JP6403943B2 - Lithium ion secondary battery, method for producing the same, and method for using the same - Google Patents

Lithium ion secondary battery, method for producing the same, and method for using the same Download PDF

Info

Publication number
JP6403943B2
JP6403943B2 JP2013150091A JP2013150091A JP6403943B2 JP 6403943 B2 JP6403943 B2 JP 6403943B2 JP 2013150091 A JP2013150091 A JP 2013150091A JP 2013150091 A JP2013150091 A JP 2013150091A JP 6403943 B2 JP6403943 B2 JP 6403943B2
Authority
JP
Japan
Prior art keywords
nonaqueous electrolyte
boric acid
secondary battery
mass
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013150091A
Other languages
Japanese (ja)
Other versions
JP2015022901A (en
Inventor
顕 岸本
顕 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2013150091A priority Critical patent/JP6403943B2/en
Priority to CN201480015859.8A priority patent/CN105190983A/en
Priority to PCT/JP2014/001678 priority patent/WO2014156110A1/en
Publication of JP2015022901A publication Critical patent/JP2015022901A/en
Application granted granted Critical
Publication of JP6403943B2 publication Critical patent/JP6403943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、非水電解質を備えるリチウムイオン二次電池、及び、その製造方法、並びに、その使用方法に関する。
The present invention relates to a lithium ion secondary battery including a non-aqueous electrolyte , a manufacturing method thereof, and a usage method thereof .

リチウムイオン二次電池に代表される非水電解質電池は、エネルギー密度が高いことから、携帯電話に代表されるモバイル機器用の電源として広く普及している。非水電解質電池は、今後、電力貯蔵用、電気自動車用及びハイブリッド自動車用等の用途への展開が見込まれている。   Non-aqueous electrolyte batteries typified by lithium ion secondary batteries are widely used as power supplies for mobile devices typified by mobile phones because of their high energy density. In the future, non-aqueous electrolyte batteries are expected to be used for power storage, electric vehicles, hybrid vehicles, and the like.

近年、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車といった自動車分野に非水電解質電池を適用することが検討されており、一部、実用化している。これらの自動車用電池には、高いエネルギー密度が求められると共に、優れた充放電サイクル性能が求められている。即ち、電気自動車、ハイブリッド自動車、プラグインハイブリッドといった自動車に対して充電を行った場合、一定の走行可能距離が確保されることが期待される。一般に、非水電解質二次電池は、充放電を繰り返すと放電容量が徐々に低下するが、自動車に対して充電を繰り返した場合、放電容量の低下の程度が大きいと、走行可能距離が短くなる程度が大きいことを意味するから、次に充電が必要となる時期を予測することが困難となり、充電時期を逸して走行中に自動車が停止してしまう虞がある。   In recent years, application of nonaqueous electrolyte batteries to the automobile field such as electric vehicles, hybrid vehicles, and plug-in hybrid vehicles has been studied, and some have been put into practical use. These automobile batteries are required to have high energy density and excellent charge / discharge cycle performance. That is, when a vehicle such as an electric vehicle, a hybrid vehicle, or a plug-in hybrid is charged, it is expected that a certain travelable distance is secured. In general, non-aqueous electrolyte secondary batteries gradually decrease in discharge capacity when charging and discharging are repeated. However, when charging is repeated on an automobile, if the degree of decrease in discharge capacity is large, the travelable distance becomes shorter. This means that it is difficult to predict the next time when charging is required, and there is a risk that the car will stop while traveling because the charging time is missed.

特許文献1には、フッ素化合物を含有する電解液中にホウ素化合物を含有するリチウム電池が記載され、ホウ素化合物として「例えばB、HBO、(CHO)B、(CO)B、(CHO)B−B等が使用できる。それらの中でも特にBが望ましい。」(段落0037)と記載されている。また、「実施例1」には、正極にLiCoOを用いた非水電解液リチウム二次電池の非水電解液として、EC/PC/DME(2/2/1)−1MLiPFに0.8wt%のBを添加したものを用いたことが具体的に記載されている。また、「上記ホウ素化合物を電解液に含有させることにより、電界液中の含有水分により生成する酸性物質を大巾に減少することができ、これは電解液の劣化、電池容器の腐蝕による容器構成金属イオンに起因する負極の活性低下を防止する結果をもたらす。」(段落0039)、「これらの脱水剤を含ませることにより、電解質の水による分解を防止し、ひいては電解液の劣化、酸性物質の生成を抑えることが出来る。」(段落0041)との記載がある。 Patent Document 1 describes a lithium battery containing a boron compound in an electrolyte solution containing a fluorine compound. As the boron compound, for example, “B 2 O 3 , H 3 BO 3 , (CH 3 O) 3 B, ( C 2 H 5 O) 3 B, (CH 3 O) 3 B—B 2 O 3, etc. Among them, B 2 O 3 is particularly desirable ”(paragraph 0037). Further, in “Example 1”, EC / PC / DME (2/2/1) -1MLiPF 6 is used as a non-aqueous electrolyte for a non-aqueous electrolyte lithium secondary battery using LiCoO 2 for the positive electrode. It is specifically described that 8 wt% B 2 O 3 added was used. In addition, the inclusion of the boron compound in the electrolytic solution can greatly reduce the acidic substance produced by the water contained in the electrolysis solution. This is due to the deterioration of the electrolytic solution and the container structure due to the corrosion of the battery container. This results in preventing the negative electrode activity from being reduced due to metal ions ”(paragraph 0039),“ By including these dehydrating agents, the electrolyte is prevented from being decomposed by water, and thus the electrolyte is deteriorated, and the acidic substance. Can be suppressed ”(paragraph 0041).

特許文献2には、非水電解質二次電池の内部に、温度上昇により水を生成する物質を含むこと(請求項1)、温度上昇により水を生成する物質が非水電解質に含まれること(請求項3)、温度上昇により水を生成する物質がホウ酸であること(請求項7)が記載されている。また、「実施例1」には、LiNiOとHBOを含む正極ペーストをチタンの芯材に塗布し、95℃で乾燥、圧延して正極とした非水電解質二次電池が記載され、「実施例2」には、炭素材料とHBOを含む負極ペーストを銅の芯材に塗布し、95℃で乾燥、圧延して負極とした非水電解質二次電池が記載されている。なお、「非水電解質には、1モル/lの過塩素酸リチウムを溶解したエチレンカーボネートとジメトキシエタンの等比体積混合溶液を用いた。」(段落0013)との記載がある。 Patent Document 2 includes a substance that generates water by increasing the temperature inside the nonaqueous electrolyte secondary battery (Claim 1), and a substance that generates water by increasing temperature is included in the nonaqueous electrolyte ( (Claim 3), it is described that the substance which produces | generates water by a temperature rise is a boric acid (Claim 7). In addition, “Example 1” describes a nonaqueous electrolyte secondary battery in which a positive electrode paste containing LiNiO 2 and H 3 BO 3 is applied to a titanium core, dried at 95 ° C., and rolled to form a positive electrode. “Example 2” describes a non-aqueous electrolyte secondary battery in which a negative electrode paste containing a carbon material and H 3 BO 3 is applied to a copper core, dried at 95 ° C., and rolled to form a negative electrode. Yes. In addition, there is a description that “a non-aqueous electrolyte is an equal volume mixed solution of ethylene carbonate and dimethoxyethane in which 1 mol / l lithium perchlorate is dissolved” (paragraph 0013).

