JP2014175389A - Method of forming alumina insulation film - Google Patents

Method of forming alumina insulation film Download PDF

Info

Publication number
JP2014175389A
JP2014175389A JP2013045202A JP2013045202A JP2014175389A JP 2014175389 A JP2014175389 A JP 2014175389A JP 2013045202 A JP2013045202 A JP 2013045202A JP 2013045202 A JP2013045202 A JP 2013045202A JP 2014175389 A JP2014175389 A JP 2014175389A
Authority
JP
Japan
Prior art keywords
aluminum
alumina
substrate
insulating film
butoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013045202A
Other languages
Japanese (ja)
Inventor
Shintaro Iida
慎太郎 飯田
Hideaki Sakurai
英章 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013045202A priority Critical patent/JP2014175389A/en
Publication of JP2014175389A publication Critical patent/JP2014175389A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of simply forming an alumina insulation film by a low temperature heat treatment in a relatively short period of time even for a substrate of a complex shape.SOLUTION: The method of forming an alumina insulation film includes: coating an aluminum precursor on a substrate by an electrophoresis electrodeposition method using an alumina precursor solution prepared by adding a peptizing agent composed of hydrochloric acid and such to a sol containing an aluminum compound composed of aluminum ethoxide and such; and applying a low temperature treatment to the substrate.

Description

本発明は、ゾル−ゲル法によりアルミナ絶縁膜を形成する方法に関する。更に詳しくは、アルミナ前駆体のゾルを用いて電気泳動電着により基材にアルミナ絶縁膜を形成する方法に関するものである。   The present invention relates to a method for forming an alumina insulating film by a sol-gel method. More specifically, the present invention relates to a method of forming an alumina insulating film on a substrate by electrophoretic electrodeposition using an alumina precursor sol.

従来、膜を形成する方法として、基板に有機金属前駆体をコーティングした後、その有機金属前駆体を400〜450℃で熱分解し、次いで、550〜700℃の温度で結晶化して膜を形成するゾル・ゲル法が用いられてきた(例えば、特許文献1参照。)。一方、エタノール分散媒にアルミナ(酸化アルミニウム)粉末を加えてサスペンジョン(懸濁液)状態にしたアルミナゾル中にセラミック基板と対向電極を浸漬させ、セラミック基板にアルミナを泳動電着させ、次いでセラミック基板を1500℃で熱処理し、絶縁膜を形成する電気泳動法が開示されている(例えば、特許文献2参照。)。また、金属のアルコキシドなどをアルコールなどの有機溶媒に溶解し、粒子状ゲルを形成するためコハク酸ジメチルを添加して得た粒子状ゲル分散液中に2つの電極を浸漬させ、泳動電着によって電極に膜を形成し、次いで、150〜650℃の範囲で熱処理を行い膜を形成する方法が開示されている(例えば、特許文献3参照。)。更に、無機生成物、例えばアルミニウム水酸化物の解膠ゲルの分散物を水溶性被膜樹脂が存在する中で、電着可能な樹脂により被膜し多孔導電性支持体上に電着させ熱処理によって、揮発性生成物を取り除き無機生成物を焼結し細孔のある濾過膜である半透膜を作製することが開示されている(例えば、特許文献4参照。)。   Conventionally, as a method of forming a film, after coating a substrate with an organometallic precursor, the organometallic precursor is thermally decomposed at 400 to 450 ° C., and then crystallized at a temperature of 550 to 700 ° C. to form a film. A sol-gel method has been used (see, for example, Patent Document 1). On the other hand, a ceramic substrate and a counter electrode are immersed in an alumina sol in which alumina (aluminum oxide) powder is added to an ethanol dispersion medium to form a suspension (suspension), and alumina is electrophoretically deposited on the ceramic substrate. An electrophoresis method in which an insulating film is formed by heat treatment at 1500 ° C. is disclosed (see, for example, Patent Document 2). In addition, two electrodes are immersed in a particulate gel dispersion obtained by dissolving metal alkoxide in an organic solvent such as alcohol and adding dimethyl succinate to form a particulate gel. A method is disclosed in which a film is formed on an electrode, followed by heat treatment in the range of 150 to 650 ° C. (see, for example, Patent Document 3). Furthermore, in the presence of a water-soluble coating resin, a dispersion of an inorganic product, such as an aluminum hydroxide peptized gel, is coated with a resin that can be electrodeposited, electrodeposited on a porous conductive support, and subjected to heat treatment. It has been disclosed to remove a volatile product and sinter an inorganic product to produce a semipermeable membrane that is a filtration membrane having pores (see, for example, Patent Document 4).

