JP2014042429A - 駆動装置及びロボット装置 - Google Patents

駆動装置及びロボット装置 Download PDF

Info

Publication number
JP2014042429A
JP2014042429A JP2012184453A JP2012184453A JP2014042429A JP 2014042429 A JP2014042429 A JP 2014042429A JP 2012184453 A JP2012184453 A JP 2012184453A JP 2012184453 A JP2012184453 A JP 2012184453A JP 2014042429 A JP2014042429 A JP 2014042429A
Authority
JP
Japan
Prior art keywords
rotor
transmission
drive
transmission unit
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012184453A
Other languages
English (en)
Inventor
Masaru Arai
大 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012184453A priority Critical patent/JP2014042429A/ja
Publication of JP2014042429A publication Critical patent/JP2014042429A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】高トルクを発生可能なモータ装置及びロボット装置を提供すること。
【解決手段】回転子と、異方性材料を含み、回転子の周面の少なくとも一部に掛けられた伝達部と、回転子と伝達部との間を回転力伝達状態として伝達部を一定距離移動させると共に回転力伝達状態を解消した状態で伝達部を所定位置に復帰させる駆動部とを備える。
【選択図】図1

Description

本発明は、駆動装置及びロボット装置に関する。
例えば旋回系機械を駆動させるアクチュエータとして、モータ装置が用いられている(例えば、特許文献1参照)。このようなモータ装置として、例えば電動モータや超音波モータなど、高トルクを発生させることが可能なモータ装置が広く知られている。
近年では、ヒューマノイドロボットの関節部分など、より精密な部分を駆動させるモータ装置が求められており、電動モータや超音波モータなどの既存のモータにおいても小型化、トルクの制御性等、細密で高精度な駆動を行うことができる構成が求められている。
このようなモータ装置の構成として、例えば駆動源(駆動部)と回転子との間に、駆動力を伝達する伝達系が設けられた構成が知られている。
特開平2−311237号公報
しかしながら、例えば、上記の構成において伝達系に対して駆動力を作用させる際に、伝達系の構成によっては当該伝達系の一部に駆動力が集中して作用する場合があり、効率的な力の伝達を阻害する可能性がある。このような効率的な力の伝達が阻害されること等によって、出力されるトルクが低減されてしまう場合がある。
本発明に係る態様は、高トルクを発生させることができる駆動装置及びロボット装置を提供することを目的とする。
本発明の第一の態様に従えば、回転子と、異方性材料を含み、回転子の周面の少なくとも一部に掛けられた伝達部と、回転子と伝達部との間を回転力伝達状態として伝達部を一定距離移動させると共に回転力伝達状態を解消した状態で伝達部を所定位置に復帰させる駆動部とを備える駆動装置が提供される。
本発明の第二の態様に従えば、アームと、当該アームを駆動する駆動装置とを備え、当該駆動装置として、本発明の第一の態様に従う駆動装置が用いられているロボット装置が提供される。
本発明によれば、高トルクを発生可能なモータ装置及びロボット装置を提供することができる。
第一実施形態に係るモータ装置の構成を模式的に示す斜視図。 本実施形態に係るモータ装置の構成を模式的に示す断面図。 本実施形態に係るモータ装置の特性を示すグラフ。 本実施形態に係るモータ装置の動作を示す図。 本実施形態に係るモータ装置の動作を示す図。 本実施形態に係るモータ装置の動作を示す図。 本実施形態に係るモータ装置の動作を示す図。 第二実施形態に係るロボット装置の構成を示す図。 変形例に係るモータ装置の一部の構成を模式的に示す断面図。 変形例に係るモータ装置の構成を示す図。
[第1実施形態]
以下、図面に基づき、本発明の実施の形態を説明する。
図1は、本実施形態に係るモータ装置MTRの一例を示す概略構成図である。図2は、図1におけるA−A´断面に沿った構成を示す図である。
図1及び図2に示すように、モータ装置MTRは、ベース部BSと、回転子SFと、駆動部ACと、伝達部BTと、制御部CONTとを備えている。当該モータ装置MTRは、制御部CONTの制御によって駆動部AC及び伝達部BTを用いて回転子SFを回転させると共に、当該回転子SFの回転状態(例、回転方向、回転速度、など)を調整できる構成である。
