JP2014056667A - Nonaqueous electrolyte secondary battery manufacturing method therefor - Google Patents

Nonaqueous electrolyte secondary battery manufacturing method therefor Download PDF

Info

Publication number
JP2014056667A
JP2014056667A JP2012199651A JP2012199651A JP2014056667A JP 2014056667 A JP2014056667 A JP 2014056667A JP 2012199651 A JP2012199651 A JP 2012199651A JP 2012199651 A JP2012199651 A JP 2012199651A JP 2014056667 A JP2014056667 A JP 2014056667A
Authority
JP
Japan
Prior art keywords
negative electrode
libob
secondary battery
active material
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012199651A
Other languages
Japanese (ja)
Other versions
JP6032474B2 (en
Inventor
Masato Kamiya
正人 神谷
Taira Saito
平 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012199651A priority Critical patent/JP6032474B2/en
Publication of JP2014056667A publication Critical patent/JP2014056667A/en
Application granted granted Critical
Publication of JP6032474B2 publication Critical patent/JP6032474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery and manufacturing method therefor, capable of suppressing heat generation during charging or discharging operation under a high-temperature environment.SOLUTION: The lithium ion secondary battery 1 includes electrolyte added with LiBOB and a negative electrode 32 that contains a negative active material formed from natural graphite whose surface is coated with amorphous carbon and which has an SEI film derived from LiBOB formed on a surface of the negative active material. A ratio (X/Y) of an addition X (mol/l) of LiBOB to the electrolyte to a capacitance Y (F) of the negative electrode is from 0.01 to 0.1 inclusive.

Description

本発明は、非晶質コート天然黒鉛を負極活物質とし、負極活物質表面にLiBOB由来の皮膜を有する非水電解質二次電池およびその製造方法に関する。   The present invention relates to a nonaqueous electrolyte secondary battery having amorphous coated natural graphite as a negative electrode active material and having a LiBOB-derived film on the surface of the negative electrode active material, and a method for producing the same.

従来、リチウムイオン二次電池などの非水電解質二次電池においては、正極活物質を含む正極、負極活物質を含む負極、および正極と負極との間に介在されるセパレータを積層して電極体を構成し、前記電極体を電解液とともにケースに封入することにより構成されるものがある。
前記電解液としては、例えば、電解質である「LiPF6」等のリチウム塩を、「EC(エチレンカーボネート)」や「DMC(ジメチルカーボネート)」や「EMC(エチルメチルカーボネート)」等の有機溶媒に溶解させたものが用いられている。
Conventionally, in a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery, a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a separator interposed between the positive electrode and the negative electrode are laminated to form an electrode body And the electrode body is enclosed in a case together with an electrolytic solution.
As the electrolytic solution, for example, lithium salt such as “LiPF 6 ” which is an electrolyte is used as an organic solvent such as “EC (ethylene carbonate)”, “DMC (dimethyl carbonate)”, “EMC (ethyl methyl carbonate)”. What was dissolved is used.

前述の非水電解質二次電池においては、負極活物質と電解質との反応を抑制するために、製造時に電解液中にLiBOB(リチウムビス(オキサラト)ボレート)を添加することが行われている。   In the non-aqueous electrolyte secondary battery described above, LiBOB (lithium bis (oxalato) borate) is added to the electrolytic solution during production in order to suppress the reaction between the negative electrode active material and the electrolyte.

LiBOBは、非水電解質二次電池の初期充電時に分解して負極活物質上にSEI膜(Solid Electrolyte Interphase膜)を形成するものである。しかし、電解液にLiBOBを添加した場合に形成されるSEI膜は、充放電を繰り返した場合の皮膜厚みの成長が遅いため、SEI膜の過剰な成長が抑制されて、負極抵抗の過剰な上昇を抑えることが可能となる。
また、電解液に添加されたLiBOBによって負極活物質上にSEI膜が形成されることにより、負極活物質の反応面積が減少することが知られている。
LiBOB is decomposed at the time of initial charge of a nonaqueous electrolyte secondary battery to form an SEI film (Solid Electrolyte Interface film) on the negative electrode active material. However, the SEI film formed when LiBOB is added to the electrolyte solution has a slow growth of the film thickness when charging and discharging are repeated, so that the excessive growth of the SEI film is suppressed and the negative electrode resistance is excessively increased. Can be suppressed.
In addition, it is known that the reaction area of the negative electrode active material is reduced by forming an SEI film on the negative electrode active material by LiBOB added to the electrolytic solution.

電解液にLiBOBを添加した非水電解質二次電池としては、例えば特許文献1に記載されるリチウムイオン二次電池がある。   As a nonaqueous electrolyte secondary battery in which LiBOB is added to an electrolytic solution, there is a lithium ion secondary battery described in Patent Document 1, for example.

ここで、非水電解質二次電池は、高温環境下にて充放電を行うと発熱が生じて電池性能が劣化する可能性があるが、発熱の原因としては、電流が流れることによるジュール熱の発生、および発生したジュール熱により負極活物質等の負極材料が発熱すること等が挙げられる。このジュール熱の発生は非水電解質二次電池の電池抵抗に比例し、負極材料の発熱は前記負極材料の反応面積に比例する。
従って、前記電池抵抗および負極材料の反応面積を適切に設定することにより、非水電解質二次電池の発熱を抑えることが可能になると考えられる。
Here, the non-aqueous electrolyte secondary battery may generate heat when it is charged and discharged in a high temperature environment, and the battery performance may deteriorate. However, the cause of the heat generation is the Joule heat caused by the flow of current. For example, the negative electrode material such as the negative electrode active material generates heat due to the generation and the generated Joule heat. The generation of Joule heat is proportional to the battery resistance of the nonaqueous electrolyte secondary battery, and the heat generation of the negative electrode material is proportional to the reaction area of the negative electrode material.
Therefore, it is considered that heat generation of the nonaqueous electrolyte secondary battery can be suppressed by appropriately setting the battery resistance and the reaction area of the negative electrode material.