特許文献3には、「正極にリチウム含有マンガン酸化物を用いたリチウム二次電池において、前記正極は、電解液に溶解可能なホウ素化合物を含むことを特徴とするリチウム二次電池。」(請求項1)、「前記ホウ素化合物が、B、HBO、HBO、Hから選ばれる少なくとも1つ以上を含むホウ素化合物であることを特徴とする請求項1記載のリチウム二次電池。」(請求項2)、「しかしながら、正極にLiMnを用い、電解液にLiPF等のハロゲン含有リチウム塩を用いた場合、前記リチウム塩が微量水分と反応し、フッ素化水素酸などのハロゲン化水素酸を発生する。このハロゲン化水素酸は、正極のLiMnを溶解し、負極の炭素表面にMnF等の抵抗の高い被膜を形成し、サイクル性能を低下させる原因となっていた。」(段落0003)、「ホウ素化合物を正極に添加する方法としては、正極活物質であるリチウム含有マンガン酸化物にHBOを混合してから電極を作成する方法が挙げられる。しかしながらHBOは、リチウムと反応する水素原子を多く含み、電池内において不可逆な副反応を起こす虞れがあるため、正極を100℃〜140℃、あるいはそれ以上の温度で熱処理を施すことが好ましい。前記熱処理によって、HBOはHBOやH等に変化するものと考えられる。」(段落0009)との記載がある。また、「実施例」には、スピネルマンガンとHBOを含むポリテトラフルオロエチレンシート電極を減圧下90〜300℃で40時間熱処理して得た正極を用い、EC/DEC(1/1)−1MLiPF電解液と組み合わせた電池を4.4Vで定電流定電圧充電した結果、ホウ素化合物無添加品と比べてサイクル寿命が優れたことが記載されている。また、減圧下90℃40時間熱処理により、正極中のHBOはHBOに変化していると推定されること(段落0033〜0034)が記載されている。 Patent Document 3 discloses “a lithium secondary battery using a lithium-containing manganese oxide as a positive electrode, wherein the positive electrode contains a boron compound that can be dissolved in an electrolytic solution” (claim). Item 1), “The boron compound is a boron compound containing at least one selected from B 2 O 3 , H 3 BO 3 , HBO 2 , and H 2 B 4 O 7. The lithium secondary battery according to claim 2 ”(Claim 2),“ However, when LiMn 2 O 4 is used for the positive electrode and a halogen-containing lithium salt such as LiPF 4 is used for the electrolyte, the lithium salt reacts with a trace amount of moisture. and, generating a hydrohalic acid such as hydrofluoric acid. the hydrohalic acid can be prepared by dissolving the LiMn 2 O 4 positive electrode, the form of the high resistance coating such as MnF 2 on the carbon surface of the negative electrode And has been a cause of reducing the cycle performance. "(Paragraph 0003), a method of adding a" boron compound cathode, a mixture of H 3 BO 3 in the lithium-containing manganese oxide as a positive electrode active material However, H 3 BO 3 contains many hydrogen atoms that react with lithium and may cause irreversible side reactions in the battery, so that the positive electrode is heated to 100 ° C. to 140 ° C. Alternatively, it is preferable to perform heat treatment at a temperature higher than that.It is considered that H 3 BO 3 is changed to HBO 2 , H 2 B 4 O 7, etc. by the heat treatment ”(paragraph 0009). . Further, in the “Example”, a positive electrode obtained by heat-treating a polytetrafluoroethylene sheet electrode containing spinel manganese and H 3 BO 3 at 90 to 300 ° C. for 40 hours under reduced pressure was used, and EC / DEC (1/1 ) As a result of charging a battery combined with -1MLiPF 6 electrolyte at a constant current and a constant voltage at 4.4 V, it is described that the cycle life is superior to that of a boron compound-free product. Further, it is described that it is estimated that H 3 BO 3 in the positive electrode is changed to H 3 BO 4 by heat treatment at 90 ° C. for 40 hours under reduced pressure (paragraphs 0033 to 0034).

特許文献4の要約書及び請求項1には、「電極の界面抵抗の増大を抑制し、電池にすぐれた負荷特性および低温特性を与え、さらに優れた寿命特性を与える非水電解液と、それを用いた寿命特性にすぐれた二次電池を提供すること」を目的として「式(1)で表わされるホウ酸エステルと、非水溶媒と電解質を含む非水電解液、及びそれを用いた二次電池」からなる発明が記載され、式(1)としてB(OR)(OR)(OR)が記載され、「R〜Rは、同一であっても異なっていてもよく、水素、金属または有機基を示し、互いに結合していてもよい。」と記載されている。しかしながら、ホウ酸を用いることについては記載がない。また、特許文献4の実施例の欄には、LiCoOを正極に用いた非水電解液二次電池の特性を評価するにあたって、充電条件を4.2V定電圧又は4.1V定電圧としたことが記載されている。 The abstract of patent document 4 and claim 1 include: “a non-aqueous electrolyte that suppresses an increase in electrode interface resistance, gives the battery excellent load characteristics and low-temperature characteristics, and provides excellent life characteristics; For the purpose of “providing a secondary battery having excellent life characteristics using a non-aqueous electrolytic solution containing a boric acid ester represented by the formula (1), a non-aqueous solvent and an electrolyte, and a battery using the same. The invention consisting of “secondary battery” is described, B (OR 1 ) (OR 2 ) (OR 3 ) is described as formula (1), and “R 1 to R 3 ” may be the same or different. , Represents a hydrogen, metal, or organic group, and may be bonded to each other. However, there is no description about using boric acid. Further, in the column of Examples of Patent Document 4, in order to evaluate the characteristics of the non-aqueous electrolyte secondary battery using LiCoO 2 for the positive electrode, and the charge condition and 4.2V constant voltage or 4.1V constant voltage It is described.

特開平9−139232号公報JP-A-9-139232 特開平11−191417号公報JP 11-191417 A 特開2001−257003号公報JP 2001-257003 A 特開2003−132946号公報JP 2003-132946 A

本発明者らは、予備試験として後述するように、非水電解質に添加する添加剤として各種ホウ酸化合物を検討したところ、ホウ酸を選択することにより、これを用いた非水電解質電池の充放電サイクル性能を顕著に向上できるとの知見を得た。本発明は、この知見に基づき、さらに電池性能を向上させることを目的とする。   As will be described later as a preliminary test, the present inventors have examined various boric acid compounds as additives to be added to the nonaqueous electrolyte, and by selecting boric acid, charging of a nonaqueous electrolyte battery using the boric acid compound is possible. The knowledge that the discharge cycle performance can be remarkably improved was obtained. The present invention aims to further improve battery performance based on this finding.

本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施の形態若しくは実験例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。   The configuration and operational effects of the present invention will be described with the technical idea. However, the action mechanism includes estimation, and the correctness does not limit the present invention. It should be noted that the present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the following embodiments or experimental examples are merely examples in all respects and should not be interpreted in a limited manner. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、正極と、負極と、ホウ酸及び環状スルホン酸化合物が添加された非水電解質を備える非水電解質二次電池である。   The present invention is a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte to which boric acid and a cyclic sulfonic acid compound are added.

このような構成によれば、充放電サイクル性能及び保存性能に優れた非水電解質二次電池を提供することができる。   According to such a configuration, a nonaqueous electrolyte secondary battery excellent in charge / discharge cycle performance and storage performance can be provided.

ホウ酸は極めて安価な材料であるため、ホウ酸を選択することにより、他のホウ素化合物よりも優れた効果を奏するだけでなく、非水電解質電池を安価に提供できる。   Since boric acid is an extremely inexpensive material, selecting boric acid not only provides an effect superior to that of other boron compounds, but can also provide a nonaqueous electrolyte battery at a low cost.

また、本発明は、正極と、負極と、ホウ酸及び環状スルホン酸化合物を含有している非水電解質と、を備える非水電解質二次電池である。   Moreover, this invention is a nonaqueous electrolyte secondary battery provided with a positive electrode, a negative electrode, and the nonaqueous electrolyte containing a boric acid and a cyclic sulfonic acid compound.

即ち、後述するように、本発明者らは、ホウ酸が添加された非水電解質が含有するホウ酸の量は、該非水電解質を調整する際に添加したホウ酸の量に比べて減少することがあるとしても、少なくとも0.5質量%以上のホウ酸が添加された非水電解質は、ホウ酸を含有していることを見出した。また、環状スルホン酸化合物及び0.5質量%以上のホウ酸が添加された非水電解質を用いた非水電解質電池は、優れた電池性能を示すことを見出した。また、環状スルホン酸化合物及び0.5質量%以上のホウ酸が添加された非水電解質を用いて非水電解質電池を作製し、充放電を伴う使用がなされた状態であっても、非水電解質電池が備える非水電解質は、環状スルホン酸化合物及びホウ酸を含有していることを見出した。   That is, as will be described later, the present inventors reduce the amount of boric acid contained in the nonaqueous electrolyte to which boric acid is added as compared with the amount of boric acid added when adjusting the nonaqueous electrolyte. In some cases, the non-aqueous electrolyte to which at least 0.5% by mass or more of boric acid was added was found to contain boric acid. Moreover, it discovered that the nonaqueous electrolyte battery using the nonaqueous electrolyte to which the cyclic sulfonic acid compound and 0.5 mass% or more of boric acid were added showed the outstanding battery performance. In addition, a non-aqueous electrolyte battery is prepared using a non-aqueous electrolyte to which a cyclic sulfonic acid compound and 0.5% by mass or more of boric acid are added. It has been found that the nonaqueous electrolyte provided in the electrolyte battery contains a cyclic sulfonic acid compound and boric acid.

また、本発明は、上記した本発明に係る非水電解質二次電池を4.4V(vs.Li/Li)以上の正極電位に至って充電を行う、非水電解質二次電池の使用方法である。本発明に係る非水電解質を適用した非水電解質二次電池に対してこのような使用方法を採用することにより、多数回にわたる充放電サイクルを繰り返しても高い放電容量を維持できる非水電解質二次電池の使用方法を提供できる。本発明は、1個又は複数個の本発明に係る非水電解質二次電池を備え、4.4V(vs.Li/Li)以上の正極電位に至って充電が制御される電池システムとして実現できる。また、本発明は、1個又は複数個の本発明に係る非水電解質電池と、4.4V(vs.Li/Li)以上の正極電位に至って充電が制御される電池システムを搭載した電気自動車、ハイブリッド自動車又はプラグインハイブリッド自動車として実現できる。 The present invention also relates to a method of using a nonaqueous electrolyte secondary battery in which the nonaqueous electrolyte secondary battery according to the present invention is charged at a positive electrode potential of 4.4 V (vs. Li / Li + ) or higher. is there. By adopting such a usage method for the non-aqueous electrolyte secondary battery to which the non-aqueous electrolyte according to the present invention is applied, the non-aqueous electrolyte can maintain a high discharge capacity even after repeated many charge / discharge cycles. A method of using the secondary battery can be provided. The present invention can be realized as a battery system that includes one or a plurality of non-aqueous electrolyte secondary batteries according to the present invention and whose charge is controlled by reaching a positive electrode potential of 4.4 V (vs. Li / Li + ) or higher. . In addition, the present invention also includes an electric battery equipped with one or a plurality of non-aqueous electrolyte batteries according to the present invention and a battery system in which charging is controlled by reaching a positive electrode potential of 4.4 V (vs. Li / Li + ) or higher. It can be realized as a car, a hybrid car or a plug-in hybrid car.