以下、各図の説明においてはXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。回転子SFの円筒軸方向をZ軸方向とし、当該Z軸方向に垂直な平面上の直交方向をそれぞれX軸方向及びY軸方向とする。また、X軸、Y軸、及びZ軸周りの回転(傾斜)方向(周方向)をそれぞれ、θX、θY、及びθZ方向とする。
ベース部BSは、例えばステンレス等の材料を用いて板状に形成された部分であり、回転子SF、駆動部ACと、伝達部BTと、制御部(駆動制御装置)CONTを支持している。本実施形態におけるベース部BSは、板状に形成されているが、例えば筐体など、他の形状(例、ベース部BSと伝達部BTとが一体的に構成された形状)であっても構わない。
回転子SFは、例えば円柱状に形成されており、例えば不図示のベアリング装置などによって回転可能に支持されている。当該ベアリング装置は、例えばベース部BSなどに支持されている。回転子SFは、中心軸Cを回転軸としてθZ方向に回転するようになっている。
駆動部ACは、例えばベース部BSに取り付けられている。駆動部ACは、駆動素子31及び駆動素子32を有している。駆動素子31及び駆動素子32としては、例えばピエゾ素子や磁歪素子などの電気機械変換素子が用いられている。駆動素子31及び駆動素子32は、電気機械変換素子に電圧が印加されることにより、X方向に伸縮する構成である。制御部CONTは駆動部ACに接続されており、当該駆動部ACに対して制御信号を供給可能になっている。なお、例えば駆動素子31及び駆動素子32は、ピエゾ素子などの電歪素子、磁歪素子、電磁石、及び/又はVCM(ボイスコイルモータ)などを用いる。
駆動素子31及び駆動素子32は、ベース部BSによって+X側の位置が固定されている。このため、駆動素子31及び駆動素子32は、X方向に伸縮した場合、当該伸縮に伴って−X側の端部のX方向における位置が変化することになる。
伝達部BTは、第一端部21、第二端部22及びベルト部23を有している。第一端部21は、駆動素子31の−X側の端部に接続されている。第二端部22は、駆動素子32の−X側の端部に接続されている。第一端部21及び第二端部22は、回転子SFの外周上の所定の基準位置(例、図2に示す基準位置F、など)を挟んで配置されている。第一端部21及び第二端部22は、基準位置Fについて対称な位置に配置されている。本実施形態では、回転子SFの+X側端部を基準位置Fとした場合を例に挙げて説明する。なお、本実施形態における所定の基準位置は、第一端部21及び第二端部22の配置に応じて、回転子SFの周面又はその近傍に設定されることを含む。例えば、本実施形態の所定の基準位置は、回転子SFの周面上又はその近傍において第一端部21と第二端部22との間(例、中間)に設定されることを含む。
ベルト部23は、例えば帯状に形成され、回転子SFの曲面状の周面(例、内周面や外周面、等)の少なくとも一部に掛けられる部分である。ベルト部23は、例えば第一端部21及び第二端部22に接続されており、例えば回転子SFの−X側に掛け回されている。ベルト部23は、例えば回転子SFの周方向の全面に亘って掛けられる必要は無く、少なくとも一部に掛けられる構成であれば良い。なお、回転子SFに対するベルト部23の実質的な巻き数は、例えば、0.1〜2.0(例えば、0.2、0.4、0.5、0.6、0.8、1.0、1.2、1.4、1.6、1.8)、又は2.0以上にできる。
ベルト部23のうち少なくとも一部は、異方性材料によって構成されている。ここで、異方性材料は、物理的性質(例、剛性、光屈折率、電気抵抗率など)が方向によって異なる材料である。このような物理的性質の異方性は、例えば材料内部に含まれる分子の種類、分子構造、分子配列、材料内部の応力などに起因する。異方性材料は、等方性材料と対比される。等方性材料は、物理的特性が方向によって変わらない材料である。
本実施形態では、ベルト部23に含まれる異方性材料として、例えば繊維材料を用いることができる。繊維材料は、繊維方向に平行な方向に引っ張る場合の方が繊維方向とは異なる方向に引っ張る場合よりも剛性が高いという性質を有する。このような繊維材料として、例えば炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastics)などを用いることができる。繊維材料は、例えば炭素繊維を固めた樹脂層が複数層に積層された状態でベルト部23に含まれている。
ベルト部23に含まれる繊維材料は、繊維方向が例えばベルト部23の長手方向に沿う(例、長手方向に平行となる)ように配置されている。このため、ベルト部23は、例えば長手方向に引っ張る場合には、長手方向とは異なる方向(例、ベルト部23の厚さ方向)に引っ張る場合に比べて、剛性が高くなる。逆に、ベルト部23は、例えば、短手方向に引っ張る場合には、短手方向とは異なる方向(例、長手方向)に引っ張る場合に比べて、剛性が低くなる。したがって、ベルト部23は、例えば張力の方向によって剛性が異なる。なお、ベルト部23は、例えば長手方向及び短手方向のそれぞれにおいて厚さが均一になるように形成されている。
ベルト部23は、長手方向が回転子SFの周方向に沿うように配置されている。したがって、繊維材料の繊維方向は回転子SFの周方向に沿った方向(例、周方向に平行な方向)となっている。また、ベルト部23のうち例えば回転子SFに掛けられる部分では、繊維材料の繊維方向は、回転子SFの周面の接線方向(又は、回転子SFの径方向に直交する方向)に平行な方向となっている。