特開平11−220185号公報(段落[0008])JP-A-11-220185 (paragraph [0008]) 特開平11−264096号公報(段落[0027]〜[0034])Japanese Patent Laid-Open No. 11-264096 (paragraphs [0027] to [0034]) 特開2005−268702号公報(段落[0032]〜[0044])JP 2005-268702 A (paragraphs [0032] to [0044]) 特開平03−032725号公報(請求項1、第5頁左上欄第7行〜第6頁右上欄第13行、第9頁右上欄第16行〜第11頁左上欄第1行)JP-A-03-032725 (Claim 1, page 5, upper left column, line 7 to page 6, upper right column, line 13; page 9, upper right column, line 16 to page 11, upper left column, line 1)

しかし、上記従来の特許文献1では、膜を形成する基材に前駆体をコーティングする場合に、一般にディップコート法やスピンコート法が用いられるが、これらの塗布方法では、複雑な形状の基材への塗布が困難であった。一方、上記従来の特許文献2では、電気泳動は積層に時間を要すことなく、基材も平板上である必要がないので複雑な形状であっても均一に積層できるものの、サスペンジョン状態の溶液は、アルミナの粒子が大きく、これを結晶化するためには熱処理温度を高くしなければならなかった。また、上記従来の特許文献3では、電気泳動を行った後の熱処理温度は低いものの、電気泳動に使用する溶液である粒子状ゲル分散液を調製するためにコハク酸ジメチルを用い、粒子を20〜500nmに調整し、初期核層を形成した後電気泳動により強誘電体膜を作製しなければならなかった。また、20nmの初期核層の形成には1日を要し、電気泳動による強誘電体膜の作製も130nm/5分と成膜速度が遅かった。更に、特許文献4では、電着可能な樹脂により被膜したアルミニウム水酸化物の解膠ゲルを電気泳動で多孔導電性支持体上に電着し熱処理することで細孔のある濾過膜を作製することは記載されているものの濾過膜には細孔があり均一で緻密な絶縁膜となり得る膜の作製についての記載はみあたらなかった。   However, in the above-mentioned conventional Patent Document 1, when a precursor is coated on a substrate on which a film is to be formed, a dip coating method or a spin coating method is generally used. Application to was difficult. On the other hand, in the above-mentioned conventional Patent Document 2, electrophoresis does not require time for lamination, and the substrate does not need to be on a flat plate, so even if it has a complicated shape, it can be uniformly laminated. Has large alumina particles, and in order to crystallize them, the heat treatment temperature had to be increased. Moreover, in the above-mentioned conventional Patent Document 3, although the heat treatment temperature after electrophoresis is low, dimethyl succinate is used to prepare a particulate gel dispersion, which is a solution used for electrophoresis, and the particles are treated with 20 particles. After adjusting the thickness to ˜500 nm and forming the initial nucleus layer, a ferroelectric film had to be prepared by electrophoresis. In addition, the formation of the initial core layer of 20 nm took one day, and the deposition rate of the ferroelectric film by electrophoresis was 130 nm / 5 minutes, which was slow. Furthermore, in Patent Document 4, an aluminum hydroxide peptized gel coated with an electrodepositable resin is electrodeposited on a porous conductive support by electrophoresis and heat-treated to produce a filtration membrane having pores. Although it has been described, there has been no description about the production of a membrane that has pores in the filtration membrane and can be a uniform and dense insulating membrane.

本発明の目的は、複雑な形状の基材でも比較的短時間でかつ低温の熱処理で簡便に均一で緻密なアルミナ絶縁膜を形成する方法を提供することにある。   An object of the present invention is to provide a method for easily and uniformly forming a dense alumina insulating film in a relatively short time and with a low temperature heat treatment even for a substrate having a complicated shape.

本発明者らは、上記目的を達成するために鋭意検討した結果、電気泳動電着法により基材に金属酸化物をコーティングする場合に、電気泳動電着法の溶液に金属酸化物前駆体の超微粒子が液中に分散したコロイド状のゾルを使用することで、熱処理温度を低温とすることができることを見出し本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventors have found that when a metal oxide is coated on a substrate by an electrophoretic electrodeposition method, the metal oxide precursor is added to the electrophoretic electrodeposition solution. The present invention has been completed by finding that the heat treatment temperature can be lowered by using a colloidal sol in which ultrafine particles are dispersed in a liquid.

本発明の第1の観点は、アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウム−n−ブトキシド、アルミニウム−sec−ブトキシド、アルミニウム−tert−ブトキシド、アルミニウムアセチルアセトナート、硝酸アルミニウム、塩化アルミニウム、酢酸アルミニウム、リン酸アルミニウム又は硫酸アルミニウムからなるアルミニウム化合物を含むゾルに水、塩酸、硫酸、リン酸、酢酸、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム又は酢酸アンモニウムからなる解膠剤を添加して調製されたアルミナ前駆体溶液を使用して電気泳動電着法により基材上にアルミナ絶縁膜を形成することにある。   A first aspect of the present invention includes aluminum ethoxide, aluminum isopropoxide, aluminum-n-butoxide, aluminum-sec-butoxide, aluminum-tert-butoxide, aluminum acetylacetonate, aluminum nitrate, aluminum chloride, aluminum acetate, Alumina precursor prepared by adding a peptizer composed of water, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, ammonium chloride, ammonium sulfate, ammonium phosphate or ammonium acetate to a sol containing an aluminum compound composed of aluminum phosphate or aluminum sulfate An object is to form an alumina insulating film on a substrate by electrophoretic electrodeposition using a body solution.