特開2005−032712号公報JP 2005-032712 A

前述の特許文献1には、電解液にLiBOBを添加して構成した非水電解質二次電池が記載されているが、LiBOBの添加量は、電解液中の濃度のみにより規定されている。
しかし、LiBOBの添加量を電解液中の濃度のみにより規定した場合、LiBOBとLiBOBにより皮膜が形成される負極活物質の特性との関係が不明であるため、負極活物質の種類や特性によっては、LiBOBを添加することによる効果が十分に発現しないおそれがある。
つまり、添加するLiBOBの電解液中の濃度を規定するだけでは、必ずしも非水電解質二次電池の発熱を抑えることができるものではない。
Patent Document 1 described above describes a non-aqueous electrolyte secondary battery configured by adding LiBOB to an electrolytic solution, but the amount of LiBOB added is defined only by the concentration in the electrolytic solution.
However, when the amount of LiBOB added is defined only by the concentration in the electrolytic solution, the relationship between the characteristics of the negative electrode active material on which the film is formed by LiBOB and LiBOB is unknown, so depending on the type and characteristics of the negative electrode active material There is a possibility that the effect of adding LiBOB may not be sufficiently exhibited.
That is, it is not always possible to suppress the heat generation of the nonaqueous electrolyte secondary battery simply by defining the concentration of LiBOB to be added in the electrolytic solution.

そこで、本発明においては、LiBOBを添加した電解液を用いて構成される非水電解質二次電池において、高温環境下での充放電に伴う発熱を抑えることができる非水電解質二次電池およびその製造方法を提供するものである。   Therefore, in the present invention, in a non-aqueous electrolyte secondary battery configured using an electrolytic solution to which LiBOB is added, a non-aqueous electrolyte secondary battery capable of suppressing heat generation due to charging / discharging in a high temperature environment and its A manufacturing method is provided.

上記課題を解決する非水電解質二次電池およびその製造方法は、以下の特徴を有する。
即ち、請求項1記載の如く、LiBOBが添加された電解液と、表面が非晶質炭素にてコートされた天然黒鉛にて構成される負極活物質を含み、前記負極活物質の表面にLiBOB由来の皮膜が形成された負極とを備える非水電解質二次電池であって、前記電解液に対するLiBOBの添加量X(mol/l)と前記負極のキャパシタンスY(F)との比(X/Y)が、0.01以上かつ0.1以下である。
The nonaqueous electrolyte secondary battery and the method for manufacturing the same that solve the above problems have the following characteristics.
That is, as described in claim 1, the negative electrode active material is composed of an electrolytic solution to which LiBOB is added and natural graphite whose surface is coated with amorphous carbon, and LiBOB is formed on the surface of the negative electrode active material. A non-aqueous electrolyte secondary battery including a negative electrode on which a coating derived from the electrode is formed, wherein the ratio of the amount of LiBOB added to the electrolyte X (mol / l) and the capacitance Y (F) of the negative electrode (X / Y) is 0.01 or more and 0.1 or less.

また、請求項2記載の如く、LiBOBが添加された電解液と、表面が非晶質炭素にてコートされた天然黒鉛にて構成される負極活物質を含み、前記負極活物質の表面にLiBOB由来の皮膜が形成された負極とを備える非水電解質二次電池の製造方法であって、前記電解液に対するLiBOBの添加量X(mol/l)と前記負極のキャパシタンスY(F)との比(X/Y)が、0.01以上かつ0.1以下となるように、前記LiBOBの添加量X(mol/l)と前記負極のキャパシタンスY(F)とを調製する。   In addition, the negative electrode active material composed of an electrolyte solution to which LiBOB is added and natural graphite whose surface is coated with amorphous carbon is included, and the surface of the negative electrode active material includes LiBOB. A method of manufacturing a non-aqueous electrolyte secondary battery comprising a negative electrode on which a coating derived from the electrode is formed, wherein a ratio between the amount X (mol / l) of LiBOB added to the electrolyte and the capacitance Y (F) of the negative electrode The addition amount X (mol / l) of LiBOB and the capacitance Y (F) of the negative electrode are prepared so that (X / Y) is 0.01 or more and 0.1 or less.

本発明によれば、高温環境下で非水電解質二次電池に対して充放電を繰り返し行った際の、非水電解質二次電池の発熱を抑えることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to suppress the heat_generation | fever of a nonaqueous electrolyte secondary battery at the time of charging / discharging repeatedly with respect to a nonaqueous electrolyte secondary battery in high temperature environment.

リチウムイオン二次電池を示す側面図である。It is a side view which shows a lithium ion secondary battery. LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)と、高温環境下での充放電サイクル試験後のリチウムイオン二次電池の温度との関係を示す図である。The figure which shows the relationship between the ratio (X / Y) of the addition amount X (mol / l) of LiBOB and the capacitance Y (F), and the temperature of the lithium ion secondary battery after the charging / discharging cycle test in a high temperature environment. It is. LiBOBの添加量X(mol/l)およびキャパシタンスY(F)の値による、高温環境下での充放電サイクル試験後のリチウムイオン二次電池の発熱度合いの違いを示す図である。It is a figure which shows the difference in the heat_generation | fever degree of the lithium ion secondary battery after the charging / discharging cycle test in a high temperature environment by the value of addition amount X (mol / l) of LiBOB and the capacitance Y (F).

次に、本発明を実施するための形態を、添付の図面を用いて説明する。   Next, modes for carrying out the present invention will be described with reference to the accompanying drawings.

