JP2014120355A - Method for manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014120355A
JP2014120355A JP2012275224A JP2012275224A JP2014120355A JP 2014120355 A JP2014120355 A JP 2014120355A JP 2012275224 A JP2012275224 A JP 2012275224A JP 2012275224 A JP2012275224 A JP 2012275224A JP 2014120355 A JP2014120355 A JP 2014120355A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
nonaqueous electrolyte
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012275224A
Other languages
Japanese (ja)
Other versions
JP6244623B2 (en
Inventor
Motoko Tamura
基子 田村
Yuichi Ito
裕一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2012275224A priority Critical patent/JP6244623B2/en
Publication of JP2014120355A publication Critical patent/JP2014120355A/en
Application granted granted Critical
Publication of JP6244623B2 publication Critical patent/JP6244623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To reduce manufacturing cost of a battery mainly using a positive electrode active material which has an oxidation-reduction potential of 3.7 V(vs.Li/Li) or less entirely, the oxidation-reduction potential accompanying an electrochemical insertion/desorption reaction of lithium ions.SOLUTION: A nonaqueous electrolyte secondary battery includes a positive electrode mainly including a positive electrode active material (A) which has an oxidation-reduction potential of 3.7 V(vs.Li/Li) or less entirely, the oxidation-reduction potential accompanying an electrochemical insertion/desorption reaction of lithium ions. A method for manufacturing the nonaqueous electrolyte secondary battery includes:means of forming a positive electrode potential nobler than 3.7 V(vs.Li/Li); and means of detecting whether or not an internal fine short circuit is generated.

Description

本発明は、非水電解質二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a nonaqueous electrolyte secondary battery.

リチウム二次電池に代表される非水電解質二次電池用の正極活物質として、オリビン型の結晶構造を有する活物質(以下単に「オリビン型活物質」という)が知られている。オリビン型活物質は、優れた熱的安定性を示すことから、これを正極活物質として用いることにより、高い安全性を備えた二次電池を提供することができる。   As a positive electrode active material for a non-aqueous electrolyte secondary battery typified by a lithium secondary battery, an active material having an olivine type crystal structure (hereinafter simply referred to as “olivine type active material”) is known. Since the olivine type active material exhibits excellent thermal stability, a secondary battery with high safety can be provided by using this as a positive electrode active material.

オリビン型活物質の中でも、特にリン酸鉄リチウム(LiFePO)は、電子伝導性及びイオン伝導性が高く、容量密度が大きいという特性を有し、優れた正極材料であることが知られている。しかし、リン酸鉄リチウムは、リチウムイオンの電気化学的挿入・脱離反応に伴う酸化・還元電位が約3.4V(vs.Li/Li)であり、現在汎用されているリチウムイオン二次電池用正極活物質であるコバルト酸リチウム(LiCoO)等に比べて低い。 Among olivine-type active materials, lithium iron phosphate (LiFePO 4 ) is known to be an excellent positive electrode material having characteristics such as high electron conductivity and ionic conductivity and a large capacity density. . However, lithium iron phosphate has an oxidation / reduction potential of about 3.4 V (vs. Li / Li + ) associated with electrochemical insertion / elimination reactions of lithium ions, and is currently used for lithium ion secondary. It is lower than lithium cobaltate (LiCoO 2 ) or the like, which is a positive electrode active material for batteries.

リン酸鉄リチウム等のオリビン型活物質と、コバルト酸リチウム等の酸化物型活物質を混合して用いる技術が知られている。   A technique in which an olivine-type active material such as lithium iron phosphate and an oxide-type active material such as lithium cobaltate are mixed and used is known.

特許文献1には、化学的安定性、サイクル耐久性、低温特性がより良好なリチウムイオン二次電池を提供することを目的として、LiFePO4とLi1.05Ni0.75Co0.15Al0.05Mg0.052とを95:5〜65:35の重量比率で含む正極と、非晶質炭素被覆黒鉛を有する負極活物質を含む負極を備えたリチウムイオン二次電池が記載されている。 Patent Document 1 describes that LiFePO 4 and Li 1.05 Ni 0.75 Co 0.15 Al 0.05 Mg 0.05 O 2 are used for the purpose of providing a lithium ion secondary battery with better chemical stability, cycle durability, and low temperature characteristics. In a weight ratio of 95: 5 to 65:35, and a lithium ion secondary battery including a negative electrode including a negative electrode active material having amorphous carbon-coated graphite.

特許文献2には、優れた初期クーロン効率を備えた非水電解質電池を提供することを目的として、LiMn0.8Fe0.2POとLiNi0.33Mn0.33Co0.34を10:90〜80:20の質量比率で混合したものを正極活物質としたリチウム二次電池が記載されている。 In Patent Document 2, LiMn 0.8 Fe 0.2 PO 4 and LiNi 0.33 Mn 0.33 Co 0.34 O are provided for the purpose of providing a nonaqueous electrolyte battery having excellent initial Coulomb efficiency. 2 10: 90-80: a mixture at a mass ratio of 20 lithium secondary battery positive electrode active material is described.

特開2010−251060号公報JP 2010-2511060 A 特開2011−159388号公報JP 2011-159388 A

ところで、電池の製造工程中に、正極板内に金属粉が混入することがある。   By the way, metal powder may be mixed in the positive electrode plate during the battery manufacturing process.

正極板内に金属粉が混入した場合、混入量が多いと使用中に内部微短絡を引き起こす虞があるが、このような電池は、製造工程中のエージング検査段階で発見され、廃棄される。   When metal powder is mixed in the positive electrode plate, if the mixed amount is large, there is a risk of causing an internal fine short circuit during use. Such a battery is discovered and discarded at the aging inspection stage in the manufacturing process.

しかしながら、正極の作動電位が比較的低い正極活物質を用いた電池では、前記エージング検査工程を長時間設定する必要があった。エージング検査工程の時間を短縮できる技術が求められていた。   However, in a battery using a positive electrode active material having a relatively low positive electrode operating potential, the aging inspection step needs to be set for a long time. There has been a demand for a technique that can shorten the time of the aging inspection process.

まず、正極板内に金属粉が混入し、内部微短絡を起こす虞がある電池がエージング検査工程で発見できる理由、及び、正極の作動電位が比較的低い正極活物質を用いた電池の場合、前記エージング検査工程を長時間設定する必要がある理由について述べる。   First, in the case of a battery using a positive electrode active material where the metal powder is mixed in the positive electrode plate and a battery that may cause an internal fine short circuit can be found in the aging inspection process, and the working potential of the positive electrode is relatively low, The reason why the aging inspection process needs to be set for a long time will be described.

