝部170と同様である。溝部170Fは、n型半導体層160の+X軸方向側からp型半導体層150とn型半導体層140とを貫通しp型半導体層130Fに至るまで落ち込んだトレンチである。本実施形態では、溝部170Fは、p型半導体層130Fの内側に落ち込んだ形状を成す。他の実施形態では、第2実施形態、第3実施形態および第4実施形態の各構成を、溝部170Fに適用してもよい。
第6実施形態の絶縁膜340Fは、溝部170Fに充填された充填部345Fを有する点を除き、第1実施形態の絶縁膜340と同様である。他の実施形態では、溝部170Fには、充填部345Fに代えて、第1実施形態の電極250と同様に電極が設けられてもよい。
以上説明した第6実施形態によれば、第1実施形態と同様に、p型半導体層130Fによって溝部170Fにおける電界集中を緩和できる。その結果、半導体装置16の電気的特性を向上させることができる。
G.他の実施形態
本発明は、上述の実施形態や実施例、変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例、変形例中の技術的特徴は、上述の課題の一部または全部を解決するために、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
上述の実施形態において、凸部126およびp型半導体層130は、YZ平面に沿った任意の方向に延びた形状を成してもよい。上述の実施形態において、凸部126およびp型半導体層130の断面形状は、+X軸方向に突出する形状であればよく、+X軸方向側の幅よりも−X軸方向側の幅が広い台形を成してもよく、+X軸方向側の幅が−X軸方向側の幅よりも広い台形を成してもよい。上述の実施形態において、凸部126およびp型半導体層130は、ウェットエッチングで処理されることなく、ドライエッチングのみで形成されてもよい。
上述の実施形態において、溝部170は、YZ平面に沿った任意の方向に延びた形状を成してもよい。上述の実施形態において、溝部170は、ウェットエッチングで処理されることなく、ドライエッチングのみで形成されてもよい。
上述の実施形態において、n型半導体層140は、YZ平面に沿って一様に平坦な表面を+X軸方向側に有する形状、すなわち、***部145,145Fが形成されていない形状であってもよい。上述の実施形態において、溝部170よりも+Y軸方向側に位置するn型半導体層140の部位と、溝部170よりも−Y軸方向側に位置するn型半導体層140の部位とは、図示しないn型半導体層140の部位を通じて繋がっていてもよい。
上述の実施形態において、p型半導体層150は、YZ平面に沿って一様に平坦な表面を+X軸方向側に有する形状、すなわち、***部155,155Fが形成されていない形状であってもよい。上述の実施形態において、溝部170よりも+Y軸方向側に位置するp型半導体層150の部位と、溝部170よりも−Y軸方向側に位置するp型半導体層150の部位とは、図示しないp型半導体層150の部位を通じて繋がっていてもよい。
上述の実施形態において、n型半導体層160は、YZ平面に沿って一様に平坦な表面を+X軸方向側に有する形状、すなわち、***部165,165Fが形成されていない形状であってもよい。上述の実施形態において、溝部170よりも+Y軸方向側に位置するn型半導体層160の部位と、溝部170よりも−Y軸方向側に位置するn型半導体層160の部位とは、図示しないn型半導体層160の部位を通じて繋がっていてもよい。
上述の実施形態において、基板とn型半導体層と間に真性半導体層が形成されてもよいし、n型半導体層とp型半導体層との間に真性半導体層が形成されてもよい。
上述の実施形態において、基板の材質は、窒化ガリウム(GaN)に限らず、ケイ素(Si)、サファイア(Al23)、炭化ケイ素(SiC)などであってもよい。
上述の実施形態において、基板とn型半導体層との少なくとも一方に含まれるドナーは、ケイ素(Si)に限らず、ゲルマニウム(Ge)、酸素(O)などであってもよい。
上述の実施形態において、p型半導体層に含まれるアクセプタは、マグネシウム(Mg)に限らず、亜鉛(Zn)、炭素(C)などであってもよい。
上述の実施形態において、絶縁膜の材料は、二酸化ケイ素(SiO2)に限らず、窒化ケイ素(SiN)、窒化酸化ケイ素(SiON)、酸化アルミニウム(Al23)、窒化酸化アルミニウム(AlON)、二酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、五酸化タンタル(Ta25)、五酸化ニオブ(Nb25)、二酸化ハフニウム(HfO2)、窒化アルミニウム(AlN)などであってもよい。上述の実施形態において、絶縁膜は、単層に限らず、異なる材料から成る複数の層から成る構成であってもよい。
上述の第3実施形態および第4実施形態において、第2実施形態と同様に、電極230は、p型半導体層に適した電極232と、n型半導体層に適した電極234とに分けて構成されてもよい。
上述の実施形態におけるトレンチゲート構造は、MOSFETに限らず、他の半導体装置(例えば、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor))に適用してもよい。
10…半導体装置
10a〜10f…製造途中にある半導体装置
12…半導体装置
13…半導体装置
14…半導体装置
15…半導体装置