図1に示す、本実施形態に係る非水電解質二次電池であるリチウムイオン二次電池1は、一面(上面)が開口した有底角筒形状のケース本体21と、平板状に形成されケース本体21の開口部を閉塞する蓋体22とで構成される電池ケース2に、電解液とともに電極体3を収容して構成されている。   A lithium ion secondary battery 1 that is a non-aqueous electrolyte secondary battery according to this embodiment shown in FIG. 1 includes a case body 21 having a bottomed rectangular tube shape with one surface (upper surface) opened, and a case formed in a flat plate shape. A battery case 2 constituted by a lid body 22 that closes an opening of the main body 21 is configured by accommodating the electrode body 3 together with the electrolytic solution.

電池ケース2は、一面(上面)が開口した直方体状の有底角筒形状に形成されるケース本体21の開口部を、平板状の蓋体22にて閉塞した角型ケースに構成されている。
蓋体22の長手方向一端部(図1における左端部)には正極端子4aが設けられ、蓋体22の長手方向他端部(図1における右端部)には負極端子4bが設けられている。
The battery case 2 is configured as a rectangular case in which an opening of a case body 21 formed in a rectangular parallelepiped bottomed rectangular tube shape with one surface (upper surface) opened is closed with a flat lid body 22. .
A positive electrode terminal 4a is provided at one end in the longitudinal direction of the lid 22 (left end in FIG. 1), and a negative electrode terminal 4b is provided at the other longitudinal end of the lid 22 (right end in FIG. 1). .

電極体3は、正極31、負極32、およびセパレータを、正極31と負極32との間にセパレータが介在するように積層し、積層した正極31、負極32、およびセパレータを巻回して扁平させることにより構成されている。   In the electrode body 3, the positive electrode 31, the negative electrode 32, and the separator are laminated so that the separator is interposed between the positive electrode 31 and the negative electrode 32, and the laminated positive electrode 31, negative electrode 32, and separator are wound and flattened. It is comprised by.

電池ケース2に電極体3および電解液を収容して二次電池1を構成する際には、まず電極体3の正極31および負極32に、それぞれ蓋体22の正極端子4aおよび負極端子4bを接続して、電極体3を蓋体22に組み付けて、蓋体サブアッシーを形成する。
その後、電極体3および電解液をケース本体21内に収容するとともに、ケース本体21の開口部に蓋体22を嵌合して、蓋体22とケース本体21とを溶接により密封することにより、二次電池1を構成する。
When the secondary battery 1 is configured by accommodating the electrode body 3 and the electrolyte in the battery case 2, first, the positive electrode terminal 4 a and the negative electrode terminal 4 b of the lid body 22 are respectively connected to the positive electrode 31 and the negative electrode 32 of the electrode body 3. After connecting, the electrode body 3 is assembled to the lid body 22 to form a lid body sub-assembly.
Thereafter, the electrode body 3 and the electrolytic solution are accommodated in the case main body 21, the lid body 22 is fitted into the opening of the case main body 21, and the lid body 22 and the case main body 21 are sealed by welding, A secondary battery 1 is configured.

正極31は、正極活物質、導電材、および結着材等の電極材料を溶媒とともに混練して得られた正極合材ペーストを、箔状に形成される正極集電体の表面(片面又は両面)に塗布するとともに乾燥・加圧して構成されている。このように構成される正極31は、正極集電体の表面に正極合材層が形成されている。
正極活物質としては、三元系活物質である「Li(Ni、Mn、Co)O2系活物質」や、「リン酸鉄リチウム(LiFeO2)」などを用いることができる。
The positive electrode 31 is obtained by mixing a positive electrode mixture paste obtained by kneading an electrode material such as a positive electrode active material, a conductive material, and a binder together with a solvent, on the surface (one side or both sides) of a positive electrode current collector formed in a foil shape. ) And dried / pressurized. In the positive electrode 31 configured in this way, a positive electrode mixture layer is formed on the surface of the positive electrode current collector.
As the positive electrode active material, a ternary active material “Li (Ni, Mn, Co) O 2 -based active material”, “lithium iron phosphate (LiFeO 2 )”, or the like can be used.

同様に、負極32は、負極活物質や増粘剤や結着材等の電極材料を混練して得られた負極合材ペーストを、箔状に形成される負極集電体の表面(片面又は両面)に塗布するとともに乾燥・加圧して構成されている。このように構成される負極32は、負極集電体の表面に負極合材層が形成されている。
負極活物質としては、天然黒鉛系活物質を用いることができる。本実施形態では、前記天然黒鉛系活物質として、表面が非晶質炭素にてコートされた天然黒鉛を用いている。なお、表面が非晶質炭素にてコートされた天然黒鉛は、例えば天然黒鉛の表面を、石油残渣を原料とするピッチにて覆い、約1000℃に加熱することにより得ることができる。
Similarly, the negative electrode 32 is prepared by using a negative electrode mixture paste obtained by kneading an electrode material such as a negative electrode active material, a thickener, and a binder, on the surface (one side or It is applied to both sides) and dried and pressed. In the negative electrode 32 configured as described above, a negative electrode mixture layer is formed on the surface of the negative electrode current collector.
A natural graphite-based active material can be used as the negative electrode active material. In the present embodiment, natural graphite whose surface is coated with amorphous carbon is used as the natural graphite-based active material. The natural graphite whose surface is coated with amorphous carbon can be obtained, for example, by covering the surface of natural graphite with a pitch using petroleum residue as a raw material and heating to about 1000 ° C.

