JP2014025167A5 - - Google Patents

Download PDF

Info

Publication number
JP2014025167A5
JP2014025167A5 JP2012166593A JP2012166593A JP2014025167A5 JP 2014025167 A5 JP2014025167 A5 JP 2014025167A5 JP 2012166593 A JP2012166593 A JP 2012166593A JP 2012166593 A JP2012166593 A JP 2012166593A JP 2014025167 A5 JP2014025167 A5 JP 2014025167A5
Authority
JP
Japan
Prior art keywords
fiber bundle
flame
single yarn
furnace
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012166593A
Other languages
Japanese (ja)
Other versions
JP6064409B2 (en
JP2014025167A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012166593A priority Critical patent/JP6064409B2/en
Priority claimed from JP2012166593A external-priority patent/JP6064409B2/en
Publication of JP2014025167A publication Critical patent/JP2014025167A/en
Publication of JP2014025167A5 publication Critical patent/JP2014025167A5/ja
Application granted granted Critical
Publication of JP6064409B2 publication Critical patent/JP6064409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

但し、(式1)において、
D:前記熱処理炉内に存在する粒径0.3μm以上の微粒子の濃度[個/リットル]
W:以下に定義される繊維束の幅[cm/ストランド]
V:繊維束を通過する循環熱風の風速[m/秒]
L:繊維束が通過する炉長をL[m]
S:繊維束の炉内通過速度[m/分]である。
(2)熱処理炉内を循環する酸化性気体に含まれる粒径0.3μm以上の微粒子の濃度を、集塵装置を用いて300〜600個/リットルに保つ、(1)に記載の耐炎化繊維束の製造方法。
(3)(1)または(2)に記載の方法で得られた耐炎化繊維束を、不活性雰囲気下、1200℃以上で加熱処理することを特徴とする炭素繊維束の製造方法。
(4)(1)または(2)に記載の方法で得られた耐炎化繊維束であって、単糸繊度が1.0dtex以下の耐炎化繊維束を、不活性雰囲気下、1300℃以上で加熱処理することを特徴とする炭素繊維束の製造方法。
(5)ポリアクリロニトリル系繊維束を、酸化性気体を循環する熱処理炉で200〜300℃で加熱して得られる、単糸直径が6〜13μm、単糸の算術平均表面粗さRaが1〜20nm、単糸繊度が0.4〜1.7dtex、以下に定義される繊維束の糸幅が1糸条あたり0.5〜1.0cm、密度が1.34〜1.40g/cmの耐炎化繊維束であって、以下に定義される単糸表面に観察されるSi、C、Na、Mg、Al、K、Ca、Mn、Fe、Co、Ni、Znのいずれかを主成分とし、かつ粒径が0.3μm以上である微粒子の個数と、以下に定義される0.3μm以上の単糸表面の傷の個数の合計が、観察面積0.1mmあたり15個以下であることを特徴とする耐炎化繊維束
(6)粒径0.3μm以上の微粒子の個数が300〜2500個/リットルである酸化性気体を、アミノ変性シリコーンを含むシリコーン系油剤が付与されたポリアクリロニトリル系繊維束の走行方向と垂直に循環させる熱処理炉で、該ポリアクリロニトリル系繊維束を200〜300℃で加熱処理をするに際し、
[D×(W×V×L)]/[(S/60)×10] (式1)
の値が5〜40である条件下で加熱処理することによって、単糸直径が6〜13μm、以下に定義される繊維束の糸幅が1糸条あたり0.5〜1.0cm、密度が1.34〜1.40g/cmの耐炎化繊維束を得る方法であって、該耐炎化繊維束は、以下に定義される単糸表面に観察されるSi、C、Na、Mg、Al、K、Ca、Mn、Fe、Co、Ni、Znのいずれかを主成分とし、かつ粒径が0.3μm以上である微粒子の個数と、以下に定義される0.3μm以上の単糸表面の傷の個数の合計が観察面積0.1mmあたり15個以下であることを特徴とする耐炎化繊維束の製造方法
但し、(式1)において、
D:前記熱処理炉内に存在する粒径0.3μm以上の微粒子の濃度[個/リットル]
W:以下に定義される繊維束の幅[cm/ストランド]
V:繊維束を通過する循環熱風の風速[m/秒]
L:繊維束が通過する炉長をL[m]
S:繊維束の炉内通過速度[m/分]である。
(7)前記耐炎化繊維束の単糸の算術平均表面粗さRaが1〜20nm、単糸繊度が0.4〜1.7dtexである(6)に記載の耐炎化繊維束の製造方法。
(8)(6)または(7)に記載の方法で得られた耐炎化繊維束を、不活性雰囲気下、1200℃以上で加熱処理する炭素繊維束の製造方法であって、該炭素繊維束は、耐炎化炉を清掃せずに連続生産する全期間において引張強度が4.7GPa以上、引張弾性率が200GPa以上であることを特徴とする炭素繊維束の製造方法。
(9)(6)または(7)に記載の方法で得られた耐炎化繊維束であって、単糸繊度が1.0dtex以下の耐炎化繊維束を、不活性雰囲気下、1300℃以上で加熱処理する炭素繊維束の製造方法であって、該炭素繊維束は、耐炎化炉を清掃せずに連続生産する全期間において引張強度が5.5GPa以上、引張弾性率が280GPa以上であることを特徴とする炭素繊維束の製造方法。
However, in (Formula 1):
D: Concentration of particles having a particle size of 0.3 μm or more existing in the heat treatment furnace [piece / liter]
W: width of the fiber bundle defined below (cm / strand)
V: Wind speed of circulating hot air passing through the fiber bundle [m / sec]
L: The furnace length through which the fiber bundle passes is L [m]
S: The passing speed of the fiber bundle in the furnace [m / min].
(2) The flame resistance according to (1), wherein the concentration of fine particles having a particle size of 0.3 μm or more contained in the oxidizing gas circulating in the heat treatment furnace is maintained at 300 to 600 particles / liter using a dust collector. A method of manufacturing a fiber bundle.
(3) A method for producing a carbon fiber bundle, comprising heat-treating the flame-resistant fiber bundle obtained by the method according to (1) or (2) at 1200 ° C. or higher in an inert atmosphere.
(4) A flame-resistant fiber bundle obtained by the method according to (1) or (2), wherein the flame-resistant fiber bundle having a single yarn fineness of 1.0 dtex or less is 1300 ° C. or higher in an inert atmosphere. A method for producing a carbon fiber bundle, characterized by heat treatment.