非水電解質電池の製造工程は、発電要素の作製工程、電槽内に前記発電要素等を装着する組立工程、前記電槽内に非水電解質(電解液)を注入する注液工程、予備充電工程、所定の充電深度で一定期間放置するエージング検査工程、等を含む。   The manufacturing process of the nonaqueous electrolyte battery includes a power generation element manufacturing process, an assembly process in which the power generation element is mounted in the battery case, a liquid injection process in which a nonaqueous electrolyte (electrolyte) is injected into the battery case, and a precharge Process, an aging inspection process in which the battery is left for a predetermined period at a predetermined charging depth, and the like.

正極板内に金属粉が混入した場合、前記金属粉は、正極の貴な電位によって溶解し、金属イオンとなる。例えばFe粉は3.35V(vs.Li/Li)以上の電位において溶解してFeイオンとなる。このような金属イオンが負極側に泳動すると、金属イオンは負極の卑な電位によって析出する可能性がある。このように負極で析出した金属が、万一、デンドライト状に成長を続けた場合、内部微短絡の原因となる可能性がある。そのような電池は、前記エージング検査工程中に、開回路電圧の低下が観察されるので、発見できる。 When metal powder is mixed in the positive electrode plate, the metal powder is dissolved by the positive potential of the positive electrode and becomes metal ions. For example, Fe powder dissolves into Fe ions at a potential of 3.35 V (vs. Li / Li + ) or higher. When such metal ions migrate to the negative electrode side, the metal ions may be deposited by the base potential of the negative electrode. Thus, if the metal deposited on the negative electrode continues to grow in a dendrite shape, it may cause an internal short circuit. Such a battery can be found because a drop in open circuit voltage is observed during the aging test process.

しかし、金属粉は貴な電位によって溶解するところ、金属粉の溶解速度は、電位が高いほど大きい。即ち、逆に、正極の作動電位が比較的低い正極活物質を用いた電池の場合、金属粉の溶解速度が比較的小さいことになるから、LiCoO等のリチウム遷移金属複合酸化物を正極活物質として用いた非水電解質電池に比べて、LiFePO等の作動電位が比較的低い活物質を正極活物質として用いた非水電解質電池においては、正極板内に金属粉が混入した場合、充電工程及びエージング検査工程中に溶解して金属イオンとなる量が少ないと考えられるため、前記エージング検査工程中に、開回路電圧の低下が観察されるまでの時間が長くなる。従って、前記エージング検査にかける時間を長く設定する必要がある。 However, when the metal powder is dissolved by a noble potential, the dissolution rate of the metal powder is larger as the potential is higher. That is, conversely, in the case of a battery using a positive electrode active material having a relatively low positive electrode working potential, the dissolution rate of the metal powder is relatively low. Therefore, a lithium transition metal composite oxide such as LiCoO 2 is used as the positive electrode active material. In a non-aqueous electrolyte battery using an active material having a relatively low operating potential such as LiFePO 4 as a positive electrode active material compared to a non-aqueous electrolyte battery used as a material, charging is performed when metal powder is mixed in the positive electrode plate. Since it is considered that the amount dissolved into metal ions during the process and the aging inspection process is small, the time until the decrease in the open circuit voltage is observed during the aging inspection process becomes longer. Therefore, it is necessary to set a long time for the aging inspection.

次に、本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施の形態若しくは実験例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。   Next, the configuration and operational effects of the present invention will be described together with technical ideas. However, the action mechanism includes estimation, and the correctness does not limit the present invention. It should be noted that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the following embodiments or experimental examples are merely examples in all respects and should not be interpreted in a limited manner. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、リチウムイオンの電気化学的挿入・脱離反応に伴う酸化・還元電位が専ら3.7V(vs.Li/Li)以下である正極活物質(A)を主として含む正極を備えた非水電解質電池の製造方法であって、正極電位を3.7V(vs.Li/Li)よりも貴とする手段と、内部微短絡の発生の有無を検出する手段とを含む、非水電解質二次電池の製造方法である。 The present invention includes a positive electrode mainly including a positive electrode active material (A) having an oxidation / reduction potential of 3.7 V (vs. Li / Li + ) or less exclusively associated with electrochemical insertion / desorption reactions of lithium ions. A method for manufacturing a nonaqueous electrolyte battery, comprising: means for making the positive electrode potential nobler than 3.7 V (vs. Li / Li + ); and means for detecting the presence or absence of occurrence of an internal micro short circuit. It is a manufacturing method of an electrolyte secondary battery.

ここで、リチウムイオンの電気化学的挿入・脱離反応に伴う酸化・還元電位が「専ら」3.7V(vs.Li/Li)以下である正極活物質とは、該正極活物質を単独で用いた電極について、4.5V(vs.Li/Li)まで定電圧充電を行った後、0.1CmA以下の電流で閉回路が2.0V以下となるまで放電させたとき、全放電容量に対する、3.7V(vs.Li/Li)を以上の電位領域における放電容量の割合が1%以下である正極活物質をいう。また、正極活物質(A)を「主として」含むとは、電極が正極活物質として該正極活物質(A)を単独で含むか、又は、電極が正極活物質として該正極活物質(A)他の種類の活物質を含み該正極活物質(A)と他の活物質との質量の和に対する該正極活物質(A)の割合が95質量%を超えているものをいう。 Here, the positive electrode active material having an oxidation / reduction potential of 3.7 V (vs. Li / Li + ) or less accompanying the electrochemical insertion / extraction reaction of lithium ions is the positive electrode active material alone. When the electrode used in 1 was charged at a constant voltage up to 4.5 V (vs. Li / Li + ) and then discharged at a current of 0.1 CmA or less until the closed circuit was 2.0 V or less, the total discharge A positive electrode active material having a discharge capacity ratio of 3.7% (vs. Li / Li + ) with respect to the capacity in the above potential region is 1% or less. Further, “mainly” containing the positive electrode active material (A) means that the electrode contains the positive electrode active material (A) alone as a positive electrode active material, or the electrode contains the positive electrode active material (A) as a positive electrode active material. It means that the ratio of the positive electrode active material (A) to the sum of the masses of the positive electrode active material (A) and the other active material, including other types of active materials, exceeds 95% by mass.

本発明の製造方法によれば、製造工程中に、リチウムイオンの電気化学的挿入・脱離反応に伴う酸化・還元電位が3.7V(vs.Li/Li)以下である正極活物質(A)を充電するに必要な電位を超えて、正極電位を3.7V(vs.Li/Li)よりも貴とする手段を含むので、この手段によって、正極板内に混入した金属粉を十分に溶解させることができる。従って、金属粉が混入し内部微短絡を引き起こす可能性がある電池は、エージング検査工程において、開回路電圧の低下が観察されるまでの時間が短くなる。従って、エージング検査工程にかける時間を短縮できる。 According to the production method of the present invention, during the production process, a positive electrode active material having an oxidation / reduction potential of 3.7 V (vs. Li / Li + ) or less accompanying an electrochemical insertion / desorption reaction of lithium ions ( A) includes means for exceeding the potential necessary for charging and making the positive electrode potential nobler than 3.7 V (vs. Li / Li + ). By this means, the metal powder mixed in the positive electrode plate is removed. It can be dissolved sufficiently. Therefore, a battery in which metal powder may be mixed to cause an internal fine short circuit has a short time until a decrease in open circuit voltage is observed in the aging inspection process. Therefore, the time taken for the aging inspection process can be shortened.