前記負極活物質を有する負極32は、所定のキャパシタンス(静電容量)を有している。負極32のキャパシタンスは、負極32の反応面積を示す指標となるものであり、負極32のキャパシタンスを増加させると負極32のLiの受け入れ性を向上することができる。つまり、負極32のキャパシタンスは、負極活物質の反応面積に対して高い相関性を有している。   The negative electrode 32 having the negative electrode active material has a predetermined capacitance (capacitance). The capacitance of the negative electrode 32 serves as an index indicating the reaction area of the negative electrode 32. When the capacitance of the negative electrode 32 is increased, the acceptability of Li of the negative electrode 32 can be improved. That is, the capacitance of the negative electrode 32 has a high correlation with the reaction area of the negative electrode active material.

負極32のキャパシタンスは、例えば、以下のように求めることができる。
つまり、負極32を模したサンプルピースとなる、負極集電体の一面に負極合材層を形成した一対のサンプルピースを、所定の距離だけ離間した状態で、互いの負極合材層が対向するように配置するとともに、前記サンプルピース間にリチウムイオン二次電池1の電解液を充填した状態で、前記サンプルピース間のインピーダンスを測定し、測定したインピーダンスよりコールコールプロットを用いてキャパシタンスを算出することができる。
The capacitance of the negative electrode 32 can be obtained, for example, as follows.
That is, a pair of sample pieces in which the negative electrode current collector layer is formed on one surface of the negative electrode current collector, which is a sample piece simulating the negative electrode 32, are opposed to each other with a predetermined distance therebetween. The impedance between the sample pieces is measured in a state where the electrolyte solution of the lithium ion secondary battery 1 is filled between the sample pieces, and the capacitance is calculated from the measured impedance using a Cole-Cole plot. be able to.

セパレータは、例えば多孔質ポリオレフィン系樹脂で構成されるシート状部材であり、正極31と負極32との間に配置される。   The separator is a sheet-like member made of, for example, a porous polyolefin-based resin, and is disposed between the positive electrode 31 and the negative electrode 32.

電池ケース2に電極体3とともに収容される前記電解液としては、例えば、電解質である「LiPF6」等のリチウム塩を、「EC(エチレンカーボネート)」や「DMC(ジメチルカーボネート)」や「EMC(エチルメチルカーボネート)」等の有機溶媒に溶解させたものを用いている。
また、前記電解液には、LiBOB(リチウムビス(オキサラト)ボレート)を添加している。LiBOBの電解液に対する添加量は、LiBOBの電解液に対する濃度が所定の濃度となるように設定されている。
Examples of the electrolyte contained in the battery case 2 together with the electrode body 3 include lithium salts such as “LiPF 6 ” as an electrolyte, such as “EC (ethylene carbonate)”, “DMC (dimethyl carbonate)”, and “EMC”. (Ethylmethyl carbonate) "or the like dissolved in an organic solvent is used.
In addition, LiBOB (lithium bis (oxalato) borate) is added to the electrolytic solution. The amount of LiBOB added to the electrolytic solution is set so that the concentration of LiBOB with respect to the electrolytic solution becomes a predetermined concentration.

LiBOBは、リチウムイオン二次電池1の初期充電時に分解して負極活物質上にSEI膜(Solid Electrolyte Interphase膜)を形成するものである。即ち、前記電解液にLiBOBを添加することにより、前記負極活物質の表面には、LiBOBに由来する皮膜であるSEI膜が形成されることとなる。
LiBOBに由来するSEI膜は、充放電を繰り返した場合の皮膜厚みの成長が遅いため、SEI膜の過剰な成長が抑制されて、負極抵抗の過剰な上昇を抑えることが可能となっている。
LiBOB decomposes at the time of initial charge of the lithium ion secondary battery 1 to form a SEI film (Solid Electrolyte Interface film) on the negative electrode active material. That is, by adding LiBOB to the electrolytic solution, an SEI film that is a film derived from LiBOB is formed on the surface of the negative electrode active material.
Since the SEI film derived from LiBOB has a slow growth of the film thickness when charging and discharging are repeated, excessive growth of the SEI film is suppressed, and it is possible to suppress an excessive increase in negative electrode resistance.

また、電解液に添加されたLiBOBによって負極活物質上にSEI膜が形成されることにより、負極活物質の反応面積が減少することとなる。
さらに、LiBOBによって形成されるSEI膜の膜厚は、LiBOBの電解液への添加量に応じて増加し、LiBOBによって形成されたSEI膜の膜厚の増加に比例して、リチウムイオン二次電池1の電池抵抗が上昇する。
In addition, the reaction area of the negative electrode active material is reduced by forming the SEI film on the negative electrode active material by LiBOB added to the electrolytic solution.
Further, the film thickness of the SEI film formed by LiBOB increases in accordance with the amount of LiBOB added to the electrolyte, and in proportion to the increase in the film thickness of the SEI film formed by LiBOB, the lithium ion secondary battery 1 battery resistance rises.

ここで、リチウムイオン二次電池1においては、高温環境下にて充放電を行うと発熱が生じて電池性能が劣化する可能性がある。この発熱の原因としては、電流が流れることによるジュール熱の発生、および発生したジュール熱により負極活物質等の負極材料が発熱すること等が挙げられる。
前記ジュール熱の発生はリチウムイオン二次電池1の電池抵抗に比例し、負極活物質の発熱は負極活物質の反応面積に比例する。
Here, in the lithium ion secondary battery 1, if charging / discharging is performed in a high temperature environment, heat may be generated and the battery performance may be deteriorated. The cause of this heat generation includes generation of Joule heat due to current flow and generation of heat by a negative electrode material such as a negative electrode active material due to the generated Joule heat.
The generation of the Joule heat is proportional to the battery resistance of the lithium ion secondary battery 1, and the heat generation of the negative electrode active material is proportional to the reaction area of the negative electrode active material.

