JP2014191974A - Method for producing conductive film and conductive film - Google Patents

Method for producing conductive film and conductive film Download PDF

Info

Publication number
JP2014191974A
JP2014191974A JP2013066075A JP2013066075A JP2014191974A JP 2014191974 A JP2014191974 A JP 2014191974A JP 2013066075 A JP2013066075 A JP 2013066075A JP 2013066075 A JP2013066075 A JP 2013066075A JP 2014191974 A JP2014191974 A JP 2014191974A
Authority
JP
Japan
Prior art keywords
conductive film
electrically conductive
composition
treatment
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013066075A
Other languages
Japanese (ja)
Other versions
JP5905845B2 (en
Inventor
Yushi HONGO
悠史 本郷
Misato Sasada
美里 佐々田
Toshihiro Kariya
俊博 仮屋
Yuichi Hayata
佑一 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013066075A priority Critical patent/JP5905845B2/en
Publication of JP2014191974A publication Critical patent/JP2014191974A/en
Application granted granted Critical
Publication of JP5905845B2 publication Critical patent/JP5905845B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a conductive film, capable of obtaining a conductive film in which the occurrence of ablation due to pulse light irradiation is suppressed and which has excellent adhesion to a substrate.SOLUTION: The method for producing a conductive film comprises: a substrate treatment step of subjecting a resin substrate to substrate treatment for roughening the resin substrate; a coating film forming step of applying a conductive film forming composition containing copper oxide particles (A) having an average particle diameter of 200 nm or less, a hydrophilic polymer (B), a thixotropic agent (C), and a solvent (D) being water or a hydrophilic alcohol onto the resin substrate subjected to the substrate treatment to form a coating film; and a reduction step of subjecting the coating film to pulse light irradiation treatment to reduce the copper oxide particles (A), thereby forming a conductive film containing copper.

Description

本発明は、導電膜の製造方法および導電膜に関する。   The present invention relates to a method for manufacturing a conductive film and a conductive film.

金属粒子または金属酸化物粒子の分散体を印刷法により基材に塗布し、加熱処理により焼結させることによって配線等の導電膜を形成する方法が知られている。
上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による導電膜形成方法に比べて、簡便・省エネ・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。なかでも、近年、低コスト化の観点から、金属酸化物粒子を含む組成物を用いて、これを加熱処理により還元させるとともに焼結させることで導電膜を形成する方法が注目されている。
一方、上記のように加熱処理により焼結する場合、基材は高温に曝される。そのため、基材に熱可塑性樹脂基材を使用すると基材が溶融してしまい、均一な導電膜が得ることが難しいという問題がある。
There is known a method of forming a conductive film such as a wiring by applying a dispersion of metal particles or metal oxide particles to a substrate by a printing method and sintering by a heat treatment.
Since the above method is simple, energy-saving, and resource-saving compared to the conventional high-heat / vacuum process (sputtering) and plating method for forming a conductive film, it is highly anticipated in the development of next-generation electronics. In particular, in recent years, from the viewpoint of cost reduction, a method of forming a conductive film by using a composition containing metal oxide particles and reducing and sintering the composition by heat treatment has attracted attention.
On the other hand, when sintering by heat processing as mentioned above, a base material is exposed to high temperature. Therefore, when a thermoplastic resin base material is used as the base material, the base material melts, and there is a problem that it is difficult to obtain a uniform conductive film.

このようななか、特許文献1には、焼結にパルス光を使用することで、基材を加熱し過ぎることなく、基材上の酸化銅インクを焼結して金属銅フィルムを形成する方法が開示されている(0013段落、実施例1など)。   Under such circumstances, Patent Document 1 discloses a method of forming a copper metal film by sintering a copper oxide ink on a base material by using pulsed light for sintering without overheating the base material. (0013 paragraph, Example 1 etc.).

特表2010−528428号公報Special table 2010-528428 gazette

本発明者は、特許文献1を参考に、ポリイミド基材などの基材上に酸化銅粒子を含有する組成物を付与して塗膜を形成し、形成した塗膜にパルス光を照射した。その結果、パルス光照射により導電膜が形成されたが、このとき導電膜にアブレーション(溶発)が発生すること、および、基材と導電膜との間の密着性が不十分であることが明らかになった。
酸化銅粒子を含有する組成物を、基材表面との親和性が低い状態で塗布すると、基材上に均一に塗布されず塗布ムラが発生する場合がある。この塗布ムラがある状態でパルス光照射を行なうと、導電膜形成の際に局所的な負荷がかかりアブレーションが発生すると考えられる。アブレーションが発生すると、導電膜の導電性低下につながる。
また、基材と導電膜との間の密着性が不十分であると、配線等を形成したときに断線やショートなどの不具合が生じやすくなるため問題である。
With reference to Patent Document 1, the present inventor applied a composition containing copper oxide particles on a substrate such as a polyimide substrate to form a coating film, and irradiated the pulsed light to the formed coating film. As a result, a conductive film was formed by pulsed light irradiation. At this time, ablation (ablation) occurred in the conductive film, and the adhesion between the substrate and the conductive film was insufficient. It was revealed.
When a composition containing copper oxide particles is applied in a state of low affinity with the substrate surface, it may not be uniformly applied onto the substrate and uneven coating may occur. If pulsed light irradiation is performed in a state where there is coating unevenness, it is considered that a local load is applied during the formation of the conductive film and ablation occurs. When ablation occurs, the conductivity of the conductive film is reduced.
Further, inadequate adhesion between the substrate and the conductive film is a problem because defects such as disconnection and short circuit are likely to occur when a wiring or the like is formed.

本発明は、以上の点を鑑みてなされたものであり、パルス光照射によるアブレーションの発生が抑制され、かつ、基材との密着性が良好な導電膜が得られる、導電膜の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and provides a method for producing a conductive film, in which generation of ablation due to pulsed light irradiation is suppressed and a conductive film having good adhesion to a substrate can be obtained. The purpose is to provide.

本発明者は、上記目的を達成するために鋭意検討した結果、特定の基材処理を施した基材上に、特定の導電膜形成用組成物を塗布してパルス光照射することで、アブレーションを抑制しつつ、基材との密着性が良好な導電膜が得られることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventor applied a specific conductive film forming composition on a base material that has been subjected to a specific base material treatment, and irradiated with pulsed light, thereby ablation. The present invention was completed by finding that a conductive film having good adhesion to the substrate can be obtained while suppressing the above.

すなわち、本発明は、以下の(1)〜(15)を提供する。
(1)樹脂基材に対して、樹脂基材を粗面化する基材処理を施す基材処理工程と、基材処理が施された樹脂基材上に、平均粒子径が200nm以下である酸化銅粒子(A)、親水性ポリマー(B)、揺変剤(C)、および、水または親水性アルコールである溶媒(D)を含有する導電膜形成用組成物を付与して、塗膜を形成する塗膜形成工程と、塗膜に対してパルス光照射処理を行い、酸化銅粒子(A)を還元して、銅を含有する導電膜を形成する還元工程と、を備える導電膜の製造方法。
(2)基材処理が、プラズマ処理、コロナ処理、UV照射処理、および、化学処理からなる群から選ばれる少なくとも1種の処理である、(1)に記載の導電膜の製造方法。
(3)揺変剤(C)が、ウレア変性ウレタンを含むウレア系揺変剤である、(1)または(2)に記載の導電膜の製造方法。
(4)導電膜形成用組成物における揺変剤(C)の含有量が、酸化銅粒子(A)の含有量に対して4〜12質量%である、(1)〜(3)のいずれかに記載の導電膜の製造方法。
(5)導電膜形成用組成物が、さらに、銅錯体(E)を含有する、(1)〜(4)のいずれかに記載の導電膜の製造方法。
(6)導電膜形成用組成物における銅錯体(E)の含有量が、酸化銅粒子(A)の含有量に対して20〜40質量%である、(5)に記載の導電膜の製造方法。
(7)基材処理が施された樹脂基材の表面粗さが、算術平均粗さRaで0.2μm以上である、(1)〜(6)のいずれかに記載の導電膜の製造方法。
(8)基材処理が施された樹脂基材の水との接触角が、20度以下である、(1)〜(7)のいずれかに記載の導電膜の製造方法。
(9)樹脂基材の厚さが、30μm以下である、(1)〜(8)のいずれかに記載の導電膜の製造方法。
(10)酸化銅粒子(A)の平均粒子径が、150nm以下である、(1)〜(9)のいずれかに記載の導電膜の製造方法。
(11)導電膜形成用組成物における親水性ポリマー(B)の含有量が、酸化銅粒子(A)の含有量に対して10〜70質量%である、(1)〜(10)のいずれかに記載の導電膜の製造方法。
(12)親水性ポリマー(B)の重量平均分子量が、12,000〜150,000である、(1)〜(11)のいずれか1項に記載の導電膜の製造方法。
(13)導電膜形成用組成物全量に対する酸化銅粒子(A)の含有量が、50〜65質量%である、(1)〜(12)のいずれかに記載の導電膜の製造方法。
(14)塗膜形成工程と還元工程との間に、塗膜を乾燥する乾燥工程を備え、乾燥された塗膜の乾燥膜厚が、2μm以下である、(1)〜(13)のいずれかに記載の導電膜の製造方法。
(15)(1)〜(14)のいずれかに記載の導電膜の製造方法により得られる導電膜。
That is, the present invention provides the following (1) to (15).
(1) An average particle diameter is 200 nm or less on a base material treatment step for subjecting a resin base material to a base material treatment for roughening the resin base material and a resin base material subjected to the base material treatment. A coating film is formed by applying a composition for forming a conductive film containing copper oxide particles (A), a hydrophilic polymer (B), a thixotropic agent (C), and a solvent (D) that is water or a hydrophilic alcohol. A coating film forming step for forming a conductive film, and a reduction step for performing a pulsed light irradiation treatment on the coating film to reduce the copper oxide particles (A) to form a conductive film containing copper. Production method.
(2) The method for producing a conductive film according to (1), wherein the substrate treatment is at least one treatment selected from the group consisting of plasma treatment, corona treatment, UV irradiation treatment, and chemical treatment.
(3) The method for producing a conductive film according to (1) or (2), wherein the thixotropic agent (C) is a urea type thixotropic agent containing urea-modified urethane.
(4) Any of (1) to (3), wherein the content of the thixotropic agent (C) in the composition for forming a conductive film is 4 to 12% by mass with respect to the content of the copper oxide particles (A). The manufacturing method of the electrically conductive film of crab.
(5) The manufacturing method of the electrically conductive film in any one of (1)-(4) in which the composition for electrically conductive film formation contains a copper complex (E) further.
(6) Manufacture of the electrically conductive film as described in (5) whose content of the copper complex (E) in the composition for electrically conductive film formation is 20-40 mass% with respect to content of a copper oxide particle (A). Method.
(7) The method for producing a conductive film according to any one of (1) to (6), wherein the surface roughness of the resin substrate subjected to the substrate treatment is 0.2 μm or more in terms of arithmetic average roughness Ra. .
(8) The manufacturing method of the electrically conductive film in any one of (1)-(7) whose contact angle with the water of the resin base material in which the base-material process was performed is 20 degrees or less.
(9) The manufacturing method of the electrically conductive film in any one of (1)-(8) whose thickness of a resin base material is 30 micrometers or less.
(10) The manufacturing method of the electrically conductive film in any one of (1)-(9) whose average particle diameter of a copper oxide particle (A) is 150 nm or less.
(11) Any of (1) to (10), wherein the content of the hydrophilic polymer (B) in the composition for forming a conductive film is 10 to 70% by mass with respect to the content of the copper oxide particles (A). The manufacturing method of the electrically conductive film of crab.
(12) The manufacturing method of the electrically conductive film of any one of (1)-(11) whose weight average molecular weights of hydrophilic polymer (B) are 12,000-150,000.
(13) The manufacturing method of the electrically conductive film in any one of (1)-(12) whose content of the copper oxide particle (A) with respect to the composition total amount for electrically conductive film formation is 50-65 mass%.
(14) Any of (1) to (13), which includes a drying step of drying the coating film between the coating film forming step and the reduction step, and the dried coating film has a dry film thickness of 2 μm or less. The manufacturing method of the electrically conductive film of crab.
(15) A conductive film obtained by the method for manufacturing a conductive film according to any one of (1) to (14).

本発明によれば、パルス光照射によるアブレーションの発生が抑制され、かつ、基材との密着性が良好な導電膜が得られる、導電膜の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the ablation by pulsed light irradiation can be suppressed, and the manufacturing method of an electrically conductive film with which the adhesiveness with a base material is favorable can be provided.