また、本発明は、前記製造方法において、前記正極は、3.7V(vs.Li/Li)よりも貴な電位を示しうる活物質(B)が前記正極活物質(A)と前記活物質(B)との合計に対して5質量%未満備えられていることを特徴としている。 In the manufacturing method, the present invention provides the positive electrode, wherein the active material (B) capable of exhibiting a potential nobler than 3.7 V (vs. Li / Li + ) is the positive electrode active material (A) and the active material. It is characterized by being provided with less than 5% by mass with respect to the total of the substance (B).

ここで、活物質(B)は、前記正極活物質(A)とは異なる種類の材料である。この製造方法によれば、3.7V(vs.Li/Li)よりも貴な電位を示しうる活物質(B)が正極に備えられているので、エージング検査工程において、容易に貴な電位を維持できる。従って、より確実に、混入した金属粉を十分に溶解させることができる。従って、金属粉が混入し内部微短絡を引き起こす可能性がある電池をエージング検査工程においてより確実に短時間で発見することができる。前記3.7V(vs.Li/Li)よりも貴な電位を示しうる活物質(B)は、3.8V(vs.Li/Li)以上の電位を示しうる活物質(B)であることが好ましい。 Here, the active material (B) is a different type of material from the positive electrode active material (A). According to this manufacturing method, since the positive electrode is provided with the active material (B) capable of exhibiting a more noble potential than 3.7 V (vs. Li / Li + ), the noble potential can be easily obtained in the aging inspection process. Can be maintained. Therefore, the mixed metal powder can be sufficiently dissolved more reliably. Therefore, a battery that may be mixed with metal powder and cause an internal fine short circuit can be found more reliably in a short time in the aging inspection process. The active material (B) capable of exhibiting a more noble potential than 3.7 V (vs. Li / Li + ) is an active material (B) capable of exhibiting a potential of 3.8 V (vs. Li / Li + ) or higher. Preferably there is.

活物質(B)の含有量は、多い方が、予備充電工程後に電池を開回路状態とした後の電位の低下が緩慢になるので、エージング検査工程において、より長時間にわたって貴な電位を維持できるため、好ましい。具体的には、前記正極活物質(A)と前記活物質(B)との合計に対して0.3質量%以上が好ましい。   The higher the content of the active material (B), the lower the potential after the battery is placed in an open circuit state after the pre-charging process, so that the noble potential is maintained for a longer time in the aging inspection process. This is preferable because it is possible. Specifically, 0.3 mass% or more is preferable with respect to the sum total of the said positive electrode active material (A) and the said active material (B).

一方、活物質(B)の量が多すぎると、充電時の負極へのリチウムの析出を避けるために、負極に充電リザーブを余剰に設ける必要が生じるため、好ましくない。そのため、活物質(B)の量は、前記正極活物質(A)と前記活物質(B)との合計に対して5質量%未満が好ましく、3質量%以下がより好ましく、2質量%以下がさらに好ましく、1質量%以下が最も好ましい。   On the other hand, when the amount of the active material (B) is too large, it is necessary to provide an excessive charge reserve on the negative electrode in order to avoid deposition of lithium on the negative electrode during charging, which is not preferable. Therefore, the amount of the active material (B) is preferably less than 5% by mass, more preferably 3% by mass or less, and more preferably 2% by mass or less with respect to the total of the positive electrode active material (A) and the active material (B). Is more preferable, and 1% by mass or less is most preferable.

また、本発明は、リチウムイオンの電気化学的挿入・脱離反応に伴う酸化・還元電位が専ら3.7V(vs.Li/Li)以下である正極活物質(A)を主として含む正極を備えた非水電解質電池であって、前記正極は、3.7V(vs.Li/Li)よりも貴な電位を示しうる活物質(B)が、前記正極活物質(A)と前記活物質(B)との合計に対して5質量%以下備えられている非水電解質二次電池である。 In addition, the present invention provides a positive electrode mainly comprising a positive electrode active material (A) whose oxidation / reduction potential accompanying electrochemical insertion / desorption reaction of lithium ions is exclusively 3.7 V (vs. Li / Li + ) or less. The positive electrode includes an active material (B) capable of exhibiting a potential nobler than 3.7 V (vs. Li / Li + ), and the positive electrode active material (A) and the active material. It is a nonaqueous electrolyte secondary battery provided with 5 mass% or less with respect to the sum total with a substance (B).

このような構成によれば、予備充電工程において正極電位を3.7V(vs.Li/Li)よりも貴とする手段と適用することにより、エージング検査工程において、正極が、前記正極活物質(A)が発現する電位よりも貴な電位を容易に維持でき、金属粉の溶解を促進できるので、エージング検査工程にかける時間を短縮でき、製造コストが低減された安価な電池を提供できる。 According to such a configuration, in the pre-charging step, the positive electrode potential is more noble than 3.7 V (vs. Li / Li + ), so that in the aging inspection step, the positive electrode becomes the positive electrode active material. Since a potential more noble than the potential expressed by (A) can be easily maintained and the dissolution of the metal powder can be promoted, the time required for the aging inspection process can be shortened, and an inexpensive battery with reduced manufacturing costs can be provided.

本発明によれば、リチウムイオンの電気化学的挿入・脱離反応に伴う酸化・還元電位が専ら3.7V(vs.Li/Li)以下である正極活物質を主として用いた電池の製造コストを低減できる。 According to the present invention, the manufacturing cost of a battery mainly using a positive electrode active material whose oxidation / reduction potential accompanying the electrochemical insertion / desorption reaction of lithium ions is exclusively 3.7 V (vs. Li / Li + ) or less is mainly used. Can be reduced.

正極活物質(A)としては、例えば、リン酸鉄リチウム(LiFePO)、チタン酸リチウム(LiTi12)、タングステン酸(WO2)、バナジウム酸リチウム(LiVO2)等が挙げられる。 Examples of the positive electrode active material (A) include lithium iron phosphate (LiFePO 4 ), lithium titanate (Li 4 Ti 5 O 12 ), tungstic acid (WO 2 ), lithium vanadate (LiVO 2 ), and the like.

正極電位を3.7V(vs.Li/Li)よりも貴とする手段は、前記予備充電工程において、正極電位が3.7V(vs.Li/Li)よりも貴となるように、充電装置の充電電圧を設定することによって達成できる。 Means for the positive electrode potential nobler than 3.7V (vs.Li/Li +), in the preliminary charging process, as the positive electrode potential becomes nobler than 3.7V (vs.Li/Li +), This can be achieved by setting the charging voltage of the charging device.

