JP6109130B2 - Conductive film forming composition, conductive film manufacturing method, and conductive film - Google Patents

Conductive film forming composition, conductive film manufacturing method, and conductive film Download PDF

Info

Publication number
JP6109130B2
JP6109130B2 JP2014220201A JP2014220201A JP6109130B2 JP 6109130 B2 JP6109130 B2 JP 6109130B2 JP 2014220201 A JP2014220201 A JP 2014220201A JP 2014220201 A JP2014220201 A JP 2014220201A JP 6109130 B2 JP6109130 B2 JP 6109130B2
Authority
JP
Japan
Prior art keywords
conductive film
composition
mass
electrically conductive
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014220201A
Other languages
Japanese (ja)
Other versions
JP2015129255A (en
Inventor
佑一 早田
佑一 早田
悠史 本郷
悠史 本郷
博昭 津山
博昭 津山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2014220201A priority Critical patent/JP6109130B2/en
Priority to TW103141905A priority patent/TW201532968A/en
Priority to PCT/JP2014/081911 priority patent/WO2015083718A1/en
Publication of JP2015129255A publication Critical patent/JP2015129255A/en
Application granted granted Critical
Publication of JP6109130B2 publication Critical patent/JP6109130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • C08K2003/2213Oxides; Hydroxides of metals of rare earth metal of cerium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Description

本発明は、導電膜形成用組成物、導電膜の製造方法、および、導電膜に関する。   The present invention relates to a composition for forming a conductive film, a method for producing a conductive film, and a conductive film.

基材上に金属粒子または金属酸化物粒子の分散体を印刷法により塗布し、その後焼結させることによって、基材上に配線などの導電膜を形成する技術が知られている。
上記方法は、従来の高熱・真空プロセス(スパッタ)やめっき処理による配線形成法に比べて、簡便・省エネルギー・省資源であることから次世代エレクトロニクス開発において大きな期待を集めている。
A technique for forming a conductive film such as a wiring on a base material by applying a dispersion of metal particles or metal oxide particles on the base material by a printing method and then sintering the coating is known.
The above method is highly anticipated in the development of next-generation electronics because it is simpler, energy-saving, and resource-saving than the conventional high-heat / vacuum process (sputtering) or plating process.

例えば、特許文献1には、「銅、銀またはインジウムの高原子価化合物、直鎖、分岐または環状の炭素数1から18のアルコール類およびVIII族の金属触媒から成ることを特徴とする、銅、銀またはインジウムの金属膜製造用組成物。」が開示されている(請求項1)。   For example, Patent Document 1 states that “a copper compound characterized by comprising a high-valence compound of copper, silver or indium, a linear, branched or cyclic alcohol having 1 to 18 carbon atoms and a group VIII metal catalyst. , A composition for producing a metal film of silver or indium. "(Claim 1).

特開2010−121206号公報JP 2010-121206 A

このような中、本発明者らが、特許文献1の実施例を参考に、酸化銅粒子とグリセリンとVIII族の金属触媒とを含有する組成物について検討したところ、分散安定性が昨今求められているレベルを必ずしも満たすものではないことが明らかになった。また、上記組成物を使用して導電膜を形成したところ、密着性や導電性が昨今求められているレベルを必ずしも満たすものではないことが明らかになった。   Under such circumstances, the present inventors examined a composition containing copper oxide particles, glycerin and a Group VIII metal catalyst with reference to the example of Patent Document 1, and recently, dispersion stability has been demanded. It has become clear that it does not necessarily meet the level. Moreover, when a conductive film was formed using the above composition, it became clear that the adhesion and conductivity did not necessarily satisfy the level required recently.

そこで、本発明は、上記実情を鑑みて、優れた密着性および導電性を示す導電膜を形成することができる、分散安定性に優れた導電膜形成用組成物、および、上記導電膜形成用組成物を用いた導電膜の製造方法、並びに、上記製造方法により製造された導電膜を提供することを課題とする。   Therefore, in view of the above circumstances, the present invention can form a conductive film exhibiting excellent adhesion and conductivity, and can form a conductive film having excellent dispersion stability. It is an object of the present invention to provide a method for producing a conductive film using the composition and a conductive film produced by the above production method.

本発明者らは、上記課題を解決するため鋭意検討した結果、トリメチロールプロパンを配合することで、優れた密着性および導電性を示す導電膜を形成することができる、分散安定性に優れた導電膜形成用組成物となることを見出し、本発明を完成させた。すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors can form a conductive film exhibiting excellent adhesion and conductivity by blending trimethylolpropane, which is excellent in dispersion stability. It discovered that it became a composition for electrically conductive film formation, and completed this invention. That is, the present inventors have found that the above problem can be solved by the following configuration.

(1) 平均粒子径が100nm以下である酸化銅粒子(A)と、トリメチロールプロパン(B)と、周期律表の8〜11族からなる群より選択される少なくとも1種の金属を含む金属触媒(C)とを含有する、導電膜形成用組成物。
(2) さらに水(D)を含有する、上記(1)に記載の導電膜形成用組成物。
(3) 上記トリメチロールプロパン(B)の含有量に対する上記水(D)の含有量の割合(D/B)が、10〜200質量%である、上記(2)に記載の導電膜形成用組成物。
(4) 上記割合(D/B)が、40〜90質量%である、上記(3)に記載の導電膜形成用組成物。
(5) 上記酸化銅粒子(A)の含有量に対する上記トリメチロールプロパン(B)の含有量の割合(B/A)が、100〜850質量%である、上記(1)〜(4)のいずれかに記載の導電膜形成用組成物。
(6) 上記割合(B/A)が、250〜800質量%である、上記(5)に記載の導電膜形成用組成物。
(7) 上記酸化銅粒子(A)の含有量に対する上記金属触媒(C)の含有量の割合(C/A)が、0.1〜8.0質量%である、上記(1)〜(6)のいずれかに記載の導電膜形成用組成物。
(8) 上記金属触媒(C)が、パラジウムを含む金属触媒である、上記(1)〜(7)のいずれかに記載の導電膜形成用組成物。
(9) pHが、3.0以上8.0以下である、上記(1)〜(8)のいずれかに記載の導電膜形成用組成物。
(10) pHが、4.0以上7.0以下である、上記(1)〜(9)のいずれかに記載の導電膜形成用組成物。
(11) 樹脂基材上に上記(1)〜(10)のいずれかに記載の導電膜形成用組成物を塗布して、塗膜を形成する塗膜形成工程と、
上記塗膜に対して加熱処理を行い、導電膜を形成する加熱処理工程とを備える、導電膜の製造方法。
(12) 上記塗膜形成工程における上記導電膜形成用組成物の塗布量が、0.5〜12.0mg/cm2である、上記(11)に記載の導電膜の製造方法。
(13) 上記樹脂基材が、ポリエチレンテレフタレート(PET)基材またはポリエチレンナフタレート(PEN)基材である、上記(11)または(12)に記載の導電膜の製造方法。
(14) 上記加熱処理の雰囲気が不活性ガス雰囲気であり、かつ、上記加熱処理がホットプレートまたはイナートオーブンによって行われる、上記(11)〜(13)のいずれかに記載の導電膜の製造方法。
(15) 上記加熱処理時の圧力が、1.0×102Pa以下である、上記(11)〜(14)のいずれかに記載の導電膜の製造方法。
(16) 上記加熱処理の昇温速度が、5000〜12000℃/分である、上記(11)〜(15)のいずれかに記載の導電膜の製造方法。
(17) 上記(11)〜(16)のいずれかに記載の導電膜の製造方法により製造された導電膜。
(18) 有機薄膜トランジスタのソース電極またはドレイン電極である、上記(17)に記載の導電膜。
(1) Metal containing at least one metal selected from the group consisting of copper oxide particles (A) having an average particle diameter of 100 nm or less, trimethylolpropane (B), and groups 8 to 11 of the periodic table The composition for electrically conductive film containing a catalyst (C).
(2) The composition for electrically conductive film formation as described in said (1) containing water (D) further.
(3) For electrically conductive film formation as described in said (2) whose ratio (D / B) of content of the said water (D) with respect to content of the said trimethylol propane (B) is 10-200 mass%. Composition.
(4) The composition for electrically conductive film formation as described in said (3) whose said ratio (D / B) is 40-90 mass%.
(5) The ratio (B / A) of the content of the trimethylolpropane (B) to the content of the copper oxide particles (A) is 100 to 850% by mass, according to the above (1) to (4). The composition for electrically conductive film formation in any one.
(6) The composition for electrically conductive film formation as described in said (5) whose said ratio (B / A) is 250-800 mass%.
(7) The said ratio (C / A) of content of the said metal catalyst (C) with respect to content of the said copper oxide particle (A) is 0.1-8.0 mass%, said (1)-( The composition for electrically conductive film formation in any one of 6).
(8) The composition for electrically conductive film formation in any one of said (1)-(7) whose said metal catalyst (C) is a metal catalyst containing palladium.
(9) The composition for electrically conductive film formation in any one of said (1)-(8) whose pH is 3.0 or more and 8.0 or less.
(10) The composition for forming a conductive film according to any one of (1) to (9), wherein the pH is 4.0 or more and 7.0 or less.
(11) A coating film forming step of applying a composition for forming a conductive film according to any one of (1) to (10) on a resin base material to form a coating film,
The manufacturing method of an electrically conductive film provided with the heat processing process which heat-processes with respect to the said coating film, and forms an electrically conductive film.
(12) The manufacturing method of the electrically conductive film as described in said (11) whose application quantity of the said composition for electrically conductive film formation in the said coating-film formation process is 0.5-12.0 mg / cm < 2 >.
(13) The manufacturing method of the electrically conductive film as described in said (11) or (12) whose said resin base material is a polyethylene terephthalate (PET) base material or a polyethylene naphthalate (PEN) base material.
(14) The method for producing a conductive film according to any one of (11) to (13), wherein the atmosphere of the heat treatment is an inert gas atmosphere, and the heat treatment is performed by a hot plate or an inert oven. .
(15) The manufacturing method of the electrically conductive film in any one of said (11)-(14) whose pressure at the time of the said heat processing is 1.0 * 10 < 2 > Pa or less.
(16) The manufacturing method of the electrically conductive film in any one of said (11)-(15) whose temperature increase rate of the said heat processing is 5000-12000 degree-C / min.
(17) A conductive film produced by the method for producing a conductive film according to any one of (11) to (16).
(18) The conductive film according to (17), which is a source electrode or a drain electrode of an organic thin film transistor.