最初に、本発明の導電膜の製造方法の特徴点を説明する。
まず、本発明では、樹脂基材に対してプラズマ処理やコロナ処理などの基材処理を施すことにより、樹脂基材の表面を粗面化して凹凸を形成する。これにより、この樹脂基材と導電膜形成用組成物との間にアンカー効果が生じるとともに、さらに、この組成物が含む酸化銅粒子(A)の平均粒子径が200nm以下と小径であるため、このアンカー効果を増大し、得られる導電膜の基材に対する密着性が優れる。
また、本発明では、樹脂基材に対して基材処理を施して粗面化することにより樹脂基材の表面を親水性に改質(親水化)し、かつ、この親水性の樹脂基材上に付与される導電膜形成用組成物が、親水性ポリマー(B)と、水または親水性アルコールである溶媒(D)とを含有することで親水性となっている。このため、基材と導電膜形成用組成物との親和性が高く、これにより、塗布ムラの少ない導電膜が形成され、パルス光照射によるアブレーション発生が抑制される。つまり、アブレーション耐性に優れる。
さらに、本発明では、導電膜形成用組成物が揺変剤(C)を含有するため、この揺変剤(C)が親水性ポリマー(B)どうしを水素結合等により架橋し、導電膜形成用組成物の粘性を最適化することで、得られる導電膜のアブレーション耐性および密着性が優れる。
以下に、本発明の導電膜の製造方法について詳述する。
Initially, the characteristic point of the manufacturing method of the electrically conductive film of this invention is demonstrated.
First, in the present invention, the surface of the resin substrate is roughened to form irregularities by subjecting the resin substrate to a substrate treatment such as plasma treatment or corona treatment. Thereby, while an anchor effect arises between this resin base material and the composition for electrically conductive film formation, since the average particle diameter of the copper oxide particles (A) which this composition contains is 200 nm or less and a small diameter, This anchor effect is increased, and the adhesion of the resulting conductive film to the substrate is excellent.
Further, in the present invention, the surface of the resin substrate is modified to be hydrophilic (hydrophilized) by subjecting the resin substrate to a surface treatment and roughening, and the hydrophilic resin substrate The composition for forming a conductive film imparted thereon is hydrophilic by containing a hydrophilic polymer (B) and a solvent (D) that is water or a hydrophilic alcohol. For this reason, affinity with a base material and the composition for electrically conductive film formation is high, and, thereby, a conductive film with few coating nonuniformity is formed and generation | occurrence | production of the ablation by pulse light irradiation is suppressed. That is, it has excellent ablation resistance.
Furthermore, in this invention, since the composition for electrically conductive film contains a thixotropic agent (C), this thixotropic agent (C) bridge | crosslinks hydrophilic polymer (B) by a hydrogen bond etc., and conductive film formation is carried out. By optimizing the viscosity of the composition for use, the obtained conductive film is excellent in ablation resistance and adhesion.
Below, the manufacturing method of the electrically conductive film of this invention is explained in full detail.

本発明の導電膜の製造方法は、(1)基材処理工程、(2)塗膜形成工程、(3)還元工程の3つの工程を備える。また、本発明の導電膜の製造方法は、後述するとおり、工程(2)と工程(3)との間に、乾燥工程をさらに備えるのが好ましい。
以下、各工程について詳述する。
The manufacturing method of the electrically conductive film of this invention is equipped with three processes, (1) base-material process process, (2) coating-film formation process, and (3) reduction process. Moreover, it is preferable that the manufacturing method of the electrically conductive film of this invention is further equipped with a drying process between a process (2) and a process (3) so that it may mention later.
Hereinafter, each process is explained in full detail.

[工程(1):基材処理工程]
工程(1)は、樹脂基材に対して、上記樹脂基材を粗面化する基材処理を施す工程である。まず、本工程で使用される材料(樹脂基材)および基材処理について、詳述する。
[Step (1): Substrate treatment step]
Step (1) is a step of performing a base material treatment for roughening the resin base material on the resin base material. First, the material (resin base material) and base material processing used in this step will be described in detail.

<樹脂基材>
本発明で使用する基材は、樹脂基材であれば特に限定されないが、後述する工程(3)において、基材が軟化し、導電膜と融着して、密着性が向上することから、熱可塑性樹脂基材を使用するのが好ましい。
<Resin substrate>
The base material used in the present invention is not particularly limited as long as it is a resin base material, but in the step (3) described later, the base material softens and is fused with the conductive film, thereby improving the adhesion. It is preferable to use a thermoplastic resin substrate.

本発明で使用される熱可塑性樹脂基材は、熱可塑性樹脂により構成される基材であれば特に限定されない。
熱可塑性樹脂基材を構成する熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブチレンなどのポリオレフィン系樹脂;ポリメチルメタクリレートなどのメタクリル系樹脂;ポリスチレン、ABS、ASなどのポリスチレン系樹脂;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリ1,4−シクロヘキシルジメチレンテレフタレート(PCT)などのポリエステル系樹脂;ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリドデカンアミド(ナイロン12)、ポリヘキサメチレンテレフタラミド(ナイロン6T)、ポリヘキサンメチレンイソフタラミド(ナイロン6I)、ポリカプロアミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン6/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミドコポリマー(ナイロン66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミドコポリマー(ナイロン66/6I)などのナイロン樹脂およびナイロン共重合体樹脂から選ばれるポリアミド樹脂;ポリ塩化ビニル樹脂;ポリオキシメチレン(POM);ポリカーボネート(PC)樹脂;ポリフェニレンサルファイド(PPS)樹脂;変性ポリフェニレンエーテル(PPE)樹脂;ポリエーテルイミド(PEI)樹脂;ポリスルホン(PSF)樹脂;ポリエーテルスルホン(PES)樹脂;ポリケトン樹脂;ポリエーテルニトリル(PEN)樹脂;ポリエーテルケトン(PEK)樹脂;ポリエーテルエーテルケトン(PEEK)樹脂;ポリエーテルケトンケトン(PEKK)樹脂;ポリイミド(PI)樹脂;ポリアミドイミド(PAI)樹脂;フッ素樹脂;これらの樹脂を変性させた変性樹脂またはこれらの樹脂の混合物;等が挙げられる。
これらのうち、基材と導電膜との密着性がより良好になり、また、導電膜の導電性が良好になるという理由から、ポリイミド(PI)樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が好ましく、ポリイミド(PI)樹脂がより好ましい。
If the thermoplastic resin base material used by this invention is a base material comprised by a thermoplastic resin, it will not specifically limit.
Examples of the thermoplastic resin constituting the thermoplastic resin substrate include polyolefin resins such as polyethylene, polypropylene, and polybutylene; methacrylic resins such as polymethyl methacrylate; polystyrene resins such as polystyrene, ABS, and AS; polyethylene terephthalate ( PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate, polyethylene naphthalate (PEN), poly 1,4-cyclohexyldimethylene terephthalate (PCT) and other polyester resins; polycaproamide (nylon 6), polyhexa Methylene adipamide (nylon 66), polyhexamethylene sebamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polydodecanamide (nylon 12), Rihexamethylene terephthalamide (nylon 6T), polyhexanemethylene isophthalamide (nylon 6I), polycaproamide / polyhexamethylene terephthalamide copolymer (nylon 6 / 6T), polyhexamethylene adipamide / polyhexamethylene terephthalate Polyamide resin selected from nylon resin and nylon copolymer resin such as amide copolymer (nylon 66 / 6T), polyhexamethylene adipamide / polyhexamethylene isophthalamide copolymer (nylon 66 / 6I); polyvinyl chloride resin; Oxymethylene (POM); Polycarbonate (PC) resin; Polyphenylene sulfide (PPS) resin; Modified polyphenylene ether (PPE) resin; Polyetherimide (PEI) resin; Polysulfone (P F) resin; polyethersulfone (PES) resin; polyketone resin; polyethernitrile (PEN) resin; polyetherketone (PEK) resin; polyetheretherketone (PEEK) resin; polyetherketoneketone (PEKK) resin; (PI) resin; polyamideimide (PAI) resin; fluororesin; modified resin obtained by modifying these resins or a mixture of these resins;
Of these, polyimide (PI) resin, polyethylene terephthalate (PET), polyethylene naphthalate (polyethylene naphthalate) is used because the adhesion between the base material and the conductive film becomes better and the conductive film becomes more conductive. PEN) is preferable, and polyimide (PI) resin is more preferable.

熱可塑性樹脂基材を構成する熱可塑性樹脂のガラス転移温度(Tg)は特に限定されないが、基材と導電膜との密着性がより良好になり、また、導電膜の導電性が良好になる理由から、160℃以下が好ましく、130℃以下がより好ましく、100℃以下がさらに好ましい。また、ガラス転移温度の下限も特に限定されないが、50℃以上が好ましい。
ここでガラス転移温度とは、DSC(示差走査熱量測定)で測定されるガラス転移温度をいう。
The glass transition temperature (Tg) of the thermoplastic resin constituting the thermoplastic resin substrate is not particularly limited, but the adhesion between the substrate and the conductive film becomes better, and the conductivity of the conductive film becomes better. For reasons, 160 ° C. or lower is preferable, 130 ° C. or lower is more preferable, and 100 ° C. or lower is further preferable. The lower limit of the glass transition temperature is not particularly limited, but is preferably 50 ° C. or higher.
Here, the glass transition temperature refers to a glass transition temperature measured by DSC (differential scanning calorimetry).

本発明に使用される樹脂基材の厚さは、特に限定されず、例えば1〜100μmが挙げられ、得られる導電膜の密着性がより優れるという理由から、30μm以下が好ましい。   The thickness of the resin base material used for this invention is not specifically limited, For example, 1-100 micrometers is mentioned, For the reason that the adhesiveness of the electrically conductive film obtained is more excellent, 30 micrometers or less are preferable.

<基材処理>
基材処理は、上述した樹脂基材を粗面化する処理であって、この粗面化により樹脂基材の表面を親水性に改質(親水化)できる処理であれば特に限定されない。
このような基材処理としては、例えば、プラズマ処理、コロナ処理、UV照射処理、および、化学処理からなる群から選ばれる少なくとも1種の処理が挙げられる。
<Base material treatment>
The substrate treatment is a treatment for roughening the above-described resin substrate, and is not particularly limited as long as the surface of the resin substrate can be modified to hydrophilicity (hydrophilization) by this roughening.
Examples of such a substrate treatment include at least one treatment selected from the group consisting of plasma treatment, corona treatment, UV irradiation treatment, and chemical treatment.

プラズマ処理は、樹脂基材を、空気、酸素、窒素、二酸化炭素、アルゴン、ネオンなどを含む容器内に置き、グロー放電により生じるプラズマに晒す処理であり、例えば、プラズマ処理機を用いて常圧空気中または不活性ガス雰囲気中で放電する方式により行うことができる。
コロナ処理は、コロナ放電が生じる電界内に、樹脂基材を通過等させる処理であり、例えば、コロナ処理機を用いて常圧空気中で放電する方式により行うことができる。
UV照射処理は、高エネルギーの紫外線を照射して、雰囲気ガスのラジカルを生成させるとともに、紫外線のエネルギーによって樹脂基材表面の分子間の結合を切断する処理である。
Plasma treatment is a treatment in which a resin substrate is placed in a container containing air, oxygen, nitrogen, carbon dioxide, argon, neon, etc., and exposed to plasma generated by glow discharge. For example, a normal pressure using a plasma treatment machine is used. The discharge can be performed in air or in an inert gas atmosphere.
The corona treatment is a treatment for allowing a resin base material to pass through an electric field in which corona discharge occurs, and can be performed, for example, by a method of discharging in atmospheric pressure using a corona treatment machine.
The UV irradiation process is a process of irradiating high-energy ultraviolet rays to generate radicals in the atmosphere gas and cutting bonds between molecules on the surface of the resin substrate by the energy of the ultraviolet rays.

化学処理は、例えば、酸化剤を含む溶液または強アルカリの水溶液中に樹脂基材を浸漬させる処理であり、酸化剤としては、例えば、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸などが挙げられ、強アルカリとしては、アルカリ金属の水酸化物(例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等)や、アルカリ土類金属の水酸化物(例えば、水酸化ストロンチウム、水酸化バリウム等)が好適に用いられる。   The chemical treatment is, for example, a treatment in which the resin substrate is immersed in a solution containing an oxidizing agent or a strong alkaline aqueous solution. Examples of the oxidizing agent include permanganate (potassium permanganate, sodium permanganate, etc. ), Dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid and the like, and strong alkalis include alkali metal hydroxides (eg, sodium hydroxide, potassium hydroxide, lithium hydroxide, etc.) Alkaline earth metal hydroxides (for example, strontium hydroxide, barium hydroxide, etc.) are preferably used.

これらの基材処理のうち、樹脂基材をより粗面化する観点からは、プラズマ処理、コロナ処理、UV照射処理が好ましく、樹脂基材をより親水化する観点からは、プラズマ処理、コロナ処理、化学処理が好ましい。   Among these substrate treatments, plasma treatment, corona treatment and UV irradiation treatment are preferable from the viewpoint of roughening the resin substrate, and plasma treatment and corona treatment from the viewpoint of making the resin substrate more hydrophilic. Chemical treatment is preferred.

基材処理の処理条件は、使用される装置等に応じて適宜選択でき、特に限定されないが、例えば、本発明における基材処理は、この基材処理が施された樹脂基材について、その表面粗さを算術平均粗さRaで0.03μm超(好ましくは0.1μm以上)にし、かつ、水との接触角(水接触角ともいう)を60度未満(好ましくは30度以下)にする処理が好ましい。   The treatment conditions for the substrate treatment can be appropriately selected according to the apparatus used, and are not particularly limited. For example, the substrate treatment in the present invention is performed on the surface of the resin substrate that has been subjected to the substrate treatment. The roughness is an arithmetic average roughness Ra of more than 0.03 μm (preferably 0.1 μm or more), and the contact angle with water (also referred to as a water contact angle) is less than 60 degrees (preferably 30 degrees or less). Treatment is preferred.

もっとも、得られる導電膜の基材に対する密着性およびアブレーション耐性がより優れ、導電性も良好になるという理由から、基材処理が施された樹脂基材について、その表面粗さが算術平均粗さRaで0.2μm以上になり、かつ、水接触角が20度以下になる処理条件がより好ましい。
このとき、基材処理が施された樹脂基材の表面粗さ(算術平均粗さRa)の上限は特に限定されないが、1.0μm以下が好ましい。同様に、基材処理が施された樹脂基材の水接触角の下限も特に限定されないが、5度以上が好ましい。
However, the surface roughness of the base material treated resin surface is the arithmetic average roughness because the adhesion and ablation resistance of the resulting conductive film to the base material are better and the conductivity is better. A treatment condition that Ra is 0.2 μm or more and the water contact angle is 20 degrees or less is more preferable.
At this time, the upper limit of the surface roughness (arithmetic average roughness Ra) of the resin substrate subjected to the substrate treatment is not particularly limited, but is preferably 1.0 μm or less. Similarly, the lower limit of the water contact angle of the resin substrate subjected to the substrate treatment is not particularly limited, but is preferably 5 degrees or more.