正極電位を3.7V(vs.Li/Li)よりも貴とする手段において、正極電位が高い方が金属粉の溶解速度が高まり、エージング検査工程の時間を短縮できるため好ましい。しかし、正極電位が高すぎると、電解液の分解を促進し電池性能の低下を招く虞がある。従って、充電装置の充電電圧の設定は、正極電位を3.8V(vs.Li/Li)以上となる条件を採用することが好ましく、正極電位が4.0V(vs.Li/Li)以上となる条件を採用することがより好ましく、4.1V(vs.Li/Li)以上がさらに好ましい。また、4.5V(vs.Li/Li)以下が好ましく、4.4V(vs.Li/Li)以下がより好ましく、4.3V(vs.Li/Li)以下がさらに好ましい。 In the means in which the positive electrode potential is nobler than 3.7 V (vs. Li / Li + ), a higher positive electrode potential is preferable because the dissolution rate of the metal powder is increased and the time of the aging inspection process can be shortened. However, if the positive electrode potential is too high, the decomposition of the electrolyte solution is promoted and the battery performance may be deteriorated. Accordingly, the charging voltage of the charging device is preferably set under the condition that the positive electrode potential is 3.8 V (vs. Li / Li + ) or higher, and the positive electrode potential is 4.0 V (vs. Li / Li + ). It is more preferable to adopt the above conditions, and it is more preferable that the voltage is 4.1 V (vs. Li / Li + ) or more. Further, preferably 4.5V (vs.Li/Li +) or less, more preferably 4.4V (vs.Li/Li +), more preferably 4.3V (vs.Li/Li +) or less.

エージング検査工程において、前記電位に設定した充電装置を電池に接続したままとして、正極が前記電位を維持するようにすることは、金属粉の溶解を促進できる点で極めて好ましい。しかしながら、この方法は、充電装置を長時間占有してしまうことになるので、生産効率の点で好ましくない。そこで、エージング検査工程においては、充電装置との接続を解除し、電池を開回路状態とすることが考えられる。電池を開回路状態とすることで、正極電位は徐々に低下するが、予備充電工程において設定した電圧に応じて、正極電位が3.7V(vs.Li/Li)よりも貴である状態がある程度の時間維持できる。 In the aging inspection step, it is extremely preferable that the positive electrode maintain the electric potential while the charging device set at the electric potential is kept connected to the battery from the viewpoint that the dissolution of the metal powder can be promoted. However, this method occupies the charging device for a long time, which is not preferable in terms of production efficiency. Therefore, in the aging inspection process, it is considered that the connection with the charging device is released and the battery is brought into an open circuit state. Although the positive electrode potential gradually decreases by setting the battery in an open circuit state, the positive electrode potential is nobler than 3.7 V (vs. Li / Li + ) according to the voltage set in the precharge process. Can be maintained for some time.

エージング検査工程にかける時間は、混入した金属粉が十分に溶解する時間とすることが必要であり、12時間以上が好ましく、24時間以上がより好ましく、36時間以上がさらに好ましい。しかし、前記時間が長すぎると生産性が低下するため、100時間以下が好ましく、60時間以下がより好ましい。   The time required for the aging inspection step needs to be a time for sufficiently dissolving the mixed metal powder, preferably 12 hours or more, more preferably 24 hours or more, and further preferably 36 hours or more. However, since productivity will fall when the said time is too long, 100 hours or less are preferable and 60 hours or less are more preferable.

前記エージング検査工程において、内部微短絡の発生の有無を検出する方法については、限定されるものではないが、電池の開回路電圧の変化をモニターする方法が挙げられる。内部微短絡を起こす可能性のある電池は、開回路電圧の低下が観察されるので、発見できる。   In the aging inspection step, a method for detecting the presence or absence of the occurrence of an internal fine short circuit is not limited, and a method for monitoring a change in the open circuit voltage of the battery can be mentioned. Batteries that can cause an internal micro short circuit can be found because a drop in open circuit voltage is observed.

このような材料としては、3.7V(vs.Li/Li)よりも貴な電位領域に至って充放電可能な材料であれば特に制限はなく、種々の材料を適宜使用できる。例えば、リチウム遷移金属複合酸化物が挙げられる。リチウム遷移金属複合酸化物としては、LiMn等で表されるスピネル型リチウムマンガン酸化物、LiNi1.5Mn05等で表されるスピネル型リチウムニッケルマンガン酸化物等に代表されるスピネル型結晶構造を有するリチウム遷移金属酸化物や、LiCoO、LiNiO、LiCo1/3Ni1/3Mn1/3、Li1.1Co2/3Ni1/6Mn1/6、等に代表されるα−NaFeO構造を有するLiMeO型(Meは遷移金属)リチウム遷移金属複合酸化物、LiMePO(MeはCo又はMnを含む遷移金属)、Li(PO等のリン酸遷移金属リチウム化合物、等が挙げられる。また、Li1+αMe1−α(α>0)と表記可能ないわゆる「リチウム過剰型」リチウム遷移金属複合酸化物を用いてもよい。ここで、Li/Me比は1.25〜1.6が好ましい。なお、Li/Me比をβとすると、β=(1+α)/(1−α)であるから、例えば、Li/Meが1.5のとき、α=0.2である。 Such a material is not particularly limited as long as it is a material that reaches a potential region nobler than 3.7 V (vs. Li / Li + ) and can be charged and discharged, and various materials can be appropriately used. For example, lithium transition metal complex oxide is mentioned. Examples of the lithium transition metal composite oxide include spinel type lithium manganese oxide represented by LiMn 2 O 4 and the like, spinel type lithium nickel manganese oxide represented by LiNi 1.5 Mn 05 O 4 and the like. Lithium transition metal oxide having a spinel crystal structure, LiCoO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1.1 Co 2/3 Ni 1/6 Mn 1/6 LiMeO 2 type (Me is a transition metal) lithium transition metal composite oxide having an α-NaFeO 2 structure represented by O 2 , etc., LiMePO 4 (Me is a transition metal containing Co or Mn), Li 3 V 2 ( PO 4 ) 3 and the like, and lithium phosphate transition metal lithium compounds. Alternatively, a so-called “lithium-excess” lithium transition metal composite oxide that can be expressed as Li 1 + α Me 1-α O 2 (α> 0) may be used. Here, the Li / Me ratio is preferably 1.25 to 1.6. If the Li / Me ratio is β, β = (1 + α) / (1−α). For example, when Li / Me is 1.5, α = 0.2.