以下に示すように、本発明によれば、優れた密着性および導電性を示す導電膜を形成することができる、分散安定性に優れた導電膜形成用組成物、および、上記導電膜形成用組成物を用いた導電膜の製造方法、並びに、上記製造方法により製造された導電膜を提供することができる。   As shown below, according to the present invention, a conductive film-forming composition having excellent dispersion stability, which can form a conductive film exhibiting excellent adhesion and conductivity, and the conductive film-forming composition can be formed. The manufacturing method of the electrically conductive film using a composition, and the electrically conductive film manufactured by the said manufacturing method can be provided.

以下に、本発明の導電膜形成用組成物、および、上記導電膜形成用組成物を用いた導電膜の製造方法、並びに、上記製造方法により製造された導電膜について説明する。
なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Below, the composition for electrically conductive film formation of this invention, the manufacturing method of the electrically conductive film using the said composition for electrically conductive film formation, and the electrically conductive film manufactured by the said manufacturing method are demonstrated.
In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

[導電膜形成用組成物]
本発明の導電膜形成用組成物(以下、単に、本発明の組成物とも言う)は、平均粒子径が100nm以下である酸化銅粒子(A)と、トリメチロールプロパン(B)と、周期律表の8〜11族からなる群より選択される少なくとも1種の金属を含む金属触媒(C)とを含有する。
本発明の組成物はこのような構成をとることにより、分散安定性に優れ、また、得られる導電膜は密着性および導電性に優れるものと考えられる。その理由は明らかではないが、およそ以下のとおりと推測される。
[Composition for forming conductive film]
The conductive film-forming composition of the present invention (hereinafter also simply referred to as the composition of the present invention) comprises copper oxide particles (A) having an average particle size of 100 nm or less, trimethylolpropane (B), And a metal catalyst (C) containing at least one metal selected from the group consisting of groups 8 to 11 in the table.
It is considered that the composition of the present invention is excellent in dispersion stability by taking such a configuration, and the obtained conductive film is excellent in adhesion and conductivity. The reason is not clear, but it is presumed that it is as follows.

上述のとおり、本発明の組成物は酸化銅粒子(A)とトリメチロールプロパン(B)とを含有する。そのため、本発明の組成物から形成された塗膜に熱や光などのエネルギーを付与して焼成すると、酸化銅粒子がトリメチロールプロパン(B)によって速やかに銅に還元され、同時に、銅に還元された酸化銅粒子同士が融着して、導電膜が形成される。さらに、本発明の組成物は金属触媒(C)を含有するため、金属触媒(C)が上記還元を促進する。結果として、密着性および導電性に優れた導電膜が形成されるものと考えらえる。このような作用は、トリメチロールプロパン(B)と金属触媒(C)との親和性が極めて高いことに起因するものと考えられる。
また、酸化銅粒子(A)とトリメチロールプロパン(B)との親和性が高いために、本発明の組成物は分散安定性に優れるものと考えられる。
これらのことは、後述する比較例が示すように、トリメチロールプロパン(B)を含有しない場合には、分散安定性が不十分であり、また、得られる導電膜の密着性および導電性が不十分となることからも推測される。
As described above, the composition of the present invention contains copper oxide particles (A) and trimethylolpropane (B). Therefore, when energy such as heat and light is applied to the coating film formed from the composition of the present invention and baked, the copper oxide particles are quickly reduced to copper by trimethylolpropane (B) and simultaneously reduced to copper. The formed copper oxide particles are fused together to form a conductive film. Furthermore, since the composition of this invention contains a metal catalyst (C), a metal catalyst (C) accelerates | stimulates the said reduction | restoration. As a result, it is considered that a conductive film excellent in adhesion and conductivity is formed. Such an action is considered to result from the extremely high affinity between trimethylolpropane (B) and the metal catalyst (C).
Moreover, since the affinity between the copper oxide particles (A) and the trimethylolpropane (B) is high, the composition of the present invention is considered to have excellent dispersion stability.
As shown in the comparative examples to be described later, these facts show that when trimethylolpropane (B) is not contained, the dispersion stability is insufficient, and the adhesion and conductivity of the resulting conductive film are poor. It is speculated that it will be sufficient.

以下では、まず、導電膜形成用組成物の各成分について詳述し、その後、導電膜形成用組成物の調製方法、導電膜の製造方法、および、導電膜について詳述する。   Below, each component of the composition for electrically conductive film formation is explained in full detail first, Then, the preparation method of the composition for electrically conductive film formation, the manufacturing method of an electrically conductive film, and an electrically conductive film are explained in full detail.

<酸化銅粒子(A)>
本発明の組成物に含有される酸化銅粒子(A)は、平均粒子径が100nm以下である粒子状の酸化銅であれば特に制限されない。
粒子状とは小さい粒状を指し、その具体例としては、球状、楕円体状などが挙げられる。完全な球や楕円体である必要は無く、一部が歪んでいても良い。
<Copper oxide particles (A)>
The copper oxide particles (A) contained in the composition of the present invention are not particularly limited as long as they are particulate copper oxide having an average particle size of 100 nm or less.
The particulate form refers to a small granular form, and specific examples thereof include a spherical shape and an ellipsoidal shape. It does not have to be a perfect sphere or ellipsoid, and a part may be distorted.

酸化銅粒子(A)は、酸化銅(I)粒子(Cu2O粒子)または酸化銅(II)粒子(CuO粒子)であることが好ましく、安価に入手可能である点、空気中での安定性に優れる点、および、還元反応性に優れる点から、酸化銅(II)粒子であることがより好ましい。 The copper oxide particles (A) are preferably copper oxide (I) particles (Cu 2 O particles) or copper (II) oxide particles (CuO particles), and can be obtained at low cost. From the viewpoint of excellent properties and excellent reduction reactivity, copper (II) oxide particles are more preferable.