従って、本実施形態のリチウムイオン二次電池1においては、負極活物質の反応面積に比例する負極活物質のキャパシタンスと、リチウムイオン二次電池1の電池抵抗に比例するLiBOBの電解液への添加量とが、以下の関係を有するように、負極活物質のキャパシタンスおよびLiBOBの電解液への添加量を設定して、高温環境下にて充放電を行った際のリチウムイオン二次電池1の発熱を抑えるようにしている。   Therefore, in the lithium ion secondary battery 1 of the present embodiment, the capacitance of the negative electrode active material proportional to the reaction area of the negative electrode active material and the addition of LiBOB to the electrolyte solution proportional to the battery resistance of the lithium ion secondary battery 1 Of the lithium ion secondary battery 1 when charging / discharging in a high temperature environment by setting the capacitance of the negative electrode active material and the amount of LiBOB added to the electrolyte so that the amount has the following relationship: I try to suppress fever.

すなわち、リチウムイオン二次電池1においては、電解液に対するLiBOBの添加量X(mol/l)と負極32のキャパシタンスY(F)との比(X/Y)が、0.01以上かつ0.1以下となるように、電解液に対するLiBOBの添加量X(mol/l)と負極32のキャパシタンスY(F)とを調製している。
これにより、高温環境下にて充放電を行った際のリチウムイオン二次電池1の発熱を抑えることが可能となっている。
That is, in the lithium ion secondary battery 1, the ratio (X / Y) of the added amount X (mol / l) of LiBOB to the electrolytic solution and the capacitance Y (F) of the negative electrode 32 is 0.01 or more and 0.0. The addition amount X (mol / l) of LiBOB to the electrolytic solution and the capacitance Y (F) of the negative electrode 32 are adjusted so as to be 1 or less.
Thereby, it becomes possible to suppress the heat_generation | fever of the lithium ion secondary battery 1 at the time of charging / discharging in a high temperature environment.

次に、リチウムイオン二次電池1に対して、高温環境下にて充放電サイクル試験を行った際の、電解液に対するLiBOBの添加量X(mol/l)と負極32のキャパシタンスY(F)との比(X/Y)と、リチウムイオン二次電池1の温度との関係について説明する。
高温環境下での充放電サイクル試験は、リチウムイオン二次電池1の実施例1〜5、および比較例1〜4に対して行った。
Next, the amount X (mol / l) of LiBOB added to the electrolyte and the capacitance Y (F) of the negative electrode 32 when a charge / discharge cycle test was performed on the lithium ion secondary battery 1 in a high temperature environment. The relationship between the ratio (X / Y) and the temperature of the lithium ion secondary battery 1 will be described.
The charge / discharge cycle test under a high temperature environment was performed on Examples 1 to 5 and Comparative Examples 1 to 4 of the lithium ion secondary battery 1.

高温環境下での充放電サイクル試験の試験条件としては、80℃での環境下にて、開始電圧3.82V、電流50A、2sec矩形波での充放電を2000サイクル行ったものである。   As test conditions for the charge / discharge cycle test in a high temperature environment, 2000 cycles of charge / discharge with a starting voltage of 3.82 V, a current of 50 A, and a 2 sec rectangular wave were performed in an environment at 80 ° C.

実施例1は、負極32のキャパシタンスYが1.00(F)であり、電解液へのLiBOBの添加量Xが0.005(mol/l)であって、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.01であるリチウムイオン二次電池1である。
なお、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)の値は、小数点以下第3位の値を四捨五入して、小数点以下第2位までの値で表したものである。
In Example 1, the capacitance Y of the negative electrode 32 is 1.00 (F), the addition amount X of LiBOB to the electrolytic solution is 0.005 (mol / l), and the addition amount X (mol / l) of LiBOB. 1) A lithium ion secondary battery 1 having a ratio (X / Y) of capacitance Y (F) of 0.01.
In addition, the value of the ratio (X / Y) of the added amount X (mol / l) of LiBOB and the capacitance Y (F) is rounded off to the second decimal place. It is represented by.

実施例2は、負極32のキャパシタンスYが1.00(F)であり、電解液へのLiBOBの添加量Xが0.10(mol/l)であって、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.10であるリチウムイオン二次電池1である。   In Example 2, the capacitance Y of the negative electrode 32 is 1.00 (F), the addition amount X of LiBOB to the electrolytic solution is 0.10 (mol / l), and the addition amount X (mol / l) of LiBOB. 1) A lithium ion secondary battery 1 having a ratio (X / Y) of capacitance Y (F) of 0.10.

実施例3は、負極32のキャパシタンスYが1.30(F)であり、電解液へのLiBOBの添加量Xが0.05(mol/l)であって、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.04であるリチウムイオン二次電池1である。
なお、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)の値は、小数点以下第3位の値を四捨五入して、小数点以下第2位までの値で表したものである。
In Example 3, the capacitance Y of the negative electrode 32 is 1.30 (F), the addition amount X of LiBOB to the electrolytic solution is 0.05 (mol / l), and the addition amount X (mol / l) of LiBOB. 1) A lithium ion secondary battery 1 having a ratio (X / Y) of capacitance Y (F) of 0.04.
In addition, the value of the ratio (X / Y) of the added amount X (mol / l) of LiBOB and the capacitance Y (F) is rounded off to the second decimal place. It is represented by.

実施例4は、負極32のキャパシタンスYが2.00(F)であり、電解液へのLiBOBの添加量Xが0.20(mol/l)であって、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.10であるリチウムイオン二次電池1である。   In Example 4, the capacitance Y of the negative electrode 32 is 2.00 (F), the addition amount X of LiBOB to the electrolytic solution is 0.20 (mol / l), and the addition amount X (mol / l) of LiBOB. 1) A lithium ion secondary battery 1 having a ratio (X / Y) of capacitance Y (F) of 0.10.