上記の駆動素子31及び駆動素子32が縮むと、第一端部21及び第二端部22が+X方向に移動する。このため、ベルト部23が回転子SFに巻きつき、当該ベルト部23には長手方向に張力が加わる。このとき、駆動素子31及び駆動素子32は、ベルト部23を長手方向に引っ張る。ベルト部23の長手方向の剛性は他の方向の剛性に比べて高く、ベルト部23の長手方向への変形が抑制される。このため、駆動素子31及び駆動素子32の収縮のストロークは、例えばベルト部23の長手方向の変形によって消費されにくくなり、ベルト部23の移動として効率的に伝達される。
駆動素子31及び駆動素子32が伸びると、第一端部21及び第二端部22が−X方向に移動する。このため、ベルト部23が回転子SFから離れて弛緩する。このとき、ベルト部23の厚さ方向の剛性は長手方向の剛性に比べて低く、ベルト部23は長手方向よりも厚さ方向に変形しやすくなる。このため、ベルト部23は回転子SFの径方向に変形しやすくなる。よって、駆動素子31及び駆動素子32の伸長のストロークは、ベルト部23が回転子SFから離れるためのベルト部23の移動として効率的に伝達される。
このように、ベルト部23は、駆動素子31及び駆動素子32の駆動(例、変位、変形や伸縮など)に連動して緊張したり弛緩したりする。ベルト部23には上記のように繊維材料が含まれているため、回転子SFの周方向の剛性が高く、回転子SFの径方向の剛性が低くなる。このため、駆動素子31及び駆動素子32の伸縮によってベルト部23が回転子SFに対して効率的に移動するように、当該ベルト部23に対して駆動力が伝達される。
ここで、本実施形態に係るモータ装置MTRにおいて、回転子SFにトルクを作用させる原理を説明する。
回転子SFを駆動させる際には、回転子SFに巻き掛けられた伝達部BTに有効張力を生じさせ、当該有効張力によって回転子SFにトルクを伝達する。
オイラーの摩擦ベルト理論により、回転子SFに巻き掛けられた伝達部BTの第一端部21側の張力(T1)及び第二端部22側の張力(T2)が下記[数1]を満たすとき、伝達部BTと回転子SFとの間で摩擦力が生じ、伝達部BTが回転子SFに対して滑りを生じることの無い状態(回転力伝達状態)で回転子SFと共に移動する。この移動により、回転子SFにトルクが伝達される。ただし、[数1]において、μは伝達部BTと回転子SFとの間の見かけ上の摩擦係数であり、θは伝達部BTの有効巻き付き角である。
Figure 2014042429
このとき、トルクの伝達に寄与する有効張力は、(T1−T2)によって表される。上記[数1]に基づいて有効張力(T1−T2)を求めると、[数2]のようになる。[数2]は、T1を用いて有効張力を表す式である。
Figure 2014042429
上記[数2]より、回転子SFに伝達されるトルクは駆動素子31の張力T1によって一意に決定されることがわかる。[数2]の右辺のT1の係数部分は、伝達部BTと回転子SFとの間の摩擦係数μ及び伝達部BTの有効巻き付き角θにそれぞれ依存する。
図3は、摩擦係数μを変化させたときの有効巻き付き角θと係数部分の値との関係を示すグラフである。グラフの横軸は有効巻き付き角θを示しており、グラフの縦軸は係数部分の値を示している。
図3に示すように、例えば摩擦係数μが0.3の場合には、有効巻き付き角θが300°以上のときに係数部分の値が0.8以上となっている。このことから、摩擦係数μが0.3の場合には、有効巻き付き角θを300°以上とすることにより、駆動素子31による張力T1の80%以上の力が回転子SFのトルクに寄与することがわかる。この巻き付き角の他、図3のグラフから、例えば伝達部BTと回転子SFとの間の摩擦係数を大きくするほど、係数部分の値が大きくなることが推定される。
このように、トルクの大きさは駆動素子31の張力T1によって一意に決定されることになり、例えば伝達部BTの移動距離などには無関係であることがわかる。したがって、例えば駆動素子31及び駆動素子32に用いられるピエゾ素子などは、数ミリ程度の小型素子であっても、数百ニュートン以上の力を出すことができるので非常に大きな回転力を付与することができる。このように、ベルト部23と、駆動素子31及び駆動素子32とは、協働して回転子SFにトルクを伝達する。モータ装置MTRは、駆動素子31と駆動素子32とが協働的に(又は相互作用的に)駆動することによって、駆動素子31によって伝達部BTに加えられる力(例、張力や押圧力)と駆動素子32によって伝達部BTに加えられる力(例、張力や押圧力)とに基づいて回転子SFに対するベルト部23の接触状態を調整可能なため、ベルト部23を介して回転子SFにトルクを伝達する。また、モータ装置MTRは、駆動素子31と駆動素子32とが協働的に(又は相互作用的に)駆動することによって、ベルト部23の回転子SFに対する巻き付き角θに基づく回転子SFに対するベルト部23の接触状態を調整可能なため、ベルト部23を介して回転子SFにトルクを伝達する。このように、本実施形態におけるモータ装置MTRは、駆動部ACによって回転子SFの径方向に力が伝達部BTの少なくとも一部に加えられた状態(回転力伝達状態)で、伝達部BTを介して回転子SFにトルクが伝達される。