本発明の第2の観点は、第1の観点に基づく発明であって、基材として、金属基板又は金属膜が形成された半導体基板を用いたことにある。   A second aspect of the present invention is an invention based on the first aspect, wherein a metal substrate or a semiconductor substrate on which a metal film is formed is used as a base material.

本発明の第1の観点では、アルミニウム化合物として、加水分解、重縮合反応により、金属−酸素−金属のネットワークを組みやすいという理由からアルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウム−n−ブトキシド、アルミニウム−sec−ブトキシド、アルミニウム−tert−ブトキシド、アルミニウムアセチルアセトナート、硝酸アルミニウム、塩化アルミニウム、酢酸アルミニウム、リン酸アルミニウム又は硫酸アルミニウムを選定する。また、解膠剤として、上記アルミニウム化合物の加水分解、重縮合反応の触媒となるとの理由から水、塩酸、硫酸、リン酸、酢酸、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム又は酢酸アンモニウムを選定する。この結果、上記アルミニウム化合物を含むゾルに上記解膠剤を添加することにより溶液中の粒子径を制御することなく簡便に調製されたアルミナ前駆体溶液は電気泳動電着法に使用する溶液を確実にゾルとすることができ、この溶液を使用することにより、確実に均一で緻密なアルミナ絶縁膜を基材に成膜し成膜時の熱処理温度を低くすることができる。また、基材に金属酸化物をコーティングする方法として電気泳動電着法を採用したことにより複雑な形状の基材でも比較的短時間でアルミナ絶縁膜を形成することができる。   In the first aspect of the present invention, aluminum ethoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum are used as the aluminum compound because it is easy to form a metal-oxygen-metal network by hydrolysis and polycondensation reactions. -Sec-butoxide, aluminum-tert-butoxide, aluminum acetylacetonate, aluminum nitrate, aluminum chloride, aluminum acetate, aluminum phosphate or aluminum sulfate are selected. As the peptizer, water, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, ammonium chloride, ammonium sulfate, ammonium phosphate or ammonium acetate is selected because it serves as a catalyst for hydrolysis and polycondensation of the aluminum compound. As a result, the alumina precursor solution prepared simply by controlling the particle size in the solution by adding the deflocculant to the sol containing the aluminum compound ensures the solution used for the electrophoretic electrodeposition method. By using this solution, it is possible to reliably form a uniform and dense alumina insulating film on the substrate and to lower the heat treatment temperature during the film formation. Further, by adopting the electrophoretic electrodeposition method as a method of coating the base material with the metal oxide, an alumina insulating film can be formed in a relatively short time even with a base material having a complicated shape.

本発明の第2の観点では、基材として、導電性が高く電気泳動が容易であるとの理由から銅、ステンレスなどの金属基板又は白金などの金属膜が形成されたシリコン、ガリウムなどの半導体基板を選定する。これにより均一で緻密なアルミナ絶縁膜を形成することができる。   In the second aspect of the present invention, as a base material, a semiconductor such as silicon or gallium on which a metal substrate such as copper or stainless steel or a metal film such as platinum is formed because of its high conductivity and easy electrophoresis. Select the board. Thereby, a uniform and dense alumina insulating film can be formed.

本発明の実施形態のアルミナ絶縁膜の成膜方法を模式的に表した図である。It is the figure which represented typically the film-forming method of the alumina insulating film of embodiment of this invention. 実施例1のアルミナ絶縁膜のSEMの写真図である。3 is a SEM photograph of the alumina insulating film of Example 1. FIG. 比較例1のアルミナ絶縁膜のSEMの写真図である。6 is a SEM photograph of the alumina insulating film of Comparative Example 1. FIG.

次に本発明を実施するための形態を図面に基づいて説明する。   Next, an embodiment for carrying out the present invention will be described with reference to the drawings.

本発明は、図1(a)〜(e)に示すように、電気泳動電着法により金属の有機又は無機化合物の溶液をコーティングし、コーティングした金属化合物を熱処理して基材の表面に結晶化した金属酸化物の絶縁膜を形成する方法の改良である。   In the present invention, as shown in FIGS. 1A to 1E, a solution of a metal organic or inorganic compound is coated by an electrophoretic electrodeposition method, and the coated metal compound is heat-treated to crystallize on the surface of the substrate. This is an improvement of a method for forming a metal oxide insulating film.

本発明の特徴ある構成は、図1(a)及び(b)に示すように、アルミニウム化合物を含むゾルに解膠剤を添加して調製されたアルミナ前駆体溶液を電気泳動電着法の溶液として使用するところにある。このように、アルミニウム化合物を含むゾル101を電気泳動電着法の溶液とすることで、簡便に溶液を調製でき、また、コーティング材の熱処理時の温度を下げることができる。   As shown in FIGS. 1 (a) and 1 (b), the characteristic structure of the present invention is an electrophoretic electrodeposition solution prepared by adding an alumina precursor solution prepared by adding a peptizer to a sol containing an aluminum compound. There is a place to use as. Thus, by using the sol 101 containing an aluminum compound as a solution for electrophoretic electrodeposition, the solution can be easily prepared, and the temperature during the heat treatment of the coating material can be lowered.