本発明によれば、充放電サイクル性能に優れた非水電解質電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte battery excellent in charging / discharging cycling performance can be provided.

予備試験に係る非水電解質二次電池の充放電サイクル性能を示す図である。It is a figure which shows the charging / discharging cycle performance of the nonaqueous electrolyte secondary battery which concerns on a preliminary test. 予備試験に係る非水電解質二次電池の充放電サイクル性能を示す図である。It is a figure which shows the charging / discharging cycle performance of the nonaqueous electrolyte secondary battery which concerns on a preliminary test.

本発明に係る非水電解質を調整する方法については、何ら限定されるものではない。例えば、電解質塩としてLiPFを用いた一般的な電解液にホウ酸及び環状スルホン酸化合物を添加することによって得ることができる。前記ホウ酸は、化学式HBO又はB(OH)と表記され、試薬等として入手できる。なお、上記化学式のHの部分が炭化水素基であるホウ酸エステルは、ホウ酸に比べて効果が劣る。 The method for adjusting the non-aqueous electrolyte according to the present invention is not limited at all. For example, it can be obtained by adding boric acid and a cyclic sulfonic acid compound to a general electrolytic solution using LiPF 6 as an electrolyte salt. The boric acid is represented by the chemical formula H 3 BO 3 or B (OH) 3 and can be obtained as a reagent or the like. In addition, the boric acid ester whose H part of the above chemical formula is a hydrocarbon group is inferior to boric acid.

ホウ酸の添加量は、本発明の効果を十分に発揮させるため、0.2質量%以上が好ましく、0.5質量%以上がより好ましい。また、放電容量が低下する虞を低減するため、2質量%以下が好ましく、1.5質量%以下がより好ましい。   The amount of boric acid added is preferably 0.2% by mass or more, and more preferably 0.5% by mass or more in order to sufficiently exhibit the effects of the present invention. Moreover, 2 mass% or less is preferable and 1.5 mass% or less is more preferable in order to reduce the possibility that the discharge capacity will decrease.

環状スルホン酸化合物としては、下記一般式で表されるものが挙げられる。


〔一般式(2)において、R は一般式(4)又は、式(5)で表される基(*の部分がR に結合)である。R は、ハロゲンを含んでも良い炭素数1〜3のアルキル基である。〕
Examples of the cyclic sulfonic acid compound include those represented by the following general formula.


[In General Formula (2), R 1 is a group represented by General Formula (4) or Formula (5) (the part of * is bonded to R 1 ). R 3 is a C 1-3 alkyl group which may contain halogen. ]

一般式()で表される環状スルホン酸化合物の中には、2個以上の不斉炭素を有し、立体異性体(ジアステレオマー)が存在するものがある。本願明細書において、一般式()で表される環状スルホン酸化合物は、そのようなジアステレオマーの混合物であるものを含む。
Some cyclic sulfonic acid compounds represented by the general formula ( 2 ) have two or more asymmetric carbons and exist as stereoisomers (diastereomers). In the present specification, the cyclic sulfonic acid compound represented by the general formula ( 2 ) includes those which are a mixture of such diastereomers.

一般式()において、 式()で表される基である環状スルホン酸化合物は、ジグリコールサルフェート(DGLST)に相当する。
In the general formula ( 2 ), the cyclic sulfonic acid compound in which R 1 is a group represented by the formula ( 5 ) corresponds to diglycol sulfate (DGLST).

一般式()で表される基である環状スルホン酸化合物は、3級アルコールを原料とし、環は1個であるが、2個のスルホン酸と化合した化合物であり、DGLSTと同様の効果を奏するものである。Rがメチル基の場合は、4−メチルスルホニルオキシメチル−2,2−ジオキソ−1,3,2−ジオキサチオランであり、R3がエチル基の場合は、4−エチルスルホニルオキシメチル−2,2−ジオキソ−1,3,2−ジオキサチオランである。
The cyclic sulfonic acid compound in which R 1 is a group represented by the general formula ( 4 ) is a compound in which a tertiary alcohol is used as a raw material and has one ring, but is combined with two sulfonic acids, and DGLST and The same effect is produced. When R 3 is a methyl group, it is 4-methylsulfonyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, and when R 3 is an ethyl group, 4-ethylsulfonyloxymethyl-2,2 -Dioxo-1,3,2-dioxathiolane.

これらの中でも、非水電解質への含有量が少なくて済むことから、分子量の小さいDGLSTが好ましい。   Among these, DGLST having a small molecular weight is preferable because the content in the non-aqueous electrolyte is small.

上記環状スルホン酸化合物の作用機構はかならずしも明確ではない。以下に、ジグリコールサルフェート(DGLST)を含有する非水電解質を用いた場合の充放電サイクル性能改善の推定メカニズムを記載する。   The mechanism of action of the cyclic sulfonic acid compound is not always clear. Below, the estimation mechanism of the charge / discharge cycle performance improvement at the time of using the non-aqueous electrolyte containing diglycol sulfate (DGLST) is described.

一般に、非水電解質電池は、負極上において、電解液中の有機溶媒の継続的な還元分解がサイクル特性等の電池の寿命を低下させる原因になっていると考えられる。ここで、DGLSTの還元分解電位は約1.1V(vs.Li/Li)であり、他の一般的な溶媒よりも比較的高いため、非水電解質二次電池の初回充電時に他の溶媒に先駆けて、負極上にDGLST由来の被膜が形成される。この被膜によって、有機溶媒の継続的な還元分解が抑制されると推測される。よって、DGLSTを非水電解質に含有させることにより、サイクル特性等の非水電解質二次電池の寿命が改善するものと考えられる。 Generally, in a nonaqueous electrolyte battery, it is considered that continuous reductive decomposition of an organic solvent in an electrolyte solution causes a decrease in battery life such as cycle characteristics on the negative electrode. Here, since the reductive decomposition potential of DGLST is about 1.1 V (vs. Li / Li + ), which is relatively higher than other general solvents, other solvents are not charged during the initial charge of the nonaqueous electrolyte secondary battery. Prior to this, a DGLST-derived film is formed on the negative electrode. It is estimated that the continuous reductive decomposition of the organic solvent is suppressed by this coating. Therefore, it is considered that the life of the nonaqueous electrolyte secondary battery such as cycle characteristics is improved by including DGLST in the nonaqueous electrolyte.

環状スルホン酸化合物の含有量としては、非水電解質二次電池中の非水電解質から環状スルホン酸化合物が検出される程度含まれていることが好ましい。このように、非水電解質二次電池中の非水電解質から検出される程度に環状スルホン酸化合物が含まれている場合、充放電サイクル性能を改善することが可能となる。また、非水電解質二次電池が初期活性化後(使用前、出荷時)の状態にあるときに、非水電解質から環状スルホン酸化合物が検出される程度含まれている場合、電池の使用時において、サイクル特性を十分に改善することが可能となるため、特に好ましい。   The content of the cyclic sulfonic acid compound is preferably included to the extent that the cyclic sulfonic acid compound is detected from the nonaqueous electrolyte in the nonaqueous electrolyte secondary battery. Thus, when the cyclic sulfonic acid compound is contained to the extent that it is detected from the nonaqueous electrolyte in the nonaqueous electrolyte secondary battery, the charge / discharge cycle performance can be improved. In addition, when the non-aqueous electrolyte secondary battery is in the state after initial activation (before use, at the time of shipment), when the cyclic sulfonic acid compound is detected from the non-aqueous electrolyte, the battery is used. Is particularly preferable because the cycle characteristics can be sufficiently improved.

非水電解質二次電池中の非水電解質から検出される環状スルホン酸化合物の量は、0.01質量%以上、5質量%未満であることが好ましい。検出される環状スルホン酸化合物が0.01質量%以上であれば、サイクル特性を十分に改善することが可能となるため好ましい。また、検出される環状スルホン酸化合物を5質量%未満とすることで、本発明の効果を維持しつつ、非水電解質二次電池のコストを抑制することができるため好ましい。特に好ましくは、0.05質量%以上、4質量%以下である。   The amount of the cyclic sulfonic acid compound detected from the nonaqueous electrolyte in the nonaqueous electrolyte secondary battery is preferably 0.01% by mass or more and less than 5% by mass. If the detected cyclic sulfonic acid compound is 0.01% by mass or more, it is preferable because cycle characteristics can be sufficiently improved. Moreover, it is preferable to make the detected cyclic sulfonic acid compound less than 5% by mass because the cost of the non-aqueous electrolyte secondary battery can be suppressed while maintaining the effects of the present invention. Especially preferably, it is 0.05 mass% or more and 4 mass% or less.

非水電解質に含まれる環状スルホン酸化合物の検出(定性及び定量)は、GC−MS測定やLC−MS測定により行うことが可能である。   Detection (qualitative and quantitative) of the cyclic sulfonic acid compound contained in the nonaqueous electrolyte can be performed by GC-MS measurement or LC-MS measurement.