酸化銅粒子(A)の平均粒子径は100nm以下であれば特に制限されないが、30〜60nmであることが好ましい。平均粒子径の下限は特に制限されないが、1nm以上であることが好ましい。酸化銅粒子の平均粒子径が100nmを超えると分散安定性が低下し、また、得られる導電膜の密着性および導電性が不十分となる。
なお、上記平均粒子径は、平均一次粒子径を指す。平均粒子径は、透過型電子顕微鏡(TEM)観察により、少なくとも50個以上の酸化銅粒子の粒子径(直径)を測定し、それらを算術平均して求める。なお、観察図中、酸化銅粒子の形状が真円状でない場合、長径を直径として測定する。
The average particle diameter of the copper oxide particles (A) is not particularly limited as long as it is 100 nm or less, but is preferably 30 to 60 nm. The lower limit of the average particle diameter is not particularly limited, but is preferably 1 nm or more. When the average particle diameter of the copper oxide particles exceeds 100 nm, the dispersion stability is lowered, and the adhesion and conductivity of the resulting conductive film are insufficient.
In addition, the said average particle diameter points out an average primary particle diameter. The average particle diameter is obtained by measuring the particle diameter (diameter) of at least 50 or more copper oxide particles by observation with a transmission electron microscope (TEM) and arithmetically averaging them. In the observation diagram, when the shape of the copper oxide particles is not a perfect circle, the major axis is measured as the diameter.

本発明の組成物において、全組成物中の酸化銅粒子(A)の含有量は特に制限されないが、18質量%以下であることが好ましく、分散安定性がより優れる理由から、15質量%以下であることがより好ましい。なかでも、得られる導電膜の密着性がより優れる理由から0.1質量%以上であることがさらに好ましい。   In the composition of the present invention, the content of the copper oxide particles (A) in the whole composition is not particularly limited, but is preferably 18% by mass or less, and 15% by mass or less because the dispersion stability is more excellent. It is more preferable that Especially, it is more preferable that it is 0.1 mass% or more from the reason which the adhesiveness of the electrically conductive film obtained is more excellent.

<トリメチロールプロパン(B)>
本発明の組成物は、トリメチロールプロパン(トリメチロールプロパン(B)とも言う)を含有する。
<Trimethylolpropane (B)>
The composition of the present invention contains trimethylolpropane (also referred to as trimethylolpropane (B)).

本発明の組成物において、全組成物中のトリメチロールプロパン(B)の含有量は特に制限されないが、10〜70質量%であることが好ましく、なかでも、分散安定性がより優れる理由から、59.0質量%以下であることがより好ましく、そのなかでも、得られる導電膜の密着性がより優れる理由から、30.0質量%以上であることがさらに好ましく、そのなかでも、得られる導電膜の導電性がより優れる理由から、50.0〜58.0質量であることが特に好ましい。   In the composition of the present invention, the content of trimethylolpropane (B) in the entire composition is not particularly limited, but is preferably 10 to 70% by mass, and among them, the dispersion stability is more excellent, More preferably, it is 59.0% by mass or less, and among them, it is more preferably 30.0% by mass or more for the reason that the adhesiveness of the obtained conductive film is more excellent. From the reason why the conductivity of the film is more excellent, it is particularly preferably 50.0 to 58.0 mass.

本発明の組成物において、酸化銅粒子(A)の含有量に対するトリメチロールプロパン(B)の含有量の割合(B/A)は特に制限されないが、分散安定性がより優れる理由から、900質量%以下であることが好ましく、なかでも、得られる導電膜の密着性がより優れる理由から、50質量%以上であることがより好ましく、そのなかでも、得られる導電膜の導電性がより優れる理由から、100〜850質量%であることがさらに好ましく、250〜800質量%であることが特に好ましい。   In the composition of the present invention, the ratio (B / A) of the content of trimethylolpropane (B) to the content of copper oxide particles (A) is not particularly limited, but is 900 mass because the dispersion stability is more excellent. %, More preferably 50% by mass or more from the reason that the adhesion of the obtained conductive film is more excellent, and among them, the reason why the conductivity of the obtained conductive film is more excellent Therefore, it is more preferable that it is 100-850 mass%, and it is especially preferable that it is 250-800 mass%.

<金属触媒(C)>
本発明の組成物に含有される金属触媒(C)は、周期律表の8〜11族からなる群より選択される少なくとも1種の金属(金属元素)を含む金属触媒であれば特に制限されない。そのような金属触媒としては、例えば、周期律表の8〜11族からなる群より選択される少なくとも1種の金属元素からなる金属粒子(好ましくはパラジウム微粒子、白金微粒子、ニッケル微粒子)、周期律表の8族〜11族からなる群より選択される金属元素を含む金属化合物(好ましくは、塩、金属錯体)などが挙げられる。
<Metal catalyst (C)>
The metal catalyst (C) contained in the composition of the present invention is not particularly limited as long as it is a metal catalyst containing at least one metal (metal element) selected from the group consisting of groups 8 to 11 of the periodic table. . Examples of such a metal catalyst include metal particles (preferably palladium fine particles, platinum fine particles, nickel fine particles) composed of at least one metal element selected from the group consisting of groups 8 to 11 of the periodic table, Examples thereof include metal compounds (preferably salts and metal complexes) containing a metal element selected from the group consisting of Groups 8 to 11 in the table.

上記周期律表の8族〜11族からなる群より選択される金属(金属元素)は、パラジウム、白金、ニッケルおよび銀からなる群より選択される少なくとも1種の金属元素であることが好ましく、パラジウム、白金およびニッケルからなる群より選択される少なくとも1種の金属元素であることがさらに好ましく、パラジウム、白金であることが特に好ましく、得られる導電膜の導電性がより優れる理由から、パラジウムであることが最も好ましい。すなわち、得られる導電膜の導電性がより優れる理由から、金属触媒(C)は、パラジウムを含む金属触媒であることが好ましい。   The metal (metal element) selected from the group consisting of groups 8 to 11 of the periodic table is preferably at least one metal element selected from the group consisting of palladium, platinum, nickel and silver, More preferably, it is at least one metal element selected from the group consisting of palladium, platinum and nickel, particularly preferably palladium and platinum. Most preferably it is. That is, the metal catalyst (C) is preferably a metal catalyst containing palladium because the conductivity of the obtained conductive film is more excellent.

金属触媒(C)の好適な態様としては、例えば、パラジウム塩、パラジウム錯体が挙げられる。   As a suitable aspect of a metal catalyst (C), a palladium salt and a palladium complex are mentioned, for example.

上記パラジウム塩は特に制限されず、その具体例としては、パラジウムの塩酸塩、硝酸塩、硫酸塩、カルボン酸塩、スルホン酸塩、リン酸塩、ホスホン酸塩などが挙げられる。なかでも、カルボン酸塩であることが好ましい。
上記カルボン酸塩を形成するカルボン酸の炭素数は特に制限されないが、1〜10であることが好ましく、1〜5であることがより好ましい。カルボン酸塩を形成するカルボン酸はハロゲン原子(好ましくはフッ素原子)を有してもよい。
The palladium salt is not particularly limited, and specific examples thereof include palladium hydrochloride, nitrate, sulfate, carboxylate, sulfonate, phosphate, and phosphonate. Of these, carboxylate is preferable.
The carbon number of the carboxylic acid forming the carboxylate is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5. The carboxylic acid forming the carboxylate may have a halogen atom (preferably a fluorine atom).

上記パラジウム錯体は特に制限されず、その配位子としては、例えば、2,2’−ビピリジル、1,10−フェナントロリン、メチレンビスオキサゾリン、N,N,N’N’−テトラメチルエチレンジアミン、トリフェニルホスフィン、トリトリルホスフィン、トリブチルホスフィン、トリフェノキシホスフィン、1,2−ビスジフェニルホスフィノエタン、1,3−ビスジフェニルホスフィノプロパンなどが挙げられる。なかでも、トリフェニルホスフィンであることが好ましい。
トリフェニルホスフィンを配位子とするパラジウム錯体は特に制限されないが、その具体例としては、テトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウムなどが挙げられる。なかでも、テトラキス(トリフェニルホスフィン)パラジウムが好ましい。
The palladium complex is not particularly limited, and examples of the ligand include 2,2′-bipyridyl, 1,10-phenanthroline, methylenebisoxazoline, N, N, N′N′-tetramethylethylenediamine, and triphenyl. Examples include phosphine, tolylphosphine, tributylphosphine, triphenoxyphosphine, 1,2-bisdiphenylphosphinoethane, 1,3-bisdiphenylphosphinopropane, and the like. Of these, triphenylphosphine is preferable.
The palladium complex having triphenylphosphine as a ligand is not particularly limited, and specific examples thereof include tetrakis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) palladium, tris (dibenzylideneacetone) dipalladium and the like. It is done. Of these, tetrakis (triphenylphosphine) palladium is preferable.