本発明の実施の工程を図1を参照して詳しく説明する。   The steps of the present invention will be described in detail with reference to FIG.

図1(a)はアルミニウム化合物を含むゾル101を調製する工程の一例を示す図である。アルミニウム化合物にエタノールなどの有機溶媒を添加し、更に、ゲル化させずに安定化させるために解膠剤として塩酸などを添加し撹拌することによりゾル101を調製する。次いでこのゾル101を図示しない恒温槽に設置し、図1(b)に示すようにゲル化しない40〜60℃の温度範囲で1〜3時間撹拌してアルミナ前駆体溶液102を調製する。   FIG. 1A shows an example of a process for preparing a sol 101 containing an aluminum compound. The sol 101 is prepared by adding an organic solvent such as ethanol to the aluminum compound and further adding hydrochloric acid or the like as a peptizer and stirring in order to stabilize the aluminum compound without gelation. Next, the sol 101 is placed in a constant temperature bath (not shown), and stirred for 1 to 3 hours in a temperature range of 40 to 60 ° C. where no gelation occurs as shown in FIG.

図1(b)はアルミナ前駆体溶液102を安定化させる工程の一例を示す図である。アルミナ前駆体溶液102中で起きている加水分解・縮合反応を平衡状態にするために行う工程である。図示しない恒温槽に設置し、40〜60℃の温度範囲で12時間以上保持する。   FIG. 1B is a diagram illustrating an example of a process for stabilizing the alumina precursor solution 102. This is a step performed to bring the hydrolysis / condensation reaction occurring in the alumina precursor solution 102 into an equilibrium state. It installs in the thermostat which is not illustrated, and hold | maintains for 12 hours or more in the temperature range of 40-60 degreeC.

図1(c)は電気泳動電着工程の一例を示す図である。被電着材料にコーティングしたい電着材料を電着させる工程である。被電着材料として例えばシリコン基板301の表面に白金膜を形成した電極303を用意する。対向電極として例えばシリコン基板302の表面に白金膜を形成した電極304を用意する。2枚の電極303、304が形成されたシリコン基板301、302をアルミナ前駆体溶液102中にそれぞれ浸漬する。電極303、304に直流電源305を接続する。電荷の移動量が設定量に達するまで両基板の電極間に直流電圧を印加すると、電気泳動により正に帯電したアルミナ前駆体103が陰極として使用したシリコン基板301の電極303上に析出する。   FIG.1 (c) is a figure which shows an example of an electrophoretic electrodeposition process. This is a step of electrodepositing an electrodeposition material to be coated on the electrodeposition material. For example, an electrode 303 having a platinum film formed on the surface of a silicon substrate 301 is prepared as an electrodeposition material. For example, an electrode 304 having a platinum film formed on the surface of a silicon substrate 302 is prepared as a counter electrode. The silicon substrates 301 and 302 on which the two electrodes 303 and 304 are formed are immersed in the alumina precursor solution 102, respectively. A DC power supply 305 is connected to the electrodes 303 and 304. When a DC voltage is applied between the electrodes of both substrates until the amount of charge movement reaches a set amount, the positively charged alumina precursor 103 is deposited on the electrode 303 of the silicon substrate 301 used as the cathode.

図1(d)は絶縁膜の乾燥工程の一例を示す図である。図示するホットプレート400は、基台401上にセラミックなどのプレート402が設置され、プレート402に配設された温度センサー・電熱器403と基台401に配設されたコントローラ404によって、プレート402の温度を加熱制御するものである。アルミナ前駆体103が析出したシリコン基板301をプレート402の上に設置し、大気雰囲気中、100℃以上、3分以上の条件で加熱乾燥する。   FIG. 1D is a diagram showing an example of the insulating film drying process. In the illustrated hot plate 400, a plate 402 such as a ceramic is installed on a base 401, and a temperature sensor / electric heater 403 disposed on the plate 402 and a controller 404 disposed on the base 401, The temperature is controlled by heating. The silicon substrate 301 on which the alumina precursor 103 is deposited is placed on the plate 402, and is heated and dried in an air atmosphere at 100 ° C. or higher and for 3 minutes or longer.