環状スルホン酸化合物を含有する非水電解質を調製するに当たり、非水電解質を構成する電解質塩、非水溶媒及び環状スルホン酸化合物の混合順序は任意である。後述の実施例においては、非水溶媒に電解質塩を溶解させたのち、環状スルホン酸化合物を添加する手順により環状スルホン酸化合物を含有する非水電解質を調製しているが、この手順以外で調整した環状スルホン酸化合物を含有する非水電解質を用いたとしても、本発明の効果は発現する。また、環状スルホン酸化合物以外の化合物が非水電解質に含まれる場合も同様に混合順序は任意である。   In preparing a non-aqueous electrolyte containing a cyclic sulfonic acid compound, the mixing order of the electrolyte salt, the non-aqueous solvent and the cyclic sulfonic acid compound constituting the non-aqueous electrolyte is arbitrary. In the examples described later, after dissolving an electrolyte salt in a non-aqueous solvent, a non-aqueous electrolyte containing a cyclic sulfonic acid compound is prepared by a procedure of adding a cyclic sulfonic acid compound. Even if a non-aqueous electrolyte containing the prepared cyclic sulfonic acid compound is used, the effect of the present invention is exhibited. Similarly, when the nonaqueous electrolyte contains a compound other than the cyclic sulfonic acid compound, the mixing order is arbitrary.

前記非水溶媒が、エチレンカーボネート等の環状カーボネートと、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートとを含有する場合、環状カーボネートと鎖状カーボネートとの合計体積中に占める環状カーボネートの体積比率は、10体積%以上が好ましく、20体積%以上がより好ましい。また、40体積%以下が好ましく、30体積%以下がより好ましい。   When the non-aqueous solvent contains a cyclic carbonate such as ethylene carbonate and a chain carbonate such as ethyl methyl carbonate and diethyl carbonate, the volume ratio of the cyclic carbonate in the total volume of the cyclic carbonate and the chain carbonate is 10 volume% or more is preferable and 20 volume% or more is more preferable. Moreover, 40 volume% or less is preferable and 30 volume% or less is more preferable.

非水電解質に用いる電解質塩としては、例えば、LiClO,LiBF,LiAsF,LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−C、NClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, and NaBr. , KClO 4 , KSCN, and other inorganic ion salts containing one of lithium (Li), sodium (Na), or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 (SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9) 4, NClO 4, ( n-C 4 H 9) 4 NI, (C 2 H 5) 4 N-maleate, (C 2 H 5) 4 N-benzoate, (C 2 H 5) 4 N-phtalate Organic ion salts such as lithium stearyl sulfonate, lithium octyl sulfonate, lithium dodecylbenzene sulfonate, and the like, and these ionic compounds can be used alone or in admixture of two or more.

また、非水電解質として常温溶融塩やイオン液体を用いてもよい。   Moreover, you may use normal temperature molten salt and an ionic liquid as a nonaqueous electrolyte.

負極材料としては、限定されるものではなく、リチウムイオンを析出あるいは吸蔵することのできる形態のものであればどれを選択してもよい。例えば、Li[Li1/3Ti5/3]Oに代表されるスピネル型結晶構造を有するチタン酸リチウム等のチタン系材料、SiやSb,Sn系などの合金系材料リチウム金属、リチウム合金(リチウム−シリコン、リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,及びウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウム−チタン)、酸化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。 The negative electrode material is not limited, and any negative electrode material that can deposit or occlude lithium ions may be selected. For example, titanium-based materials such as lithium titanate having a spinel crystal structure represented by Li [Li 1/3 Ti 5/3 ] O 4 , alloy-based materials such as Si, Sb, and Sn-based lithium metal, lithium alloys (Lithium metal-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys), lithium composite oxide (lithium-titanium), silicon oxide In addition, an alloy capable of inserting and extracting lithium, a carbon material (for example, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.) can be used.

正極活物質の粉体および負極材料の粉体は、平均粒子サイズ100μm以下であることが望ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で10μm以下であることが望ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。   It is desirable that the positive electrode active material powder and the negative electrode material powder have an average particle size of 100 μm or less. In particular, the positive electrode active material powder is desirably 10 μm or less for the purpose of improving the high output characteristics of the non-aqueous electrolyte battery. In order to obtain the powder in a predetermined shape, a pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane may be used. There is no particular limitation on the classification method, and a sieve, an air classifier, or the like is used as needed for both dry and wet methods.

以上、正極及び負極の主要構成成分である正極活物質及び負極材料について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。   The positive electrode active material and the negative electrode material, which are the main components of the positive electrode and the negative electrode, have been described in detail above. In addition to the main components, the positive electrode and the negative electrode include a conductive agent, a binder, a thickener, and a filler. Etc. may be contained as other constituents.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (such as scaly graphite, scaly graphite, earthy graphite), artificial graphite, carbon black, acetylene black, Conductive materials such as ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, and conductive ceramic material can be included as one kind or a mixture thereof. .

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%〜50重量%が好ましく、特に0.5重量%〜30重量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   Among these, as the conductive agent, acetylene black is desirable from the viewpoints of electron conductivity and coatability. The addition amount of the conductive agent is preferably 0.1% by weight to 50% by weight, and particularly preferably 0.5% by weight to 30% by weight with respect to the total weight of the positive electrode or the negative electrode. In particular, it is desirable to use acetylene black by pulverizing into ultrafine particles of 0.1 to 0.5 μm because the required carbon amount can be reduced. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVdF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1〜50重量%が好ましく、特に2〜30重量%が好ましい。   Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyethylene, and polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene butadiene. Polymers having rubber elasticity such as rubber (SBR) and fluororubber can be used as one kind or a mixture of two or more kinds. The addition amount of the binder is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight, based on the total weight of the positive electrode or the negative electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は30重量%以下が好ましい。   As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by weight or less with respect to the total weight of the positive electrode or the negative electrode.

正極及び負極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、およびその他の材料を混練し合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、または圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。   The positive electrode and the negative electrode are prepared by mixing the main constituents (positive electrode active material in the positive electrode, negative electrode material in the negative electrode) and other materials into a mixture and mixing with an organic solvent such as N-methylpyrrolidone or toluene or water. After that, the obtained liquid mixture is applied on a current collector described in detail below, or pressed and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours. . About the application method, for example, it is desirable to apply to any thickness and any shape using means such as roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, etc. It is not limited.

セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。   As the separator, it is preferable to use a porous film or a non-woven fabric exhibiting excellent high rate discharge performance alone or in combination. Examples of the material constituting the separator for a nonaqueous electrolyte battery include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。   The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.

また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。   The separator may be a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, polyvinylidene fluoride, and an electrolyte. Use of the non-aqueous electrolyte in the gel state as described above is preferable in that it has an effect of preventing leakage.

さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。   Furthermore, it is desirable that the separator be used in combination with the above-described porous film, non-woven fabric, or the like and a polymer gel because the liquid retention of the electrolyte is improved. That is, by forming a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several μm or less, and holding the electrolyte in the micropores of the film, Gels.

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。   Examples of the solvophilic polymer include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked. The monomer can be subjected to a crosslinking reaction using a radical initiator in combination with heating or ultraviolet rays (UV), or using an actinic ray such as an electron beam (EB).

非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が一例として挙げられる。   The configuration of the nonaqueous electrolyte secondary battery is not particularly limited, and examples thereof include a cylindrical battery having a positive electrode, a negative electrode, and a roll separator, a square battery, and a flat battery.

(予備試験)
本発明者らが行った予備試験の内容を次に示す。
(Preliminary test)
The contents of the preliminary test conducted by the present inventors are as follows.

(正極活物質の作製)
硝酸コバルト、硝酸ニッケル及び硝酸マンガンを、Co:Ni:Mnの原子比が1:1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、大気中110℃で加熱、乾燥して、Co、Ni及びMnを含む共沈前駆体を作製した。前記共沈前駆体に水酸化リチウムを加え、瑪瑙製自動乳鉢を用いてよく混合し、Li:(Co,Ni,Mn)のモル比が102:100である混合粉体を調製した。これをアルミナ製匣鉢に充填し、電気炉を用いて100℃/hで1000℃まで昇温し、1000℃にて、5時間、大気雰囲気下で焼成することにより、組成式LiCo1/3Ni1/3Mn1/3で表されるリチウム遷移金属複合酸化物を作製し、これを正極活物質として用いた。窒素吸着法により測定したBET比表面積は1.0m/gであり、レーザ回折散乱法粒子径分布測定装置を用いたD50の値は12.1μmであった。このようにして、正極活物質を作製した。
(Preparation of positive electrode active material)
A sodium hydroxide aqueous solution is added to an aqueous solution containing cobalt nitrate, nickel nitrate and manganese nitrate at a Co: Ni: Mn atomic ratio of 1: 1: 1 and coprecipitated, and heated and dried at 110 ° C. in the air. Thus, a coprecipitation precursor containing Co, Ni and Mn was prepared. Lithium hydroxide was added to the coprecipitation precursor and mixed well using a smoked automatic mortar to prepare a mixed powder having a Li: (Co, Ni, Mn) molar ratio of 102: 100. This is filled in an alumina sagger, heated to 1000 ° C. at 100 ° C./h using an electric furnace, and calcined at 1000 ° C. for 5 hours in the air atmosphere, whereby the composition formula LiCo 1/3 A lithium transition metal composite oxide represented by Ni 1/3 Mn 1/3 O 2 was produced and used as a positive electrode active material. The BET specific surface area measured by the nitrogen adsorption method was 1.0 m 2 / g, and the value of D50 using a laser diffraction scattering method particle size distribution measuring device was 12.1 μm. In this way, a positive electrode active material was produced.