3.7V(vs.Li/Li)よりも貴な電位を示しうる活物質(B)を正極に備える態様としては、限定されるものではなく、正極集電体上であって正極活物質(A)を含む正極合剤層が配されている部分以外の部分(例えば、裏面、端部等)に前記活物質(B)を含む合剤層を配置されていてもよく、前記活物質(B)を含む合剤層が正極集電体表面に接するように層状に配置され、該合剤層を覆うように正極活物質(A)を含む合剤層が配置されていてもよく、前記物質(A)を含む合剤層が正極集電体表面に接するように層状に配置され、該合剤層を覆うように正極活物質(B)を含む合剤層が配置されていてもよく、正極集電体上に正極活物質(A)を含む合剤層と前記活物質(B)を含む合剤層が交互に多層構造となるように配置されていてもよく、正極活物質(A)及び前記活物質(B)を共に含む合剤層が正極集電体に配置されていてもよい。なかでも、前記活物質(B)はできるだけ正極活物質(A)の近傍に配置することにより、前記活物質(B)によって、金属粉の混入が想定されている正極活物質(A)に確実に高い電位を印加することができる点で好ましい。従って、正極活物質(A)と前記活物質(B)とは混合して用いることが好ましい。 The mode of providing the positive electrode with the active material (B) capable of exhibiting a potential nobler than 3.7 V (vs. Li / Li + ) is not limited, and is on the positive electrode current collector and is the positive electrode active material. A mixture layer containing the active material (B) may be disposed on a portion other than the portion where the positive electrode mixture layer containing (A) is disposed (for example, the back surface, the end portion, etc.), and the active material The mixture layer containing (B) may be arranged in layers so as to contact the surface of the positive electrode current collector, and the mixture layer containing the positive electrode active material (A) may be arranged so as to cover the mixture layer, Even if the mixture layer containing the positive electrode active material (B) is arranged so as to cover the mixture layer, the mixture layer containing the substance (A) is arranged in layers so as to contact the surface of the positive electrode current collector The mixture layer containing the positive electrode active material (A) and the mixture layer containing the active material (B) are alternately formed in a multilayer structure on the positive electrode current collector. May be located, the positive electrode active material (A) and the active material (B) together comprising mixture layer may be disposed on the cathode current collector. In particular, the active material (B) is disposed as close as possible to the positive electrode active material (A), so that the active material (B) can reliably ensure the positive electrode active material (A) mixed with metal powder. It is preferable in that a high potential can be applied. Therefore, it is preferable to mix the positive electrode active material (A) and the active material (B).

負極材料としては、限定されるものではなく、リチウムイオンを析出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム−シリコン、リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム−チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。 The negative electrode material is not limited, and any negative electrode material that can deposit or occlude lithium ions may be selected. For example, titanium-based materials such as lithium titanate having a spinel crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4 , alloy-based materials such as Si, Sb, and Sn-based lithium metal, lithium alloys (Lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), lithium composite oxide (lithium-titanium), silicon oxide In addition, an alloy capable of inserting and extracting lithium, a carbon material (for example, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.) can be used.

正極活物質の粉体および負極材料の粉体は、平均粒子サイズ100μm以下であることが望ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で30μm以下であることが望ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。   It is desirable that the positive electrode active material powder and the negative electrode material powder have an average particle size of 100 μm or less. In particular, the positive electrode active material powder is desirably 30 μm or less for the purpose of improving the high output characteristics of the nonaqueous electrolyte battery. In order to obtain the powder in a predetermined shape, a pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane may be used. There is no particular limitation on the classification method, and a sieve, an air classifier, or the like is used as needed for both dry and wet methods.

以上、正極及び負極の主要構成成分である正極活物質及び負極材料について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。   The positive electrode active material and the negative electrode material, which are the main components of the positive electrode and the negative electrode, have been described in detail above. In addition to the main components, the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, and a filler. Etc. may be contained as other constituents.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, A conductive material such as ketjen black, carbon whisker, carbon fiber, and conductive ceramic material can be included as one type or a mixture thereof.

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極または負極の総質量に対して0.1質量%〜50質量%が好ましく、特に0.5質量%〜30質量%が好ましいこれらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   Among these, as the conductive agent, acetylene black is desirable from the viewpoints of electron conductivity and coatability. The addition amount of the conductive agent is preferably 0.1% by mass to 50% by mass, and particularly preferably 0.5% by mass to 30% by mass with respect to the total mass of the positive electrode or the negative electrode. The ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVdF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総質量に対して1〜50質量%が好ましく、特に2〜30質量%が好ましい。   Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyethylene, and polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene butadiene. Polymers having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The addition amount of the binder is preferably 1 to 50% by mass, and particularly preferably 2 to 30% by mass with respect to the total mass of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総質量に対して添加量は30質量%以下が好ましい。   As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by mass or less with respect to the total mass of the positive electrode or the negative electrode.

正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、およびその他の材料を混練し合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、または圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、グラビアロールコーティング、ダイコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。   The positive electrode and the negative electrode are prepared by mixing the main constituents (positive electrode active material in the positive electrode, negative electrode material in the negative electrode) and other materials into a mixture and mixing with an organic solvent such as N-methylpyrrolidone or toluene or water. After that, the obtained liquid mixture is applied on a current collector described in detail below, or pressed and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. . About the said application | coating method, it apply | coats to arbitrary thickness and arbitrary shapes using means, such as roller coating, such as an applicator roll, gravure roll coating, die coating, screen coating, a doctor blade system, spin coating, a bar coater, for example. However, the present invention is not limited to these.

本発明に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   The nonaqueous electrolyte used for the nonaqueous electrolyte secondary battery according to the present invention is not limited, and those generally proposed for use in lithium batteries and the like can be used. Examples of the nonaqueous solvent used for the nonaqueous electrolyte include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; Nitriles such as acetonitrile and benzonitrile; Dioxolane or derivatives thereof; Ethylene sulfide, sulfolane, sultone or derivatives thereof Examples thereof include a conductor alone or a mixture of two or more thereof, but are not limited thereto.

非水電解質に用いる電解質塩としては、例えば、LiClO,LiBF,LiAsF,LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−C、NClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr , KClO 4 , KSCN, and other inorganic ion salts containing one of lithium (Li), sodium (Na), or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 (SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9) 4, NClO 4, ( n-C 4 H 9) 4 NI, (C 2 H 5) 4 N-maleate, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N-phtalate Organic ion salts such as lithium stearyl sulfonate, lithium octyl sulfonate, lithium dodecylbenzene sulfonate, and the like, and these ionic compounds can be used alone or in admixture of two or more.

さらに、LiPF又はLiBFと、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、また、自己放電を抑制することができ、より望ましい。 Further, by using a mixture of LiPF 6 or LiBF 4 and a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , the viscosity of the electrolyte can be further reduced, The low temperature characteristics can be further improved, and self-discharge can be suppressed, which is more desirable.

また、非水電解質として常温溶融塩やイオン液体を用いてもよい。   Moreover, you may use normal temperature molten salt and an ionic liquid as a nonaqueous electrolyte.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、0.5mol/l〜2.5mol/lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 0.5 mol / l to 2 in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics. .5 mol / l.

セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。   As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator for a nonaqueous electrolyte battery include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。   The separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte. Use of the non-aqueous electrolyte in the gel state as described above is preferable in that it has an effect of preventing leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。   Furthermore, it is desirable that the separator be used in combination with the above-described porous film, non-woven fabric, or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several μm or less, and holding the electrolyte in the micropores of the film, Gels.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。   Examples of the solvophilic polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked. The monomer can be subjected to a crosslinking reaction using a radical initiator in combination with heating or ultraviolet rays (UV), or using an actinic ray such as an electron beam (EB).

非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が一例として挙げられる。   The configuration of the nonaqueous electrolyte secondary battery is not particularly limited, and examples thereof include a cylindrical battery having a positive electrode, a negative electrode, and a roll separator, a square battery, and a flat battery.

実際に製造される非水電解質電池では、仮に正極板内に金属粉が混入し、且つ、溶解した金属イオンが負極上に析出しても、その析出物の成長のしかたについては、種々の条件が複雑に組み合わされて決定されるものである。従って、その析出物が内部微短絡を起こすような形状と規模にまで成長するかどうかは、偶然性に大きく支配されるものである。事実、金属粉が混入する同じ環境下で製造された非水電解質電池であっても、実際に内部微短絡が発生する率は極めて低い。従って、本発明の効果を検証する目的で、正極に故意に金属粉を混入させた電池を作製し、試験を行ったとしても、内部微短絡を起こした電池の発生率によって評価しようとすれば、天文学的な個数の電池を作製して試験を行う必要があり、実質不可能である。そこで、以下の実施例では、正極に故意に金属粉を混入させた電池を作製し、溶出して負極に析出した金属イオンの量を測定することにより、本発明の効果を定量的に評価した。故意に混入させる金属粉として、粒径25〜45μm(平均粒径30μm)のステンレス鋼(品番:SUS304)の微粉末を用いた。   In a non-aqueous electrolyte battery that is actually manufactured, even if metal powder is mixed in the positive electrode plate and dissolved metal ions are deposited on the negative electrode, the growth of the precipitate is subject to various conditions. Are determined in a complex combination. Therefore, whether or not the precipitate grows to a shape and scale that causes an internal micro short circuit is largely controlled by chance. In fact, even in a non-aqueous electrolyte battery manufactured under the same environment in which metal powder is mixed, the rate at which internal fine short-circuits actually occur is extremely low. Therefore, for the purpose of verifying the effect of the present invention, even if a battery in which a metal powder is intentionally mixed in the positive electrode is manufactured and tested, if it is attempted to evaluate by the rate of occurrence of a battery that has caused an internal micro short circuit, It is necessary to produce and test an astronomical number of batteries, which is virtually impossible. Therefore, in the following examples, a battery in which metal powder was intentionally mixed into the positive electrode was produced, and the effect of the present invention was quantitatively evaluated by measuring the amount of metal ions eluted and deposited on the negative electrode. . A fine powder of stainless steel (product number: SUS304) having a particle size of 25 to 45 μm (average particle size of 30 μm) was used as the metal powder intentionally mixed.

正極活物質(A)として、組成式LiFePOで表されるリン酸鉄リチウムの粒子表面にカーボンが被覆された材料を用いた。 As the positive electrode active material (A), a material in which carbon particles were coated on the surface of lithium iron phosphate particles represented by the composition formula LiFePO 4 was used.

活物質(B)として、組成式LiCo1/3Ni1/3Mn1/3で表されるリチウム遷移金属複合酸化物を用いた。 As the active material (B), a lithium transition metal composite oxide represented by the composition formula LiCo 1/3 Ni 1/3 Mn 1/3 O 2 was used.

(比較例1〜3、実施例1〜4に係る正極板の作製)
前記金属粉、正極活物質(A)、導電剤としてのアセチレンブラック及び結着剤としてのポリフッ化ビニリデン(PVdF)を1:87:5:7の質量比で含有し、N−メチル−2−ピロリドン(NMP)を溶媒とする正極ペーストを調整した。前記正極ペーストを正極集電体である厚さ20μmの帯状のアルミニウム箔集電体上の片面に塗布し、乾燥した後に、プレス加工を行った。このようにして正極板を作製した。
(Production of positive electrode plates according to Comparative Examples 1 to 3 and Examples 1 to 4)
It contains the metal powder, the positive electrode active material (A), acetylene black as a conductive agent, and polyvinylidene fluoride (PVdF) as a binder in a mass ratio of 1: 87: 5: 7, and N-methyl-2- A positive electrode paste using pyrrolidone (NMP) as a solvent was prepared. The positive electrode paste was applied to one side of a 20 μm-thick belt-shaped aluminum foil current collector, which was a positive electrode current collector, and dried, followed by pressing. In this way, a positive electrode plate was produced.

(実施例5〜7、比較例4に係る正極板の作製)
前記正極活物質(A)に代えて、正極活物質(A)と活物質(B)を混合したものを用いたことを除いては、実施例1と同様にして正極板を作製した。正極活物質(A)と活物質(B)との合計に対する活物質(B)の質量比率は、0.3%(実施例5)、1.0%(実施例6)、4.9%(実施例7)又は10%(比較例4)とした。
(Production of positive electrode plates according to Examples 5 to 7 and Comparative Example 4)
A positive electrode plate was produced in the same manner as in Example 1 except that instead of the positive electrode active material (A), a mixture of the positive electrode active material (A) and the active material (B) was used. The mass ratio of the active material (B) to the total of the positive electrode active material (A) and the active material (B) is 0.3% (Example 5), 1.0% (Example 6), 4.9%. (Example 7) or 10% (Comparative Example 4).

(参考例1に係る正極板の作製)
正極活物質(A)と活物質(B)を90:10の質量比率で混合したもの、導電剤としてのアセチレンブラック及び結着剤としてのポリフッ化ビニリデン(PVdF)を87:5:7の質量比で含有し、N−メチル−2−ピロリドン(NMP)を溶媒とする正極ペーストを調整した。前記正極ペーストを正極集電体である厚さ20μmの帯状のアルミニウム箔集電体上の片面に塗布し、乾燥した後に、プレス加工を行った。このようにして正極板を作製した。
(Preparation of positive electrode plate according to Reference Example 1)
A mixture of the positive electrode active material (A) and the active material (B) at a mass ratio of 90:10, acetylene black as a conductive agent and polyvinylidene fluoride (PVdF) as a binder in a mass of 87: 5: 7. A positive electrode paste containing N-methyl-2-pyrrolidone (NMP) as a solvent was prepared. The positive electrode paste was applied to one side of a 20 μm-thick belt-shaped aluminum foil current collector, which was a positive electrode current collector, and dried, followed by pressing. In this way, a positive electrode plate was produced.

負極には、溶解した金属イオンが析出しやすい材料として、金属リチウムを用いた。金属リチウムは銅箔に貼り付け、負極板とした。  For the negative electrode, metallic lithium was used as a material in which dissolved metal ions are likely to precipitate. Metallic lithium was attached to a copper foil to form a negative electrode plate.