このような原理に基づいて、制御部CONTは、図4に示すように、まず、第一端部21及び第二端部22がそれぞれ+X方向に移動するように駆動素子31及び駆動素子32を変形させる。この動作により、伝達部BTの第一端部21側には張力T1が発生し、伝達部BTの第二端部22側には張力T2が発生する。したがって、伝達部BTに有効張力(T1−T2)が発生する。また、ベルト部23の長手方向への変形が抑制されるため、駆動素子31及び駆動素子32の収縮による駆動力がベルト部23に効率的に伝達される。
制御部CONTは、伝達部BTに有効張力を発生させた状態を保持しつつ、図5に示すように、伝達部BTの第一端部21が−X方向に移動するように、かつ、第二端部22が+X方向に移動するように駆動素子31及び駆動素子32を変形させる(駆動動作)。この動作において、制御部CONTは、第一端部21の移動距離と第二端部22の移動距離とを等しくさせる。この動作により、伝達部BTと回転子SFとの間に摩擦力が発生した状態で伝達部BTが移動し、当該移動と共に回転子SFがθZ方向に回転する。
制御部CONTは、第一端部21及び第二端部22を所定距離だけ移動させた後、図6に示すように、第一端部21が移動しないように、かつ、第二端部22が駆動の開始位置(所定位置)へ戻るように、駆動素子32だけを変形させる。この動作により、第二端部22が−X方向へ移動し、伝達部BTの巻き掛けが緩んだ状態になる。つまり、伝達部BTに付加されていた有効張力が解除された状態になる。ベルト部23は回転子SFの径方向に変形しやすいため、駆動素子31及び駆動素子32の伸長による駆動力は、ベルト部23に効率的に伝達される。この状態においては、伝達部BTと回転子SFとの間に摩擦力は発生せず、回転子SFは慣性によって回転し続けることになる。
制御部CONTは、伝達部BTの巻き掛けを緩ませた後、図7に示すように、第一端部21が駆動の開始位置(所定位置)へ戻るように駆動素子31を変形させる。この動作により、伝達部BTの巻き掛けが緩んだまま、すなわち、有効張力が発生しないまま、伝達部BTの第一端部21が駆動の開始位置(所定位置)へ戻っていく(復帰動作)。
第一端部21が駆動開始位置に戻される直前になったら、制御部CONTは、駆動素子31を変形させて第一端部21を+X方向に移動させる。この動作により、第一端部21が駆動開始位置に戻されるのとほぼ同時に、第一端部21側に張力T1が発生し、第二端部22側に張力T2が発生する。これにより、駆動開始時に伝達部BTに有効張力を付加させた状態(図4の状態)と同様の状態となる。
伝達部BTに有効張力が付加された後、制御部CONTは、伝達部BTの第一端部21が+X方向に移動するように駆動素子31を変形させ、第二端部22が+X方向に移動するように駆動素子32を変形させる(駆動動作)。このとき、第一端部21の移動距離と第二端部22の移動距離とを等しくさせる。この動作により、伝達部BTと回転子SFとの間に摩擦力が発生した状態で伝達部BTが移動し、当該移動と共に回転子SFがθ方向に回転する。このとき、上記同様に、駆動素子31及び駆動素子32の収縮による駆動力がベルト部23に効率的に伝達されるため、効率的に駆動動作を行うことができる。
この後、制御部CONTは、伝達部BTに付加されていた有効張力を再度解除させる。制御部CONTは、有効張力を解除させた後、伝達部BTの第一端部21及び第二端部22が開始位置に戻るように移動させる(復帰動作)。このように制御部CONTが上記駆動動作と復帰動作とを駆動部ACに繰り返し行わせることにより、回転子SFがθZ方向に回転し続けることになる。ベルト部23は、繊維材料の繊維方向が長手方向に沿って配置されているため長手方向の剛性が高い。このため、ベルト部23は、繰り返し張力が作用する場合においても、優れた耐久性を示すことになる。
以上のように、本実施形態に係るモータ装置MTRは、異方性材料を含み、回転子SFの周面の少なくとも一部に掛けられた伝達部BTを備えるので、伝達部BTに繰り返し張力を作用させる場合においても、優れた耐久性を示すこととなる。このため、効率的な力の伝達を阻害する可能性が低減され、出力されるトルクの低減化が抑制される。これにより、高トルクを発生させることができるモータ装置MTRを提供することができる。
[第二実施形態]
次に、本発明の第二実施形態を説明する。
図8は、第一実施形態に記載のモータ装置MTRを備えるロボット装置RBTの一部(指部分の先端)の構成を示す図である。
図8に示すように、一例として、ロボット装置RBTは、末節部101、中節部102及び関節部103を有しており、末節部101と中節部102とが関節部103を介して接続された構成になっている。関節部103には軸支持部103a及び軸部103bが設けられている。軸支持部103aは中節部102に固定されている。軸部103bは、軸支持部103aによって固定された状態で支持されている。
末節部101は、接続部101a及び歯車101bを有している。接続部101aには、関節部103の軸部103bが貫通した状態になっており、当該軸部103bを回転軸として末節部101が回転可能になっている。この歯車101bは、接続部101aに固定されたベベルギアである。接続部101aは、歯車101bと一体的に回転するようになっている。