(5) A polyacrylonitrile fiber bundle is obtained by heating at 200 to 300 ° C. in a heat treatment furnace in which an oxidizing gas is circulated. The single yarn diameter is 6 to 13 μm, and the arithmetic average surface roughness Ra of the single yarn is 1 to 1. 20 nm, single yarn fineness is 0.4 to 1.7 dtex, the fiber width of the fiber bundle defined below is 0.5 to 1.0 cm per yarn, and the density is 1.34 to 1.40 g / cm 3 . Flame retardant fiber bundle, which is mainly composed of any one of Si, C, Na, Mg, Al, K, Ca, Mn, Fe, Co, Ni, and Zn observed on the surface of the single yarn defined below. The total number of fine particles having a particle size of 0.3 μm or more and the number of scratches on the surface of a single yarn of 0.3 μm or more defined below is 15 or less per observation area of 0.1 mm 2. Flame retardant fiber bundle characterized by .
(6) An oxidizing gas in which the number of fine particles having a particle size of 0.3 μm or more is 300 to 2500 / liter is perpendicular to the running direction of the polyacrylonitrile fiber bundle to which the silicone oil containing amino-modified silicone is applied. When the polyacrylonitrile fiber bundle is heat-treated at 200 to 300 ° C. in a circulating heat treatment furnace,
[D × (W × V × L)] / [(S / 60) × 10 5 ] (Formula 1)
By performing heat treatment under the condition of a value of 5 to 40, the single yarn diameter is 6 to 13 μm, the yarn width of the fiber bundle defined below is 0.5 to 1.0 cm per yarn, and the density is 1. A method of obtaining a flame-resistant fiber bundle of 1.34 to 1.40 g / cm 3, wherein the flame-resistant fiber bundle is observed on the surface of a single yarn defined below, Si, C, Na, Mg, Al , K, Ca, Mn, Fe, Co, Ni, Zn, and the number of fine particles having a particle size of 0.3 μm or more and the surface of a single yarn of 0.3 μm or more as defined below The total number of scratches is 15 or less per observation area of 0.1 mm 2 .
However, in (Formula 1):
D: Concentration of particles having a particle size of 0.3 μm or more existing in the heat treatment furnace [piece / liter]
W: width of the fiber bundle defined below (cm / strand)
V: Wind speed of circulating hot air passing through the fiber bundle [m / sec]
L: The furnace length through which the fiber bundle passes is L [m]
S: The passing speed of the fiber bundle in the furnace [m / min].
(7) The method for producing a flame-resistant fiber bundle according to (6) , wherein the arithmetic average surface roughness Ra of the single yarn of the flame-resistant fiber bundle is 1 to 20 nm and the single yarn fineness is 0.4 to 1.7 dtex.
(8) A method for producing a carbon fiber bundle, wherein the flame-resistant fiber bundle obtained by the method according to (6) or (7) is heat-treated at 1200 ° C. or higher in an inert atmosphere, the carbon fiber bundle Is a method for producing a carbon fiber bundle, wherein the tensile strength is 4.7 GPa or more and the tensile elastic modulus is 200 GPa or more over the entire period of continuous production without cleaning the flameproofing furnace.
(9) A flame-resistant fiber bundle obtained by the method according to (6) or (7) , wherein the flame-resistant fiber bundle having a single yarn fineness of 1.0 dtex or less is 1300 ° C. or higher in an inert atmosphere. A method for producing a carbon fiber bundle to be heat-treated, wherein the carbon fiber bundle has a tensile strength of 5.5 GPa or more and a tensile elastic modulus of 280 GPa or more over the entire period of continuous production without cleaning the flameproofing furnace. A method for producing a carbon fiber bundle characterized by the above.