なお、本発明において、樹脂基材の表面粗さ(算術平均粗さRa)は、KEYENCE社製の超深度カラー3D形状測定顕微鏡を用いて、3次元粗さ測定により求めたものである。
また、樹脂基材の表面の水との接触角は、協和界面科学社製のCA−Z型自動接触角計を用いて、純水の滴下後、20秒後の角度を求めたものである。
In the present invention, the surface roughness (arithmetic mean roughness Ra) of the resin base material is determined by three-dimensional roughness measurement using an ultra-deep color 3D shape measurement microscope manufactured by KEYENCE.
Moreover, the contact angle with the water of the surface of a resin base material calculates | requires the angle after 20 second after dripping of pure water using the Kyowa Interface Science company CA-Z type automatic contact angle meter. .

[工程(2):塗膜形成工程]
工程(2)は、上述した基材処理が施された樹脂基材上に、特定の導電膜形成用組成物を付与して、塗膜を形成する工程である。
[Step (2): Coating film forming step]
Step (2) is a step of forming a coating film by applying a specific composition for forming a conductive film on the resin base material that has been subjected to the base material treatment described above.

<導電膜形成用組成物>
本発明で使用される導電膜形成用組成物(以下、本発明の導電膜形成用組成物ともいう)は、平均粒子径が200nm以下である酸化銅粒子(A)、親水性ポリマー(B)、揺変剤(C)、および、水または親水性アルコールである溶媒(D)を含有する。
また、本発明の導電膜形成用組成物は、導電性の観点から、銅錯体(E)を含有するのが好ましい。
以下、本発明の導電膜形成用組成物の各成分について詳述する。
<Composition for forming conductive film>
The composition for forming a conductive film used in the present invention (hereinafter also referred to as the composition for forming a conductive film of the present invention) includes copper oxide particles (A) having an average particle diameter of 200 nm or less, and a hydrophilic polymer (B). A thixotropic agent (C) and a solvent (D) which is water or a hydrophilic alcohol.
Moreover, it is preferable that the composition for electrically conductive film formation of this invention contains a copper complex (E) from an electroconductive viewpoint.
Hereinafter, each component of the composition for electrically conductive film formation of this invention is explained in full detail.

(酸化銅粒子(A))
本発明の導電膜形成用組成物に含有される酸化銅粒子(A)は、平均粒子径が200nm以下である粒子状の酸化銅である。
平均粒子径が200nm以下である酸化銅粒子(A)を使用することで、基材処理により凹凸が形成された樹脂基材に対するアンカー効果が増大し、導電膜の密着性が優れる。
なお、粒子状とは小さい粒状を指し、その具体例としては、球状、楕円体状などが挙げられる。完全な球や楕円体である必要はなく、一部が歪んでいてもよい。
本発明における「酸化銅」とは、酸化されていない銅を実質的に含まない化合物である。銅を実質的に含まないとは、限定的ではないが、銅の含有量が酸化銅粒子に対して1質量%以下であることをいう。酸化銅粒子に対する銅の含有量はXRDにより測定したものである。
(Copper oxide particles (A))
The copper oxide particles (A) contained in the conductive film forming composition of the present invention are particulate copper oxides having an average particle diameter of 200 nm or less.
By using the copper oxide particles (A) having an average particle diameter of 200 nm or less, the anchor effect on the resin substrate on which the irregularities are formed by the substrate treatment is increased, and the adhesion of the conductive film is excellent.
Note that the particulate form means a small granular form, and specific examples thereof include a spherical shape and an ellipsoidal shape. It is not necessary to be a perfect sphere or ellipsoid, and a part may be distorted.
The “copper oxide” in the present invention is a compound substantially free of unoxidized copper. Although not containing copper substantially, it means that content of copper is 1 mass% or less with respect to copper oxide particles. The copper content relative to the copper oxide particles is measured by XRD.

酸化銅粒子(A)としては、酸化銅(I)粒子または酸化銅(II)粒子が好ましく、安価に入手可能であり、また、得られる導電膜の導電性が良好であるという理由から、酸化銅(II)粒子がより好ましい。   As the copper oxide particles (A), copper oxide (I) particles or copper (II) oxide particles are preferable, and can be obtained at a low price. Also, the conductive film obtained has good conductivity. Copper (II) particles are more preferred.

酸化銅粒子(A)の平均粒子径は、200nm以下であるが、導電膜の密着性およびアブレーション耐性がより優れるという理由から、150nm以下が好ましい。
また、酸化銅粒子(A)の平均粒子径の下限値は特に限定されないが、粒子表面活性が高くなりすぎず、本発明の導電膜形成用組成物中で溶解することがなく、取扱い性に優れることから、1nm以上が好ましい。
なお、本発明における平均粒子径は、平均二次粒径のことを指す。平均粒子径は、透過型電子顕微鏡(TEM)観察により、少なくとも50個以上の酸化銅粒子の粒子径(直径)を測定し、それらを算術平均して求める。なお、観察図中、酸化銅粒子の形状が真円状でない場合、長径を直径として測定する。
酸化銅粒子としては、例えば、関東化学社製のCuOナノ粒子、シグマアルドリッチ社製のCuOナノ粒子、シーアイ化成社製のCuOなどを好ましく使用できる。
The average particle diameter of the copper oxide particles (A) is 200 nm or less, but is preferably 150 nm or less because the adhesiveness and ablation resistance of the conductive film are more excellent.
Further, the lower limit value of the average particle diameter of the copper oxide particles (A) is not particularly limited, but the particle surface activity does not become too high, and does not dissolve in the composition for forming a conductive film of the present invention. Since it is excellent, 1 nm or more is preferable.
In addition, the average particle diameter in this invention points out an average secondary particle diameter. The average particle diameter is obtained by measuring the particle diameter (diameter) of at least 50 or more copper oxide particles by observation with a transmission electron microscope (TEM) and arithmetically averaging them. In the observation diagram, when the shape of the copper oxide particles is not a perfect circle, the major axis is measured as the diameter.
As the copper oxide particles, for example, CuO nanoparticles manufactured by Kanto Chemical Co., Ltd., CuO nanoparticles manufactured by Sigma Aldrich, CuO manufactured by CI Kasei Co., Ltd. and the like can be preferably used.

本発明の導電膜形成用組成物全量に対する酸化銅粒子(A)の含有量は、基材と導電膜との密着性がより良好になり、また、導電膜の導電性が良好になるという理由から、20〜80質量%が好ましく、30〜70質量%より好ましく、アブレーション耐性により優れるという理由から、50〜65質量%がさらに好ましい。   The content of the copper oxide particles (A) with respect to the total amount of the conductive film-forming composition of the present invention is such that the adhesion between the base material and the conductive film becomes better, and the conductivity of the conductive film becomes better. 20 to 80% by mass is preferable, 30 to 70% by mass is more preferable, and 50 to 65% by mass is more preferable because it is more excellent in ablation resistance.

(親水性ポリマー(B))
親水性ポリマー(B)は、酸化銅粒子(A)のバインダーとして働くとともに、本発明の導電膜形成用組成物を親水性にすることで、基材処理により親水化された樹脂基材に対する親和性を高め、塗布ムラの少ない導電膜を形成し、パルス光照射によるアブレーション発生を抑制する。
親水性ポリマー(B)としては、親水性を有するポリマーであれば特に限定されないが、例えば、アクリル系ポリマー(例えば、(メタ)アクリル酸エステル、(メタ)アクリル酸、(メタ)アクリルアミド、(メタ)アクリロニトリルなどのアクリル系モノマーの重合体または共重合体)、ポリビニルピロリドン(PVP)、ポリエチレンイミン(PEI)、ポリビニルアルコール(PVA)、ポリビニルアセタール、ポリエチレングリコール(PEG)、ポリエステル、ポリアミド、ポリイミドなどが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
これらのうち、得られる導電膜のアブレーション耐性がより優れるという理由から、ポリビニルピロリドン(PVP)、ポリエチレンイミン(PEI)、ポリビニルアルコール(PVA)、ポリエチレングリコール(PEG)が好ましい。
(Hydrophilic polymer (B))
The hydrophilic polymer (B) serves as a binder for the copper oxide particles (A) and has an affinity for a resin base material that has been made hydrophilic by base material treatment by making the composition for forming a conductive film of the present invention hydrophilic. It improves the property, forms a conductive film with little coating unevenness, and suppresses the occurrence of ablation due to pulsed light irradiation.
The hydrophilic polymer (B) is not particularly limited as long as it is a hydrophilic polymer. For example, an acrylic polymer (for example, (meth) acrylic acid ester, (meth) acrylic acid, (meth) acrylamide, (meta ) Acrylic monomer polymer or copolymer such as acrylonitrile), polyvinylpyrrolidone (PVP), polyethyleneimine (PEI), polyvinyl alcohol (PVA), polyvinyl acetal, polyethylene glycol (PEG), polyester, polyamide, polyimide, etc. These may be used alone or in combination of two or more.
Of these, polyvinylpyrrolidone (PVP), polyethyleneimine (PEI), polyvinyl alcohol (PVA), and polyethylene glycol (PEG) are preferred because the resulting conductive film has better ablation resistance.

親水性ポリマー(B)の重量平均分子量は特に限定されず、例えば、5,000〜500,000程度が挙げられ、10,000〜220,000が好ましく、得られる導電膜のアブレーション耐性がより優れるという理由から、12,000〜150,000がより好ましい。
なお、重量平均分子量は、GPC法(溶媒:N−メチルピロリドン)により得られたポリスチレン換算値である。
The weight average molecular weight of hydrophilic polymer (B) is not specifically limited, For example, about 5,000-500,000 is mentioned, 10,000-220,000 are preferable and the ablation resistance of the electrically conductive film obtained is more excellent. For this reason, 12,000 to 150,000 is more preferable.
The weight average molecular weight is a polystyrene equivalent value obtained by the GPC method (solvent: N-methylpyrrolidone).

本発明の導電膜形成用組成物において、親水性ポリマー(B)の含有量は、例えば、酸化銅粒子(A)の含有量に対して1〜120質量%であり、6〜100質量%が好ましく、得られる導電膜のアブレーション耐性がより優れ、導電性も良好になるという理由から、酸化銅粒子(A)の含有量に対して10〜70質量%がより好ましい。
なお、親水性ポリマー(B)の含有量が、酸化銅粒子(A)の含有量に対して10質量%未満であるとアブレーション耐性に劣る場合があり、70質量%を超えると導電性が劣る場合があるが、10〜70質量%であれば、アブレーション耐性がより優れ、導電性も良好になる。
In the composition for forming a conductive film of the present invention, the content of the hydrophilic polymer (B) is, for example, 1 to 120% by mass and 6 to 100% by mass with respect to the content of the copper oxide particles (A). Preferably, 10 to 70 mass% is more preferable with respect to the content of the copper oxide particles (A) because the ablation resistance of the obtained conductive film is more excellent and the conductivity is also improved.
In addition, when content of a hydrophilic polymer (B) is less than 10 mass% with respect to content of a copper oxide particle (A), it may be inferior to ablation resistance, and when it exceeds 70 mass%, electroconductivity will be inferior. In some cases, if it is 10 to 70% by mass, the ablation resistance is more excellent and the conductivity is also improved.

(揺変剤(C))
揺変剤(C)は、親水性ポリマー(B)どうしを水素結合等により架橋し、本発明の導電膜形成用組成物の粘性を最適化することで、得られる導電膜のアブレーション耐性および密着性を良好なものとする。
揺変剤(C)は、分散媒に対して揺変性を付与する添加剤である。揺変性(thixotropy;チクソ性)とは、せん断応力を受け続けると粘度が次第に低下し、静止すると粘度が次第に上昇する性質をいう。なお、せん断応力を受けた場合に粘度が低下する性質(擬塑性)も、ここでは、揺変性に含む概念とする。
(Thixotropic agent (C))
The thixotropic agent (C) crosslinks the hydrophilic polymers (B) by hydrogen bonding, etc., and optimizes the viscosity of the composition for forming a conductive film of the present invention, thereby ablating resistance and adhesion of the conductive film obtained. To improve the property.
The thixotropic agent (C) is an additive that imparts thixotropic properties to the dispersion medium. Thixotropy (thixotropy) is a property in which the viscosity gradually decreases when subjected to shear stress, and the viscosity gradually increases when stationary. In addition, the property (pseudoplasticity) in which the viscosity decreases when subjected to shear stress is a concept included in thixotropic property.

揺変剤(C)としては、例えば、有機系揺変剤、無機系揺変剤などが挙げられる。
有機系揺変剤としては、例えば、脂肪酸アマイド系揺変剤、水添ひまし油系揺変剤、酸化ポリオレフィン系揺変剤、ウレア系揺変剤、ウレタン系揺変剤等が挙げられる。より具体的には、ウレア変性ウレタン、変性ウレア、ポリヒドロキシカルボン酸アミド、ポリヒドロキシカルボン酸エステル、ウレア変性ポリアミド、酸化ポリエチレンアミド、酸化ポリエチレン、脂肪酸アミド等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
Examples of the thixotropic agent (C) include an organic thixotropic agent and an inorganic thixotropic agent.
Examples of the organic thixotropic agent include fatty acid amide type thixotropic agents, hydrogenated castor oil type thixotropic agents, oxidized polyolefin type thixotropic agents, urea type thixotropic agents, urethane type thixotropic agents, and the like. More specifically, urea-modified urethane, modified urea, polyhydroxycarboxylic acid amide, polyhydroxycarboxylic acid ester, urea-modified polyamide, oxidized polyethylene amide, oxidized polyethylene, fatty acid amide and the like can be mentioned, and these are used alone. Or two or more of them may be used in combination.