中節部102は、筐体102a及び駆動装置ACTを有している。駆動装置ACTは、上記実施形態に記載のモータ装置MTRを用いることができる。駆動装置ACTは、筐体102a内に設けられている。駆動装置ACTには、回転軸部材104aが取り付けられている。回転軸部材104aの先端には、歯車104bが設けられている。この歯車104bは、回転軸部材104aに固定されたベベルギアである。歯車104bは、上記の歯車101bとの間で噛み合った状態になっている。
上記のように構成されたロボット装置RBTは、駆動装置ACTの駆動によって回転軸部材104aが回転し、当該回転軸部材104aと一体的に歯車104bが回転する。
歯車104bの回転は、当該歯車104bと噛み合った歯車101bに伝達され、歯車101bが回転する。当該歯車101bが回転することで接続部101aも回転し、これにより末節部101が軸部103bを中心に回転する。
このように、本実施形態によれば、高トルクの回転を出力することができる駆動装置ACTを搭載することにより、例えば減速器を用いることなく直接末節部101を回転させることができる。さらに本実施形態では、駆動装置ACTが効率的に駆動力を伝達することが可能な構成になっているため、安定した動作を行うことが可能となる。
本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。
例えば、上記実施形態では、ベルト部23が長手方向及び短手方向のそれぞれにおいて厚さが均一になるように形成されている構成を例に挙げて説明したが、これに限られることは無い。
図9は、ベルト部23及び回転子SFの構成を示す断面図である。
例えば図9に示すように、ベルト部23が短手方向(Z方向:回転子SFの軸線方向)において、端部から中央部へ向けて厚さが大きくなるように形成された構成としても良い。これにより、ベルト部23を回転子SFの周面に沿って曲げやすくすることができる。
この場合、図9に示すように、ベルト部23の軸線方向の中央部には回転子側に突出する突出部23aが形成されていても良く、回転子SFには当該突出部23aが挿入される凹部SFaが形成されていても良い。このような構成とすることにより、ベルト部23と回転子SFとの接触面積が大きくなるため、トルクを効率的に伝達することができる。
また、上記実施形態では、繊維材料として炭素繊維強化プラスチックが用いられた構成を例に挙げて説明したが、これに限られることは無い。例えば繊維材料として、ポリプロピレンやナイロンファイバー、ガラス繊維、竹材や木材に含まれる繊維など、他の材料を用いても良い。
また、上記実施形態では、炭素繊維の母材として、プラスチックを例に挙げて説明したが、これに限られることは無い。例えば、母材として、エポキシ樹脂やポリエステル、ナイロン、自動車のタイヤなどを構成するゴム材など、他の材料を用いても良い。また、母材として、弾性変形可能な材料を用いても良い。また、母材を用いずに、炭素繊維を露出させた状態としても良い。
また、ベルト部23及び回転子SFにおいて、互いに接触する面が粗面となるように形成されていても良い。これにより、ベルト部23と回転子SFとの間の摩擦力を確保することができると共に、ベルト部23と回転子SFとの密着を防ぐことができる。
また、上記実施形態において、繊維材料は一方向(例、ベルト部23の長手方向)に配置された構成を例に挙げて説明したが、これに限られることは無い。例えば、繊維材料がベルト部23の長手方向と短手方向とに配置され、互いに織られた構成であっても良い。これにより、長手方向及び短手方向に剛性の高いベルト部23が得られる。
また、上記実施形態においては、回転子SFの外周面にベルト部23を掛けた状態として回転子SFを回転させる構成を例に挙げて説明したが、これに限られることは無い。例えば、円筒状の回転軸の内周面にベルトを接触させた状態として回転軸を回転させる構成であっても構わない。
また、上記実施形態では、駆動素子31及び駆動素子32の伸縮によって各動作を行わせる構成を例に挙げて説明したが、これに限られることは無く、例えば、駆動素子31及び駆動素子32の伸長によって各動作を行わせるようにしてもよい。
また、例えば、上記各実施形態では、駆動部AC及び伝達部BTの組を1相のみ設けた場合を例に挙げて説明したが、これに限られることは無く、複数相の駆動部AC及び伝達部BTの組を用いた構成であっても構わない。例えば、駆動部AC及び伝達部BTの構成を2組配置して互いに180°ずらした二相構造とした構成としてもよい。
図10には、駆動部AC及び伝達部BTの構成を3組配置して三相構造とした構成が示されている。駆動部AC及び伝達部BTを3組(三相)配置する場合、例えば回転子SFの回転方向に互いに120°ずつずれた位置に配置させることができる。この場合、三相の駆動部AC及び伝達部BTを一相毎に順に駆動させるようにすることができる。
図10に示す構成では、120°ずつずれた3箇所(互いのベルト部23によって引き合う位置)に駆動部AC及び伝達部BTが配置されているため、回転子SFにかかるラジアル方向の力を相殺することができる。このため、軸受部の大型化を回避することができる。
MTR…モータ装置 BS…ベース部 SF…回転子 AC…駆動部 BT…伝達部 CONT…制御部 RBT…ロボット装置 ACT…駆動装置 SFa…凹部 21…第一端部 22…第二端部 23…ベルト部 23a…突出部 31、32…駆動素子