図1(e)は絶縁膜の結晶化工程の一例を示す図である。乾燥したシリコン基板301の白金電極303上に析出したアルミナ前駆体103を熱処理して結晶化する工程である。熱処理には、ラピッドサーマルアニール装置500を使用した。ラピッドサーマルアニール装置500は、反応炉501にガス502を導入し熱処理する材料を設置し、材料の端に配設された温度センサー503によって温度を検出しながらハロゲンランプ504などの加熱器を制御して熱処理を行う。熱処理する材料として乾燥したシリコン基板301をラピッドサーマルアニール装置500の反応炉501に設置し、ガス502を酸素とした雰囲気中、昇温速度1〜20℃/秒で室温〜700℃まで昇温し、1分以上の間保持する条件で加熱処理しアルミナ前駆体103を結晶化して絶縁膜を形成する。   FIG. 1E is a diagram showing an example of the crystallization process of the insulating film. This is a step of crystallizing the alumina precursor 103 deposited on the platinum electrode 303 of the dried silicon substrate 301 by heat treatment. A rapid thermal annealing apparatus 500 was used for the heat treatment. The rapid thermal annealing apparatus 500 installs a material to be heat-treated by introducing a gas 502 into a reaction furnace 501, and controls a heater such as a halogen lamp 504 while detecting the temperature by a temperature sensor 503 disposed at the end of the material. Heat treatment. The dried silicon substrate 301 as a material to be heat-treated is placed in the reaction furnace 501 of the rapid thermal annealing apparatus 500, and the temperature is raised from room temperature to 700 ° C. at a temperature raising rate of 1 to 20 ° C./second in an atmosphere where the gas 502 is oxygen. Heat treatment is performed for 1 minute or longer to crystallize the alumina precursor 103 to form an insulating film.

このように得られた絶縁膜は、電気絶縁材料として、集積回路基板、センサー基板、太陽電池基板、電極基材等に使用することができる。   The insulating film thus obtained can be used as an electrical insulating material for an integrated circuit substrate, a sensor substrate, a solar cell substrate, an electrode base material, and the like.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
アルミニウム化合物としてアルミニウム−sec−ブトキシドを、また解膠剤として塩酸を使用した。有機溶媒としてエタノールにアルミニウム−sec−ブトキシドをエタノールに対して3質量%添加し、更に濃度35%の塩酸をエタノールに対して10質量%添加して溶液を調製した。ゲル化しないように、溶液を50℃に設定した恒温槽に設置し続いて3時間撹拌した。撹拌後、恒温槽の温度を50℃に保ち、12時間恒温槽の中で保持した。保持した後の溶液中に、被電着材料としてシリコン基板301の表面に白金膜を形成した電極303及び対向電極としてシリコン基板302の表面に白金膜を形成した電極304を用意する。2枚の電極303、304が形成されたシリコン基板301、302をアルミナ前駆体溶液102中にそれぞれ浸漬し、移動電荷量が0.2クーロンの量に達するまでの間、約3秒間電極間に2Vの直流電圧を印加した。陰極として使用したシリコン基板301をホットプレート400に設置して大気雰囲気中、300℃で1分間加熱し乾燥させた。その後、シリコン基板301をラピッドサーマルアニール装置500に設置し、昇温速度10℃/秒で酸素雰囲気中700℃で1分間加熱処理しアルミナ前駆体103を結晶化して厚さ100nmのアルミナ絶縁膜を形成した。
<Example 1>
Aluminum-sec-butoxide was used as the aluminum compound, and hydrochloric acid was used as the peptizer. As an organic solvent, 3% by mass of aluminum-sec-butoxide was added to ethanol with respect to ethanol, and 10% by mass of hydrochloric acid having a concentration of 35% was added to ethanol to prepare a solution. The solution was placed in a thermostatic bath set at 50 ° C. so as not to gel, and then stirred for 3 hours. After stirring, the temperature of the thermostat was kept at 50 ° C. and held in the thermostat for 12 hours. An electrode 303 having a platinum film formed on the surface of the silicon substrate 301 as an electrodeposition material and an electrode 304 having a platinum film formed on the surface of the silicon substrate 302 as a counter electrode are prepared in the solution after being held. The silicon substrates 301 and 302 on which the two electrodes 303 and 304 are formed are dipped in the alumina precursor solution 102, respectively, and the amount of mobile charge reaches the amount of 0.2 coulombs, and between the electrodes for about 3 seconds. A DC voltage of 2V was applied. The silicon substrate 301 used as the cathode was placed on a hot plate 400 and dried by heating at 300 ° C. for 1 minute in an air atmosphere. Thereafter, the silicon substrate 301 is set in a rapid thermal annealing apparatus 500, and heat treatment is performed at 700 ° C. for 1 minute in an oxygen atmosphere at a temperature rising rate of 10 ° C./second to crystallize the alumina precursor 103 to form an alumina insulating film having a thickness of 100 nm. Formed.

<実施例2>
アルミニウム化合物としてアルミニウムエトキシドを、また解膠剤として塩酸を使用した。これ以外は実施例1と同様にして、厚さ100nmのアルミナ絶縁膜を形成した。
<Example 2>
Aluminum ethoxide was used as the aluminum compound and hydrochloric acid was used as the peptizer. Except for this, an alumina insulating film having a thickness of 100 nm was formed in the same manner as in Example 1.