(正極板の作製)
前記正極活物質、アセチレンブラック(AB)及びポリフッ化ビニリデン(PVdF)を質量比93:3:4の割合(固形分換算)で含有し、N−メチルピロリドン(NMP)を溶剤とする正極ペーストを作製し、厚さ15μmの帯状のアルミニウム箔集電体の両面に塗布した。該正極をローラープレス機により加圧成型して正極活物質層を成型した後、150℃で14時間減圧乾燥して、極板中の水分を除去した。このようにして正極板を作製した。
(Preparation of positive electrode plate)
A positive electrode paste containing the positive electrode active material, acetylene black (AB) and polyvinylidene fluoride (PVdF) in a mass ratio of 93: 3: 4 (in terms of solid content) and N-methylpyrrolidone (NMP) as a solvent. It produced and apply | coated on both surfaces of the 15-micrometer-thick strip | belt-shaped aluminum foil electrical power collector. The positive electrode was pressure-molded with a roller press to form a positive electrode active material layer, and then dried under reduced pressure at 150 ° C. for 14 hours to remove moisture in the electrode plate. In this way, a positive electrode plate was produced.

(負極板の作製)
黒鉛、スチレン−ブタジエン・ゴム(SBR)及びカルボキシメチルセルロース(CMC)を質量比97:2:1の割合(固形分換算)で含有し、水を溶剤とする負極ペーストを作製し、厚さ10μmの帯状の銅箔集電体の両面に塗布した。該負極をローラープレス機により加圧成型して負極活物質層を成型した後、25℃(室温)で14時間減圧乾燥して、極板中の水分を除去した。このようにして負極板を作製した。
(Preparation of negative electrode plate)
A negative electrode paste containing graphite, styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) in a mass ratio of 97: 2: 1 (in terms of solid content) and using water as a solvent was prepared, and the thickness was 10 μm. It apply | coated to both surfaces of a strip | belt-shaped copper foil collector. The negative electrode was pressure-molded with a roller press to form a negative electrode active material layer, and then dried under reduced pressure at 25 ° C. (room temperature) for 14 hours to remove moisture in the electrode plate. In this way, a negative electrode plate was produced.

(非水電解質1)
エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPFを1.0mol/lの濃度で溶解させた電解液を非水電解質1とする。
(Nonaqueous electrolyte 1)
An electrolyte solution in which LiPF 6 is dissolved at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7 is referred to as nonaqueous electrolyte 1.

(非水電解質2)
エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPFを1.0mol/lの濃度で溶解させた電解液を作製し、前記電解液に対して、さらに0.5質量%のホウ酸を添加して溶解させた。これを非水電解質2とする。
(Nonaqueous electrolyte 2)
An electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was prepared. .5% by weight boric acid was added and dissolved. This is designated as non-aqueous electrolyte 2.

(非水電解質3)
エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPFを1.0mol/lの濃度で溶解させた電解液を作製し、前記電解液に対して、さらに0.5質量%のリチウムビスオキサレートボラート(LiBOB)を添加して溶解させた。これを非水電解質3とする。
(Nonaqueous electrolyte 3)
An electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was prepared. .5 mass% lithium bisoxalate borate (LiBOB) was added and dissolved. This is designated as non-aqueous electrolyte 3.

(非水電解質4)
エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPFを1.0mol/lの濃度で溶解させた電解液を作製し、前記電解液に対して、さらに0.5質量%の(化2)で示されるボロキシン環化合物(TiPBx)を添加して溶解させた。これを非水電解質4とする。
(Nonaqueous electrolyte 4)
An electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was prepared. 5% by mass of a boroxine ring compound (TiPBx) represented by (Chemical Formula 2) was added and dissolved. This is designated as non-aqueous electrolyte 4.

(非水電解質5)
エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPFを1.0mol/lの濃度で溶解させた電解液を作製し、前記電解液に対して、さらに0.5質量%のホウ酸トリブチル(TBB)を添加して溶解させた。これを非水電解質5とする。
(Nonaqueous electrolyte 5)
An electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was prepared. .5% by weight tributyl borate (TBB) was added and dissolved. This is designated as non-aqueous electrolyte 5.

(非水電解質6)
エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPFを1.0mol/lの濃度で溶解させた電解液を作製し、前記電解液に対して、さらに0.5質量%のホウ酸トリプロピル(TPB)を添加して溶解させた。これを非水電解質6とする。
(Nonaqueous electrolyte 6)
An electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was prepared. 5% by mass of tripropyl borate (TPB) was added and dissolved. This is designated as non-aqueous electrolyte 6.

(非水電解質7)
エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPFを1.0mol/lの濃度で溶解させた電解液を作製し、前記電解液に対して、さらに0.5質量%のホウ酸トリス(トリメチルシリル)(TMSB)を添加して溶解させた。これを非水電解質7とする。
(Nonaqueous electrolyte 7)
An electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was prepared. 5% by weight of tris (trimethylsilyl) borate (TMSB) was added and dissolved. This is designated as non-aqueous electrolyte 7.

上記非水電解質1〜7をそれぞれ用いて、次の手順にて非水電解質二次電池を作製した。   Using each of the nonaqueous electrolytes 1 to 7, a nonaqueous electrolyte secondary battery was produced by the following procedure.

(非水電解質二次電池の作製)
<組立工程>
ポリエチレン製微多孔膜からなるセパレータを介して前記正極板と前記負極板を積層し、扁平形状に巻回して発電要素を作製し、アルミニウム製の角型電槽缶に収納し、正負極端子を取り付けた。この容器内部に非水電解質を注入したのちに封口した。電槽缶の外形寸法は、49.3mm(高さ)×33.7mm(幅)×5.17mm(厚さ)である。このようにして非水電解質電池を組み立てた。
(Preparation of non-aqueous electrolyte secondary battery)
<Assembly process>
The positive electrode plate and the negative electrode plate are laminated through a separator made of a polyethylene microporous membrane, wound in a flat shape to produce a power generation element, housed in an aluminum square battery case, and positive and negative electrode terminals Attached. The container was sealed after injecting a nonaqueous electrolyte into the container. The outer dimensions of the battery case can are 49.3 mm (height) × 33.7 mm (width) × 5.17 mm (thickness). In this way, a non-aqueous electrolyte battery was assembled.

<初期充放電工程>
次に、25℃にて、2サイクルの初期充放電工程に供した。電圧制御は、全て、正負極端子間電圧に対して行った。1サイクル目の充電は、電流0.2CmA、電圧4.35V、8時間の定電流定電圧充電とし、放電は、電流0.2CmA、終止電圧2.75Vの定電流放電とした。2サイクル目の充電は、電流1.0CmA、電圧4.35V、3時間の定電流定電圧充電とし、放電は、電流1.0CmA、終止電圧2.75Vの定電流放電とした。全てのサイクルにおいて、充電後及び放電後に、10分の休止時間を設定した。このようにして、非水電解質電池を作製した。
<Initial charge / discharge process>
Next, it was subjected to an initial charge / discharge process of 2 cycles at 25 ° C. All voltage control was performed on the voltage between the positive and negative terminals. Charging in the first cycle was constant current constant voltage charging with a current of 0.2 CmA and a voltage of 4.35 V for 8 hours, and discharging was constant current discharging with a current of 0.2 CmA and a final voltage of 2.75 V. The second cycle charge was a constant current constant voltage charge with a current of 1.0 CmA and a voltage of 4.35 V for 3 hours, and the discharge was a constant current discharge with a current of 1.0 CmA and a final voltage of 2.75 V. In all cycles, a 10 minute rest period was set after charging and discharging. In this way, a nonaqueous electrolyte battery was produced.

<充放電サイクル試験(条件1)>
作製した非水電解質二次電池について、充放電サイクル試験を行い、放電容量の推移を調べた。電圧制御は、全て、正負極端子間電圧に対して行った。充電は、電流1.0CmA、電圧4.20V、3時間の定電流定電圧充電とし、放電は、電流1.0CmA、終止電圧2.75Vの定電流放電とした。全てのサイクルにおいて、充電後及び放電後に、10分の休止時間を設定した。ここで、正負極端子間電圧が4.20Vであるとき、正極電位は4.30V(vs.Li/Li)であることがわかっている。この結果を図1に示
す。
<Charge / discharge cycle test (condition 1)>
About the produced nonaqueous electrolyte secondary battery, the charging / discharging cycle test was done and the transition of discharge capacity was investigated. All voltage control was performed on the voltage between the positive and negative terminals. Charging was performed at a constant current and constant voltage with a current of 1.0 CmA and a voltage of 4.20 V for 3 hours, and discharging was performed at a constant current of 1.0 CmA and a final voltage of 2.75 V. In all cycles, a 10 minute rest period was set after charging and discharging. Here, it is known that when the voltage between the positive and negative terminals is 4.20 V, the positive electrode potential is 4.30 V (vs. Li / Li + ). The result is shown in FIG.