Claims (9)

粒径0.3μm以上の微粒子の濃度が300〜2500個/リットルである酸化性気体を、アミノ変性シリコーンを含むシリコーン系油剤が付与された単糸繊度0.4〜1.6dtex、フィラメント数1000〜80000本のポリアクリロニトリル系繊維束の走行方向と垂直に循環させる熱処理炉で、該ポリアクリロニトリル系繊維束を200〜300℃で加熱処理をするに際し、
[D×(W×V×L)]/[(S/60)×10] (式1)
の値が5〜40である条件下で加熱処理することを特徴とする耐炎化繊維束の製造方法。
但し、(式1)において、
D:前記熱処理炉内に存在する粒径0.3μm以上の微粒子の濃度[個/リットル]
W:明細書中に定義される繊維束の幅[cm/ストランド]
V:繊維束を通過する循環熱風の風速[m/秒]
L:繊維束が通過する炉長をL[m]
S:繊維束の炉内通過速度[m/分]
A single yarn fineness of 0.4 to 1.6 dtex, a filament number of 1000, to which an oxidizing gas having a concentration of fine particles having a particle size of 0.3 μm or more of 300 to 2500 / liter, a silicone-based oil containing amino-modified silicone is applied. When heat-treating the polyacrylonitrile fiber bundle at 200 to 300 ° C. in a heat treatment furnace that circulates in a direction perpendicular to the traveling direction of -80000 polyacrylonitrile fiber bundles,
[D × (W × V × L)] / [(S / 60) × 10 5 ] (Formula 1)
A method for producing a flame-resistant fiber bundle, wherein the heat treatment is carried out under the condition of a value of 5 to 40.
However, in (Formula 1):
D: Concentration of particles having a particle size of 0.3 μm or more existing in the heat treatment furnace [piece / liter]
W: width of the fiber bundle defined in the specification [cm / strand]
V: Wind speed of circulating hot air passing through the fiber bundle [m / sec]
L: The furnace length through which the fiber bundle passes is L [m]
S: Passing speed of the fiber bundle in the furnace [m / min]
熱処理炉内を循環する酸化性気体に含まれる粒径0.3μm以上の微粒子の濃度を、集塵装置を用いて300〜600個/リットルに保つ、請求項1に記載の耐炎化繊維束の製造方法。 2. The flame-resistant fiber bundle according to claim 1, wherein the concentration of fine particles having a particle diameter of 0.3 μm or more contained in the oxidizing gas circulating in the heat treatment furnace is maintained at 300 to 600 particles / liter using a dust collector. Production method. 請求項1または2に記載の方法で得られた耐炎化繊維束を、不活性雰囲気下、1200℃以上で加熱処理することを特徴とする炭素繊維束の製造方法。 A method for producing a carbon fiber bundle, comprising heat-treating the flame-resistant fiber bundle obtained by the method according to claim 1 or 2 at 1200 ° C or higher in an inert atmosphere. 請求項1または2に記載の方法で得られた耐炎化繊維束であって、単糸繊度が1.0dtex以下の耐炎化繊維束を、不活性雰囲気下、1300℃以上で加熱処理することを特徴とする炭素繊維束の製造方法。 A flame-resistant fiber bundle obtained by the method according to claim 1 or 2, wherein the flame-resistant fiber bundle having a single yarn fineness of 1.0 dtex or less is heat-treated at 1300 ° C or higher in an inert atmosphere. A method for producing a carbon fiber bundle. ポリアクリロニトリル系繊維束を、酸化性気体を循環する熱処理炉で200〜300℃で加熱して得られる、単糸直径が6〜13μm、単糸の算術平均表面粗さRaが1〜20nm、単糸繊度が0.4〜1.7dtex、明細書中に定義される繊維束の糸幅が1糸条あたり0.5〜1.0cm、密度が1.34〜1.40g/cmの耐炎化繊維束であって、明細書中に定義される単糸の表面に観察されるSi、C、Na、Mg、Al、K、Ca、Mn、Fe、Co、Ni、Znのいずれかを主成分とし、かつ粒径が0.3μm以上である微粒子の個数と、明細書中に定義される0.3μm以上の単糸表面の傷の個数の合計が、観察面積0.1mmあたり15個以下であることを特徴とする耐炎化繊維束。 