<実施例3>
アルミニウム化合物としてアルミニウムアセチルアセトナートを、また解膠剤として塩化アンモニウム使用した。これ以外は実施例1と同様にして、厚さ100nmのアルミナ絶縁膜を形成した。
<Example 3>
Aluminum acetylacetonate was used as the aluminum compound and ammonium chloride as the peptizer. Except for this, an alumina insulating film having a thickness of 100 nm was formed in the same manner as in Example 1.

<実施例4>
アルミニウム化合物としてアルミニウム−tert−ブトキシドを、また解膠剤として酢酸を使用した。これ以外は実施例1と同様にして、厚さ100nmのアルミナ絶縁膜を形成した。
<Example 4>
Aluminum-tert-butoxide was used as the aluminum compound and acetic acid as the peptizer. Except for this, an alumina insulating film having a thickness of 100 nm was formed in the same manner as in Example 1.

<実施例5>
アルミニウム化合物として塩化アルミニウムを、また解膠剤として硫酸を使用した。これ以外は実施例1と同様にして、厚さ100nmのアルミナ絶縁膜を形成した。
<Example 5>
Aluminum chloride was used as the aluminum compound and sulfuric acid as the peptizer. Except for this, an alumina insulating film having a thickness of 100 nm was formed in the same manner as in Example 1.

<比較例1>
有機溶媒としてのエタノールに平均粒径250nmのアルミナ粉末をエタノールに対して10質量%加えた溶液をアルミナサスペンジョンとして使用した以外は実施例1と同様にして結晶化して厚さ500nmのアルミナ絶縁膜を形成した。
<Comparative Example 1>
A 500 nm thick alumina insulating film was crystallized in the same manner as in Example 1 except that a solution obtained by adding 10% by mass of alumina powder having an average particle diameter of 250 nm to ethanol as an organic solvent was used as an alumina suspension. Formed.

<実施例1〜5と比較例1との対比>
実施例1〜5と比較例1で得られた絶縁膜について表面粗さRa(株式会社アルバック社製触針式表面形状測定器使用。)を評価した。評価結果を表1に示す。
<Contrast with Examples 1-5 and Comparative Example 1>
The insulating films obtained in Examples 1 to 5 and Comparative Example 1 were evaluated for surface roughness Ra (using a stylus type surface shape measuring instrument manufactured by ULVAC, Inc.). The evaluation results are shown in Table 1.

実施例1〜5では表面粗さは2〜15nmとなる表面が平坦な絶縁膜が得られた。特に実施例1では表面粗さが2nmの平坦な表面である絶縁膜が得られた。   In Examples 1 to 5, an insulating film having a flat surface with a surface roughness of 2 to 15 nm was obtained. In particular, in Example 1, an insulating film having a flat surface with a surface roughness of 2 nm was obtained.

比較例1では表面粗さは200nmとなり各実施例に対して表面の平坦さが劣る結果となった。   In Comparative Example 1, the surface roughness was 200 nm, and the surface flatness was inferior to each example.

次に、実施例1と比較例1をSEM写真にて各例の組織の状態を観察した。SEM写真は、日立製作所のS−4300SEを使用して撮影した。その結果を図2及び図3に示す。   Next, in Example 1 and Comparative Example 1, the state of the structure of each example was observed with SEM photographs. SEM photographs were taken using Hitachi S-4300SE. The results are shown in FIGS.

図2及び図3に示すように、実施例1ではアルミナ絶縁膜が緻密で均一である結果となった。アルミナサスペンジョンを使用した比較例1では、緻密で均一な絶縁膜を得ることができなかった。これは、比較例1はアルミナサスペンジョンであるために電着したアルミナの粒子が大きく、低温の熱処理では結晶化されなかったためと考えられる。   As shown in FIGS. 2 and 3, in Example 1, the result was that the alumina insulating film was dense and uniform. In Comparative Example 1 using the alumina suspension, a dense and uniform insulating film could not be obtained. This is probably because Comparative Example 1 was an alumina suspension, so that the electrodeposited alumina particles were large and were not crystallized by low-temperature heat treatment.

上記結果より、実施例に記載したゾルを使用して低温の熱処理で均一で緻密な絶縁膜を積層するのに時間を要することなく簡便に得られることが確認できた。   From the above results, it was confirmed that the use of the sol described in the examples could be easily obtained without requiring time to deposit a uniform and dense insulating film by low-temperature heat treatment.

本発明のアルミナ絶縁膜は、電気絶縁材料として、集積回路基板、センサー基板、太陽電池基板、電極基材等に利用できる。   The alumina insulating film of the present invention can be used as an electrical insulating material for integrated circuit substrates, sensor substrates, solar cell substrates, electrode base materials, and the like.