脂肪酸アマイド系揺変剤の市販品としては、例えば、楠本化成社製のディスパロン6900−20X、6900−10X、A603−20X、A603−10X、6810−20X、6850−20X、FS−6010、PFA−131、PFA−231、6500、6650、6700、F−9020、F−9030、F−9040およびF−9050、ならびにビックケミー社製のBYK−405等が挙げられる。
水添ひまし油系揺変剤の市販品としては、例えば、楠本化成社製のディスパロン308および4300等が挙げられる。
酸化ポリオレフィン系揺変剤の市販品としては、例えば、楠本化成社製のディスパロン4200−20、4200−10、PF−911、4401−25Xおよび4401−25M等が挙げられる。
ウレア系揺変剤としては、例えば、ビックケミー社製のBYK−410(主成分:変性ウレア)、BYK−411(主成分:変性ウレア)、BYK−420(主成分:変性ウレア)、BYK−425(主成分:ウレア変性ウレタン)、BYK−430(主成分:ウレア変性中極性ポリアマイド)、BYK−431(主成分:ウレア変性低極性ポリアマイド)等が挙げられる。
ウレタン系揺変剤の市販品としては、例えば、ビックケミー社製のBYK−428(主成分:ポリウレタン)等が挙げられる。
Examples of commercially available fatty acid amide thixotropic agents include, for example, Disparon 6900-20X, 6900-10X, A603-20X, A603-10X, 6810-20X, 6850-20X, FS-6010, PFA- manufactured by Enomoto Kasei Co., Ltd. 131, PFA-231, 6500, 6650, 6700, F-9020, F-9030, F-9040 and F-9050, and BYK-405 manufactured by BYK Chemie.
Examples of commercially available hydrogenated castor oil-based thixotropic agents include Dispalon 308 and 4300 manufactured by Enomoto Kasei Co., Ltd.
Examples of commercially available oxidized polyolefin thixotropic agents include Disparon 4200-20, 4200-10, PF-911, 4401-25X, and 4401-25M manufactured by Enomoto Kasei Co., Ltd.
Examples of urea thixotropic agents include BYK-410 (main component: modified urea), BYK-411 (main component: modified urea), BYK-420 (main component: modified urea), BYK-425 manufactured by BYK Chemie. (Main component: Urea-modified urethane), BYK-430 (Main component: Urea-modified medium-polar polyamide), BYK-431 (Main component: Urea-modified low-polar polyamide), and the like.
Examples of commercially available urethane-type thixotropic agents include BYK-428 (main component: polyurethane) manufactured by Big Chemie.

これらのうち、得られる導電膜のアブレーション耐性がより優れるという理由から、ウレア系揺変剤が好ましく、ウレア変性ウレタンを主成分として含むウレア系揺変剤がより好ましい。
なお、ここで「主成分」とは、有効成分に占める割合が80質量%以上であることをいう。
Among these, a urea-type thixotropic agent is preferable, and a urea-type thixotropic agent containing urea-modified urethane as a main component is more preferable because the ablation resistance of the obtained conductive film is more excellent.
Here, the “main component” means that the proportion of the active ingredient is 80% by mass or more.

本発明の導電膜形成用組成物において、揺変剤(C)の含有量は、例えば、酸化銅粒子(A)の含有量に対して1〜20質量%であり、2〜14質量%が好ましく、得られる導電膜の基材に対する密着性およびアブレーション耐性がより優れるという理由から、酸化銅粒子(A)の含有量に対して4〜12質量%がより好ましい。   In the composition for forming a conductive film of the present invention, the content of the thixotropic agent (C) is, for example, 1 to 20% by mass and 2 to 14% by mass with respect to the content of the copper oxide particles (A). Preferably, 4-12 mass% is more preferable with respect to content of a copper oxide particle (A) from the reason that the adhesiveness with respect to the base material of the electrically conductive film obtained, and ablation tolerance are more excellent.

(溶媒(D))
水または親水性アルコールである溶媒(D)は、酸化銅粒子(A)、親水性ポリマー(B)および揺変剤(C)の分散媒として機能するとともに、本発明の導電膜形成用組成物を親水化することで、基材処理により親水化された樹脂基材に対する親和性を高め、塗布ムラの少ない導電膜を形成し、パルス光照射によるアブレーション発生を抑制する。
溶媒(D)である親水性アルコールとしては、メタノール、エタノール、2−プロパノール、ブチルアルコールなどの1価アルコール;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ジグリセリン、トリグリセリン、ポリグリセリン、トリメチロールプロパンなどの多価アルコール;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
(Solvent (D))
The solvent (D) that is water or a hydrophilic alcohol functions as a dispersion medium for the copper oxide particles (A), the hydrophilic polymer (B), and the thixotropic agent (C), and the conductive film forming composition of the present invention. By making the surface hydrophilic, the affinity for the resin substrate made hydrophilic by the substrate treatment is increased, a conductive film with less coating unevenness is formed, and the generation of ablation due to pulsed light irradiation is suppressed.
Examples of the hydrophilic alcohol as the solvent (D) include monohydric alcohols such as methanol, ethanol, 2-propanol, and butyl alcohol; ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, glycerin, Polyhydric alcohols such as glycerin, triglycerin, polyglycerin and trimethylolpropane; and the like. These may be used alone or in combination of two or more.

本発明の導電膜形成用組成物において、溶媒(D)の含有量は特に限定されないが、粘度の上昇が抑制され、取扱い性に優れる観点から、酸化銅粒子(A)の含有量に対して5〜180質量%が好ましく、80〜100質量%がより好ましい。   In the composition for forming a conductive film of the present invention, the content of the solvent (D) is not particularly limited, but from the viewpoint of suppressing an increase in viscosity and excellent handleability, the content of the copper oxide particles (A) 5-180 mass% is preferable and 80-100 mass% is more preferable.

(銅錯体(E))
本発明の導電膜形成用組成物は、得られる導電膜の導電性が優れるという理由から、さらに、銅錯体(E)を含有するのが好ましい。
銅錯体(E)としては、例えば、銅アセチルアセトネート、キノリン銅、テトラキス(ピリジン)銅・過塩素酸塩、ビス(エチレンジアミン)銅などが挙げられるが、以下に説明する、ギ酸銅にアミンが配位してなるギ酸銅錯体(本明細書において、単に「ギ酸銅錯体」ともいう。)が好適に用いられる。
(Copper complex (E))
The composition for forming a conductive film of the present invention preferably further contains a copper complex (E) because the conductivity of the obtained conductive film is excellent.
Examples of the copper complex (E) include copper acetylacetonate, quinoline copper, tetrakis (pyridine) copper / perchlorate, bis (ethylenediamine) copper, and the like. A coordinated copper formate complex (also simply referred to as “copper formate complex” in the present specification) is preferably used.

ギ酸銅錯体は、ギ酸銅とアミンとを混合することによって合成できる。ギ酸銅とアミンとはそのまま混合してもよく、水溶液、有機溶媒溶液または有機溶媒懸濁液として混合してもよい。ギ酸銅とアミンとの混合は、0〜100℃程度の温度の下で、適切な撹拌機や混合機を用いて行うことが好ましい。また、ギ酸銅とアミンは、ギ酸銅1当量に対してアミンを2〜4当量加えることが好ましい。
ギ酸銅とアミンとを混合して得られる組成物中には、主成分としてギ酸アニオンおよびアミンを配位子として有する銅アミン錯体が生成する。好ましいギ酸銅アミン錯体は、中心金属であるCu2+に、ギ酸アニオンがおよびアミンが、それぞれ、2分子配位することが好ましい。2つのアミンは同一種類であってもよいし、異なる種類であってもよい。
ギ酸銅とアミンとを混合してなる組成物中には、混合条件に応じて、上記銅アミン錯体の他に、溶媒や未反応のアミンが含まれ得るが、ギ酸銅とアミンとを無溶媒で1:2の等量比で混合した場合には、ほぼ上記銅アミン錯体のみからなる組成物が得られる。
The copper formate complex can be synthesized by mixing copper formate and an amine. Copper formate and amine may be mixed as they are, or may be mixed as an aqueous solution, an organic solvent solution or an organic solvent suspension. The mixing of copper formate and amine is preferably performed using a suitable stirrer or mixer at a temperature of about 0 to 100 ° C. Moreover, it is preferable that copper formate and an amine add 2-4 equivalents of amine with respect to 1 equivalent of copper formate.
In the composition obtained by mixing copper formate and amine, a copper amine complex having a formate anion and an amine as a ligand as main components is formed. A preferred copper formate copper complex is that two molecules of formate anion and amine are coordinated to Cu 2+ which is a central metal. The two amines may be of the same type or different types.
Depending on the mixing conditions, the composition formed by mixing copper formate and amine may contain a solvent and unreacted amine in addition to the above copper amine complex. When mixing at an equivalent ratio of 1: 2, a composition consisting essentially of only the copper amine complex is obtained.

(ギ酸銅)
上記ギ酸銅としては、無水ギ酸銅(II)、ギ酸銅(II)・二水和物、ギ酸銅(II)・四水和物などを用いることができる。
(Copper formate)
As said copper formate, anhydrous copper formate (II), copper (II) formate, dihydrate, copper formate (II), tetrahydrate, etc. can be used.

(アミン)
上記アミンとしては、第一級〜第三級のアミンを使用でき、なかでも、アミンの沸点が低いという観点から、第三級アミンが好ましい。また、得られるギ酸銅錯体の親水性が増すという観点から、分子内に1つ以上のヒドロキシ基を有するアミンが好ましい。
上記第三級アミンとしては、例えば、N,N−ジメチルエタノールアミン、N,N−ジメチル−2−メトキシエチルアミン、N,N−ジメチル−2−エトキシエチルアミン、N,N−ジメチル−2−n−プロポキシエチルアミン、N,N−ジメチル−2−i−プロポキシエチルアミン、N,N−ジメチル−2−n−ブトキシエチルアミン、N,N−ジメチル−2−(2−ヒドロキシエチルオキシ)エチルアミン、N,N−ジメチル−2−(2−メトキシエチルオキシ)エチルアミン、N,N−ジメチル−2−(2−エトキシエチルオキシ)エチルアミン、N,N−ジメチル−1,1−ジメチル−2−ヒドロキシエチルアミン、N,N−ジメチル−1,1−ジメチル−2−メトキシエチルアミン、N,N−ジメチル−1,1−ジメチル−2−エトキシエチルアミン、N,N−ジメチル−3−ヒドロキシプロピルアミン、N,N−ジメチル−3−メトキシプロピルアミン、N,N−ジメチル−3−エトキシプロピルアミン、N,N−ジメチル−3−i−プロポキシプロピルアミン、N,N−ジメチル−3−n−ブトキシプロピルアミン、およびN,N−ジメチル−2−ヒドロキシエタノールアミンが挙げられ、なかでも、N,N−ジメチル−2−ヒドロキシエタノールアミンが好ましい。
(Amine)
As said amine, a primary-tertiary amine can be used, and a tertiary amine is preferable from the viewpoint that the boiling point of the amine is low. Further, from the viewpoint of increasing the hydrophilicity of the obtained copper formate complex, an amine having one or more hydroxy groups in the molecule is preferable.
Examples of the tertiary amine include N, N-dimethylethanolamine, N, N-dimethyl-2-methoxyethylamine, N, N-dimethyl-2-ethoxyethylamine, N, N-dimethyl-2-n- Propoxyethylamine, N, N-dimethyl-2-i-propoxyethylamine, N, N-dimethyl-2-n-butoxyethylamine, N, N-dimethyl-2- (2-hydroxyethyloxy) ethylamine, N, N- Dimethyl-2- (2-methoxyethyloxy) ethylamine, N, N-dimethyl-2- (2-ethoxyethyloxy) ethylamine, N, N-dimethyl-1,1-dimethyl-2-hydroxyethylamine, N, N -Dimethyl-1,1-dimethyl-2-methoxyethylamine, N, N-dimethyl-1,1-dimethyl-2-e Xylethylamine, N, N-dimethyl-3-hydroxypropylamine, N, N-dimethyl-3-methoxypropylamine, N, N-dimethyl-3-ethoxypropylamine, N, N-dimethyl-3-i-propoxy Examples thereof include propylamine, N, N-dimethyl-3-n-butoxypropylamine, and N, N-dimethyl-2-hydroxyethanolamine, and among them, N, N-dimethyl-2-hydroxyethanolamine is preferable.

本発明の導電膜形成用組成物において、銅錯体(E)の含有量は、例えば、酸化銅粒子(A)の含有量に対して10〜70質量%であり、15〜50質量%が好ましく、得られる導電膜の導電性がさらに優れるという理由から、酸化銅粒子(A)の含有量に対して20〜40質量%がより好ましい。   In the composition for forming a conductive film of the present invention, the content of the copper complex (E) is, for example, 10 to 70% by mass, and preferably 15 to 50% by mass with respect to the content of the copper oxide particles (A). From the reason that the electroconductivity of the obtained electrically conductive film is further excellent, 20-40 mass% is more preferable with respect to content of a copper oxide particle (A).