実施例5は、負極32のキャパシタンスYが2.00(F)であり、電解液へのLiBOBの添加量Xが0.01(mol/l)であって、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.01であるリチウムイオン二次電池1である。   In Example 5, the capacitance Y of the negative electrode 32 is 2.00 (F), the addition amount X of LiBOB to the electrolytic solution is 0.01 (mol / l), and the addition amount X (mol / l) of LiBOB. 1) A lithium ion secondary battery 1 having a ratio (X / Y) of capacitance Y (F) of 0.01.

比較例1は、負極32のキャパシタンスYが1.00(F)であり、電解液へのLiBOBの添加量Xが0.00(mol/l)であって(LiBOBの添加無し)、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.00であるリチウムイオン二次電池1である。   In Comparative Example 1, the capacitance Y of the negative electrode 32 is 1.00 (F), the addition amount X of LiBOB to the electrolytic solution is 0.00 (mol / l) (no addition of LiBOB), and LiBOB The lithium ion secondary battery 1 has a ratio (X / Y) of an addition amount X (mol / l) to a capacitance Y (F) of 0.00.

比較例2は、負極32のキャパシタンスYが1.00(F)であり、電解液へのLiBOBの添加量Xが0.15(mol/l)であって、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.15であるリチウムイオン二次電池1である。   In Comparative Example 2, the capacitance Y of the negative electrode 32 is 1.00 (F), the addition amount X of LiBOB to the electrolytic solution is 0.15 (mol / l), and the addition amount X (mol / l) of LiBOB 1) A lithium ion secondary battery 1 having a ratio (X / Y) of capacitance Y (F) of 0.15.

比較例3は、負極32のキャパシタンスYが2.00(F)であり、電解液へのLiBOBの添加量Xが0.005(mol/l)であって、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.00であるリチウムイオン二次電池1である。
なお、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)の値は、小数点以下第3位の値を四捨五入して、小数点以下第2位までの値で表したものである。
In Comparative Example 3, the capacitance Y of the negative electrode 32 is 2.00 (F), the addition amount X of LiBOB to the electrolytic solution is 0.005 (mol / l), and the addition amount X (mol / l) of LiBOB. 1) A lithium ion secondary battery 1 having a ratio (X / Y) of capacitance Y (F) of 0.00.
In addition, the value of the ratio (X / Y) of the added amount X (mol / l) of LiBOB and the capacitance Y (F) is rounded off to the second decimal place. It is represented by.

比較例4は、負極32のキャパシタンスYが2.00(F)であり、電解液へのLiBOBの添加量Xが0.25(mol/l)であって、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.13であるリチウムイオン二次電池1である。
なお、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)の値は、小数点以下第3位の値を四捨五入して、小数点以下第2位までの値で表したものである。
In Comparative Example 4, the capacitance Y of the negative electrode 32 is 2.00 (F), the addition amount X of LiBOB to the electrolytic solution is 0.25 (mol / l), and the addition amount X (mol / l) of LiBOB. 1) A lithium ion secondary battery 1 having a ratio (X / Y) of capacitance Y (F) of 0.13.
In addition, the value of the ratio (X / Y) of the added amount X (mol / l) of LiBOB and the capacitance Y (F) is rounded off to the second decimal place. It is represented by.

このように、実施例1〜5のリチウムイオン二次電池1は、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.01以上かつ0.1以下の範囲内にあるリチウムイオン二次電池1であり、比較例1〜4のリチウムイオン二次電池1は、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.01以上かつ0.1以下の範囲外にあるリチウムイオン二次電池1である。   As described above, in the lithium ion secondary batteries 1 of Examples 1 to 5, the ratio (X / Y) of the LiBOB addition amount X (mol / l) to the capacitance Y (F) was 0.01 or more and 0.0. 1 is a lithium ion secondary battery 1 in the range of 1 or less, and the lithium ion secondary batteries 1 of Comparative Examples 1 to 4 are the ratio of the added amount X (mol / l) of LiBOB to the capacitance Y (F) ( X / Y) is a lithium ion secondary battery 1 having a range of 0.01 or more and 0.1 or less.

高温環境下にて充放電サイクル試験を行った後の、実施例1〜5および比較例1〜4のリチウムイオン二次電池1の温度を、図2および表1に示す。
なお、リチウムイオン二次電池1の温度としては、電池ケース2の底部の温度を測定した。
FIG. 2 and Table 1 show the temperatures of the lithium ion secondary batteries 1 of Examples 1 to 5 and Comparative Examples 1 to 4 after performing a charge / discharge cycle test in a high temperature environment.
In addition, as the temperature of the lithium ion secondary battery 1, the temperature of the bottom part of the battery case 2 was measured.

Figure 2014056667
Figure 2014056667

図2および表1によれば、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が、0.01以上かつ0.1以下の範囲内にある実施例1〜5においては、リチウムイオン二次電池1の温度は85℃〜92℃であって、100℃以下の低い温度となっている。
一方、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が、0.01以上かつ0.1以下の範囲外にある比較例1〜4においては、リチウムイオン二次電池1の温度は116℃〜122℃であって、100℃を超える高い温度となっている。
According to FIG. 2 and Table 1, the ratio (X / Y) of the added amount X (mol / l) of LiBOB to the capacitance Y (F) is in the range of 0.01 or more and 0.1 or less. In Examples 1 to 5, the temperature of the lithium ion secondary battery 1 is 85 ° C. to 92 ° C. and is a low temperature of 100 ° C. or less.
On the other hand, in Comparative Examples 1 to 4 in which the ratio (X / Y) of the LiBOB addition amount X (mol / l) to the capacitance Y (F) is outside the range of 0.01 or more and 0.1 or less, The temperature of the lithium ion secondary battery 1 is 116 to 122 ° C., which is a high temperature exceeding 100 ° C.