16…半導体装置
90…半導体装置
110…基板
120…n型半導体層
126,126F…凸部
127,127F…上面
128…部位
130,130F…p型半導体層
125…半導体層
140…n型半導体層
145,145F…***部
150…p型半導体層
155,155F…***部
160…n型半導体層
165,165F…***部
170,170F…溝部
172…部位
180…凹部
210…電極
230…電極
232…電極
234…電極
250…電極
340,340F…絶縁膜
345F…充填部
910…基板
920…n型半導体層
930…p型半導体層
940…n型半導体層
970…溝部
980…凹部
991,993,995…電極
994…絶縁膜

Claims (20)

  1. 半導体装置であって、
    上面を有する凸部が、形成された第1のn型半導体層と、
    前記凸部の前記上面に積層された第1のp型半導体層と、
    前記第1のn型半導体層および前記第1のp型半導体層にわたって積層された第2のn型半導体層と、
    前記第2のn型半導体層に積層された第2のp型半導体層と、
    前記第2のp型半導体層に積層された第3のn型半導体層と、
    前記第3のn型半導体層から前記第2のp型半導体層と前記第2のn型半導体層とを貫通して前記第1のp型半導体層に至るまで落ち込んだ溝部と
    を備える半導体装置。
  2. 前記第1のn型半導体層は、前記第1のp型半導体層に対して、前記凸部の前記上面でのみ隣接する、請求項1に記載の半導体装置。
  3. 請求項1または請求項2に記載の半導体装置であって、
    前記第2のn型半導体層は、前記凸部が突出する突出方向に向けて前記凸部および前記第1のp型半導体層に沿って***した第1の***部を有し、
    前記第2のp型半導体層は、前記突出方向に向けて前記第1の***部に沿って***した第2の***部を有し、
    前記第3のn型半導体層は、前記突出方向に向けて前記第2の***部に沿って***した第3の***部を有する、半導体装置。
  4. さらに、前記溝部に絶縁膜を介して形成された電極を備える請求項1から請求項3までのいずれか一項に記載の半導体装置。
  5. 前記第1のp型半導体層の厚みTp1は、0.1μm以上である、請求項1から請求項4までのいずれか一項に記載の半導体装置。
  6. 前記凸部の高さHn1と前記第1のp型半導体層の厚みTp1とを合わせた高さHmは、前記第2のn型半導体層の厚みTn2と前記第2のp型半導体層の厚みTp2と前記第3のn型半導体層の厚みTn3とを合わせた厚みTuよりも小さい、請求項1から請求項5までのいずれか一項に記載の半導体装置。
  7. 前記第2のn型半導体層の厚みTn2は、前記第1のp型半導体層Tp1の厚み以上である、請求項1から請求項6までのいずれか一項に記載の半導体装置。
  8. 前記第2のn型半導体層の厚みTn2は、0.2μm以上である、請求項1から請求項7までのいずれか一項に記載の半導体装置。
  9. 前記第2のn型半導体層の厚みTn2は、0.5μm以上である、請求項1から請求項7までのいずれか一項に記載の半導体装置。
  10. 前記溝部は、前記第1のp型半導体層の内側に落ち込んだ形状を成す、請求項1から請求項9までのいずれか一項に記載の半導体装置。
  11. 前記第1のp型半導体層の側端と前記溝部の底面との間の距離w1は、0.5μm以下である、請求項10に記載の半導体装置。
  12. 前記第1のp型半導体層の側端と前記溝部の底面との間の距離w1は、0.25μm以下である、請求項10に記載の半導体装置。
  13. 前記凸部および前記第1のp型半導体層は、前記溝部の底面よりも狭い、請求項1から請求項9までのいずれか一項に記載の半導体装置。
  14. 前記第1のp型半導体層の側端と前記溝部の底面との間の距離w2は、0.5μm以下である、請求項13に記載の半導体装置。
  15. さらに、前記第1のn型半導体層および前記第1のp型半導体層と、前記第2のn型半導体層との間に積層された他のn型半導体層を備える請求項1から請求項14までのいずれか一項に記載の半導体装置。
  16. さらに、前記第1のn型半導体層および前記第1のp型半導体層と、前記第2のn型半導体層との間に積層された真性半導体層を備える請求項1から請求項15までのいずれか一項に記載の半導体装置。
  17. 前記第1のp型半導体層が広がる方向に沿った前記第1のp型半導体層を通る仮想平面上に、前記第2のp型半導体層が存在する、請求項1から請求項16までのいずれか一項に記載の半導体装置。
  18. 前記第1のn型半導体層、前記第2のn型半導体層、前記第3のn型半導体層、前記第1のp型半導体層、および前記第2のp型半導体層は、窒化ガリウム(GaN)から主に成る半導体層である、請求項1から請求項17までのいずれか一項に記載の半導体装置。
  19. 半導体装置の製造方法であって、
    第1のn型半導体層を形成する工程と、
    前記第1のn型半導体層に第1のp型半導体層を結晶成長によって形成する工程と、
    前記第1のn型半導体層と前記第1のp型半導体層とに対するドライエッチングによって、前記第1のp型半導体層が上面に積層された凸部を前記第1のn型半導体層に形成する工程と、