(その他成分)
本発明の導電膜形成用組成物には、上記各成分以外の成分が含まれていてもよい。
例えば、本発明の導電膜形成用組成物には、界面活性剤が含まれていてもよい。界面活性剤の種類は特に限定されず、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、フッ素系界面活性剤、両性界面活性剤などが挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
(Other ingredients)
The composition for forming a conductive film of the present invention may contain components other than the above components.
For example, the conductive film forming composition of the present invention may contain a surfactant. The type of the surfactant is not particularly limited, and examples thereof include anionic surfactants, cationic surfactants, nonionic surfactants, fluorosurfactants, and amphoteric surfactants. You may use, and may use 2 or more types together.

(導電膜形成用組成物の粘度)
本発明の導電膜形成用組成物の粘度は、インクジェット、スクリーン印刷等の印刷用途に適する粘度に調整することが好ましい。インクジェット吐出を行う場合、1〜50cPが好ましく、1〜40cPがより好ましい。スクリーン印刷を行う場合は、1,000〜100,000cPが好ましく、10,000〜80,000cPがより好ましい。
(Viscosity of conductive film forming composition)
The viscosity of the composition for forming a conductive film of the present invention is preferably adjusted to a viscosity suitable for printing applications such as inkjet and screen printing. When performing inkjet discharge, 1-50 cP is preferable and 1-40 cP is more preferable. When screen printing is performed, 1,000 to 100,000 cP is preferable, and 10,000 to 80,000 cP is more preferable.

(導電膜形成用組成物の調製方法)
本発明の導電膜形成用組成物の調製方法は特に限定されず、公知の方法を採用でき、例えば、上述した必須成分および任意成分を、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、ボールミル法などの公知の方法により混合することによって、本発明の導電膜形成用組成物を得ることができる。
(Method for preparing composition for forming conductive film)
The method for preparing the composition for forming a conductive film of the present invention is not particularly limited, and a known method can be employed. For example, the above-described essential components and optional components can be treated with an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer. The composition for forming a conductive film of the present invention can be obtained by mixing by a known method such as a method, a three-roll method or a ball mill method.

工程(2)において、基材処理が施された樹脂基材上に本発明の導電膜形成用組成物を付与する方法は特に限定されず、公知の方法を採用できる。例えば、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法などの塗布方法が挙げられる。なかでも、簡便であり、また、サイズの大きい導電膜を製造することが容易であることから、スクリーン印刷法、インクジェット法が好ましい。
塗布の形状は特に限定されず、基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
基材上への導電膜形成用組成物の塗布量としては、所望する導電膜の膜厚に応じて適宜調整すればよいが、通常、塗膜の膜厚は0.01〜5000μmが好ましく、0.1〜1000μmがより好ましい。
In the step (2), the method for applying the composition for forming a conductive film of the present invention on the resin substrate subjected to the substrate treatment is not particularly limited, and a known method can be adopted. For example, a coating method such as a screen printing method, a dip coating method, a spray coating method, a spin coating method, and an ink jet method can be used. Among these, the screen printing method and the ink jet method are preferable because they are simple and it is easy to produce a large conductive film.
The shape of application is not particularly limited, and may be a surface covering the entire surface of the substrate or a pattern (for example, a wiring or a dot).
The coating amount of the composition for forming a conductive film on the substrate may be adjusted as appropriate according to the desired film thickness of the conductive film, but usually the coating film thickness is preferably 0.01 to 5000 μm, 0.1-1000 micrometers is more preferable.

[乾燥工程]
本発明の導電膜の製造方法は、工程(2)と工程(3)との間に、工程(2)で形成された塗膜を乾燥する乾燥工程を、さらに備えるのが好ましい。
上記乾燥工程により、塗膜中に残存する溶媒が除去され、後述する還元工程において、溶媒の気化膨張に起因する微小なクラックや空隙の発生を低減できる。
乾燥方法としては、温風乾燥機などを用いることができる。
乾燥温度は、酸化物粒子(A)の還元が生じない温度が好ましく、具体的には40〜200℃が好ましく、45〜150℃がより好ましく、50〜120℃がさらに好ましい。
乾燥時間は、特に限定されないが、基材と導電膜との密着性がより良好になり、また、導電膜の導電性が良好になる理由から、1〜60分が好ましい。
[Drying process]
It is preferable that the manufacturing method of the electrically conductive film of this invention is further equipped with the drying process which dries the coating film formed at process (2) between process (2) and process (3).
By the drying step, the solvent remaining in the coating film is removed, and in the reduction step, which will be described later, the generation of minute cracks and voids due to the evaporation of the solvent can be reduced.
As a drying method, a hot air dryer or the like can be used.
The drying temperature is preferably a temperature at which the oxide particles (A) are not reduced, specifically 40 to 200 ° C, more preferably 45 to 150 ° C, and further preferably 50 to 120 ° C.
The drying time is not particularly limited, but is preferably 1 to 60 minutes because the adhesion between the base material and the conductive film becomes better and the conductivity of the conductive film becomes better.

本発明の導電膜の製造方法がこのような乾燥工程を備える場合、乾燥後における塗膜の乾燥膜厚としては、例えば、0.01〜100μmが挙げられ、0.1〜10μmが好ましく、得られる導電膜の基材に対する密着性がより優れるという理由から、2μm以下が好ましい。   When the manufacturing method of the electrically conductive film of this invention is equipped with such a drying process, as a dry film thickness of the coating film after drying, 0.01-100 micrometers is mentioned, for example, 0.1-10 micrometers is preferable and obtained. 2 μm or less is preferable because the adhesion of the conductive film to the substrate is more excellent.

[工程(3):還元工程]
工程(3)は、工程(2)で形成された塗膜(乾燥工程を備える場合は乾燥後の塗膜)に対してパルス光照射処理を行い、酸化銅粒子(A)を還元して、銅を含有する導電膜を形成する工程である。
パルス光照射処理は、塗膜に対してパルス光を短時間照射する処理であり、基材を加熱し過ぎることがないため、基材として熱可塑性樹脂基材を使用できる。
塗膜にパルス光照射処理を行った場合、塗膜の表層で還元焼結が進むとともに、表層で吸収されたエネルギーが表層より下の領域に伝導し、塗膜全体で還元焼結が進む。より具体的には、酸化銅粒子(A)の還元により生成する銅粒子が融着してグレインが形成され、さらにグレインどうしが接着・融着して銅を含有する導電膜が形成される。
[Step (3): Reduction step]
In step (3), the coating film formed in step (2) (or the coating film after drying when the drying step is provided) is subjected to pulsed light irradiation treatment to reduce the copper oxide particles (A), This is a step of forming a conductive film containing copper.
The pulsed light irradiation process is a process of irradiating the coating film with pulsed light for a short time, and since the base material is not heated too much, a thermoplastic resin base material can be used as the base material.
When the pulse light irradiation treatment is performed on the coating film, reduction sintering proceeds on the surface layer of the coating film, and energy absorbed in the surface layer is conducted to a region below the surface layer, and reduction sintering proceeds on the entire coating film. More specifically, the copper particles produced by the reduction of the copper oxide particles (A) are fused to form grains, and the grains are bonded and fused to form a conductive film containing copper.

パルス光照射処理で使用される光源は特に限定されず、例えば、水銀灯、メタルハライドランプ、キセノン(Xe)ランプ、ケミカルランプ、カーボンアーク灯などがある。放射線としては、電子線、X線、イオンビーム、遠赤外線などがある。また、g線、i線、Deep−UV光、高密度エネルギービーム(レーザービーム)も使用される。   The light source used in the pulsed light irradiation process is not particularly limited, and examples thereof include a mercury lamp, a metal halide lamp, a xenon (Xe) lamp, a chemical lamp, and a carbon arc lamp. Examples of radiation include electron beams, X-rays, ion beams, and far infrared rays. Further, g-line, i-line, deep-UV light, and high-density energy beam (laser beam) are also used.

パルス光照射処理としては、フラッシュランプによるパルス光照射処理が好ましく、Xeフラッシュランプによるパルス光照射処理がより好ましい。
パルス光の照射エネルギーは、1〜100J/cm2が好ましく、1〜50J/cm2がより好ましく、1〜30J/cm2がさらに好ましい。パルス光のパルス幅は、1μ秒〜100m秒が好ましく、10μ秒〜10m秒がより好ましい。パルス光の照射時間は、1μ秒〜1000m秒が好ましく、1m秒〜500m秒がより好ましく、1m秒〜200m秒がさらに好ましい。
As the pulsed light irradiation process, a pulsed light irradiation process using a flash lamp is preferable, and a pulsed light irradiation process using a Xe flash lamp is more preferable.
Irradiation energy of the pulse light is preferably 1~100J / cm 2, more preferably 1~50J / cm 2, more preferably 1~30J / cm 2. The pulse width of the pulsed light is preferably 1 μsec to 100 msec, and more preferably 10 μsec to 10 msec. The irradiation time of the pulsed light is preferably 1 μsec to 1000 ms, more preferably 1 ms to 500 ms, and further preferably 1 ms to 200 ms.

上記パルス光照射処理を実施する雰囲気は特に限定されず、大気雰囲気下、不活性雰囲気下、または還元性雰囲気下などが挙げられる。なお、不活性雰囲気とは、例えば、アルゴン、ヘリウム、ネオン、窒素等の不活性ガスで満たされた雰囲気であり、また、還元性雰囲気とは、水素、一酸化炭素、ギ酸、アルコール等の還元性ガスが存在する雰囲気を指す。   The atmosphere for performing the pulsed light irradiation treatment is not particularly limited, and examples thereof include an air atmosphere, an inert atmosphere, and a reducing atmosphere. The inert atmosphere is, for example, an atmosphere filled with an inert gas such as argon, helium, neon, or nitrogen. The reducing atmosphere is a reduction of hydrogen, carbon monoxide, formic acid, alcohol, or the like. It refers to the atmosphere in which sex gas exists.

(導電膜)
上記工程を実施することにより、銅を含有する導電膜が得られる。
導電膜の膜厚は特に限定されず、使用される用途に応じて適宜最適な膜厚が調整される。なかでも、プリント配線基板用途の点からは、0.01〜1000μmが好ましく、0.1〜100μmがより好ましい。
(Conductive film)
By carrying out the above steps, a conductive film containing copper is obtained.
The film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Especially, from the point of a printed wiring board use, 0.01-1000 micrometers is preferable and 0.1-100 micrometers is more preferable.

導電膜は基材の全面、または、パターン状に設けられてもよい。パターン状の導電膜は、プリント配線基板などの導体配線(配線)として有用である。
パターン状の導電膜を得る方法としては、本発明の導電膜形成用組成物をパターン状に基材に付与して、パルス光照射処理を行う方法や、基材全面に設けられた導電膜をパターン状にエッチングする方法などが挙げられる。
エッチングの方法は特に限定されず、公知のサブトラクティブ法、セミアディティブ法などを採用できる。
The conductive film may be provided on the entire surface of the base material or in a pattern. The patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
As a method for obtaining a patterned conductive film, a method of applying the composition for forming a conductive film of the present invention to a substrate in a pattern and performing a pulsed light irradiation treatment, or a conductive film provided on the entire surface of the substrate. Examples include a method of etching in a pattern.
The etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.

パターン状の導電膜を多層配線基板として構成する場合、パターン状の導電膜の表面に、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらに配線(金属パターン)を形成してもよい。   When a patterned conductive film is configured as a multilayer wiring board, an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and wiring (metal) is further formed on the surface. Pattern) may be formed.

絶縁膜の材料は特に限定されないが、例えば、エポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂などが挙げられる。
これらのうち、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂、または液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ社製、ABF GX−13などが挙げられる。
The material of the insulating film is not particularly limited. For example, epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated amorphous resin, etc.) , Polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin, and the like.
Among these, from the viewpoints of adhesion, dimensional stability, heat resistance, electrical insulation, and the like, it is preferable to contain an epoxy resin, a polyimide resin, or a liquid crystal resin, and more preferably an epoxy resin. Specific examples include ABF GX-13 manufactured by Ajinomoto Fine Techno Co., Ltd.

また、配線保護のために用いられる絶縁層の材料の一種であるソルダーレジストについては、例えば、特開平10−204150号公報や、特開2003−222993号公報等に詳細に記載され、ここに記載の材料を所望により本発明にも適用できる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造社製PFR800、PSR4000(商品名)、日立化成工業社製 SR7200G、などが挙げられる。   The solder resist, which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150, Japanese Patent Application Laid-Open No. 2003-222993, and the like. These materials can be applied to the present invention if desired. As the solder resist, commercially available products may be used. Specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.

上記で得られた導電膜を有する基材(導電膜付き基材)は、種々の用途に使用できる。例えば、プリント配線基板、TFT、FPC、RFIDなどが挙げられる。   The base material (base material with a conductive film) having the conductive film obtained above can be used for various applications. For example, a printed wiring board, TFT, FPC, RFID, etc. are mentioned.

(ギ酸銅錯体の合成)
1Lナスフラスコに、メタノール(100mL)と、ギ酸銅四水和物(11.3g)とを加え、懸濁液を作製した。その懸濁液に、N,N−ジメチル−2−ヒドロキシエタノールアミン(11.9g)を加え、室温で1時間撹拌した。得られた溶液を減圧留去して、ギ酸銅錯体(22g)を得た。
以下の導電膜形成用組成物の調製には、このギ酸銅錯体を用いた。
(Synthesis of copper formate complex)
Methanol (100 mL) and copper formate tetrahydrate (11.3 g) were added to a 1 L eggplant flask to prepare a suspension. N, N-dimethyl-2-hydroxyethanolamine (11.9 g) was added to the suspension and stirred at room temperature for 1 hour. The obtained solution was distilled off under reduced pressure to obtain a copper formate complex (22 g).
This copper formate complex was used for the preparation of the following composition for forming a conductive film.