上記「条件1」を採用した充放電サイクル試験の結果からわかるように、各種ホウ素化合物を添加した非水電解質を用いた非水電解質二次電池のうち、ホウ酸を添加した「非水電解質2」を用いた場合、及び、TiPBxを添加した「非水電解質4」を用いた場合において、特に優れる結果が得られた。このうち、ホウ酸は、TiPBxに比べて極めて安価な材料であるので、ホウ酸を用いることで、充放電サイクル性能に優れる非水電解質電池を低コストで提供できることがわかる。   As can be seen from the results of the charge / discharge cycle test employing the above “Condition 1”, among the non-aqueous electrolyte secondary batteries using non-aqueous electrolytes to which various boron compounds are added, “non-aqueous electrolyte 2 to which boric acid is added” is shown. ”And when“ Nonaqueous Electrolyte 4 ”added with TiPBx was used, particularly excellent results were obtained. Of these, boric acid is an extremely inexpensive material compared to TiPBx, and therefore it can be seen that by using boric acid, a nonaqueous electrolyte battery excellent in charge / discharge cycle performance can be provided at low cost.

<充放電サイクル試験(条件2)>
作製した非水電解質二次電池について、条件を変更して充放電サイクル試験を行い、放電容量の推移を調べた。電圧制御は、全て、正負極端子間電圧に対して行った。充電は、電流1.0CmA、電圧4.35V、3時間の定電流定電圧充電とし、放電は、電流1.0CmA、終止電圧2.75Vの定電流放電とした。全てのサイクルにおいて、充電後及び放電後に、10分の休止時間を設定した。ここで、正負極端子間電圧が4.35Vであるとき、正極電位は4.45V(vs.Li/Li)であることがわかっている。この
結果を表1に示す。表中、「×」印は、充放電サイクル経過に伴う放電容量の低下が著しいため、150サイクルに達する前に試験を終了させたことを示す。
<Charge / discharge cycle test (Condition 2)>
About the produced nonaqueous electrolyte secondary battery, the conditions were changed and the charging / discharging cycle test was done, and transition of the discharge capacity was investigated. All voltage control was performed on the voltage between the positive and negative terminals. Charging was performed at a constant current and constant voltage with a current of 1.0 CmA and a voltage of 4.35 V for 3 hours, and discharging was performed at a constant current of 1.0 CmA and a final voltage of 2.75 V. In all cycles, a 10 minute rest period was set after charging and discharging. Here, it is known that when the voltage between the positive and negative terminals is 4.35 V, the positive electrode potential is 4.45 V (vs. Li / Li + ). The results are shown in Table 1. In the table, “x” marks indicate that the test was terminated before reaching 150 cycles because the discharge capacity significantly decreased with the progress of the charge / discharge cycles.

上記「条件2」を採用した充放電サイクル試験の結果からわかるように、各種ホウ素化合物を添加した非水電解質を用いた非水電解質二次電池のうち、ホウ酸を添加した「非水電解質2」を用いた場合のみ、際立って優れる結果が得られた。   As can be seen from the results of the charge / discharge cycle test employing the above “Condition 2”, among the nonaqueous electrolyte secondary batteries using the nonaqueous electrolyte to which various boron compounds are added, “nonaqueous electrolyte 2 to which boric acid is added” is shown. Only when "" was used, outstanding results were obtained.

次に、ホウ酸の好適な添加量について検討した。上記非水電解質2に準じ、エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒にLiPFを1.0mol/lの濃度で溶解させた電解液に対するホウ酸の添加量を0質量%、0.1質量%、0.2質量%、0.5質量%、1.0質量%、1.5質量%とした非水電解質をそれぞれ準備し、同様の手順で非水電解質電池を作製し、上記「条件2」を採用した充放電サイクル試験を最大250サイクルまで行った。この結果、初期充放電効率はホウ酸の添加量が0質量%では88.9%、0.1質量%では90.8%、0.2質量%では92.4%、0.5質量%では91.5%、1.0質量%では88.8%、1.5質量%では82.7%であった。充放電サイクル性能は、図2に示すように、ホウ酸の添加量が0質量%、0.1質量%、0.2質量%、0.5質量%と増えるにしたがって向上し、0.5〜1.0質量%のとき最も良好であり、1.5質量%では再び低下した。以上の結果から、ホウ酸の添加量は、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、0.5質量%以上が最も好ましい。また、1.5質量%以下が好ましく、1.0質量%以下がより好ましい。 Next, the suitable addition amount of boric acid was examined. The amount of boric acid added to the electrolytic solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 according to the nonaqueous electrolyte 2 described above. Prepared non-aqueous electrolytes with 0% by mass, 0.1% by mass, 0.2% by mass, 0.5% by mass, 1.0% by mass, and 1.5% by mass, respectively. An electrolyte battery was prepared, and a charge / discharge cycle test employing the above “condition 2” was performed up to 250 cycles. As a result, the initial charge / discharge efficiency was 88.9% when the addition amount of boric acid was 0% by mass, 90.8% at 0.1% by mass, 92.4% at 0.2% by mass, and 0.5% by mass. Was 91.5%, 1.0% by mass was 88.8%, and 1.5% by mass was 82.7%. As shown in FIG. 2, the charge / discharge cycle performance is improved as the amount of boric acid added increases to 0 mass%, 0.1 mass%, 0.2 mass%, and 0.5 mass%. It was the best when it was -1.0% by mass, and decreased again at 1.5% by mass. From the above results, the amount of boric acid added is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and most preferably 0.5% by mass or more. Moreover, 1.5 mass% or less is preferable and 1.0 mass% or less is more preferable.

(非水電解質の分析)
上記の、エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒にLiPFを1.0mol/lの濃度で溶解させた電解液に対してホウ酸を0.2質量%添加した非水電解質(試料1)、同じく0.5質量%添加した非水電解質(試料2)及びこれを用いて作製し上記初期充放電を終了した段階の非水電解質電池を解体して発電要素から遠心分離により取り出した非水電解質(試料3)、並びに、同じく1.5質量%添加した非水電解質(試料4)及びこれを用いて作製し上記初期充放電を終了した段階の非水電解質電池を解体して発電要素から遠心分離により取り出した非水電解質(試料5)について、イオンクロマトグラフィー分析を行った。その結果、PF の濃度は、試料2及び試料3では0.9mol/l、試料4及び試料5では0.6mol/lであった。また、ホウ酸の濃度は、試料2及び試料3では0.01mol/l(0.05質量%)、試料4では0.05mol/l(0.25質量%)、試料5では0.03mol/l(0.15質量%)であった。試料1からはホウ酸は検出されなかった。
(Analysis of non-aqueous electrolyte)
The boric acid is 0.2% by mass with respect to the electrolytic solution in which LiPF 6 is dissolved at a concentration of 1.0 mol / l in the above mixed solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7. Electric power is generated by disassembling the added nonaqueous electrolyte (sample 1), the nonaqueous electrolyte added with 0.5% by mass (sample 2), and the nonaqueous electrolyte battery at the stage where the initial charge / discharge is completed. The non-aqueous electrolyte (sample 3) taken out from the element by centrifugation, the non-aqueous electrolyte added with 1.5% by mass (sample 4), and the non-aqueous electrolyte at the stage where the initial charge / discharge was completed using this An ion chromatography analysis was performed on the nonaqueous electrolyte (sample 5) that was disassembled from the electrolyte battery and removed from the power generation element by centrifugation. As a result, the concentration of PF 6 was 0.9 mol / l for sample 2 and sample 3, and 0.6 mol / l for sample 4 and sample 5. The concentrations of boric acid were 0.01 mol / l (0.05 mass%) for sample 2 and sample 3, 0.05 mol / l (0.25 mass%) for sample 4, and 0.03 mol / l for sample 5. l (0.15% by mass). No boric acid was detected from Sample 1.

上記イオンクロマトグラフィー分析において、PF の定量に用いたカラム及び検出器は次の通りである。
日本ダイオネクス社製IonPac AS16(4×250mm)+プレカラムAG16
溶離液:35mmol/lKOH水溶液
液量:1.0ml/ml
検出器:電気伝導度
In the ion chromatography analysis, the columns and detectors used for the determination of PF 6 are as follows.
IonPac AS16 (4x250mm) + Precolumn AG16 manufactured by Nippon Dionex
Eluent: 35 mmol / l KOH aqueous solution Volume: 1.0 ml / ml
Detector: Electrical conductivity

上記イオンクロマトグラフィー分析において、ホウ酸の定量に用いたカラム及び検出器は次の通りであり、検出限界値は0.001mol/lである。なお、分析にあたっては、試料を水で希釈して測定に供しているから、カラムが検出するイオン種はBO 3−である。
日本ダイオネクス社製IonPac ICE−AS1(9×250mm)
溶離液:1.0mol/lオクタンスルホン酸+2%2−プロパノール水溶液
液量:0.8ml/ml
検出器:電気伝導度
In the ion chromatography analysis, the columns and detectors used for boric acid quantification are as follows, and the detection limit is 0.001 mol / l. In the analysis, since the sample is diluted with water for measurement, the ion species detected by the column is BO 3 3- .
IonPac ICE-AS1 (9x250mm) manufactured by Nippon Dionex
Eluent: 1.0 mol / l octanesulfonic acid + 2% 2-propanol aqueous solution Volume: 0.8 ml / ml
Detector: Electrical conductivity

以上の結果から、電解液に添加したホウ酸は一部が他の化合物に変化していることが示唆される。また、非水溶媒に1.0mol/lのLiPFを溶解させた電解液に対してホウ酸を0.5質量%以上添加された非水電解質は、0.01mol/l以上のホウ酸と、0.9mol/l以下のLiPFを含有していることがわかる。また、これを用いて作製した非水電解質電池が備える非水電解質についても同様に含有していることがわかる。 From the above results, it is suggested that a part of boric acid added to the electrolytic solution is changed to another compound. Further, a non-aqueous electrolyte in which 0.5% by mass or more of boric acid is added to an electrolytic solution in which 1.0 mol / l LiPF 6 is dissolved in a non-aqueous solvent is 0.01 mol / l or more boric acid. It can be seen that it contains 0.9 mol / l or less of LiPF 6 . Moreover, it turns out that it contains similarly about the nonaqueous electrolyte with which the nonaqueous electrolyte battery produced using this is equipped.