    前記第1のn型半導体層および前記第1のp型半導体層の各表面上に第2のn型半導体層を結晶成長によって形成する工程と、
    前記第2のn型半導体層の表面上に第2のp型半導体層を結晶成長によって形成する工程と、
    前記第2のp型半導体層の表面上に第3のn型半導体層を結晶成長によって形成する工程と、
    前記第3のn型半導体層から前記第2のp型半導体層と前記第2のn型半導体層とを貫通して前記第1のp型半導体層に至るまで落ち込んだ溝部を、ドライエッチングによって形成する工程と
    を備える、半導体装置の製造方法。
  20. 前記凸部を形成する工程は、前記ドライエッチングを行った後、前記第1のn型半導体層と前記第1のp型半導体層に対してウェットエッチングを行う工程を含む、請求項19に記載の半導体装置の製造方法。
JP2013063331A 2013-03-26 2013-03-26 半導体装置およびその製造方法 Active JP6036461B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013063331A JP6036461B2 (ja) 2013-03-26 2013-03-26 半導体装置およびその製造方法
US14/179,412 US9349856B2 (en) 2013-03-26 2014-02-12 Semiconductor device including first interface and second interface as an upper surface of a convex protruded from first interface and manufacturing device thereof
CN201410055965.0A CN104078504B (zh) 2013-03-26 2014-02-19 半导体装置及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013063331A JP6036461B2 (ja) 2013-03-26 2013-03-26 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2014192174A true JP2014192174A (ja) 2014-10-06
JP6036461B2 JP6036461B2 (ja) 2016-11-30

Family

ID=51838210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013063331A Active JP6036461B2 (ja) 2013-03-26 2013-03-26 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP6036461B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005140A (ja) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 絶縁ゲート型スイッチング装置とその製造方法
JP2017050516A (ja) * 2015-09-04 2017-03-09 株式会社豊田中央研究所 炭化珪素半導体装置
JP6233539B1 (ja) * 2016-12-21 2017-11-22 富士電機株式会社 半導体装置および半導体装置の製造方法
DE112017001490T5 (de) 2016-03-23 2018-12-06 Mitsubishi Electric Corporation Halbleiterbauelement und verfahren zum herstellen eines halbleiterbauelements
WO2019186785A1 (ja) * 2018-03-28 2019-10-03 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JPWO2019187789A1 (ja) * 2018-03-27 2021-03-25 パナソニック株式会社 窒化物半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7178781B2 (ja) 2014-10-10 2022-11-28 ハイ フォース リサーチ リミテッド 蛍光合成レチノイド

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095954A (ja) * 2002-09-02 2004-03-25 Toshiba Corp 半導体装置
JP2009267029A (ja) * 2008-04-24 2009-11-12 Rohm Co Ltd 窒化物半導体素子および窒化物半導体素子の製造方法
JP2009283692A (ja) * 2008-05-22 2009-12-03 Toyota Central R&D Labs Inc 半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095954A (ja) * 2002-09-02 2004-03-25 Toshiba Corp 半導体装置