本発明の組成物において、全組成物中の金属触媒(C)の含有量は特に制限されないが、0.00001〜5質量%であることが好ましく、なかでも、分散安定性がより優れる理由から、2.0質量%であることがより好ましく、そのなかでも、得られる導電膜の導電性がより優れる理由から、0.01質量%以上であることがさらに好ましい。   In the composition of the present invention, the content of the metal catalyst (C) in the entire composition is not particularly limited, but is preferably 0.00001 to 5% by mass, and among them, the dispersion stability is more excellent. 2.0% by mass, more preferably 0.01% by mass or more from the reason that the conductivity of the resulting conductive film is more excellent.

本発明の組成物において、酸化銅粒子(A)の含有量に対する金属触媒(C)の含有量の割合(C/A)は特に制限されないが、0.01〜10質量%であることが好ましく、分散安定性がより優れる理由から、8.0質量%以下であることが好ましく、なかでも、得られる導電膜の導電性がより優れる理由から0.1質量%以上であることがより好ましい。   In the composition of the present invention, the ratio (C / A) of the content of the metal catalyst (C) to the content of the copper oxide particles (A) is not particularly limited, but is preferably 0.01 to 10% by mass. From the reason that the dispersion stability is more excellent, it is preferably 8.0% by mass or less, and more preferably from 0.1% by mass or more because the conductivity of the obtained conductive film is more excellent.

<その他成分>
本発明の組成物には、上記各成分以外の成分が含まれていてもよい。
例えば、本発明の組成物には、界面活性剤が含まれていてもよい。界面活性剤は、酸化銅粒子(A)の分散性をさらに向上する役割を果たす。界面活性剤の種類は特に制限されず、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、フッ素系界面活性剤、両性界面活性剤などが挙げられる。これら界面活性剤は、1種を単独、または2種以上を混合して用いることができる。
<Other ingredients>
The composition of the present invention may contain components other than the above components.
For example, the composition of the present invention may contain a surfactant. The surfactant plays a role of further improving the dispersibility of the copper oxide particles (A). The type of the surfactant is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, a fluorine surfactant, and an amphoteric surfactant. These surfactants can be used alone or in combination of two or more.

(水(D))
本発明の組成物は、分散安定性がより優れる理由から、水(水(D)とも言う)を含有するのが好ましい。
(Water (D))
The composition of the present invention preferably contains water (also referred to as water (D)) because the dispersion stability is more excellent.

本発明の組成物において、全組成物中の水(D)の含有量は特に制限されないが、10〜50質量%であることが好ましい。
本発明の組成物において、トリメチロールプロパン(B)の含有量に対する水(D)の含有量の割合(D/B)は、分散安定性がより優れる理由から、10〜200質量%であることが好ましく、40〜90質量%であることがより好ましい。
In the composition of the present invention, the content of water (D) in the entire composition is not particularly limited, but is preferably 10 to 50% by mass.
In the composition of the present invention, the ratio (D / B) of the content of water (D) to the content of trimethylolpropane (B) is 10 to 200% by mass because the dispersion stability is more excellent. Is preferable, and it is more preferable that it is 40-90 mass%.

<導電膜形成用組成物の粘度>
本発明の組成物の粘度は、インクジェット、スクリーン印刷等の印刷用途に適するような粘度に調整させることが好ましい。インクジェット吐出を行う場合、1〜50cPであることが好ましく、1〜40cPであることがより好ましい。スクリーン印刷を行う場合は、1000〜100000cPであることが好ましく、10000〜80000cPであることがより好ましい。
<Viscosity of composition for forming conductive film>
The viscosity of the composition of the present invention is preferably adjusted to a viscosity suitable for printing applications such as inkjet and screen printing. When performing inkjet discharge, it is preferable that it is 1-50 cP, and it is more preferable that it is 1-40 cP. When performing screen printing, it is preferable that it is 1000-100000 cP, and it is more preferable that it is 10000-80000 cP.

<導電膜形成用組成物のpH>
本発明の組成物は、分散安定性がより優れ、また、得られる導電膜の導電性がより優れる理由から、pHが3.0以上8.0以下であることが好ましく、4.0以上7.0以下であることがより好ましい。
なお、pHを求める方法としては、例えば、導電膜形成用組成物のpHを直接測定する方法、導電膜形成用組成物と水を任意の割合で混合したもののpHを測定して、その測定値と希釈率から求める方法などが挙げられる。
pH測定は、HM−30R(東亜ディーケーケー社製)等を用いて測定することができる。
<PH of conductive film forming composition>
The composition of the present invention preferably has a pH of 3.0 or more and 8.0 or less, preferably 4.0 or more and 7 or more, because the dispersion stability is more excellent and the conductivity of the obtained conductive film is more excellent. More preferably, it is 0.0 or less.
In addition, as a method for obtaining the pH, for example, a method of directly measuring the pH of the composition for forming a conductive film, a pH of a mixture of the composition for forming a conductive film and water in an arbitrary ratio, and a measured value thereof And a method of obtaining from the dilution rate.
The pH can be measured using HM-30R (manufactured by Toa DKK) or the like.

<導電膜形成用組成物の調製方法>
本発明の組成物の調製方法は特に制限されず、公知の方法を採用できる。例えば、上記各成分を混合した後、超音波法(例えば、超音波ホモジナイザーによる処理)、ミキサー法、3本ロール法、ボールミル法などの公知の手段により成分を分散させることによって調製することができる。
<Method for Preparing Composition for Forming Conductive Film>
The preparation method in particular of the composition of this invention is not restrict | limited, A well-known method is employable. For example, it can be prepared by mixing the above components and then dispersing the components by a known means such as an ultrasonic method (for example, treatment with an ultrasonic homogenizer), a mixer method, a three-roll method, or a ball mill method. .

[導電膜の製造方法]
本発明の導電膜の製造方法は、樹脂基材上に上述した本発明の組成物を塗布して、塗膜を形成する塗膜形成工程と、上記塗膜に対して加熱処理を行い、導電膜を形成する加熱処理工程とを備える。
以下に、それぞれの工程について詳述する。
[Method for producing conductive film]
The method for producing a conductive film of the present invention comprises a coating film forming step of forming the coating film by applying the above-described composition of the present invention on a resin base material, and a heat treatment for the coating film. A heat treatment step of forming a film.
Below, each process is explained in full detail.

<塗膜形成工程>
本工程は、樹脂基材上に上述した本発明の組成物を塗布して、塗膜を形成する工程である。本工程により加熱処理工程前の前駆体膜が得られる。
<Coating film formation process>
This step is a step of applying the above-described composition of the present invention on a resin substrate to form a coating film. By this step, a precursor film before the heat treatment step is obtained.

本工程で使用される樹脂基材としては、公知のものを用いることができる。
樹脂基材の材料としては、例えば、低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、ABS樹脂、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN))、ポリアセタール樹脂、ポリサルフォン樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、セルロース誘導体などが挙げられる。なかでも、ポリエステル樹脂であることが好ましく、ポリエチレンテレフタレート(PET)またはポリエチレンナフタレート(PEN)であることがより好ましい。すなわち、樹脂基材はポリエステル樹脂基材であることが好ましく、ポリエチレンテレフタレート(PET)基材またはポリエチレンナフタレート(PEN)基材であることがより好ましい。
樹脂基材の厚みは特に制限されないが、1〜1000μmであることが好ましい。
A well-known thing can be used as a resin base material used at this process.
Examples of the resin base material include low density polyethylene resin, high density polyethylene resin, ABS resin, acrylic resin, styrene resin, vinyl chloride resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN) ), Polyacetal resin, polysulfone resin, polyetherimide resin, polyetherketone resin, cellulose derivative and the like. Of these, a polyester resin is preferable, and polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) is more preferable. That is, the resin substrate is preferably a polyester resin substrate, more preferably a polyethylene terephthalate (PET) substrate or a polyethylene naphthalate (PEN) substrate.
The thickness of the resin substrate is not particularly limited, but is preferably 1 to 1000 μm.