前記正極板及び負極板を対向させ、ガラスセルに設置し、非水電解質を注液した。非水電解質として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)の体積比6:7:7の混合溶媒に1mol/lのLiPFを溶解したものを用いた。このようにして、非水電解質二次電池を作製した。 The positive electrode plate and the negative electrode plate were opposed to each other, placed in a glass cell, and a nonaqueous electrolyte was injected. As the non-aqueous electrolyte, one obtained by dissolving 1 mol / l LiPF 6 in a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 6: 7: 7 was used. In this way, a non-aqueous electrolyte secondary battery was produced.

以下の説明において、負極に金属リチウムを用いているので、充電器が接続され充電電圧が印加されている状態、又は、開回路状態における電池の端子間電圧(V)の値は、それぞれの状態における正極電位(vs.Li/Li)の値と同じであると考えても以下の考察に支障がない。 In the following description, since metallic lithium is used for the negative electrode, the state in which the charger is connected and the charging voltage is applied, or the value of the voltage (V) between the terminals of the battery in the open circuit state is the respective state. Even if it is considered to be the same as the value of the positive electrode potential (vs. Li / Li + ) in FIG.

全ての実施例及び比較例に係る非水電解質二次電池について、定電流定電圧充電を行った。充電電流は1CmAとし、充電時間は3時間とした。充電電圧は、3.575V(比較例1)、3.6V(比較例2)、3.7V(比較例3)、3.8V(実施例1)、3.9V(実施例2)、4.0V(実施例3)又は4.1V(実施例4〜7、比較例4及び参考例1)とした。   The non-aqueous electrolyte secondary batteries according to all examples and comparative examples were subjected to constant current and constant voltage charging. The charging current was 1 CmA and the charging time was 3 hours. The charging voltage is 3.575 V (Comparative Example 1), 3.6 V (Comparative Example 2), 3.7 V (Comparative Example 3), 3.8 V (Example 1), 3.9 V (Example 2), 4 It was set to 0.0 V (Example 3) or 4.1 V (Examples 4 to 7, Comparative Example 4 and Reference Example 1).

充電終了後、充電器を取り外し、開回路状態にて60時間放置した。参考のため、放置24時間後にそれぞれの非水電解質電池の開回路電圧を測定したので、表1に併せて示す。   After charging, the charger was removed and left in an open circuit state for 60 hours. For reference, the open circuit voltage of each nonaqueous electrolyte battery was measured after 24 hours of standing, and is also shown in Table 1.

放置後、負極板を取り出し、負極板上に析出したFeの量を定量した。表1に、定量されたFeの量について、比較例1を基準として示した。   After standing, the negative electrode plate was taken out and the amount of Fe deposited on the negative electrode plate was quantified. Table 1 shows the amount of Fe quantified on the basis of Comparative Example 1.

まず、参考例1においては、60hr放置後に負極からFeが検出されなかったことから、以降の検討において、正極活物質由来のFeについては考慮する必要がないことがわかる。比較例1〜3及び実施例1〜4の結果からわかるように、LiFePOのみを正極活物質として用いた非水電解質電池において、充電電圧を3.6〜3.7Vとした場合は、充電電圧を3.575Vとした場合に比べて、負極に析出したFeの量は1.3倍にとどまっているのに対し、充電電圧を3.8〜4.1Vとした場合には、負極に析出するFeの量が2〜2.5倍に増加した。 First, in Reference Example 1, since Fe was not detected from the negative electrode after being left for 60 hours, it can be seen that it is not necessary to consider Fe derived from the positive electrode active material in the subsequent examination. As can be seen from the results of Comparative Examples 1 to 3 and Examples 1 to 4, in a non-aqueous electrolyte battery using only LiFePO 4 as a positive electrode active material, the charge voltage was 3.6 to 3.7 V. Compared with the case where the voltage is 3.575 V, the amount of Fe deposited on the negative electrode remains 1.3 times, whereas when the charging voltage is 3.8 to 4.1 V, the negative electrode The amount of Fe deposited increased by 2 to 2.5 times.

次に、充電電圧を4.1Vとし、正極活物質中に混合する活物質(B)の割合を変化させた実施例4〜7及び比較例4の結果からわかるように、混合する活物質(B)の割合が多いほど、エージング検査工程において、正極を貴な電位に維持する効果が優れると共に、金属粉から溶出する金属イオンの量を増やすことができることがわかる。   Next, as can be seen from the results of Examples 4 to 7 and Comparative Example 4 in which the charging voltage was 4.1 V and the ratio of the active material (B) mixed in the positive electrode active material was changed, the active material to be mixed ( It can be seen that the greater the ratio of B), the better the effect of maintaining the positive electrode at a noble potential in the aging inspection step, and the more the amount of metal ions eluted from the metal powder.

次に、これらの実施例及び比較例において定量されたFeの量について、実施例4を基準として表2に示すと共に、含有した活物質(B)の質量あたりの効果を計算した結果を示す。この結果から、活物質(B)を1質量%以下含有した場合は単位質量あたりの溶出促進効果が優れているが、これを超えて活物質(B)を含有してもそれに応じた効果が期待できないことがわかる。

Next, the amounts of Fe quantified in these Examples and Comparative Examples are shown in Table 2 with reference to Example 4, and the results of calculating the effect per mass of the contained active material (B) are shown. From this result, when the active material (B) is contained in an amount of 1% by mass or less, the elution promoting effect per unit mass is excellent, but even if the active material (B) is contained beyond this, the effect corresponding to that is obtained. I can't expect it.

Claims (5)