(組成物1の調製)
酸化銅粉末(シーアイ化成社製、NanoTek CuO、平均一次粒子径:48nm)に水およびジルコニアビーズ(0.05mmφ)を加え、バッチ式レディーミル(AIMEX社製)で11分間攪拌を行った後、ジルコニアビーズをろ過することにより平均粒子径120nmの酸化銅粒子の分散物を作製した。この分散物中に、親水性ポリマーとしてポリビニルピロリドン(PVP)(重量平均分子量:120,000)と、揺変剤としてウレア系揺変剤(ビックケミー社製、BYK−425、主成分:ウレア変性ウレタン)と、溶媒として水と、銅錯体としてギ酸銅錯体とを、下記第1表に示す含有量で配合し、自転公転ミキサー(THINKY社製、あわとり練太郎ARE−310)で5分間混合することで導電膜形成用組成物を得た。得られた導電膜形成用組成物を組成物1とする。
(Preparation of Composition 1)
Water and zirconia beads (0.05 mmφ) were added to copper oxide powder (Ci Kasei Co., Ltd., NanoTek CuO, average primary particle size: 48 nm), and stirred for 11 minutes with a batch-type ready mill (AIMEX), A dispersion of copper oxide particles having an average particle diameter of 120 nm was prepared by filtering the zirconia beads. In this dispersion, polyvinyl pyrrolidone (PVP) (weight average molecular weight: 120,000) as a hydrophilic polymer, and a urea thixotropic agent (BYK-425, manufactured by BYK Chemie, Inc., main component: urea modified urethane) as a thixotropic agent. ), Water as a solvent, and copper formate complex as a copper complex with the contents shown in Table 1 below, and mixed for 5 minutes with a rotation revolution mixer (manufactured by THINKY, Awatori Kentaro ARE-310). Thereby, the composition for electrically conductive film formation was obtained. The obtained composition for forming a conductive film is referred to as “composition 1”.

なお、下記第1表中の含有量は、酸化銅粒子は、導電膜形成用組成物全量に対する含有量(下記第1表では便宜的に「対全量含有量」と記載)を表し、それ以外の成分は、酸化銅粒子の含有量に対する含有量(下記第1表では便宜的に「対(A)含有量」と記載)を表す。単位は、いずれも「質量%」である。   In addition, the content in the following Table 1 represents the content of the copper oxide particles relative to the total amount of the composition for forming a conductive film (described in the following Table 1 for convenience as “total content”), otherwise This component represents the content relative to the content of the copper oxide particles (in the following Table 1, for the sake of convenience, described as “counter (A) content”). All units are “mass%”.

(組成物2〜4の調製)
親水性ポリマーであるポリビニルピロリドン(PVP)の含有量を、それぞれ下記第1表に示す含有量に変更した以外は、組成物1と同様の手順に従って導電膜形成用組成物を得た。得られた導電膜形成用組成物をそれぞれ組成物2〜4とする。
(Preparation of compositions 2-4)
The composition for electrically conductive film formation was obtained in the same procedure as the composition 1 except having changed content of polyvinylpyrrolidone (PVP) which is a hydrophilic polymer into content shown in the following Table 1, respectively. Let the obtained composition for electrically conductive film be the compositions 2-4, respectively.

(組成物5の調製)
酸化銅粒子の含有量を、下記第1表に示す含有量に変更した以外は、組成物1と同様の手順に従って導電膜形成用組成物を得た。得られた導電膜形成用組成物を組成物5とする。
(Preparation of composition 5)
A conductive film forming composition was obtained according to the same procedure as that of the composition 1 except that the content of the copper oxide particles was changed to the content shown in Table 1 below. The obtained composition for forming a conductive film is referred to as “composition 5”.

(組成物6〜7の調製)
揺変剤であるウレア系揺変剤の含有量を、下記第1表に示す含有量に変更した以外は、組成物1と同様の手順に従って導電膜形成用組成物を得た。得られた導電膜形成用組成物をそれぞれ組成物6〜7とする。
(Preparation of compositions 6-7)
A conductive film-forming composition was obtained according to the same procedure as for composition 1, except that the content of the urea-type thixotropic agent, which is a thixotropic agent, was changed to the content shown in Table 1 below. Let the obtained composition for electrically conductive film be the compositions 6-7, respectively.

(組成物8〜9の調製)
親水性ポリマーであるポリビニルピロリドン(重量平均分子量:120,000)の代わりに、それぞれ、ポリビニルピロリドン(重量平均分子量:220,000)またはポリビニルピロリドン(重量平均分子量:10,000)を使用した以外は、組成物1と同様の手順に従って導電膜形成用組成物を得た。得られた導電膜形成用組成物をそれぞれ組成物8〜9とする。
(Preparation of compositions 8-9)
Instead of polyvinyl pyrrolidone (weight average molecular weight: 120,000) which is a hydrophilic polymer, polyvinyl pyrrolidone (weight average molecular weight: 220,000) or polyvinyl pyrrolidone (weight average molecular weight: 10,000) was used, respectively. According to the same procedure as for composition 1, a composition for forming a conductive film was obtained. Let the obtained composition for electrically conductive film be the compositions 8-9, respectively.

(組成物10〜12の調製)
銅錯体であるギ酸銅錯体の含有量を、下記第1表に示す含有量に変更した以外は、組成物1と同様の手順に従って導電膜形成用組成物を得た。得られた導電膜形成用組成物をそれぞれ組成物10〜12とする。
なお、組成物10では、銅錯体を配合しなかったため、下記第1表には「−」を記載した。
(Preparation of compositions 10-12)
A conductive film-forming composition was obtained according to the same procedure as that of the composition 1, except that the content of the copper formate complex, which is a copper complex, was changed to the content shown in Table 1 below. Let the obtained composition for electrically conductive film be the compositions 10-12, respectively.
In composition 10, since a copper complex was not blended, “-” was described in Table 1 below.

(組成物13〜15の調製)
親水性ポリマーであるポリビニルピロリドン(PVP)(重量平均分子量:120,000)の代わりに、それぞれ、ポリエチレングリコール(PEG)(重量平均分子量:20,000)、ポリエチレンイミン(PEI)(重量平均分子量:50,000)、または、ポリビニルアルコール(PVA)(重量平均分子量:22,000)を使用した以外は、組成物1と同様の手順に従って導電膜形成用組成物を得た。得られた導電膜形成用組成物をそれぞれ組成物13〜15とする。
(Preparation of compositions 13-15)
Instead of polyvinyl pyrrolidone (PVP) (weight average molecular weight: 120,000) which is a hydrophilic polymer, polyethylene glycol (PEG) (weight average molecular weight: 20,000) and polyethyleneimine (PEI) (weight average molecular weight: 50,000) or polyvinyl alcohol (PVA) (weight average molecular weight: 22,000) was used to obtain a composition for forming a conductive film according to the same procedure as for composition 1. Let the obtained composition for electrically conductive film be the compositions 13-15, respectively.

(組成物16の調製)
親水性ポリマーであるポリビニルピロリドン(PVP)(重量平均分子量:120,000)の代わりにポリビニルアルコール(PVA)(重量平均分子量:120,000)を使用し、かつ、揺変剤であるウレア系揺変剤(ビックケミー社製、BYK−425、主成分:ウレア変性ウレタン)の代わりにウレタン系揺変剤(ビックケミー社製、BYK−428、主成分:ポリウレタン)を使用した以外は、組成物1と同様の手順に従って導電膜形成用組成物を得た。得られた導電膜形成用組成物を組成物16とする。
(Preparation of composition 16)
Polyvinyl alcohol (PVA) (weight average molecular weight: 120,000) is used in place of the hydrophilic polymer polyvinyl pyrrolidone (PVP) (weight average molecular weight: 120,000), and a urea-based compound which is a thixotropic agent is used. Composition 1 except that a urethane thixotropic agent (BYK-428, main component: polyurethane) manufactured by BYK-Chemie Corporation was used instead of the modifier (BYK-425, main component: urea-modified urethane). A conductive film forming composition was obtained according to the same procedure. The obtained composition for forming a conductive film is referred to as “composition 16”.

(組成物17の調製)
バッチ式レディーミル(AIMEX社製)で11分間攪拌を行う代わりに、バッチ式レディーミル(AIMEX社製)で8分間攪拌を行なうことで平均粒子径180nmの酸化銅粒子の分散物を作製し、この分散物を使用した以外は、組成物1と同様の手順に従って導電膜形成用組成物を得た。得られた導電膜形成用組成物を組成物17とする。
(Preparation of composition 17)
Instead of stirring for 11 minutes with a batch-type ready mill (manufactured by AIMEX), a dispersion of copper oxide particles having an average particle diameter of 180 nm is prepared by stirring for 8 minutes with a batch-type ready mill (manufactured by AIMEX). A conductive film forming composition was obtained according to the same procedure as that of the composition 1 except that this dispersion was used. The obtained composition for forming a conductive film is referred to as “composition 17”.

(比較組成物1の調製)
酸化銅粉末(シーアイ化成社製、NanoTek CuO、平均一次粒子径:48nm)に水およびジルコニアビーズ(0.05mmφ)を加え、バッチ式レディーミル(AIMEX社製)で11分間攪拌を行う代わりに、酸化銅粉末(シーアイ化成社製、NanoTek CuO、平均一次粒子径:48nm)に水を加え、自転公転ミキサー(THINKY社製、あわとり練太郎ARE−310)で10分間混合して、平均粒子径250nmの酸化銅粒子の分散物を作製した。さらに、親水性ポリマーであるポリビニルピロリドン(PVP)(重量平均分子量:120,000)の代わりにポリビニルアルコール(PVA)(重量平均分子量:22,000)を使用した。これら以外は、組成物1と同様の手順に従って導電膜形成用組成物を得た。得られた導電膜形成用組成物を比較組成物1とする。
(Preparation of Comparative Composition 1)
Instead of adding water and zirconia beads (0.05 mmφ) to copper oxide powder (Cai Kasei Co., Ltd., NanoTek CuO, average primary particle size: 48 nm) and stirring for 11 minutes with a batch-type ready mill (AIMEX), Water is added to copper oxide powder (Ci Kasei Co., Ltd., NanoTek CuO, average primary particle size: 48 nm), and the mixture is mixed for 10 minutes with a rotating / revolving mixer (THINKY Co., Ltd., Awatori Kentaro ARE-310). A dispersion of 250 nm copper oxide particles was prepared. Furthermore, polyvinyl alcohol (PVA) (weight average molecular weight: 22,000) was used instead of polyvinyl pyrrolidone (PVP) (weight average molecular weight: 120,000) which is a hydrophilic polymer. Except these, the composition for electrically conductive film formation was obtained according to the procedure similar to the composition 1. FIG. The obtained composition for forming a conductive film is referred to as Comparative Composition 1.

(比較組成物2の調製)
親水性ポリマーであるポリビニルピロリドン(PVP)(重量平均分子量:120,000)の代わりにポリビニルアルコール(PVA)(重量平均分子量:120,000)を使用し、かつ、揺変剤を配合しなかった以外は、組成物1と同様の手順に従って導電膜形成用組成物を得た。得られた導電膜形成用組成物を比較組成物2とする。
(Preparation of Comparative Composition 2)
Polyvinyl alcohol (PVA) (weight average molecular weight: 120,000) was used in place of the hydrophilic polymer polyvinyl pyrrolidone (PVP) (weight average molecular weight: 120,000), and no thixotropic agent was added. Except for the above, a conductive film-forming composition was obtained according to the same procedure as that for the composition 1. The obtained composition for forming a conductive film is referred to as Comparative composition 2.

(比較組成物3の調製)
親水性ポリマーを配合しなかった以外は、組成物1と同様の手順に従って導電膜形成用組成物を得た。得られた導電膜形成用組成物を比較組成物3とする。
(Preparation of Comparative Composition 3)
A composition for forming a conductive film was obtained according to the same procedure as that of the composition 1 except that the hydrophilic polymer was not blended. The obtained composition for forming a conductive film is referred to as “comparative composition 3”.

<実施例1>
ポリイミド基材(東レ・デュポン社製、厚さ:25μm)に対して、コロナ処理機(信光電気計装社製、コロナマスター、PS−1M)を用いて15kV、1秒間の処理条件で、コロナ処理を施し、処理後のポリイミド基材の表面粗さ(Ra)および水接触角を測定した。測定結果を下記第1表に示す(以下、同様)。
次に、コロナ処理を施したポリイミド基材上に、ハンドコーター(RKプリントコートインスツルメント社製、バーNo.1)を用いて組成物1を塗布し、100℃で10分間乾燥させることで塗膜を得た。得られた塗膜の乾燥膜厚を超深度カラー3D形状測定顕微鏡(KEYENCE社製、VK−9510)を用いて測定した。測定結果を下記第1表に示す(以下、同様)。
その後、得られた塗膜にパルス光照射処理(Xenon社製光焼結装置Sinteron2000、照射エネルギー:5J/cm2、パルス幅:2m秒)を行うことで導電膜を得た。
<Example 1>
For a polyimide substrate (made by Toray DuPont, thickness: 25 μm), using a corona treatment machine (manufactured by Shinko Electric Instrument Co., Corona Master, PS-1M) under a treatment condition of 15 kV for 1 second, The treatment was performed, and the surface roughness (Ra) and water contact angle of the polyimide substrate after the treatment were measured. The measurement results are shown in Table 1 below (the same applies hereinafter).
Next, composition 1 is applied onto a polyimide substrate subjected to corona treatment using a hand coater (manufactured by RK Print Coat Instruments, Bar No. 1), and dried at 100 ° C. for 10 minutes. A coating film was obtained. The dry film thickness of the obtained coating film was measured using an ultra-deep color 3D shape measuring microscope (manufactured by KEYENCE, VK-9510). The measurement results are shown in Table 1 below (the same applies hereinafter).
Then, the electrically conductive film was obtained by performing pulse light irradiation processing (Xenon company light sintering apparatus Sinteron2000, irradiation energy: 5 J / cm < 2 >, pulse width: 2 milliseconds) to the obtained coating film.