前記正極ペーストに、正極活物質に対して1質量%のホウ酸を添加した。この正極ペーストを用い、ホウ酸を添加していない「非水電解質1」を用いたことを除いては上記予備試験と同様の処方により非水電解質電池を作製し、上記「条件1」を採用した充放電サイクル試験を実施した。その結果、ホウ酸を添加した全ての参考例に比べて、種々の温度条件下における放電容量の低下及び内部抵抗の増加がみられ、有利な効果は何ら認められなかった。また、ホウ酸を添加した正極ペーストは、混練後、ほんの数時間放置するだけで活物質が凝集してしまい、生じた凝集体により塗工時に塗りむらが生じ、生産性が大きく劣るものであった。また、評価試験実施後の電池を解体して非水電解質を取り出してイオンクロマトグラフィー分析を行ったところ、ホウ酸は検出されなかった。上記処方によって正極ペーストから電池内に取り込まれたホウ酸の量は、仮に同量が非水電解質に添加されて注液されるとすると、1.2質量%のホウ酸を添加した電解液を用いた場合に相当する。このことから、ホウ酸を正極ペーストに添加した場合は、非水電解質の製造工程中に別の化合物に変化し、非水電解質中にホウ酸として含有されることはなく、また、本発明の効果も奏さないことがわかった。   1% by mass of boric acid was added to the positive electrode paste with respect to the positive electrode active material. Using this positive electrode paste, a non-aqueous electrolyte battery was prepared according to the same formulation as the preliminary test except that “non-aqueous electrolyte 1” to which boric acid was not added was used, and “condition 1” was adopted. The charge / discharge cycle test was performed. As a result, compared with all the reference examples to which boric acid was added, the discharge capacity decreased and the internal resistance increased under various temperature conditions, and no advantageous effect was observed. In addition, the positive electrode paste to which boric acid has been added causes the active material to agglomerate after being kneaded for only a few hours, and the resulting agglomerate causes uneven coating during coating, resulting in a greatly inferior productivity. It was. Further, when the battery after the evaluation test was disassembled and the nonaqueous electrolyte was taken out and subjected to ion chromatography analysis, boric acid was not detected. Assuming that the amount of boric acid taken into the battery from the positive electrode paste by the above formulation is added to the non-aqueous electrolyte and injected, the electrolyte containing 1.2% by mass of boric acid is added. It corresponds to the case of using. From this, when boric acid is added to the positive electrode paste, it is changed to another compound during the manufacturing process of the nonaqueous electrolyte, and is not contained as boric acid in the nonaqueous electrolyte. It turns out that there is no effect either.

(実施例1)
エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPFを1.0mol/lの濃度で溶解させた電解液を作製し、前記電解液に対して、さらに0.5質量%のホウ酸(ナカライテスク社製、純度99.5%以上)及び2質量%のジグリコールサルフェート(DGLST)を添加し、撹拌混合した。これを実施例1に係る非水電解質とした。
Example 1
An electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was prepared. 0.5% by mass of boric acid (manufactured by Nacalai Tesque, purity 99.5% or more) and 2% by mass of diglycol sulfate (DGLST) were added and mixed with stirring. This was designated as the nonaqueous electrolyte according to Example 1.

(比較例1)
上記「非水電解質1」を比較例1に係る非水電解質とした。
(Comparative Example 1)
The “non-aqueous electrolyte 1” was a non-aqueous electrolyte according to Comparative Example 1.

(比較例2)
上記「非水電解質2」を比較例2に係る非水電解質とした。
(Comparative Example 2)
The “nonaqueous electrolyte 2” was used as the nonaqueous electrolyte according to Comparative Example 2.

(比較例3)
エチレンカーボネート及びエチルメチルカーボネートを体積比3:7の割合で混合した混合溶媒に、LiPFを1.0mol/lの濃度で溶解させた電解液を作製し、前記電解液に対して、さらに2質量%のジグリコールサルフェート(DGLST)を添加し、撹拌混合した。これを比較例3に係る非水電解質とした。
(Comparative Example 3)
An electrolytic solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 was prepared. Mass% of diglycol sulfate (DGLST) was added and stirred and mixed. This was used as the nonaqueous electrolyte according to Comparative Example 3.

実施例1及び比較例1〜3に係る非水電解質をそれぞれ用いたことを除いては、上記予備試験と同様にして、非水電解質電池を組み立てた。   A nonaqueous electrolyte battery was assembled in the same manner as in the preliminary test except that the nonaqueous electrolytes according to Example 1 and Comparative Examples 1 to 3 were used.

<初期充放電工程>
実施例1及び比較例1〜3に係る非水電解質をそれぞれ用いて組み立てたこれらの非水電解質電池は、25℃にて、2サイクルの初期充放電工程に供した。電圧制御は、全て、正負極端子間電圧に対して行った。1サイクル目の充電は、電流0.2CmA、電圧4.35V、8時間の定電流定電圧充電とし、放電は、電流0.2CmA、終止電圧2.75Vの定電流放電とした。2サイクル目の充電は、電流1.0CmA、電圧4.35V、3時間の定電流定電圧充電とし、放電は、電流1.0CmA、終止電圧2.75Vの定電流放電とした。全てのサイクルにおいて、充電後及び放電後に、10分の休止時間を設定した。なお、予備試験の場合と同様、正負極端子間電圧が4.35Vであるとき、正極電位は4.45V(vs.Li/Li)であることがわかっている。上記の初期充放電工程を経て非水電解質電池を作製した。
<Initial charge / discharge process>
These nonaqueous electrolyte batteries assembled using the nonaqueous electrolytes according to Example 1 and Comparative Examples 1 to 3 were each subjected to a two-cycle initial charge / discharge process at 25 ° C. All voltage control was performed on the voltage between the positive and negative terminals. Charging in the first cycle was constant current constant voltage charging with a current of 0.2 CmA and a voltage of 4.35 V for 8 hours, and discharging was constant current discharging with a current of 0.2 CmA and a final voltage of 2.75 V. The second cycle charge was a constant current constant voltage charge with a current of 1.0 CmA and a voltage of 4.35 V for 3 hours, and the discharge was a constant current discharge with a current of 1.0 CmA and a final voltage of 2.75 V. In all cycles, a 10 minute rest period was set after charging and discharging. As in the case of the preliminary test, it is known that when the voltage between the positive and negative terminals is 4.35 V, the positive electrode potential is 4.45 V (vs. Li / Li + ). A nonaqueous electrolyte battery was fabricated through the initial charge / discharge process.

このようにして作製した非水電解質電池を用いて充放電サイクル試験を行った。また、同一の処方及び手順で作製した非水電解質電池を用いて45℃反復放置試験を行った。   A charge / discharge cycle test was conducted using the non-aqueous electrolyte battery thus produced. Moreover, the 45 degreeC repeated leaving test was done using the nonaqueous electrolyte battery produced with the same prescription and procedure.

<充放電サイクル試験>
充放電サイクル試験の条件は、上記「条件2」を採用した。放電容量が、上記初期充放電工程における2サイクル目の放電容量に対して60%以上を維持したサイクル数をカウントし、表2に示した。
<Charge / discharge cycle test>
The above-mentioned “Condition 2” was adopted as the condition for the charge / discharge cycle test. The number of cycles in which the discharge capacity was maintained at 60% or more with respect to the discharge capacity of the second cycle in the initial charge / discharge step was counted and shown in Table 2.

表2からわかるように、ホウ酸及び環状スルホン酸化合物を添加した実施例1に係る非水電解質を用いた非水電解質電池は、ホウ酸のみを添加した比較例2に係る非水電解質を用いた非水電解質電池に比べて、充放電サイクル性能が顕著に向上した。 As can be seen from Table 2, the nonaqueous electrolyte battery using the nonaqueous electrolyte according to Example 1 to which boric acid and a cyclic sulfonic acid compound were added used the nonaqueous electrolyte according to Comparative Example 2 to which only boric acid was added. Compared with the nonaqueous electrolyte battery, the charge / discharge cycle performance was significantly improved.