Claims (9)

  1. 回転子と、
    異方性材料を含み、前記回転子の周面の少なくとも一部に掛けられた伝達部と、
    前記回転子と前記伝達部との間を回転力伝達状態として前記伝達部を一定距離移動させると共に前記回転力伝達状態を解消した状態で前記伝達部を所定位置に復帰させる駆動部と
    を備える駆動装置。
  2. 前記伝達部は、前記少なくとも一部において、前記異方性材料の一方向と前記回転子の周方向とが平行に掛けられるように配置されている
    請求項1に記載の駆動装置。
  3. 前記異方性材料として、繊維方向が前記伝達部の移動方向に沿うように配置された繊維材料が用いられる
    請求項1又は請求項2に記載の駆動装置。
  4. 前記異方性材料として、炭素繊維強化プラスチックが用いられる
    請求項1から請求項3のうちいずれか一項に記載の駆動装置。
  5. 前記伝達部は、前記回転子の軸線方向において端部から中央部へ向けて厚さが大きくなるように形成されている
    請求項1から請求項4のうちいずれか一項に記載の駆動装置。
  6. 前記伝達部は、前記軸線方向の中央部が前記回転子側に突出するように形成され、
    前記回転子は、前記伝達部の突出部分が挿入される凹部を有する
    請求項5に記載の駆動装置。
  7. 前記伝達部は、弾性変形可能な材料を含む
    請求項1から請求項6のうちいずれか一項に記載の駆動装置。
  8. 前記伝達部は、複数設けられており、
    前記複数の伝達部は、前記回転子の周方向にずれた位置に掛けられており、
    前記駆動部は、複数の前記伝達部に対して個別に設けられている
    請求項1から請求項7のうちいずれか一項に記載の駆動装置。
  9. アームと、
    前記アームを駆動する駆動装置と
    を備え、
    前記駆動装置として、請求項1から請求項8のうちいずれか一項に記載の駆動装置が用いられている
    ロボット装置。
JP2012184453A 2012-08-23 2012-08-23 駆動装置及びロボット装置 Pending JP2014042429A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012184453A JP2014042429A (ja) 2012-08-23 2012-08-23 駆動装置及びロボット装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184453A JP2014042429A (ja) 2012-08-23 2012-08-23 駆動装置及びロボット装置