101 ゾル
102 アルミナ前駆体溶液
103 アルミナ前駆体
101 Sol 102 Alumina precursor solution 103 Alumina precursor

Claims (2)

アルミニウムエトキシド、アルミニウムイソプロポキシド、アルミニウム−n−ブトキシド、アルミニウム−sec−ブトキシド、アルミニウム−tert−ブトキシド、アルミニウムアセチルアセトナート、硝酸アルミニウム、塩化アルミニウム、酢酸アルミニウム、リン酸アルミニウム又は硫酸アルミニウムからなるアルミニウム化合物を含むゾルに水、塩酸、硫酸、リン酸、酢酸、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム又は酢酸アンモニウムからなる解膠剤を添加して調製されたアルミナ前駆体溶液を使用して電気泳動電着法により基材上にアルミナ絶縁膜を形成する方法。   Aluminum consisting of aluminum ethoxide, aluminum isopropoxide, aluminum-n-butoxide, aluminum-sec-butoxide, aluminum-tert-butoxide, aluminum acetylacetonate, aluminum nitrate, aluminum chloride, aluminum acetate, aluminum phosphate or aluminum sulfate Electrophoresis using an alumina precursor solution prepared by adding a peptizer consisting of water, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, ammonium chloride, ammonium sulfate, ammonium phosphate or ammonium acetate to the sol containing the compound. A method of forming an alumina insulating film on a substrate by a deposition method. 前記基材が、金属基板又は金属膜が形成された半導体基板である請求項1に記載のアルミナ絶縁膜の形成方法。   The method for forming an alumina insulating film according to claim 1, wherein the base material is a metal substrate or a semiconductor substrate on which a metal film is formed.
JP2013045202A 2013-03-07 2013-03-07 Method of forming alumina insulation film Pending JP2014175389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045202A JP2014175389A (en) 2013-03-07 2013-03-07 Method of forming alumina insulation film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013045202A JP2014175389A (en) 2013-03-07 2013-03-07 Method of forming alumina insulation film

Publications (1)

Publication Number Publication Date
JP2014175389A true JP2014175389A (en) 2014-09-22

Family

ID=51696350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045202A Pending JP2014175389A (en) 2013-03-07 2013-03-07 Method of forming alumina insulation film

Country Status (1)

Country Link
JP (1) JP2014175389A (en)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312916A (en) * 1976-07-21 1978-02-06 Tokyo Shibaura Electric Co Coating formation of oxide layer
JPS5676246A (en) * 1979-11-27 1981-06-23 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation catalyst for heavy hydrocarbon oil and preparation thereof
JPS5834198A (en) * 1981-08-21 1983-02-28 Toshiba Corp Pulverulent body applying method
JPS595631A (en) * 1982-07-01 1984-01-12 Matsushita Electronics Corp Mesa type semiconductor device and manufacture thereof
JPS599930A (en) * 1982-07-08 1984-01-19 Matsushita Electronics Corp Forming method for glass coating onto semiconductor substrate
JPS61251512A (en) * 1985-04-24 1986-11-08 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Manufacture of porous alumina with wide pores and large surface area
JPS6317220A (en) * 1986-07-07 1988-01-25 Mitsubishi Chem Ind Ltd Production of microspherical alumina
JPH01222081A (en) * 1988-02-29 1989-09-05 Nisshin Steel Co Ltd Formation of oxide film
JPH0332725A (en) * 1989-03-14 1991-02-13 Pechiney Rech Method for producing semi-permeable membrane on porous electrically conductive support through electrophoresis
JPH03150394A (en) * 1989-07-25 1991-06-26 Nippon Alum Mfg Co Ltd Formation of metal oxide coating film
JPH04259399A (en) * 1991-02-08 1992-09-14 Nippon Alum Co Ltd Formation of colored metallic oxide thin film on aluminum anodic oxidation film
JPH05214589A (en) * 1992-01-31 1993-08-24 Nippon Alum Co Ltd Formation of thin metal oxide film on aluminum anodically oxidized film
JPH05246701A (en) * 1992-03-04 1993-09-24 Sekisui Chem Co Ltd Production for metal oxide coated body
JPH06218324A (en) * 1993-01-22 1994-08-09 Asahi Glass Co Ltd Application of sol solution
JPH0924666A (en) * 1995-07-12 1997-01-28 Canon Inc Coating solution for medium to be recorded, its manufacture, and image-forming method using the manufacture
JPH09511024A (en) * 1994-03-29 1997-11-04 ユナイテッド テクノロジーズ コーポレイション Electrophoretic process for depositing multilayer coatings on fibers
JPH11220185A (en) * 1998-02-03 1999-08-10 Agency Of Ind Science & Technol Pzt ferroelectric thin film and its forming method and/or function element using the film
JPH11264096A (en) * 1998-03-16 1999-09-28 Toshiba Corp Production of insulating composite material
JP2002011945A (en) * 2000-04-27 2002-01-15 Asahi Glass Co Ltd Recording medium excellent in ink absorbency and manufacturing method therefor
JP2005268702A (en) * 2004-03-22 2005-09-29 Seiko Epson Corp Ferroelectric film and its manufacturing method, and ferroelectric capacitor, ferroelectric memory, and piezo-electric element