負極32を構成する負極活物質は100℃を越えると発熱するため、リチウムイオン二次電池1の発熱を抑制するという観点から、高温環境下での充放電サイクル試験後の温度が100℃以下であった実施例1〜5のリチウムイオン二次電池1を良品と判定し、100℃を超える温度であった比較例1〜4のリチウムイオン二次電池1を不良品であると判定することができる。   Since the negative electrode active material constituting the negative electrode 32 generates heat when it exceeds 100 ° C., the temperature after the charge / discharge cycle test in a high temperature environment is 100 ° C. or less from the viewpoint of suppressing the heat generation of the lithium ion secondary battery 1. It can be determined that the lithium ion secondary battery 1 of Examples 1 to 5 is a non-defective product, and the lithium ion secondary batteries 1 of Comparative Examples 1 to 4 that were at a temperature exceeding 100 ° C. are determined to be defective products. it can.

このように、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)を、0.01以上かつ0.1以下の範囲内に設定することで、高温環境下にて充放電サイクル試験を行った際の発熱、即ち、高温環境下で充放電を繰り返し行った際の発熱を小さく抑えることが可能となっている。
図3には、LiBOBの添加量X(mol/l)およびキャパシタンスY(F)の値による、高温環境下での充放電サイクル試験後のリチウムイオン二次電池1の発熱度合いの違いを示しており、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.01以上かつ0.1以下の範囲内にあるとリチウムイオン二次電池1の発熱度合いが小さく、0.01以上かつ0.1以下の範囲外にあるとリチウムイオン二次電池1の発熱度合いが大きくなっている。
Thus, by setting the ratio (X / Y) of the added amount X (mol / l) of LiBOB to the capacitance Y (F) within the range of 0.01 or more and 0.1 or less, the high temperature environment It is possible to suppress heat generation when the charge / discharge cycle test is performed below, that is, heat generation when charge / discharge is repeatedly performed under a high temperature environment.
FIG. 3 shows the difference in the degree of heat generation of the lithium ion secondary battery 1 after the charge / discharge cycle test in a high-temperature environment depending on the value of LiBOB addition amount X (mol / l) and capacitance Y (F). If the ratio (X / Y) of the added amount X (mol / l) of LiBOB to the capacitance Y (F) is in the range of 0.01 or more and 0.1 or less, the heat generation of the lithium ion secondary battery 1 If the degree is small and outside the range of 0.01 or more and 0.1 or less, the degree of heat generation of the lithium ion secondary battery 1 is large.

なお、図2において、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.00から0.01へ増加することによって、リチウムイオン二次電池1の温度が100℃を超える温度から100℃以下の温度に低下している(図2における(a)参照)。
これは、LiBOBが殆ど存在しない状態から、負極活物質量に対するLiBOB量が増加することにより、負極活物質量の表面にSEI膜が形成され、負極活物質量の反応面積が減少して発熱が抑制されたものであると考えられる。
また、負極活物質量は温度が100℃を超えると発熱を生じるため、温度が118℃および116℃と高い値を示した比較例1および比較例3は、負極活物質量の発熱により高温になったと考えられる。
In FIG. 2, the ratio (X / Y) of the LiBOB addition amount X (mol / l) to the capacitance Y (F) increases from 0.00 to 0.01, whereby the lithium ion secondary battery 1 The temperature of the temperature has decreased from a temperature exceeding 100 ° C. to a temperature of 100 ° C. or less (see (a) in FIG. 2).
This is because when the amount of LiBOB with respect to the amount of the negative electrode active material increases from the state where there is almost no LiBOB, a SEI film is formed on the surface of the amount of negative electrode active material, the reaction area of the amount of negative electrode active material decreases, and heat is generated. It is thought to have been suppressed.
In addition, since the amount of the negative electrode active material generates heat when the temperature exceeds 100 ° C., Comparative Examples 1 and 3 in which the temperatures are as high as 118 ° C. and 116 ° C. are increased due to the heat generation of the amount of the negative electrode active material. It is thought that it became.

また、図2において、LiBOBの添加量X(mol/l)とキャパシタンスY(F)との比(X/Y)が0.10を超えると、リチウムイオン二次電池1の温度が100℃を超える高い温度になっている(図2における(b)参照)。
これは、負極活物質量に対するLiBOB量が必要以上に増加することにより、負極活物質の表面にSEI膜が過剰に形成されることとなって負極抵抗が増加し、ジュール熱の発生が増大したことによるものと考えられる。
In FIG. 2, when the ratio (X / Y) of the LiBOB addition amount X (mol / l) to the capacitance Y (F) exceeds 0.10, the temperature of the lithium ion secondary battery 1 reaches 100 ° C. The temperature is higher than that (see (b) in FIG. 2).
This is because when the amount of LiBOB with respect to the amount of the negative electrode active material increases more than necessary, the SEI film is excessively formed on the surface of the negative electrode active material, the negative electrode resistance increases, and the generation of Joule heat increases. This is probably due to this.