JP2009267029A (ja) * 2008-04-24 2009-11-12 Rohm Co Ltd 窒化物半導体素子および窒化物半導体素子の製造方法
JP2009283692A (ja) * 2008-05-22 2009-12-03 Toyota Central R&D Labs Inc 半導体装置の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017005140A (ja) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 絶縁ゲート型スイッチング装置とその製造方法
JP2017050516A (ja) * 2015-09-04 2017-03-09 株式会社豊田中央研究所 炭化珪素半導体装置
DE112017001490T5 (de) 2016-03-23 2018-12-06 Mitsubishi Electric Corporation Halbleiterbauelement und verfahren zum herstellen eines halbleiterbauelements
US10784350B2 (en) 2016-03-23 2020-09-22 Mitsubishi Electric Corporation Semiconductor device and method for manufacturing semiconductor device
DE112017001490B4 (de) 2016-03-23 2023-04-06 Mitsubishi Electric Corporation Halbleiterbauelement und verfahren zum herstellen eines halbleiterbauelements
JP6233539B1 (ja) * 2016-12-21 2017-11-22 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2018101769A (ja) * 2016-12-21 2018-06-28 富士電機株式会社 半導体装置および半導体装置の製造方法
JPWO2019187789A1 (ja) * 2018-03-27 2021-03-25 パナソニック株式会社 窒化物半導体装置
JP7195306B2 (ja) 2018-03-27 2022-12-23 パナソニックホールディングス株式会社 窒化物半導体装置
WO2019186785A1 (ja) * 2018-03-28 2019-10-03 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JPWO2019186785A1 (ja) * 2018-03-28 2020-12-03 三菱電機株式会社 炭化珪素半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP6036461B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6036461B2 (ja) 半導体装置およびその製造方法
JP6107597B2 (ja) 半導体装置およびその製造方法
JP6341077B2 (ja) 半導体装置の製造方法
JP5634681B2 (ja) 半導体素子
JP6337726B2 (ja) 半導体装置およびその製造方法
JP2011198837A (ja) 半導体装置およびその製造方法
KR20150093117A (ko) 반도체 장치
JP6287143B2 (ja) 半導体装置およびその製造方法
JP2010098076A (ja) 半導体装置の製造方法
JP2012156263A (ja) 窒化ガリウム系半導体装置および半導体装置の製造方法
US9349856B2 (en) Semiconductor device including first interface and second interface as an upper surface of a convex protruded from first interface and manufacturing device thereof
JP6331907B2 (ja) 半導体装置
JP6485299B2 (ja) 半導体装置およびその製造方法ならびに電力変換装置
JP2019145693A (ja) 半導体装置の製造方法
CN110459473B (zh) 半导体装置及其制造方法
US10121663B2 (en) Semiconductor device and method for producing same
JP6327139B2 (ja) 半導体装置およびその製造方法
JP2014229767A (ja) ヘテロ接合電界効果型トランジスタ及びその製造方法
JP6241100B2 (ja) Mosfet
JP6673125B2 (ja) 半導体装置
JP5506055B2 (ja) 半導体装置の製造方法
JP6194869B2 (ja) 半導体装置およびその製造方法
JP6540571B2 (ja) 半導体装置の製造方法及び半導体装置
JP2011061094A (ja) 電界効果トランジスタの製造方法
JP6783992B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150