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312916A (en) * 1976-07-21 1978-02-06 Tokyo Shibaura Electric Co Coating formation of oxide layer
JPS5676246A (en) * 1979-11-27 1981-06-23 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation catalyst for heavy hydrocarbon oil and preparation thereof
JPS5834198A (en) * 1981-08-21 1983-02-28 Toshiba Corp Pulverulent body applying method
JPS595631A (en) * 1982-07-01 1984-01-12 Matsushita Electronics Corp Mesa type semiconductor device and manufacture thereof
JPS599930A (en) * 1982-07-08 1984-01-19 Matsushita Electronics Corp Forming method for glass coating onto semiconductor substrate
JPS61251512A (en) * 1985-04-24 1986-11-08 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Manufacture of porous alumina with wide pores and large surface area
JPS6317220A (en) * 1986-07-07 1988-01-25 Mitsubishi Chem Ind Ltd Production of microspherical alumina
JPH01222081A (en) * 1988-02-29 1989-09-05 Nisshin Steel Co Ltd Formation of oxide film
JPH0332725A (en) * 1989-03-14 1991-02-13 Pechiney Rech Method for producing semi-permeable membrane on porous electrically conductive support through electrophoresis
JPH03150394A (en) * 1989-07-25 1991-06-26 Nippon Alum Mfg Co Ltd Formation of metal oxide coating film
JPH04259399A (en) * 1991-02-08 1992-09-14 Nippon Alum Co Ltd Formation of colored metallic oxide thin film on aluminum anodic oxidation film
JPH05214589A (en) * 1992-01-31 1993-08-24 Nippon Alum Co Ltd Formation of thin metal oxide film on aluminum anodically oxidized film
JPH05246701A (en) * 1992-03-04 1993-09-24 Sekisui Chem Co Ltd Production for metal oxide coated body
JPH06218324A (en) * 1993-01-22 1994-08-09 Asahi Glass Co Ltd Application of sol solution
JPH09511024A (en) * 1994-03-29 1997-11-04 ユナイテッド テクノロジーズ コーポレイション Electrophoretic process for depositing multilayer coatings on fibers
JPH0924666A (en) * 1995-07-12 1997-01-28 Canon Inc Coating solution for medium to be recorded, its manufacture, and image-forming method using the manufacture
JPH11220185A (en) * 1998-02-03 1999-08-10 Agency Of Ind Science & Technol Pzt ferroelectric thin film and its forming method and/or function element using the film
JPH11264096A (en) * 1998-03-16 1999-09-28 Toshiba Corp Production of insulating composite material
JP2002011945A (en) * 2000-04-27 2002-01-15 Asahi Glass Co Ltd Recording medium excellent in ink absorbency and manufacturing method therefor
JP2005268702A (en) * 2004-03-22 2005-09-29 Seiko Epson Corp Ferroelectric film and its manufacturing method, and ferroelectric capacitor, ferroelectric memory, and piezo-electric element

Similar Documents

Publication Publication Date Title
WO2015033989A1 (en) Production method for electrode for electrolysis
Sarah et al. Electrical conductivity characteristics of TiO 2 thin film
CN105228273B (en) It is used to prepare precursor solution, Electric radiant Heating Film and the preparation method of semiconductor thermoelectric film
CN111825478B (en) Tantalum carbide coating based on porous carbon material and preparation method thereof
CN102691084A (en) Method for preparing ZnO nano-rod array through one-step electro-deposition
CN108385150A (en) A kind of laminated film and preparation method thereof
CN104479461A (en) Nanocrystal conductive ink and preparation method thereof
CN102360954B (en) Method capable of improving specific volume of anode foil of aluminum electrolytic capacitor
JP2014175389A (en) Method of forming alumina insulation film
JP2001192843A (en) Solution for depositing nickel metal film amd method for depositing nickel metal thin film using the same
KR101563261B1 (en) Electrochemical method of graphene oxide deposition, graphene oxide deposited substrate made by the same, and electric device including the same
JP2002001126A (en) Photo-oxidation catalyst and method for manufacturing the same
CN109037459B (en) Preparation method of high-purity perovskite film
CN102389715B (en) Method for preparing porous inorganic membrane by particle sintering technology assisted by carbon skeleton
JPH0146599B2 (en)
CN108390070B (en) Tin-antimony oxide anode material coating, preparation method thereof and titanium-based tin-antimony oxide electrode of flow battery
CN107540402A (en) A kind of preparation method of porous calcium copper titanate film
CN106556623B (en) A kind of liquid-vapor interface processing method of semiconductor gas sensor
CN106887331A (en) High density capacitors alumina base thin dielectric film and preparation method thereof
Lin et al. Challenges to Fabricate Large Size-Controllable Submicron-Structured Anodic-Aluminum-Oxide Film
RU2707564C1 (en) Method of producing insulated flat long high-temperature superconducting wire of second generation and wire
JP3257815B2 (en) Method for producing metal oxide coating
JP2000178792A (en) Production of oxide film
JP3381429B2 (en) Method for producing substrate with metal oxide film
JP5245083B2 (en) Alumina microporous membrane and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307