1 リチウムイオン二次電池
2 電池ケース
3 電極体
31 正極
32 負極
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 2 Battery case 3 Electrode body 31 Positive electrode 32 Negative electrode

Claims (2)

LiBOBが添加された電解液と、表面が非晶質炭素にてコートされた天然黒鉛にて構成される負極活物質を含み、前記負極活物質の表面にLiBOB由来の皮膜が形成された負極とを備える非水電解質二次電池であって、
前記電解液に対するLiBOBの添加量X(mol/l)と前記負極のキャパシタンスY(F)との比(X/Y)が、0.01以上かつ0.1以下である、
ことを特徴とする非水電解質二次電池。
A negative electrode including a negative electrode active material composed of an electrolytic solution to which LiBOB is added and a natural graphite coated with amorphous carbon on the surface, and having a LiBOB-derived film formed on the surface of the negative electrode active material; A non-aqueous electrolyte secondary battery comprising:
The ratio (X / Y) of the added amount X (mol / l) of LiBOB to the electrolytic solution and the capacitance Y (F) of the negative electrode is 0.01 or more and 0.1 or less.
A non-aqueous electrolyte secondary battery.
LiBOBが添加された電解液と、表面が非晶質炭素にてコートされた天然黒鉛にて構成される負極活物質を含み、前記負極活物質の表面にLiBOB由来の皮膜が形成された負極とを備える非水電解質二次電池の製造方法であって、
前記電解液に対するLiBOBの添加量X(mol/l)と前記負極のキャパシタンスY(F)との比(X/Y)が、0.01以上かつ0.1以下となるように、前記LiBOBの添加量X(mol/l)と前記負極のキャパシタンスY(F)とを調製する、
ことを特徴とする非水電解質二次電池の製造方法。
A negative electrode including a negative electrode active material composed of an electrolytic solution to which LiBOB is added and a natural graphite coated with amorphous carbon on the surface, and having a LiBOB-derived film formed on the surface of the negative electrode active material; A non-aqueous electrolyte secondary battery manufacturing method comprising:
The amount of LiBOB added to the electrolyte solution X (mol / l) and the ratio (X / Y) of the capacitance Y (F) of the negative electrode is 0.01 or more and 0.1 or less. An addition amount X (mol / l) and a capacitance Y (F) of the negative electrode are prepared.
A method for producing a non-aqueous electrolyte secondary battery.
JP2012199651A 2012-09-11 2012-09-11 Non-aqueous electrolyte secondary battery and manufacturing method thereof Active JP6032474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012199651A JP6032474B2 (en) 2012-09-11 2012-09-11 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199651A JP6032474B2 (en) 2012-09-11 2012-09-11 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014056667A true JP2014056667A (en) 2014-03-27
JP6032474B2 JP6032474B2 (en) 2016-11-30

Family

ID=50613845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199651A Active JP6032474B2 (en) 2012-09-11 2012-09-11 Non-aqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6032474B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063877A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259592A (en) * 2004-03-12 2005-09-22 Sanyo Electric Co Ltd Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery
JP2007179883A (en) * 2005-12-28 2007-07-12 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008091236A (en) * 2006-10-03 2008-04-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008283048A (en) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd Electrochemical energy storage device
JP2009164030A (en) * 2008-01-09 2009-07-23 Toyota Central R&D Labs Inc Nonaqueous electrolyte and lithium ion secondary battery with the same
JP2010050079A (en) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
WO2010079565A1 (en) * 2009-01-06 2010-07-15 株式会社村田製作所 Nonaqueous electrolyte secondary battery
JP2010205474A (en) * 2009-03-02 2010-09-16 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte and lithium ion secondary battery including the same
JP2011091005A (en) * 2009-10-26 2011-05-06 Aoi Electronics Co Ltd Ion-conductive polymer electrolyte secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259592A (en) * 2004-03-12 2005-09-22 Sanyo Electric Co Ltd Nonaqueous electrolytic solution for secondary battery, and nonaqueous electrolytic solution secondary battery
JP2007179883A (en) * 2005-12-28 2007-07-12 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008091236A (en) * 2006-10-03 2008-04-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008283048A (en) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd Electrochemical energy storage device
JP2009164030A (en) * 2008-01-09 2009-07-23 Toyota Central R&D Labs Inc Nonaqueous electrolyte and lithium ion secondary battery with the same
JP2010050079A (en) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
WO2010079565A1 (en) * 2009-01-06 2010-07-15 株式会社村田製作所 Nonaqueous electrolyte secondary battery
JP2010205474A (en) * 2009-03-02 2010-09-16 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte and lithium ion secondary battery including the same
JP2011091005A (en) * 2009-10-26 2011-05-06 Aoi Electronics Co Ltd Ion-conductive polymer electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018063877A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6032474B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
KR20170003393A (en) Lithium ion secondary battery
KR20160125895A (en) Negative electrode active material for non-aqueous electrolyte secondary battery and method for making the same, and non-aqueous electrolyte secondary battery using the negative electrode active material and method for making negative electrode material for non-aqueous electrolyte secondary battery
CN108886169A (en) Nonaqueous electrolyte and lithium secondary battery including the nonaqueous electrolyte
US9583789B2 (en) Non-aqueous electrolyte secondary battery
KR20170003392A (en) Lithium ion secondary battery
JP2015149267A (en) Nonaqueous electrolyte battery and battery pack
JP2016048624A (en) Lithium secondary battery
CN106133952A (en) Rechargeable nonaqueous electrolytic battery
JP2018106903A (en) Lithium ion secondary battery
JP2014007132A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2014032923A (en) Negative electrode of nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing them
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
JP2019008923A (en) Nonaqueous electrolyte secondary battery
JP2014053217A (en) Negative electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP6032474B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP7125655B2 (en) negative electrode
CN110931860B (en) Nonaqueous electrolyte for lithium ion secondary battery
WO2015040685A1 (en) Lithium-ion secondary battery separator, lithium-ion secondary battery using lithium-ion secondary battery separator, and lithium-ion secondary battery module
JP2020113378A (en) Nonaqueous electrolyte for lithium secondary battery
JP7307888B2 (en) negative electrode
JP7165305B2 (en) Non-aqueous electrolyte secondary battery
JP7265713B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP7249988B2 (en) lithium ion secondary battery
JP7340147B2 (en) Non-aqueous electrolytes and non-aqueous electrolyte secondary batteries
JP2019067513A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20151203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161012

R151 Written notification of patent or utility model registration

Ref document number: 6032474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151