リチウムイオンの電気化学的挿入・脱離反応に伴う酸化・還元電位が専ら3.7V(vs.Li/Li)以下である正極活物質(A)を主として含む正極を備えた非水電解質電池の製造方法であって、正極電位を3.7V(vs.Li/Li)よりも貴とする手段と、内部微短絡の発生の有無を検出する手段とを含む、非水電解質二次電池の製造方法。 Nonaqueous electrolyte battery comprising a positive electrode mainly comprising a positive electrode active material (A) having an oxidation / reduction potential of 3.7 V (vs. Li / Li + ) or less exclusively associated with electrochemical insertion / desorption reactions of lithium ions A non-aqueous electrolyte secondary battery comprising: a means for making the positive electrode potential nobler than 3.7 V (vs. Li / Li + ); and a means for detecting the presence or absence of occurrence of an internal fine short circuit. Manufacturing method. 前記正極は、3.7V(vs.Li/Li)よりも貴な電位を示しうる活物質(B)が、前記正極活物質(A)と前記活物質(B)との合計に対して5質量%未満含んでいることを特徴とする請求項1記載の非水電解質二次電池の製造方法。 The positive electrode has an active material (B) capable of exhibiting a potential nobler than 3.7 V (vs. Li / Li + ) with respect to the total of the positive electrode active material (A) and the active material (B). The method for producing a nonaqueous electrolyte secondary battery according to claim 1, comprising less than 5% by mass. 前記正極活物質(A)は、リン酸鉄リチウムを含有している請求項1又は2記載の非水電解質二次電池の製造方法。 The method for producing a nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material (A) contains lithium iron phosphate. 前記活物質(B)は、リチウム遷移金属複合酸化物である請求項2又は3記載の非水電解質二次電池の製造方法。 The method for producing a nonaqueous electrolyte secondary battery according to claim 2 or 3, wherein the active material (B) is a lithium transition metal composite oxide. リチウムイオンの電気化学的挿入・脱離反応に伴う酸化・還元電位が専ら3.7V(vs.Li/Li)以下である正極活物質(A)を主として含む正極を備えた非水電解質電池であって、前記正極は、3.7V(vs.Li/Li)よりも貴な電位を示しうる活物質(B)が、前記正極活物質(A)と前記活物質(B)との合計に対して5質量%未満備えられている非水電解質二次電池。 Nonaqueous electrolyte battery comprising a positive electrode mainly comprising a positive electrode active material (A) having an oxidation / reduction potential of 3.7 V (vs. Li / Li + ) or less exclusively associated with electrochemical insertion / desorption reactions of lithium ions The active material (B) capable of exhibiting a potential nobler than 3.7 V (vs. Li / Li + ) is obtained by combining the positive electrode active material (A) and the active material (B). A nonaqueous electrolyte secondary battery provided with less than 5% by mass relative to the total.
JP2012275224A 2012-12-18 2012-12-18 Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery Active JP6244623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275224A JP6244623B2 (en) 2012-12-18 2012-12-18 Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275224A JP6244623B2 (en) 2012-12-18 2012-12-18 Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2014120355A true JP2014120355A (en) 2014-06-30
JP6244623B2 JP6244623B2 (en) 2017-12-13

Family

ID=51175026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275224A Active JP6244623B2 (en) 2012-12-18 2012-12-18 Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6244623B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181333A (en) * 2015-03-23 2016-10-13 株式会社Gsユアサ Control device of electricity storage element and control method of electricity storage element
KR20180090722A (en) 2017-02-03 2018-08-13 오므론 가부시키가이샤 Abnormality detecting apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307730A (en) * 2000-04-25 2001-11-02 Sony Corp Positive electrode and nonaqueous electrolyte battery
JP2002279989A (en) * 2001-03-16 2002-09-27 Sony Corp Battery
JP2003036887A (en) * 2001-07-24 2003-02-07 Shin Kobe Electric Mach Co Ltd Inspection method for lithium secondary battery
JP2007026752A (en) * 2005-07-13 2007-02-01 Matsushita Electric Ind Co Ltd Manufacturing method of non-aqueous electrolytic solution secondary battery
JP2008034218A (en) * 2006-07-28 2008-02-14 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008536272A (en) * 2005-04-15 2008-09-04 アヴェスター リミティッド パートナーシップ Lithium-ion rocking chair rechargeable battery
JP2008541401A (en) * 2005-05-17 2008-11-20 スリーエム イノベイティブ プロパティズ カンパニー N-oxide redox shuttle for rechargeable lithium-ion cells
JP2009527096A (en) * 2006-02-17 2009-07-23 スリーエム イノベイティブ プロパティズ カンパニー Rechargeable lithium ion battery with triphenylamine redox shuttle
JP2010251060A (en) * 2009-04-14 2010-11-04 Toyota Central R&D Labs Inc Lithium ion secondary battery
WO2012001988A1 (en) * 2010-07-01 2012-01-05 パナソニック株式会社 Non-aqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307730A (en) * 2000-04-25 2001-11-02 Sony Corp Positive electrode and nonaqueous electrolyte battery
JP2002279989A (en) * 2001-03-16 2002-09-27 Sony Corp Battery
JP2003036887A (en) * 2001-07-24 2003-02-07 Shin Kobe Electric Mach Co Ltd Inspection method for lithium secondary battery
JP2008536272A (en) * 2005-04-15 2008-09-04 アヴェスター リミティッド パートナーシップ Lithium-ion rocking chair rechargeable battery
JP2008541401A (en) * 2005-05-17 2008-11-20 スリーエム イノベイティブ プロパティズ カンパニー N-oxide redox shuttle for rechargeable lithium-ion cells
JP2007026752A (en) * 2005-07-13 2007-02-01 Matsushita Electric Ind Co Ltd Manufacturing method of non-aqueous electrolytic solution secondary battery
JP2009527096A (en) * 2006-02-17 2009-07-23 スリーエム イノベイティブ プロパティズ カンパニー Rechargeable lithium ion battery with triphenylamine redox shuttle
JP2008034218A (en) * 2006-07-28 2008-02-14 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2010251060A (en) * 2009-04-14 2010-11-04 Toyota Central R&D Labs Inc Lithium ion secondary battery
WO2012001988A1 (en) * 2010-07-01 2012-01-05 パナソニック株式会社 Non-aqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016181333A (en) * 2015-03-23 2016-10-13 株式会社Gsユアサ Control device of electricity storage element and control method of electricity storage element
KR20180090722A (en) 2017-02-03 2018-08-13 오므론 가부시키가이샤 Abnormality detecting apparatus
US11329328B2 (en) 2017-02-03 2022-05-10 Omron Corporation Abnormality detector

Also Published As

Publication number Publication date
JP6244623B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
TWI587562B (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active materiallayer for lithium ion battery
JP6264291B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
CN110754009A (en) Lithium secondary battery
JP6130051B2 (en) Electrode active material with improved energy density and lithium secondary battery including the same
JP6186731B2 (en) Nonaqueous electrolyte secondary battery
JP6036168B2 (en) Nonaqueous electrolyte secondary battery
JP6219303B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP6265521B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
KR101423818B1 (en) Pretreatment method and using method of lithium ion secondary battery
JP2005197073A (en) Positive electrode for lithium secondary battery
JP2015115244A (en) Positive electrode for lithium secondary battery, lithium secondary battery, battery module, and automobile mounting battery module
JP2014216127A (en) Nonaqueous electrolyte secondary battery
JP6244623B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
JP2017208186A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6403943B2 (en) Lithium ion secondary battery, method for producing the same, and method for using the same
JP6394956B2 (en) Nonaqueous electrolyte secondary battery
JP6160113B2 (en) Nonaqueous electrolyte secondary battery
JP2017126488A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6699267B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries
JP2017130418A (en) Nonaqueous electrolyte, nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP6699268B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries
JP2014222653A (en) Nonaqueous electrolyte secondary battery
JP2014207092A (en) Nonaqueous electrolyte secondary battery
JP2023531907A (en) Positive electrode slurry and positive electrode for lithium secondary battery using the same
JP2017004817A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171030

R150 Certificate of patent or registration of utility model

Ref document number: 6244623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150