<実施例2>
コロナ処理機の代わりに、プラズマ処理機(ニッシン社製、マイクロ波プラズマ表面処理装置、Micro Lab−PS)を用いて8kV、10秒間の処理条件でポリイミド基材にプラズマ処理を施した以外は、実施例1と同様の手順に従って導電膜を得た。
<Example 2>
In place of the corona treatment machine, except that the polyimide substrate was subjected to plasma treatment under the treatment conditions of 8 kV and 10 seconds using a plasma treatment machine (Nissin Corporation, microwave plasma surface treatment apparatus, Micro Lab-PS), A conductive film was obtained according to the same procedure as in Example 1.

<実施例3>
コロナ処理機の代わりに、UV照射装置(あすみ技研社製、UVオゾン洗浄表面改質装置、ASM401N)を用いて40W、30秒間の処理条件でポリイミド基材にUV照射処理を施した以外は、実施例1と同様の手順に従って導電膜を得た。
<Example 3>
Instead of using a UV irradiation device (Asumi Giken Co., Ltd., UV ozone cleaning surface modification device, ASM401N) instead of the corona treatment machine, the polyimide substrate was subjected to UV irradiation treatment under the treatment conditions of 40 W for 30 seconds. A conductive film was obtained according to the same procedure as in Example 1.

<実施例4>
コロナ処理機を用いたコロナ処理の代わりに、ポリイミド基材を過マンガン酸ナトリウム水溶液(20質量%)に浸漬して化学処理を施した以外は、実施例1と同様の手順に従って導電膜を得た。
<Example 4>
Instead of corona treatment using a corona treatment machine, a conductive film was obtained according to the same procedure as in Example 1 except that the polyimide substrate was immersed in a sodium permanganate aqueous solution (20% by mass) and subjected to chemical treatment. It was.

<実施例5〜15>
組成物1の代わりにそれぞれ組成物2〜12を使用した以外は、実施例1と同様の手順に従って導電膜を得た。
<Examples 5 to 15>
A conductive film was obtained according to the same procedure as in Example 1 except that compositions 2 to 12 were used instead of composition 1, respectively.

<実施例16>
ハンドコーター(RKプリントコートインスツルメント社製、バーNo.1)の代わりにハンドコーター(RKプリントコートインスツルメント社製、バーNo.2)を用いて塗布した以外は、実施例1と同様の手順に従って導電膜を得た。
<Example 16>
Example 1 except that the coating was performed using a hand coater (manufactured by RK Print Coat Instruments, Bar No. 2) instead of the hand coater (manufactured by RK Print Coat Instruments, Bar No. 1). A conductive film was obtained according to the procedure.

<実施例17>
ポリイミド基材(東レ・デュポン社製、厚さ:25μm)の代わりに、ポリイミド基材(東レ・デュポン社製、厚さ:50μm)を使用した以外は、実施例1と同様の手順に従って導電膜を得た。
<Example 17>
A conductive film according to the same procedure as Example 1 except that a polyimide substrate (manufactured by Toray DuPont, thickness: 50 μm) was used instead of a polyimide substrate (manufactured by Toray DuPont, thickness: 25 μm). Got.

<実施例18〜20>
組成物1の代わりにそれぞれ組成物13〜15を使用した以外は、実施例1と同様の手順に従って導電膜を得た。
<Examples 18 to 20>
A conductive film was obtained according to the same procedure as in Example 1 except that the compositions 13 to 15 were used instead of the composition 1, respectively.

<実施例21>
コロナ処理機を用いて、15kV、1秒間の処理条件の代わりに10kV、1秒間の処理条件でコロナ処理を施した以外は、実施例1と同様の手順に従って導電膜を得た。
<Example 21>
A conductive film was obtained according to the same procedure as in Example 1 except that the corona treatment was performed using a corona treatment machine under the treatment conditions of 10 kV and 1 second instead of the treatment conditions of 15 kV and 1 second.

<実施例22〜23>
組成物1の代わりにそれぞれ組成物16〜17を使用した以外は、実施例1と同様の手順に従って導電膜を得た。
<Examples 22 to 23>
A conductive film was obtained according to the same procedure as in Example 1 except that the compositions 16 to 17 were used instead of the composition 1, respectively.

<比較例1>
組成物1の代わりに比較組成物1(比1)を使用した以外は、実施例1と同様の手順に従って導電膜を得た。
<Comparative Example 1>
A conductive film was obtained according to the same procedure as in Example 1 except that Comparative Composition 1 (Ratio 1) was used instead of Composition 1.

<比較例2>
組成物1の代わりに組成物15を使用し、コロナ処理機によるコロナ処理を施さなかった以外は、実施例1と同様の手順に従って導電膜を得た。
<Comparative example 2>
A conductive film was obtained according to the same procedure as in Example 1 except that the composition 15 was used instead of the composition 1 and the corona treatment was not performed by the corona treatment machine.

<比較例3>
組成物1の代わりに比較組成物2(比2)を使用した以外は、実施例1と同様の手順に従って導電膜を得た。
<Comparative Example 3>
A conductive film was obtained according to the same procedure as in Example 1 except that Comparative Composition 2 (Ratio 2) was used instead of Composition 1.

<比較例4>
組成物1の代わりに比較組成物3(比3)を使用した以外は、実施例1と同様の手順に従って導電膜を得た。
<Comparative example 4>
A conductive film was obtained according to the same procedure as in Example 1 except that Comparative Composition 3 (Ratio 3) was used instead of Composition 1.

<密着性>
得られた導電膜にニチバン株式会社製セロハンテープ(幅24mm)を密着させてから剥がした。剥がした後の導電膜の外観を目視で観察して密着性を評価した。評価基準は以下のとおりである。実用上A〜Cであることが要求される。
・A:テープに導電膜の付着が見られず、導電膜と基材との界面での剥離も見られない。
・B:テープに導電膜の付着がやや見られるが、導電膜と基材との界面での剥離は見られない。
・C:テープに導電膜の付着がはっきり見られ、導電膜と基材との界面での剥離がやや見られる。
・D:テープに導電膜の付着がはっきり見られ、導電膜と基材との界面での剥離がはっきり見られる。
<Adhesion>
A cellophane tape (width 24 mm) manufactured by Nichiban Co., Ltd. was adhered to the obtained conductive film and then peeled off. The appearance of the conductive film after peeling was visually observed to evaluate the adhesion. The evaluation criteria are as follows. It is required that it is AC practically.
A: Adhesion of the conductive film is not seen on the tape, and peeling at the interface between the conductive film and the substrate is not seen.
B: Adhesion of the conductive film is slightly observed on the tape, but peeling at the interface between the conductive film and the substrate is not observed.
C: Adhesion of the conductive film is clearly seen on the tape, and peeling at the interface between the conductive film and the substrate is slightly seen.
D: Adhesion of the conductive film is clearly seen on the tape, and peeling at the interface between the conductive film and the substrate is clearly seen.

<導電性>
得られた導電膜について、四探針法抵抗率計を用いて体積抵抗率を測定し、導電性を評価した。評価基準は以下のとおりである。
・A:体積抵抗率が50μΩ・cm未満
・B:体積抵抗率が50μΩ・cm以上100μΩ・cm未満
・C:体積抵抗率が100Ω・cm以上
<Conductivity>
About the obtained electrically conductive film, volume resistivity was measured using the four-probe method resistivity meter, and electroconductivity was evaluated. The evaluation criteria are as follows.
A: Volume resistivity is less than 50 μΩ · cm B: Volume resistivity is 50 μΩ · cm or more and less than 100 μΩ · cm C: Volume resistivity is 100Ω · cm or more

<アブレーション耐性>
得られた導電膜について、導電膜上の剥がれや気化状態を目視で観察して、アブレーション耐性を評価した。評価基準は以下のとおりである。実用上A〜Cであることが要求される。
・A:導電膜上の剥がれや気化が全く見られない。
・B:導電膜上の剥がれや気化がほとんど見られない。
・C:導電膜上の剥がれや気化がやや見られる。
・D:導電膜上の剥がれや気化がはっきり見られる。
<Ablation resistance>
About the obtained electrically conductive film, the peeling and vaporization state on an electrically conductive film were observed visually, and ablation tolerance was evaluated. The evaluation criteria are as follows. It is required that it is AC practically.
A: No peeling or vaporization on the conductive film is observed.
-B: Peeling and vaporization on a conductive film are hardly seen.
-C: Some peeling and vaporization on a conductive film are seen.
D: Peeling or vaporization on the conductive film is clearly seen.

Figure 2014191974
Figure 2014191974

上記第1表に示す結果から分かるように、酸化銅粒子の平均粒子径が200nm超である比較例1は密着性およびアブレーション耐性が不十分であり、基材処理を施さなかった比較例2は密着性が不十分であり、揺変剤(C)を配合しなかった比較例3は密着性が不十分であり、親水性ポリマー(B)を配合しなかった比較例4はアブレーション耐性が不十分であり、いずれも、密着性およびアブレーション耐性がともに優れるものではなかった。   As can be seen from the results shown in Table 1 above, Comparative Example 1 in which the average particle diameter of the copper oxide particles is more than 200 nm has insufficient adhesion and ablation resistance, and Comparative Example 2 in which the substrate treatment was not performed is In Comparative Example 3 in which the adhesion was insufficient and the thixotropic agent (C) was not blended, the adhesion was insufficient, and in Comparative Example 4 in which the hydrophilic polymer (B) was not blended, the ablation resistance was not satisfactory. Both were sufficient, and neither of them had excellent adhesion and ablation resistance.

これに対して、平均粒子径が200nm以下である酸化銅粒子(A)、親水性ポリマー(B)および揺変剤(C)を使用し、かつ、基材処理を施した実施例1〜23は、いずれも、密着性およびアブレーション耐性がともに良好であり、また、導電性も優れていた。   On the other hand, Examples 1-23 which used the copper oxide particle (A) whose average particle diameter is 200 nm or less, the hydrophilic polymer (B), and the thixotropic agent (C), and performed the base-material process. In both cases, both adhesion and ablation resistance were good, and conductivity was also excellent.

このとき、実施例1〜4の対比から分かるように、基材処理としてプラズマ処理またはコロナ処理を施した実施例1および2は、UV照射処理または化学処理を施した実施例3および4よりも、密着性およびアブレーション耐性がより良好であった。   At this time, as can be seen from the comparison of Examples 1 to 4, Examples 1 and 2 subjected to plasma treatment or corona treatment as the base material treatment are more than Examples 3 and 4 subjected to UV irradiation treatment or chemical treatment. Adhesion and ablation resistance were better.

また、実施例5〜7の対比から分かるように、親水性ポリマー(B)の含有量が酸化銅粒子(A)の含有量に対して10〜70質量%である実施例6は、この範囲を外れる実施例5および7よりも、導電性およびアブレーション耐性がより良好であった。   Further, as can be seen from the comparison of Examples 5 to 7, Example 6 in which the content of the hydrophilic polymer (B) is 10 to 70% by mass with respect to the content of the copper oxide particles (A) is within this range. The conductivity and ablation resistance were better than those of Examples 5 and 7, which deviate from the above.

また、実施例1と実施例8との対比から分かるように、酸化銅粒子(A)の含有量が、組成物全量に対して50〜65質量%である実施例1は、この範囲を外れる実施例8と比較して、アブレーション耐性がより良好であった。   Moreover, as can be seen from the comparison between Example 1 and Example 8, Example 1 in which the content of the copper oxide particles (A) is 50 to 65% by mass with respect to the total amount of the composition is out of this range. Compared to Example 8, the ablation resistance was better.

また、実施例1と実施例9および10との対比から分かるように、揺変剤(C)の含有量が、酸化銅粒子(A)の含有量に対して4〜12質量%である実施例1は、この範囲を外れる実施例9および10と比較して、導電性およびアブレーション耐性がより良好であった。   Moreover, as can be seen from the comparison between Example 1 and Examples 9 and 10, the content of the thixotropic agent (C) is 4 to 12% by mass with respect to the content of the copper oxide particles (A). Example 1 had better conductivity and ablation resistance compared to Examples 9 and 10 outside this range.

また、実施例1と実施例11および12との対比から分かるように、親水性ポリマー(B)の重量平均分子量が12,000〜150,000である実施例1は、この範囲を外れる実施例11および12と比較して、アブレーション耐性がより良好であった。   As can be seen from the comparison between Example 1 and Examples 11 and 12, Example 1 in which the weight average molecular weight of the hydrophilic polymer (B) is 12,000 to 150,000 is an example outside this range. Compared to 11 and 12, the ablation resistance was better.

また、実施例1と実施例13〜15との対比から分かるように、銅錯体(E)を含有する実施例1,14および15は、これを含有しない実施例13と比較して、導電性がより良好であり、銅錯体(E)の含有量が酸化銅粒子(A)の含有量に対して20〜40質量%である実施例1は、この範囲を外れる実施例14および15と比較して、導電性がさらに良好であった。   Moreover, as can be seen from the comparison between Example 1 and Examples 13 to 15, Examples 1, 14 and 15 containing the copper complex (E) are more conductive than Example 13 not containing this. Is better, and Example 1 in which the content of the copper complex (E) is 20 to 40% by mass with respect to the content of the copper oxide particles (A) is compared with Examples 14 and 15 outside this range. The conductivity was even better.