A polyacrylonitrile fiber bundle is obtained by heating at 200 to 300 ° C. in a heat treatment furnace in which an oxidizing gas is circulated. The single yarn diameter is 6 to 13 μm, the single yarn has an arithmetic average surface roughness Ra of 1 to 20 nm, Flame resistance with a yarn fineness of 0.4 to 1.7 dtex, a fiber bundle defined in the specification having a yarn width of 0.5 to 1.0 cm per yarn, and a density of 1.34 to 1.40 g / cm 3 The fiber bundle is mainly composed of any one of Si, C, Na, Mg, Al, K, Ca, Mn, Fe, Co, Ni, and Zn observed on the surface of the single yarn defined in the specification. The total number of fine particles having a particle diameter of 0.3 μm or more as a component and the number of scratches on the surface of a single yarn of 0.3 μm or more defined in the specification is 15 per observation area of 0.1 mm 2. A flameproof fiber bundle characterized by: 粒径0.3μm以上の微粒子の個数が300〜2500個/リットルである酸化性気体を、アミノ変性シリコーンを含むシリコーン系油剤が付与されたポリアクリロニトリル系繊維束の走行方向と垂直に循環させる熱処理炉で、該ポリアクリロニトリル系繊維束を200〜300℃で加熱処理をするに際し、
[D×(W×V×L)]/[(S/60)×10] (式1)
の値が5〜40である条件下で加熱処理することによって、単糸直径が6〜13μm、明細書中に定義される繊維束の糸幅が1糸条あたり0.5〜1.0cm、密度が1.34〜1.40g/cmの耐炎化繊維束を得る方法であって、該耐炎化繊維束は、明細書中に定義される単糸表面に観察されるSi、C、Na、Mg、Al、K、Ca、Mn、Fe、Co、Ni、Znのいずれかを主成分とし、かつ粒径が0.3μm以上である微粒子の個数と、明細書中に定義される0.3μm以上の単糸表面の傷の個数の合計が観察面積0.1mmあたり15個以下であることを特徴とする耐炎化繊維束の製造方法。
但し、(式1)において、
D:前記熱処理炉内に存在する粒径0.3μm以上の微粒子の濃度[個/リットル]
W:明細書中に定義される繊維束の幅[cm/ストランド]
V:繊維束を通過する循環熱風の風速[m/秒]
L:繊維束が通過する炉長をL[m]
S:繊維束の炉内通過速度[m/分]
Heat treatment in which an oxidizing gas having a number of fine particles having a particle size of 0.3 μm or more of 300 to 2500 / liter is circulated in a direction perpendicular to the running direction of the polyacrylonitrile fiber bundle to which the silicone oil containing amino-modified silicone is applied. When the polyacrylonitrile fiber bundle is heat-treated at 200 to 300 ° C. in a furnace,
[D × (W × V × L)] / [(S / 60) × 10 5 ] (Formula 1)
By performing the heat treatment under the condition of a value of 5 to 40, the single yarn diameter is 6 to 13 μm, and the yarn width of the fiber bundle defined in the specification is 0.5 to 1.0 cm per yarn, A method for obtaining a flame-resistant fiber bundle having a density of 1.34 to 1.40 g / cm 3, wherein the flame-resistant fiber bundle is observed on the surface of a single yarn as defined in the specification. , Mg, Al, K, Ca, Mn, Fe, Co, Ni, Zn, and the number of fine particles having a particle size of 0.3 μm or more as defined in the specification. A method for producing a flame-resistant fiber bundle, wherein the total number of scratches on the surface of a single yarn of 3 μm or more is 15 or less per observation area of 0.1 mm 2 .