<45℃反復保存試験>
45℃反復放置試験の条件及び手順は次のとおりである。電流1.0CmA、電圧4.35V、3時間の定電流定電圧充電を行った。次に、電池を開回路状態とし、45℃の恒温槽中に15日間保存した。次に、25℃にて、電流1.0CmA、終止電圧2.75Vの定電流放電と、電流1.0CmA、電圧4.35V、3時間の定電流定電圧充電を行った後、45℃の恒温槽中にさらに15日間保存した。このようにして、45℃の恒温槽中に合計30日間放置した後、25℃にて、電流1.0CmA、終止電圧2.75Vの定電流放電を行い、放電容量を測定し、上記初期充放電工程における2サイクル目の放電容量に対する百分率を求め、それぞれの電池の「容量保持率(%)」とした。結果を表3に示す。
<45 ° C repeated storage test>
The conditions and procedure of the 45 ° C. repeated standing test are as follows. Constant current and constant voltage charging was performed at a current of 1.0 CmA, a voltage of 4.35 V, and 3 hours. Next, the battery was placed in an open circuit state and stored in a 45 ° C. constant temperature bath for 15 days. Next, at 25 ° C., a constant current discharge with a current of 1.0 CmA and a final voltage of 2.75 V, a current of 1.0 CmA, a voltage of 4.35 V, and a constant current and constant voltage charge for 3 hours were performed. It was further stored for 15 days in a thermostatic bath. In this way, after being left in a 45 ° C. constant temperature bath for a total of 30 days, at 25 ° C., a constant current discharge with a current of 1.0 CmA and a final voltage of 2.75 V was performed, and the discharge capacity was measured. The percentage with respect to the discharge capacity at the second cycle in the discharge step was determined and used as the “capacity holding ratio (%)” of each battery. The results are shown in Table 3.

表3からわかるように、ホウ酸のみを添加した比較例2に係る電池や、環状スルホン酸化合物のみを添加した比較例3に係る電池では、ホウ酸も環状スルホン酸化合物も添加していない比較例1に係る電池よりも保存性能が悪化した。これに対して、ホウ酸及び環状スルホン酸化合物を添加した実施例1に係る非水電解質を用いた非水電解質電池は、保存性能が向上した。   As can be seen from Table 3, in the battery according to Comparative Example 2 to which only boric acid was added and the battery according to Comparative Example 3 to which only the cyclic sulfonic acid compound was added, a comparison in which neither boric acid nor cyclic sulfonic acid compound was added. The storage performance was worse than that of the battery according to Example 1. On the other hand, the storage performance of the nonaqueous electrolyte battery using the nonaqueous electrolyte according to Example 1 to which boric acid and a cyclic sulfonic acid compound were added was improved.

Claims (3)

正極と、負極と、PF アニオン、ホウ酸、及び下記一般式(2)で表される環状スルホン酸化合物が添加された非水電解質と、を備えたリチウムイオン二次電池の製造方法であって
非水溶媒に、LiPF 、2質量%以下のホウ酸、及び、5質量%未満の下記一般式(2)で表される環状スルホン酸化合物を添加して前記非水電解質を調製することを特徴とするリチウムイオン二次電池の製造方法


〔一般式(2)において、R は一般式(4)又は、式(5)で表される基(*の部分がR に結合)である。R は、ハロゲンを含んでも良い炭素数1〜3のアルキル基である。〕
A positive electrode, a negative electrode, PF 6 - anion, boric acid, and the following general formula (2) a non-aqueous electrolyte cyclic sulfonic acid compound is added is represented by a method for producing a lithium ion secondary battery having a Because
The nonaqueous electrolyte is prepared by adding LiPF 6 , 2% by mass or less of boric acid, and less than 5% by mass of the cyclic sulfonic acid compound represented by the following general formula (2) to a nonaqueous solvent. A method for producing a lithium ion secondary battery .


[In General Formula (2), R 1 is a group represented by General Formula (4) or Formula (5) (the part of * is bonded to R 1 ). R 3 is a C 1-3 alkyl group which may contain halogen. ]
正極と、負極と、PF アニオン、ホウ酸及び下記一般式(2)で表される環状スルホン酸化合物を含有している非水電解質と、を備え、
ホウ酸の含有量が0.15質量%以下であり、下記一般式(2)で表される環状スルホン酸化合物の含有量が5質量%未満であるリチウムイオン二次電池

〔一般式(2)において、R は一般式(4)又は、式(5)で表される基(*の部分がR に結合)である。R は、ハロゲンを含んでも良い炭素数1〜3のアルキル基である。〕
Comprising anionic, a non-aqueous electrolyte contains a cyclic acid compound represented by the boric acid and the following general formula (2), a, - a positive electrode, a negative electrode, PF 6
The content of boric acid is not more than 0.15 wt%, a lithium ion secondary battery containing organic content is less than 5 wt% of the cyclic acid compound represented by the following general formula (2).

[In General Formula (2), R 1 is a group represented by General Formula (4) or Formula (5) (the part of * is bonded to R 1 ). R 3 is a C 1-3 alkyl group which may contain halogen. ]
請求項1に記載の製造方法で製造されたリチウムイオン二次電池または請求項2に記載のリチウムイオン二次電池を4.4V(vs.Li/Li)以上の正極電位に至って充電を行う、リチウムイオン二次電池の使用方法。
The lithium ion secondary battery manufactured by the manufacturing method according to claim 1 or the lithium ion secondary battery according to claim 2 is charged to a positive electrode potential of 4.4 V (vs. Li / Li + ) or higher. How to use a lithium ion secondary battery .
JP2013150091A 2013-03-27 2013-07-19 Lithium ion secondary battery, method for producing the same, and method for using the same Active JP6403943B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013150091A JP6403943B2 (en) 2013-07-19 2013-07-19 Lithium ion secondary battery, method for producing the same, and method for using the same
CN201480015859.8A CN105190983A (en) 2013-03-27 2014-03-24 Non-aqueous electrolyte secondary cell
PCT/JP2014/001678 WO2014156110A1 (en) 2013-03-27 2014-03-24 Non-aqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013150091A JP6403943B2 (en) 2013-07-19 2013-07-19 Lithium ion secondary battery, method for producing the same, and method for using the same

Publications (2)

Publication Number Publication Date
JP2015022901A JP2015022901A (en) 2015-02-02
JP6403943B2 true JP6403943B2 (en) 2018-10-10

Family

ID=52487179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013150091A Active JP6403943B2 (en) 2013-03-27 2013-07-19 Lithium ion secondary battery, method for producing the same, and method for using the same

Country Status (1)

Country Link
JP (1) JP6403943B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6403942B2 (en) * 2013-07-19 2018-10-10 株式会社Gsユアサ Lithium ion secondary battery, method for producing the same, and method for using the same
JP2016146565A (en) 2015-02-09 2016-08-12 株式会社リコー Management system, communication system, management method, and program
JP7334857B2 (en) * 2020-04-28 2023-08-29 株式会社村田製作所 Positive electrode for secondary battery and secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09139232A (en) * 1995-09-14 1997-05-27 Toshiba Corp Lithium battery
JPH11191417A (en) * 1997-06-06 1999-07-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery and manufacture thereof
WO2012053644A1 (en) * 2010-10-22 2012-04-26 三井化学株式会社 Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
JP5834771B2 (en) * 2011-10-26 2015-12-24 三菱化学株式会社 Non-aqueous electrolyte and battery using the same
JP5874390B2 (en) * 2011-12-28 2016-03-02 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP6403942B2 (en) * 2013-07-19 2018-10-10 株式会社Gsユアサ Lithium ion secondary battery, method for producing the same, and method for using the same

Also Published As

Publication number Publication date
JP2015022901A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
EP2980893B1 (en) Active material for nonaqueous electrolyte energy storage elements
JP6186731B2 (en) Nonaqueous electrolyte secondary battery
WO2014115195A1 (en) Nonaqueous electrolyte rechargeable battery
WO2020090678A1 (en) Rechargeable battery with nonaqueous electrolyte, method for producing rechargeable battery with nonaqueous electrolyte, and method for using rechargeable battery with nonaqueous electrolyte
KR101776896B1 (en) Cathode active material for lithium secondary battery and a method of making the same
JP6186744B2 (en) Nonaqueous electrolyte secondary battery
JP6403943B2 (en) Lithium ion secondary battery, method for producing the same, and method for using the same
JP2014216127A (en) Nonaqueous electrolyte secondary battery
WO2014156110A1 (en) Non-aqueous electrolyte secondary cell
KR101909317B1 (en) Cathode active material for lithium secondary battery and method of making the same
JP6160113B2 (en) Nonaqueous electrolyte secondary battery
JP6465456B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6403942B2 (en) Lithium ion secondary battery, method for producing the same, and method for using the same
JP6392502B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery and method for using non-aqueous electrolyte secondary battery manufactured by the manufacturing method
JP6394956B2 (en) Nonaqueous electrolyte secondary battery
JP6244623B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
EP3910708A1 (en) Positive electrode active material for secondary cell having non-aqueous electrolyte, positive electrode for secondary cell having non-aqueous electrolyte, and secondary cell having non-aqueous electrolyte
JP2014207092A (en) Nonaqueous electrolyte secondary battery
JP2014207094A (en) Nonaqueous electrolyte secondary battery
JP2014191957A (en) Nonaqueous electrolyte secondary battery
KR102176647B1 (en) Manufacturing method of cathod active material for lithium rechargeable batteries, and cathod active material for lithium rechargeable batteries made by the same
JP2017117775A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014207093A (en) Nonaqueous electrolyte secondary battery
JP2014192077A (en) Nonaqueous electrolyte secondary battery
JP6699268B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170907

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20171006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180912

R150 Certificate of patent or registration of utility model

Ref document number: 6403943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150