樹脂基材上に本発明の組成物を塗布して、塗膜を形成する方法は特に制限されず、公知の方法を採用できる。
塗布の方法としては、例えば、ダブルロールコータ、スリットコータ、エアナイフコータ、ワイヤーバーコータ、スライドホッパー、スプレーコータ、ブレードコータ、ドクターコータ、スクイズコータ、リバースロールコータ、トランスファーロールコータ、エクストロージョンコータ、カーテンコータ、ディップコーター、ダイコータ、グラビアロールによる塗工法、スクリーン印刷法、ディップコーティング法、スプレー塗布法、スピンコーティング法、インクジェット法などが挙げられる。なかでも、簡便であり、また、サイズの大きい導電膜を製造することが容易であることから、スクリーン印刷法またはインクジェット法であることが好ましく、スクリーン印刷法であることがより好ましい。
塗布の形状は特に制限されず、樹脂基材全面を覆う面状であっても、パターン状(例えば、配線状、ドット状)であってもよい。
本工程における本発明の組成物の塗布量は特に制限されないが、0.1〜30.0mg/cm2であることが好ましく、得られる導電膜の導電性がより優れる理由から、0.5〜12.0mg/cm2であることがより好ましい。
The method for applying the composition of the present invention on a resin substrate to form a coating film is not particularly limited, and a known method can be adopted.
Application methods include, for example, a double roll coater, slit coater, air knife coater, wire bar coater, slide hopper, spray coater, blade coater, doctor coater, squeeze coater, reverse roll coater, transfer roll coater, extrusion roll coater, curtain Examples include a coater, dip coater, die coater, gravure roll coating method, screen printing method, dip coating method, spray coating method, spin coating method, and ink jet method. Especially, since it is simple and it is easy to manufacture a conductive film with a large size, the screen printing method or the inkjet method is preferable, and the screen printing method is more preferable.
The shape of application is not particularly limited, and may be a planar shape covering the entire surface of the resin base material or a pattern shape (for example, a wiring shape or a dot shape).
The coating amount of the composition of the present invention in this step is not particularly limited, but is preferably 0.1 to 30.0 mg / cm 2 , and 0.5 to 0.5 because the conductivity of the obtained conductive film is more excellent. More preferably, it is 12.0 mg / cm 2 .

なお、樹脂基材上に本発明の組成物を塗布した後、必要に応じて、乾燥処理を施してもよい。乾燥処理を施すことにより、後述する加熱処理工程において、気化膨張に起因する微小なクラックや空隙の発生を抑制することができる理由から好ましい。乾燥処理の方法としては従来公知の方法を使用することができる。乾燥処理の温度は特に制限されないが、80〜200℃であることが好ましい。乾燥処理の時間も特に制限されないが、1〜30分であることが好ましい。   In addition, after apply | coating the composition of this invention on a resin base material, you may give a drying process as needed. By performing the drying treatment, it is preferable because the generation of minute cracks and voids due to vaporization expansion can be suppressed in the heat treatment step described later. A conventionally known method can be used as a method for the drying treatment. The temperature of the drying process is not particularly limited, but is preferably 80 to 200 ° C. The time for the drying treatment is not particularly limited, but is preferably 1 to 30 minutes.

<加熱処理工程>
本工程は、上記塗膜形成工程で形成された塗膜に対して加熱処理(加熱焼成処理)を行い、酸化銅粒子(A)を還元して、銅を含有する導電膜を形成する工程である。
<Heat treatment process>
This step is a step of performing a heat treatment (heat baking treatment) on the coating film formed in the coating film forming step to reduce the copper oxide particles (A) to form a conductive film containing copper. is there.

加熱処理の温度は特に制限されないが、80〜500℃であることが好ましく、100〜400℃であることがより好ましい。
また、加熱時間は特に制限されないが、1〜120分であることが好ましく、5〜60分であることがより好ましい。
また、加熱処理の昇温速度は特に制限されないが、2000〜12000℃/分であることが好ましく、なかでも、得られる導電膜の導電性がより優れる理由から、5000〜12000℃/分であることが好ましい。
また、加熱処理時の圧力は特に制限されないが、得られる導電膜の導電性がより優れる理由から、1.0×102Pa以下であるのが好ましい。
また、加熱処理の雰囲気は特に制限されないが、大気雰囲気、不活性雰囲気または還元性雰囲気(例えば、水素、一酸化炭素、ギ酸、アルコール)であることが好ましく、不活性雰囲気(好ましくは、窒素雰囲気またはアルゴン雰囲気)であることがより好ましい。
なお、加熱処理の方法は特に制限されず、焼結装置(特にRTA(rapid thermal anneal)焼結装置)、オーブン、ホットプレートなどの公知の加熱処理装置によって行われる。なかでも、ホットプレートまたはイナートオーブンによって行われるのが好ましい。
Although the temperature in particular of heat processing is not restrict | limited, It is preferable that it is 80-500 degreeC, and it is more preferable that it is 100-400 degreeC.
The heating time is not particularly limited, but is preferably 1 to 120 minutes, more preferably 5 to 60 minutes.
Further, the temperature increase rate of the heat treatment is not particularly limited, but is preferably 2000 to 12000 ° C./min. Among them, the conductivity of the obtained conductive film is more excellent, and is 5000 to 12000 ° C./min. It is preferable.
Further, the pressure during the heat treatment is not particularly limited, but is preferably 1.0 × 10 2 Pa or less because the conductivity of the obtained conductive film is more excellent.
The atmosphere for the heat treatment is not particularly limited, but is preferably an air atmosphere, an inert atmosphere, or a reducing atmosphere (for example, hydrogen, carbon monoxide, formic acid, alcohol), and an inert atmosphere (preferably a nitrogen atmosphere). Or an argon atmosphere).
The heat treatment method is not particularly limited, and the heat treatment is performed by a known heat treatment apparatus such as a sintering apparatus (particularly, a rapid thermal annealing (RTA) sintering apparatus), an oven, or a hot plate. Especially, it is preferable to carry out by a hot plate or an inert oven.

[導電膜]
本発明の導電膜は、上述した本発明の導電膜の製造方法で製造された導電膜である。
[Conductive film]
The electrically conductive film of this invention is an electrically conductive film manufactured with the manufacturing method of the electrically conductive film of this invention mentioned above.

導電膜の膜厚は特に制限されず、使用される用途に応じて適宜最適な膜厚が調整される。なかでも、プリント配線基板用途の点からは、0.01〜1000μmが好ましく、0.1〜100μmがより好ましい。
なお、膜厚は、導電膜の任意の点における厚みを3箇所以上測定し、その値を算術平均して得られる値(平均値)である。
The film thickness of the conductive film is not particularly limited, and an optimum film thickness is appropriately adjusted according to the intended use. Especially, from the point of a printed wiring board use, 0.01-1000 micrometers is preferable and 0.1-100 micrometers is more preferable.
The film thickness is a value (average value) obtained by measuring three or more thicknesses at arbitrary points on the conductive film and arithmetically averaging the values.

導電膜は樹脂基材の全面、または、パターン状に設けられてもよい。パターン状の導電膜は、プリント配線基板などの導体配線(配線)として有用である。
パターン状の導電膜を得る方法としては、上述した本発明の組成物をパターン状に樹脂基材に付与して、上記加熱処理を行う方法や、樹脂基材全面に設けられた導電膜をパターン状にエッチングする方法などが挙げられる。
エッチングの方法は特に制限されず、公知のサブトラクティブ法、セミアディティブ法などを採用できる。
The conductive film may be provided on the entire surface of the resin base material or in a pattern. The patterned conductive film is useful as a conductor wiring (wiring) such as a printed wiring board.
As a method for obtaining a patterned conductive film, the above-described composition of the present invention is applied to a resin base material in a pattern and the above heat treatment is performed, or a conductive film provided on the entire surface of the resin base material is patterned. And a method of etching into a shape.
The etching method is not particularly limited, and a known subtractive method, semi-additive method, or the like can be employed.

パターン状の導電膜を多層配線基板として構成する場合、パターン状の導電膜の表面に、さらに絶縁層(絶縁樹脂層、層間絶縁膜、ソルダーレジスト)を積層して、その表面にさらなる配線(金属パターン)を形成してもよい。   When a patterned conductive film is configured as a multilayer wiring board, an insulating layer (insulating resin layer, interlayer insulating film, solder resist) is further laminated on the surface of the patterned conductive film, and further wiring (metal) is formed on the surface. Pattern) may be formed.