Publications (1)

Publication Number Publication Date
JP2014042429A true JP2014042429A (ja) 2014-03-06

Family

ID=50394221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184453A Pending JP2014042429A (ja) 2012-08-23 2012-08-23 駆動装置及びロボット装置

Country Status (1)

Country Link
JP (1) JP2014042429A (ja)

Similar Documents

Publication Publication Date Title
CN1879232B (zh) 超声导螺杆电动机
JP2014018027A (ja) 振動型アクチュエータ、撮像装置、及びステージ
JP2011103749A (ja) 駆動装置
JP6895200B2 (ja) 圧電モータ、圧電モータ用の摺動材、及び注入機器
JP5641041B2 (ja) モータ装置、モータ装置の製造方法及びロボット装置
JPWO2002015378A1 (ja) 折り重なり式圧電ステータ、折り重なり式圧電アクチュエータ及びそれらの応用
TW201031106A (en) Motor device, device, and method of driving rotor
JP2014042429A (ja) 駆動装置及びロボット装置
JP5835212B2 (ja) モータ装置、モータ装置の製造方法及びロボット装置
JP2010259193A (ja) 駆動装置及びロボット装置
JP5621350B2 (ja) モータ装置、回転子の駆動方法、及びロボット装置
JP2012075225A (ja) 送りねじ駆動装置
JP2013070529A (ja) モータ装置、及びロボット装置
JP6471400B2 (ja) 発電装置
JP2013070447A (ja) モータ装置、駆動制御装置、回転子の駆動方法及びロボット装置
JP2014075955A (ja) 駆動装置、ロボット装置及び露光装置
TWI362174B (en) A piezoelectric motor
JP5153583B2 (ja) 駆動装置
JP6012226B2 (ja) 振動波駆動装置及びその駆動回路
JP2017147802A5 (ja)
CN205336151U (zh) 一种悬臂梁结构微型螺纹超声电机
JP2011217490A (ja) モータ装置、回転子の駆動方法及びロボット装置
JP2013247728A (ja) モータ装置及びロボット装置
JP5669446B2 (ja) 移動体の駆動機構
JP2012010519A (ja) モータ装置及び回転子の駆動方法並びにロボット装置