また、実施例1と実施例16との対比から分かるように、塗膜の乾燥膜厚が2μm以下である実施例1は、この範囲を外れる実施例16と比較して密着性がより良好であった。   Moreover, as can be seen from the comparison between Example 1 and Example 16, Example 1 in which the dry film thickness of the coating film is 2 μm or less has better adhesion than Example 16 that is outside this range. there were.

また、実施例1と実施例17との対比から分かるように、用いたポリイミド基材の厚さが30μm以下である実施例1は、この範囲を外れる実施例17と比較して、密着性がより良好であった。   Moreover, as can be seen from the comparison between Example 1 and Example 17, Example 1 in which the thickness of the polyimide substrate used was 30 μm or less was more adhesive than Example 17 outside this range. It was better.

また、実施例1と実施例18〜20との対比から分かるように、使用する親水性ポリマー(B)の種類を異ならせても、密着性やアブレーション耐性は良好であった。   Further, as can be seen from the comparison between Example 1 and Examples 18 to 20, even when the type of the hydrophilic polymer (B) used was varied, the adhesion and ablation resistance were good.

また、実施例1と実施例21との対比から分かるように、基材処理が施された樹脂基材の表面粗さ(算術平均粗さRa)が0.2μm以上であり、かつ、基材処理が施された樹脂基材の水との接触角が20度以下である実施例1は、この範囲を外れる実施例21と比較して、密着性、導電性およびアブレーション耐性がより良好であった。   Further, as can be seen from the comparison between Example 1 and Example 21, the surface roughness (arithmetic mean roughness Ra) of the resin substrate subjected to the substrate treatment is 0.2 μm or more, and the substrate Example 1 in which the contact angle with water of the treated resin substrate was 20 degrees or less was better in adhesion, conductivity, and ablation resistance than Example 21 outside this range. It was.

また、実施例1と実施例22との対比から分かるように、ウレア変性ウレタンを含む揺変剤(C)を使用した実施例1は、ポリウレタンを含む揺変剤(C)を使用した実施例22と比較して、アブレーション耐性がより良好であった。   As can be seen from the comparison between Example 1 and Example 22, Example 1 using the thixotropic agent (C) containing urea-modified urethane is an example using the thixotropic agent (C) containing polyurethane. Compared to 22, the ablation resistance was better.

また、実施例1と実施例23との対比から分かるように、酸化銅粒子(A)の平均粒子径が150nm以下である実施例1は、この範囲を外れる実施例23と比較して、密着性およびアブレーション耐性がより良好であった。   Further, as can be seen from the comparison between Example 1 and Example 23, Example 1 in which the average particle diameter of the copper oxide particles (A) is 150 nm or less is more closely adhered to Example 23 than this range. Sex and ablation resistance were better.

Claims (15)

樹脂基材に対して、前記樹脂基材を粗面化する基材処理を施す基材処理工程と、
前記基材処理が施された前記樹脂基材上に、平均粒子径が200nm以下である酸化銅粒子(A)、親水性ポリマー(B)、揺変剤(C)、および、水または親水性アルコールである溶媒(D)を含有する導電膜形成用組成物を付与して、塗膜を形成する塗膜形成工程と、
前記塗膜に対してパルス光照射処理を行い、前記酸化銅粒子(A)を還元して、銅を含有する導電膜を形成する還元工程と、を備える導電膜の製造方法。
A base material processing step for applying a base material processing for roughening the resin base material to the resin base material,
Copper oxide particles (A) having an average particle size of 200 nm or less, hydrophilic polymer (B), thixotropic agent (C), and water or hydrophilicity on the resin substrate subjected to the substrate treatment A coating film forming step of forming a coating film by applying a composition for forming a conductive film containing a solvent (D) that is an alcohol;
A reduction process which performs pulse light irradiation processing to the coating film, reduces the copper oxide particles (A), and forms a conductive film containing copper.
前記基材処理が、プラズマ処理、コロナ処理、UV照射処理、および、化学処理からなる群から選ばれる少なくとも1種の処理である、請求項1に記載の導電膜の製造方法。   The method for producing a conductive film according to claim 1, wherein the substrate treatment is at least one treatment selected from the group consisting of plasma treatment, corona treatment, UV irradiation treatment, and chemical treatment. 前記揺変剤(C)が、ウレア変性ウレタンを含むウレア系揺変剤である、請求項1または2に記載の導電膜の製造方法。   The manufacturing method of the electrically conductive film of Claim 1 or 2 whose said thixotropic agent (C) is a urea type thixotropic agent containing a urea modified urethane. 前記導電膜形成用組成物における前記揺変剤(C)の含有量が、前記酸化銅粒子(A)の含有量に対して4〜12質量%である、請求項1〜3のいずれか1項に記載の導電膜の製造方法。   The content of the thixotropic agent (C) in the conductive film forming composition is 4 to 12% by mass with respect to the content of the copper oxide particles (A). The manufacturing method of the electrically conductive film as described in a term. 前記導電膜形成用組成物が、さらに、銅錯体(E)を含有する、請求項1〜4のいずれか1項に記載の導電膜の製造方法。   The manufacturing method of the electrically conductive film of any one of Claims 1-4 in which the said composition for electrically conductive film formation contains a copper complex (E) further. 前記導電膜形成用組成物における前記銅錯体(E)の含有量が、前記酸化銅粒子(A)の含有量に対して20〜40質量%である、請求項5に記載の導電膜の製造方法。   Production of the electrically conductive film of Claim 5 whose content of the said copper complex (E) in the said composition for electrically conductive film formation is 20-40 mass% with respect to content of the said copper oxide particle (A). Method. 前記基材処理が施された前記樹脂基材の表面粗さが、算術平均粗さRaで0.2μm以上である、請求項1〜6のいずれか1項に記載の導電膜の製造方法。   The manufacturing method of the electrically conductive film of any one of Claims 1-6 whose surface roughness of the said resin base material to which the said base-material process was given is 0.2 micrometer or more by arithmetic mean roughness Ra. 前記基材処理が施された前記樹脂基材の水との接触角が、20度以下である、請求項1〜7のいずれか1項に記載の導電膜の製造方法。   The manufacturing method of the electrically conductive film of any one of Claims 1-7 whose contact angle with the water of the said resin base material to which the said base material process was given is 20 degrees or less. 前記樹脂基材の厚さが、30μm以下である、請求項1〜8のいずれか1項に記載の導電膜の製造方法。   The manufacturing method of the electrically conductive film of any one of Claims 1-8 whose thickness of the said resin base material is 30 micrometers or less. 前記酸化銅粒子(A)の平均粒子径が、150nm以下である、請求項1〜9のいずれか1項に記載の導電膜の製造方法。   The manufacturing method of the electrically conductive film of any one of Claims 1-9 whose average particle diameter of the said copper oxide particle (A) is 150 nm or less. 前記導電膜形成用組成物における前記親水性ポリマー(B)の含有量が、前記酸化銅粒子(A)の含有量に対して10〜70質量%である、請求項1〜10のいずれか1項に記載の導電膜の製造方法。   Content of the said hydrophilic polymer (B) in the said electrically conductive film formation composition is any one of Claims 1-10 which are 10-70 mass% with respect to content of the said copper oxide particle (A). The manufacturing method of the electrically conductive film as described in a term. 前記親水性ポリマー(B)の重量平均分子量が、12,000〜150,000である、請求項1〜11のいずれか1項に記載の導電膜の製造方法。   The manufacturing method of the electrically conductive film of any one of Claims 1-11 whose weight average molecular weights of the said hydrophilic polymer (B) are 12,000-150,000. 前記導電膜形成用組成物全量に対する前記酸化銅粒子(A)の含有量が、50〜65質量%である、請求項1〜12のいずれか1項に記載の導電膜の製造方法。   The manufacturing method of the electrically conductive film of any one of Claims 1-12 whose content of the said copper oxide particle (A) with respect to the said composition for electrically conductive film formation is 50-65 mass%. 前記塗膜形成工程と前記還元工程との間に、前記塗膜を乾燥する乾燥工程を備え、
前記乾燥された前記塗膜の乾燥膜厚が、2μm以下である、請求項1〜13のいずれか1項に記載の導電膜の製造方法。
Between the coating film formation step and the reduction step, comprising a drying step of drying the coating film,
The manufacturing method of the electrically conductive film of any one of Claims 1-13 whose dry film thickness of the said dried said coating film is 2 micrometers or less.
請求項1〜14のいずれか1項に記載の導電膜の製造方法により得られる導電膜。   The electrically conductive film obtained by the manufacturing method of the electrically conductive film of any one of Claims 1-14.
JP2013066075A 2013-03-27 2013-03-27 Method for manufacturing conductive film and conductive film Active JP5905845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013066075A JP5905845B2 (en) 2013-03-27 2013-03-27 Method for manufacturing conductive film and conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013066075A JP5905845B2 (en) 2013-03-27 2013-03-27 Method for manufacturing conductive film and conductive film

Publications (2)

Publication Number Publication Date
JP2014191974A true JP2014191974A (en) 2014-10-06
JP5905845B2 JP5905845B2 (en) 2016-04-20

Family

ID=51838052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013066075A Active JP5905845B2 (en) 2013-03-27 2013-03-27 Method for manufacturing conductive film and conductive film

Country Status (1)

Country Link
JP (1) JP5905845B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020057799A (en) * 2014-12-25 2020-04-09 住友電気工業株式会社 Printed wiring board substrate, printed wiring board, manufacturing method of printed wiring board substrate, and manufacturing method of printed wiring board
WO2024038680A1 (en) * 2022-08-15 2024-02-22 エセックス古河マグネットワイヤジャパン株式会社 Insulated electric wire, manufacturing method therefor, and coil, rotary electric machine, and electrical and electronic equipment using said insulated electric wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117656A (en) * 2006-11-06 2008-05-22 Konica Minolta Holdings Inc Fabrication method for transparent conductive film, transparent conductive film, and electromagnetic wave shield for plasma display
WO2012057257A1 (en) * 2010-10-29 2012-05-03 信越ポリマー株式会社 Transparent conductive glass substrate
JP2012172135A (en) * 2011-02-24 2012-09-10 Toshiba Tec Corp Nanoparticle ink composition, and method for producing the same
WO2012135551A1 (en) * 2011-03-29 2012-10-04 Sun Chemical Corporation High-aspect ratio screen printable thick film paste compositions containing wax thixotropes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117656A (en) * 2006-11-06 2008-05-22 Konica Minolta Holdings Inc Fabrication method for transparent conductive film, transparent conductive film, and electromagnetic wave shield for plasma display
WO2012057257A1 (en) * 2010-10-29 2012-05-03 信越ポリマー株式会社 Transparent conductive glass substrate
JP2012172135A (en) * 2011-02-24 2012-09-10 Toshiba Tec Corp Nanoparticle ink composition, and method for producing the same
WO2012135551A1 (en) * 2011-03-29 2012-10-04 Sun Chemical Corporation High-aspect ratio screen printable thick film paste compositions containing wax thixotropes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020057799A (en) * 2014-12-25 2020-04-09 住友電気工業株式会社 Printed wiring board substrate, printed wiring board, manufacturing method of printed wiring board substrate, and manufacturing method of printed wiring board
WO2024038680A1 (en) * 2022-08-15 2024-02-22 エセックス古河マグネットワイヤジャパン株式会社 Insulated electric wire, manufacturing method therefor, and coil, rotary electric machine, and electrical and electronic equipment using said insulated electric wire

Also Published As

Publication number Publication date
JP5905845B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP2014067617A (en) Method for producing conductive film and conductive film-forming composition
KR101970373B1 (en) Composition set, electroconductive substrate and manufacturing method thereof, and electroconductive binding material composition
JP5972187B2 (en) Conductive film forming composition and method for producing conductive film
JP6295080B2 (en) Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating
JP2009275227A (en) Printable composition containing silver nanoparticle, method for producing electrically conductive coating using the composition, and coating produced by the method
JP6016842B2 (en) Method for producing conductive film and composition for forming conductive film
WO2014156594A1 (en) Composition for forming conductive film, and conductive film manufacturing method using same
JP2011142052A (en) Copper conductor ink, conductive substrate, and method of manufacturing the same
TWI694469B (en) Composition for forming conductive pattern and method of forming conductive pattern
JP6543921B2 (en) Conductive substrate
JP5905845B2 (en) Method for manufacturing conductive film and conductive film
JP2008200875A (en) Laminate and its manufacturing method
TW201444854A (en) Composition for forming conductive film and method of producing conductive film by using the same
WO2014141787A1 (en) Composition for forming electrically conductive film, and method for producing electrically conductive film using same
JP2015069752A (en) Conductive paste, metallic thin film, and method for producing the same
JP2014167872A (en) Method for producing conductive film, and wiring board
JP6109130B2 (en) Conductive film forming composition, conductive film manufacturing method, and conductive film
JP2015141752A (en) Conductive film-forming composition and method for producing conductive film
JP7484938B2 (en) Substrate for printed wiring board
JP2014044907A (en) Composition for forming conductive film and method for producing conductive film
WO2021149610A1 (en) Printed-wiring-board substrate
JP2015144089A (en) Method for producing conductive film
JPWO2016136409A1 (en) Conductive film forming composition and conductive film manufacturing method
JP2014192014A (en) Composition for forming an electroconductive film
JP2014139893A (en) Method of producing conductive layer containing laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160317

R150 Certificate of patent or registration of utility model

Ref document number: 5905845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250