絶縁膜の材料は特に制限されないが、例えば、エポキシ樹脂、アラミド樹脂、結晶性ポリオレフィン樹脂、非晶性ポリオレフィン樹脂、フッ素含有樹脂(ポリテトラフルオロエチレン、全フッ素化ポリイミド、全フッ素化アモルファス樹脂など)、ポリイミド樹脂、ポリエーテルスルフォン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、液晶樹脂など挙げられる。
これらの中でも、密着性、寸法安定性、耐熱性、電気絶縁性等の観点から、エポキシ樹脂、ポリイミド樹脂または液晶樹脂を含有するものであることが好ましく、より好ましくはエポキシ樹脂である。具体的には、味の素ファインテクノ(株)製、ABF GX−13などが挙げられる。
The material of the insulating film is not particularly limited. For example, epoxy resin, aramid resin, crystalline polyolefin resin, amorphous polyolefin resin, fluorine-containing resin (polytetrafluoroethylene, perfluorinated polyimide, perfluorinated amorphous resin, etc.) , Polyimide resin, polyether sulfone resin, polyphenylene sulfide resin, polyether ether ketone resin, liquid crystal resin and the like.
Among these, from the viewpoints of adhesion, dimensional stability, heat resistance, electrical insulation and the like, it is preferable to contain an epoxy resin, a polyimide resin or a liquid crystal resin, and more preferably an epoxy resin. Specifically, ABF TECH-13, ABF GX-13, etc. are mentioned.

また、配線保護のために用いられる絶縁層の材料の一種であるソルダーレジストについては、例えば、特開平10−204150号公報や、特開2003−222993号公報等に詳細に記載され、ここに記載の材料を所望により本発明にも適用することができる。ソルダーレジストは市販品を用いてもよく、具体的には、例えば、太陽インキ製造(株)製PFR800、PSR4000(商品名)、日立化成工業(株)製 SR7200G、などが挙げられる。   The solder resist, which is a kind of insulating layer material used for wiring protection, is described in detail in, for example, Japanese Patent Application Laid-Open No. 10-204150, Japanese Patent Application Laid-Open No. 2003-222993, and the like. These materials can also be applied to the present invention if desired. A commercially available solder resist may be used, and specific examples include PFR800 manufactured by Taiyo Ink Manufacturing Co., Ltd., PSR4000 (trade name), SR7200G manufactured by Hitachi Chemical Co., Ltd., and the like.

上記導電膜は種々の用途に使用することができるが、プリント配線板の配線、有機薄膜トランジスタの電極(例えば、ソース電極、ドレイン電極)として特に有用である。   Although the said electrically conductive film can be used for various uses, it is especially useful as a wiring of a printed wiring board, and an electrode (for example, source electrode, drain electrode) of an organic thin-film transistor.

以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.

<導電膜形成用組成物の調製>
下記第1表に示される成分を同表に示される配合量(質量部)で混合し、さらに、下記第1表に示される「全組成物中の酸化銅粒子(A)の含有量」になるように添加剤(アセトン)を配合し、自転公転ミキサー(THINKY社製、あわとり練太郎AR―100)で5分間処理することで導電膜形成用組成物を調製した。
<Preparation of composition for forming conductive film>
The components shown in Table 1 below are mixed in the blending amount (parts by mass) shown in the same table, and further, the “content of copper oxide particles (A) in the whole composition” shown in Table 1 below. In this way, an additive (acetone) was blended, and a conductive film forming composition was prepared by treating with an auto-revolution mixer (manufactured by THINKY, manufactured by Awatori Kentaro AR-100) for 5 minutes.

<分散安定性>
導電膜形成用組成物について、調製直後の平均粒子径を、動的光散乱法を用いて測定した。同様に、調製から1日経過後の平均粒子径を測定した。そして、以下の式から、平均粒子径の増加率を求めた。
平均粒子径の増加率=((調製から1日経過後の平均粒子径)−(調製直後の平均粒子径))/(調製直後の平均粒子径)
求められた平均粒子径の増加率から、以下の基準に基づき、分散安定性を評価した。結果を第1表に示す。AまたはBであることが好ましく、Aであることがより好ましい。
・「A」:平均粒子径の増加率が5%未満
・「B」:平均粒子径の増加率が5%以上15%未満
・「C」:平均粒子径の増加率が15%以上30%未満
・「D」:平均粒子径の増加率が30%以上
<Dispersion stability>
About the composition for electrically conductive film formation, the average particle diameter immediately after preparation was measured using the dynamic light scattering method. Similarly, the average particle diameter after 1 day from the preparation was measured. And the increase rate of the average particle diameter was calculated | required from the following formula | equation.
Average particle diameter increase rate = ((average particle diameter after one day from preparation) − (average particle diameter immediately after preparation)) / (average particle diameter immediately after preparation)
The dispersion stability was evaluated from the obtained average particle diameter increase rate based on the following criteria. The results are shown in Table 1. A or B is preferable, and A is more preferable.
"A": Average particle size increase rate is less than 5% "B": Average particle size increase rate is 5% or more and less than 15%-"C": Average particle size increase rate is 15% or more and 30% Less than "D": Increase rate of average particle size is 30% or more

<導電膜の製造>
得られた各導電膜形成用組成物を下記第1表に示される基材に下記第1表に示される塗布量で塗布した。その後、200℃、60分間加熱処理を行った。その際、「加熱処理時の昇温速度」、「加熱処理の雰囲気」、「加熱処理装置」および「加熱処理時の圧力」は下記第1表に示されるとおりとした。このようにして各導電膜を得た。
<Manufacture of conductive film>
Each obtained composition for electrically conductive film formation was apply | coated to the base material shown by the following 1st table | surface by the application quantity shown by the following 1st table | surface. Thereafter, heat treatment was performed at 200 ° C. for 60 minutes. At that time, “temperature increase rate during heat treatment”, “atmosphere of heat treatment”, “heat treatment apparatus”, and “pressure during heat treatment” were as shown in Table 1 below. Thus, each conductive film was obtained.

<密着性の評価>
得られた各導電膜にニチバン社製セロハンテープ(幅24mm)を密着させてからセロハンテープを剥がした。そして、剥がした後のテープおよび導電膜の外観を目視で観察し、以下の基準に基づき、密着性を評価した。結果を第1表に示す。AまたはBであることが好ましく、Aであることがより好ましい。
・「A」:テープに導電膜の付着が見られず、導電膜と基材との界面での剥離も見られない。
・「B」:テープに導電膜の付着がやや見られるが、導電膜と基材との界面での剥離は見られない。
・「C」:テープに導電膜の付着がはっきり見られ、導電膜と基材との界面で剥離面積が5%未満の範囲で見られる。
・「D」:テープに導電膜の付着がはっきり見られ、導電膜と基材との界面で剥離面積が5%以上の範囲で見られる。
<Evaluation of adhesion>
A cellophane tape (width 24 mm) manufactured by Nichiban Co., Ltd. was adhered to each obtained conductive film, and then the cellophane tape was peeled off. And the external appearance of the tape after peeling and an electrically conductive film was observed visually, and adhesiveness was evaluated based on the following references | standards. The results are shown in Table 1. A or B is preferable, and A is more preferable.
“A”: no adhesion of the conductive film to the tape, and no peeling at the interface between the conductive film and the substrate.
-"B": Although the adhesion of the conductive film is slightly seen on the tape, peeling at the interface between the conductive film and the substrate is not seen.
-"C": Adhesion of the conductive film is clearly seen on the tape, and the peeled area is seen in the range of less than 5% at the interface between the conductive film and the substrate.
"D": Adhesion of the conductive film is clearly seen on the tape, and the peeled area is seen in the range of 5% or more at the interface between the conductive film and the substrate.