However, in (Formula 1):
D: Concentration of particles having a particle size of 0.3 μm or more existing in the heat treatment furnace [piece / liter]
W: width of the fiber bundle defined in the specification [cm / strand]
V: Wind speed of circulating hot air passing through the fiber bundle [m / sec]
L: The furnace length through which the fiber bundle passes is L [m]
S: Passing speed of the fiber bundle in the furnace [m / min]
前記耐炎化繊維束の単糸の算術平均表面粗さRaが1〜20nm、単糸繊度が0.4〜1.7dtexである、請求項6に記載の耐炎化繊維束の製造方法。 The method for producing a flame-resistant fiber bundle according to claim 6 , wherein the arithmetic average surface roughness Ra of the single yarn of the flame-resistant fiber bundle is 1 to 20 nm and the single yarn fineness is 0.4 to 1.7 dtex. 請求項6または7に記載の方法で得られた耐炎化繊維束を、不活性雰囲気下、1200℃以上で加熱処理する炭素繊維束の製造方法であって、該炭素繊維束は、耐炎化炉を清掃せずに連続生産する全期間において引張強度が4.7GPa以上、引張弾性率が200GPa以上であることを特徴とする炭素繊維束の製造方法。 A method for producing a carbon fiber bundle, wherein the flame resistant fiber bundle obtained by the method according to claim 6 or 7 is heated at 1200 ° C or higher in an inert atmosphere, wherein the carbon fiber bundle is a flame resistant furnace. A method for producing a carbon fiber bundle, wherein the tensile strength is 4.7 GPa or more and the tensile elastic modulus is 200 GPa or more over the entire period of continuous production without cleaning. 請求項6または7に記載の方法で得られた耐炎化繊維束であって、単糸繊度が1.0dtex以下の耐炎化繊維束を、不活性雰囲気下、1300℃以上で加熱処理する炭素繊維束の製造方法であって、該炭素繊維束は、耐炎化炉を清掃せずに連続生産する全期間において引張強度が5.5GPa以上、引張弾性率が280GPa以上であることを特徴とする炭素繊維束の製造方法。 A carbon fiber obtained by heat-treating a flame-resistant fiber bundle obtained by the method according to claim 6 or 7 having a single yarn fineness of 1.0 dtex or less at 1300 ° C or higher in an inert atmosphere. A method for producing a bundle, wherein the carbon fiber bundle has a tensile strength of 5.5 GPa or more and a tensile modulus of elasticity of 280 GPa or more over the entire period of continuous production without cleaning the flameproofing furnace. A method of manufacturing a fiber bundle.
JP2012166593A 2012-07-27 2012-07-27 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle Active JP6064409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166593A JP6064409B2 (en) 2012-07-27 2012-07-27 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166593A JP6064409B2 (en) 2012-07-27 2012-07-27 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle

Publications (3)

Publication Number Publication Date
JP2014025167A JP2014025167A (en) 2014-02-06
JP2014025167A5 true JP2014025167A5 (en) 2015-08-27
JP6064409B2 JP6064409B2 (en) 2017-01-25

Family

ID=50199064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166593A Active JP6064409B2 (en) 2012-07-27 2012-07-27 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle

Country Status (1)

Country Link
JP (1) JP6064409B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852405B2 (en) * 2017-01-10 2021-03-31 東レ株式会社 Manufacturing method of carbon fiber bundle
JP7322327B2 (en) * 2017-12-21 2023-08-08 東レ株式会社 Carbon fiber bundle and its manufacturing method
JP7354840B2 (en) * 2018-09-28 2023-10-03 東レ株式会社 Method for producing flame-resistant fiber bundles and method for producing carbon fiber bundles

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241230A (en) * 1997-12-11 1999-09-07 Toray Ind Inc Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP2007314901A (en) * 2006-05-24 2007-12-06 Toray Ind Inc Method for producing carbon fiber
JP4809757B2 (en) * 2006-12-07 2011-11-09 三菱レイヨン株式会社 Flame-resistant heat treatment apparatus and method for producing flame-resistant fiber bundle
JP5022073B2 (en) * 2007-03-20 2012-09-12 三菱レイヨン株式会社 Flameproofing furnace and carbon fiber manufacturing method
JP2010133059A (en) * 2008-12-05 2010-06-17 Mitsubishi Rayon Co Ltd Flameproofing furnace, and method for producing carbon fiber using the same
JP2010222723A (en) * 2009-03-23 2010-10-07 Toray Ind Inc Flameproof fiber bundle and method for producing carbon fiber
JP5667380B2 (en) * 2010-05-19 2015-02-12 東邦テナックス株式会社 Flame-resistant fiber bundle, carbon fiber bundle, and production method thereof

Similar Documents

Publication Publication Date Title
CN101864631B (en) Aramid fiber and carbon fiber blended yarn and production method thereof.
KR101432541B1 (en) Carbon fiber composition including graphene nano-powders and fabrication method for carbon fiber by using the same
JP2014025167A5 (en)
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP6028840B2 (en) Carbon fiber manufacturing method
JP2012082541A5 (en)
JP2008169492A (en) Method for producing carbonized fabric and carbonized fabric obtained by the method
JP5177571B2 (en) Bulky spun yarn production apparatus and production method
JP2008150733A5 (en)
CN111020748B (en) Pre-oxidation method of mesophase pitch fibers
JP2008169490A (en) Method for producing carbonized fabric and carbonized fabric obtained by the method
JP2010255159A5 (en)
JP6064409B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JPWO2020066653A5 (en)
US11279836B2 (en) Intumescent nanostructured materials and methods of manufacturing same
JP2013023801A (en) Method for producing carbon fiber bundle
JP2008169493A (en) Method for producing carbonized fabric and carbonized fabric obtained by the method
JP2008169491A (en) Method for producing carbonized fabric and carbonized fabric obtained by the method
ES2895674T3 (en) Intumescent nanostructured materials and manufacturing methods thereof
TW201641760A (en) Spun metal fiber yarn
JPS58115121A (en) Acrylic carbon fiber
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP4021972B2 (en) Carbon fiber manufacturing method
JP2004197278A (en) Method for producing carbon fiber
KR102654557B1 (en) Method for manufacturing functional fabric for golf wear and functional fabric manufactured thereby