<導電性の評価>
得られた各導電膜について四探針法抵抗計により体積抵抗率を測定した。測定された体積抵抗率から、以下の基準に基づき、導電性を評価した。結果を第1表に示す。AA、AまたはBであることが好ましく、AAまたはAであることがより好ましく、Aであることがさらに好ましい。
・「AA」:体積抵抗率が10μΩ・cm未満
・「A」:体積抵抗率が10μΩ・cm以上50μΩ・cm未満
・「B」:体積抵抗率が50μΩ・cm以上100μΩ・cm未満
・「C」:体積抵抗率が100μΩ・cm以上1000μΩ・cm未満
・「D」:体積抵抗率が1000μΩ・cm以上
<Evaluation of conductivity>
The volume resistivity of each obtained conductive film was measured with a four-probe resistance meter. From the measured volume resistivity, conductivity was evaluated based on the following criteria. The results are shown in Table 1. AA, A or B is preferred, AA or A is more preferred, and A is even more preferred.
“AA”: Volume resistivity is less than 10 μΩ · cm “A”: Volume resistivity is 10 μΩ · cm or more and less than 50 μΩ · cm • “B”: Volume resistivity is 50 μΩ · cm or more and less than 100 μΩ · cm • “C” “: Volume resistivity is 100 μΩ · cm or more and less than 1000 μΩ · cm” “D”: Volume resistivity is 1000 μΩ · cm or more

なお、下記第1表中の各成分の詳細は以下のとおりである。
・CuO:酸化銅粒子(シーアイ化成社製、NanoTek CuO、酸化銅(II)粒子(CuO粒子)、平均粒子径:40nm)
・トリメチロールプロパン(以下構造)
・グリセリン(以下構造)
・エチレングリコール(以下構造)
・プロピレングリコール(以下構造)
・酢酸パラジウム:(CH3COO)2Pd
・トリフルオロ酢酸パラジウム:(CF3COO)2Pd
・塩化白金:PtCl2
・水
・1,4−シクロヘキサンジオール(以下構造)
・トリエタノールアミン(以下構造)
In addition, the detail of each component in the following Table 1 is as follows.
CuO: copper oxide particles (Chiai Kasei Co., Ltd., NanoTek CuO, copper oxide (II) particles (CuO particles), average particle diameter: 40 nm)
・ Trimethylolpropane (hereinafter referred to as structure)
・ Glycerin (hereinafter structure)
・ Ethylene glycol (hereinafter structure)
・ Propylene glycol (structure)
Palladium acetate: (CH 3 COO) 2 Pd
・ Palladium trifluoroacetate: (CF 3 COO) 2 Pd
Platinum chloride: PtCl 2
・ Water ・ 1,4-Cyclohexanediol (hereinafter “structure”)
・ Triethanolamine (hereinafter structure)

また、下記第1表中、B/Aは、酸化銅粒子(A)の含有量に対するトリメチロールプロパン(B)の含有量の割合(質量%)を表す。また、C/Aは、酸化銅粒子(A)の含有量に対する金属触媒(C)の含有量の割合(質量%)を表す。また、D/Bは、トリメチロールプロパン(B)の含有量に対する水(D)の含有量の割合(質量%)を表す。   In Table 1 below, B / A represents the ratio (mass%) of the content of trimethylolpropane (B) to the content of copper oxide particles (A). C / A represents the ratio (mass%) of the content of the metal catalyst (C) to the content of the copper oxide particles (A). Moreover, D / B represents the ratio (mass%) of content of water (D) with respect to content of trimethylolpropane (B).

また、下記第1表中、pHは、導電膜形成用組成物のpHを表す。   Moreover, in the following Table 1, pH represents the pH of the composition for forming a conductive film.

また、下記第1表中、基材については以下のとおりである。
・PET:ポリエチレンテレフタレート(PET)基材
・PEN:ポリエチレンナフタレート(PEN)基材
In Table 1 below, the base materials are as follows.
・ PET: Polyethylene terephthalate (PET) substrate ・ PEN: Polyethylene naphthalate (PEN) substrate

また、下記第1表中、加熱処理の雰囲気については以下のとおりである。
・Ar:アルゴン雰囲気
・N2:窒素雰囲気
In Table 1 below, the atmosphere for the heat treatment is as follows.
Ar: Argon atmosphere N 2 Nitrogen atmosphere

また、下記第1表中、加熱処理装置については以下のとおりである。
・HP:ホットプレート
・OVN:イナートオーブン
In Table 1 below, the heat treatment apparatus is as follows.
・ HP: Hot plate ・ OVN: Inert oven

また、下記第1表中、加熱処理時の圧力については以下のとおりである。
・大:大気圧下(1.0×105MPa)
・減:減圧下(8.0×101Pa)
In Table 1 below, the pressure during the heat treatment is as follows.
・ Large: Under atmospheric pressure (1.0 × 10 5 MPa)
・ Decrease: Under reduced pressure (8.0 × 10 1 Pa)

第1表から分かるように、平均粒子径が100nm以下である酸化銅粒子(A)と、トリメチロールプロパン(B)と、周期律表の8〜11族からなる群より選択される少なくとも1種の金属を含む金属触媒(C)とを含有する、実施例1〜31およびA〜Dは、分散安定性に優れ、また、得られた導電膜は優れた密着性および導電性を示した。
実施例1〜6の対比から、上記B/Aが900質量%以下である実施例1〜5およびAの方がより優れた分散安定性を示した。なかでも、上記B/Aが50質量%以上である実施例1、3〜5およびAの方がより優れた密着性を示した。そのなかでも、上記B/Aが250〜800質量%である実施例1および4はより優れた導電性を示した。
実施例1および7〜10の対比から、全組成物中の酸化銅粒子(A)の含有量が15質量%以下である実施例1および7〜9の方がより優れた分散安定性を示した。なかでも、全組成物中の酸化銅粒子(A)の含有量が0.1質量%以上である実施例1および8〜9はより優れた密着性を示した。
実施例1および11〜15の対比から、上記C/Aが8.0質量%以下である実施例1および11〜14の方がより優れた分散安定性を示した。なかでも、上記C/Aが0.1質量%以上である1および13〜14はより優れた導電性を示した。
実施例1と17との対比から、金属触媒(C)がパラジウムを含む金属触媒である実施例1の方がより優れた導電性を示した。
実施例1、18〜19、22〜24およびB〜Dの対比から、上記D/Bが40〜90質量%である実施例1および23〜24はより優れた分散安定性を示した。
実施例1、20〜21および26〜27の対比から、塗膜形成工程における導電膜形成用組成物の塗布量が0.5〜12.0mg/cm2である実施例1の方がより優れた導電性を示した。
実施例1と28との対比から、加熱処理の昇温速度が5000〜12000℃/分である実施例1の方がより優れた導電性を示した。
実施例1と31との対比から、加熱処理時の圧力が1.0×102Pa以下である実施例31の方がより優れた導電性を示した。
実施例18とBとの対比から、pHが8.0以下である実施例18の方がより優れた密着性および導電性を示した。
As can be seen from Table 1, at least one selected from the group consisting of copper oxide particles (A) having an average particle diameter of 100 nm or less, trimethylolpropane (B), and groups 8 to 11 of the periodic table. Examples 1-31 and AD containing metal catalyst (C) containing these metals were excellent in dispersion stability, and the obtained conductive film showed excellent adhesion and conductivity.
From the comparison of Examples 1 to 6, Examples 1 to 5 and A in which the B / A was 900% by mass or less showed better dispersion stability. Among them, Examples 1, 3 to 5 and A in which the B / A was 50% by mass or more showed better adhesion. Among them, Examples 1 and 4 in which the B / A was 250 to 800% by mass showed more excellent conductivity.
From the comparison between Examples 1 and 7 to 10, Examples 1 and 7 to 9 in which the content of the copper oxide particles (A) in the whole composition is 15% by mass or less show better dispersion stability. It was. Among them, Examples 1 and 8 to 9 in which the content of the copper oxide particles (A) in the entire composition was 0.1% by mass or more showed better adhesion.
From the comparison between Examples 1 and 11 to 15, Examples 1 and 11 to 14 in which the C / A was 8.0% by mass or less showed better dispersion stability. Especially, 1 and 13-14 whose said C / A is 0.1 mass% or more showed the more excellent electroconductivity.
From a comparison between Examples 1 and 17, Example 1 in which the metal catalyst (C) was a metal catalyst containing palladium showed better conductivity.
From the comparison of Examples 1, 18 to 19, 22 to 24, and B to D, Examples 1 and 23 to 24 in which the D / B was 40 to 90% by mass showed more excellent dispersion stability.
From the comparison of Examples 1, 20 to 21 and 26 to 27, Example 1 in which the coating amount of the composition for forming a conductive film in the coating film forming step is 0.5 to 12.0 mg / cm 2 is more excellent. Conductivity.
From the comparison with Example 1 and 28, the direction of Example 1 whose temperature increase rate of heat processing is 5000-12000 degree-C / min showed the more excellent electroconductivity.
From the comparison between Examples 1 and 31, Example 31 in which the pressure during the heat treatment was 1.0 × 10 2 Pa or less showed better conductivity.
From a comparison between Example 18 and B, Example 18 having a pH of 8.0 or less showed better adhesion and conductivity.

一方、トリメチロールプロパン(B)を含有しない比較例1〜3は、いずれも分散安定性が不十分であり、また、得られた導電膜は密着性および導電性が不十分であった。   On the other hand, Comparative Examples 1 to 3 not containing trimethylolpropane (B) all had insufficient dispersion stability, and the obtained conductive film had insufficient adhesion and conductivity.

Claims (8)

平均粒子径が100nm以下である酸化銅粒子(A)と、トリメチロールプロパン(B)と、周期律表の8〜11族からなる群より選択される少なくとも1種の金属を含む金属触媒(C)とを含有し、
前記酸化銅粒子(A)の含有量に対する前記トリメチロールプロパン(B)の含有量の割合(B/A)が、100〜850質量%である、導電膜形成用組成物。
Metal catalyst (C) containing at least one metal selected from the group consisting of copper oxide particles (A) having an average particle size of 100 nm or less, trimethylolpropane (B), and groups 8 to 11 of the periodic table ) And
The composition for electrically conductive film formation whose ratio (B / A) of content of the said trimethylol propane (B) with respect to content of the said copper oxide particle (A) is 100-850 mass%.
さらに水(D)を含有する、請求項1に記載の導電膜形成用組成物。   Furthermore, the composition for electrically conductive film formation of Claim 1 containing water (D). 前記トリメチロールプロパン(B)の含有量に対する前記水(D)の含有量の割合(D/B)が、10〜200質量%である、請求項2に記載の導電膜形成用組成物。   The composition for electrically conductive film formation of Claim 2 whose ratio (D / B) of content of the said water (D) with respect to content of the said trimethylol propane (B) is 10-200 mass%. 前記割合(D/B)が、40〜90質量%である、請求項3に記載の導電膜形成用組成物。   The composition for electrically conductive film formation of Claim 3 whose said ratio (D / B) is 40-90 mass%. 前記割合(B/A)が、250〜800質量%である、請求項1〜4のいずれか1項に記載の導電膜形成用組成物。   The composition for electrically conductive film formation of any one of Claims 1-4 whose said ratio (B / A) is 250-800 mass%. 前記酸化銅粒子(A)の含有量に対する前記金属触媒(C)の含有量の割合(C/A)が、0.1〜8.0質量%である、請求項1〜5のいずれか1項に記載の導電膜形成用組成物。   The ratio (C / A) of the content of the metal catalyst (C) to the content of the copper oxide particles (A) is 0.1 to 8.0% by mass. The composition for electrically conductive film formation of claim | item. pHが、3.0以上8.0以下である、請求項1〜のいずれか1項に記載の導電膜形成用組成物。 The composition for electrically conductive film formation of any one of Claims 1-6 whose pH is 3.0 or more and 8.0 or less. pHが、4.0以上7.0以下である、請求項1〜のいずれか1項に記載の導電膜形成用組成物。 pH is 4.0 to 7.0, a conductive film forming composition according to any one of claims 1-7.
JP2014220201A 2013-12-02 2014-10-29 Conductive film forming composition, conductive film manufacturing method, and conductive film Active JP6109130B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014220201A JP6109130B2 (en) 2013-12-02 2014-10-29 Conductive film forming composition, conductive film manufacturing method, and conductive film
TW103141905A TW201532968A (en) 2013-12-02 2014-12-02 Composition for forming conductive film and method for producing conductive film and conductive film
PCT/JP2014/081911 WO2015083718A1 (en) 2013-12-02 2014-12-02 Composition for forming conductive film, method for producing conductive film, and conductive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013249128 2013-12-02
JP2013249128 2013-12-02
JP2014220201A JP6109130B2 (en) 2013-12-02 2014-10-29 Conductive film forming composition, conductive film manufacturing method, and conductive film

Publications (2)

Publication Number Publication Date
JP2015129255A JP2015129255A (en) 2015-07-16
JP6109130B2 true JP6109130B2 (en) 2017-04-05

Family

ID=53273480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014220201A Active JP6109130B2 (en) 2013-12-02 2014-10-29 Conductive film forming composition, conductive film manufacturing method, and conductive film

Country Status (3)

Country Link
JP (1) JP6109130B2 (en)
TW (1) TW201532968A (en)
WO (1) WO2015083718A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6104782B2 (en) * 2013-12-02 2017-03-29 富士フイルム株式会社 Conductive film forming composition, conductive film manufacturing method, and conductive film
JP2022032971A (en) * 2020-08-13 2022-02-25 花王株式会社 Metal paste

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428138B2 (en) * 2004-05-21 2010-03-10 住友金属鉱山株式会社 Copper fine particles, production method thereof, and copper fine particle dispersion
JP4956386B2 (en) * 2006-11-09 2012-06-20 古河電気工業株式会社 Manufacturing method of conductive member
JP2008300046A (en) * 2007-05-29 2008-12-11 Mitsuboshi Belting Ltd Coating composition, and conductive film
JP5778382B2 (en) * 2008-10-22 2015-09-16 東ソー株式会社 Composition for producing metal film, method for producing metal film, and method for producing metal powder
US20100233361A1 (en) * 2009-03-12 2010-09-16 Xerox Corporation Metal nanoparticle composition with improved adhesion
JP2012207250A (en) * 2011-03-29 2012-10-25 Furukawa Electric Co Ltd:The Copper fine particle dispersion liquid, and method for producing copper fine particle sintered compact
JP5971909B2 (en) * 2011-09-21 2016-08-17 古河電気工業株式会社 Conductive paste and joined body obtained by firing the conductive paste
JP2015026567A (en) * 2013-07-29 2015-02-05 富士フイルム株式会社 Composition for conductive film formation and method for producing conductive film
JP2015032493A (en) * 2013-08-05 2015-02-16 富士フイルム株式会社 Composition for formation of conductive film and method of producing conductive film using the same
JP6104782B2 (en) * 2013-12-02 2017-03-29 富士フイルム株式会社 Conductive film forming composition, conductive film manufacturing method, and conductive film

Also Published As

Publication number Publication date
WO2015083718A1 (en) 2015-06-11
TW201532968A (en) 2015-09-01
JP2015129255A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
KR100841665B1 (en) Method for forming fine copper particle sintered product type of electric conductor having fine shape, method for forming fine copper wiring and thin copper film using said method
JP5972187B2 (en) Conductive film forming composition and method for producing conductive film
US9868864B2 (en) Electroconductive-film-forming composition and method for producing electroconductive film
WO2014156594A1 (en) Composition for forming conductive film, and conductive film manufacturing method using same
JP2011142052A (en) Copper conductor ink, conductive substrate, and method of manufacturing the same
WO2015005276A1 (en) Method for producing electrically conductive film and electrically conductive film
JP2016058227A (en) Method for producing conductive film
JP6109130B2 (en) Conductive film forming composition, conductive film manufacturing method, and conductive film
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
WO2015005046A1 (en) Composition for forming electrically conductive film, method for producing electrically conductive film, and electrically conductive film
WO2015033823A1 (en) Production method for conductive film
WO2014157303A1 (en) Composition for forming conductive films and method for producing conductive film using same
JP2014175240A (en) Composition for forming electrically conductive film, and method for producing electrically conductive film using the same
JP2015141752A (en) Conductive film-forming composition and method for producing conductive film
JP6104782B2 (en) Conductive film forming composition, conductive film manufacturing method, and conductive film
JP2014167872A (en) Method for producing conductive film, and wiring board
JP6410278B2 (en) Conductive film forming composition and conductive film manufacturing method
JP2015144089A (en) Method for producing conductive film
JP2014191974A (en) Method for producing conductive film and conductive film
JP2014044907A (en) Composition for forming conductive film and method for producing conductive film
JP6263630B2 (en) Conductive film forming composition and conductive film forming method
TW201503163A (en) Composition for electroconductive film formation and method of forming electroconductive film by using the same
WO2016031404A1 (en) Composition for electrically conductive film formation use, and method for producing electrically conductive film using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170307

R150 Certificate of patent or registration of utility model

Ref document number: 6109130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250