JP6852405B2 - Manufacturing method of carbon fiber bundle - Google Patents

Manufacturing method of carbon fiber bundle Download PDF

Info

Publication number
JP6852405B2
JP6852405B2 JP2017001598A JP2017001598A JP6852405B2 JP 6852405 B2 JP6852405 B2 JP 6852405B2 JP 2017001598 A JP2017001598 A JP 2017001598A JP 2017001598 A JP2017001598 A JP 2017001598A JP 6852405 B2 JP6852405 B2 JP 6852405B2
Authority
JP
Japan
Prior art keywords
fiber bundle
carbon fiber
heat treatment
enclosure
treatment chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017001598A
Other languages
Japanese (ja)
Other versions
JP2018111891A (en
Inventor
陽帥 二星
陽帥 二星
義人 荒武
義人 荒武
将一 小寺
将一 小寺
裕介 浜辺
裕介 浜辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2017001598A priority Critical patent/JP6852405B2/en
Publication of JP2018111891A publication Critical patent/JP2018111891A/en
Application granted granted Critical
Publication of JP6852405B2 publication Critical patent/JP6852405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Description

本発明は高品質、高品位に優れ、かつ工程安定性に優れた炭素繊維束の製造方法に関する。 The present invention relates to a method for producing a carbon fiber bundle, which is excellent in high quality, high quality, and process stability.

炭素繊維は比強度、比弾性率に優れていることから、航空・宇宙産業をはじめ、釣竿、テニスラケットなどのスポーツ用途、風力発電のブレードや自動車など一般産業用途と幅広い分野で使用されている。 Since carbon fiber has excellent specific strength and specific elastic modulus, it is used in a wide range of fields such as aerospace industry, sports applications such as fishing rods and tennis rackets, and general industrial applications such as wind power blades and automobiles. ..

一般にポリアクリロニトリル系繊維を原料とする炭素繊維束は、ポリアクリロニトリル系重合体の単繊維を1000〜80000本束ねた前駆体繊維束を、200〜300℃の温度で耐炎化処理して耐炎化繊維束を得て、次いで不活性雰囲気中で、300〜2000℃の温度で加熱処理して得られる。また、必要に応じて更に高温で処理して弾性率を向上させることで黒鉛化糸を得ることも出来る。 Generally, a carbon fiber bundle made from polyacrylonitrile-based fiber is a flame-resistant fiber obtained by subjecting a precursor fiber bundle obtained by bundling 1,000 to 80,000 single fibers of a polyacrylonitrile-based polymer to a flame-resistant treatment at a temperature of 200 to 300 ° C. Bundles are then obtained by heat treatment in an inert atmosphere at a temperature of 300-2000 ° C. Further, if necessary, graphitized yarn can be obtained by further treating at a high temperature to improve the elastic modulus.

このように得られる炭素繊維を高性能化し、しかも安定した品質を得るために、種々の検討がなされている。 Various studies have been conducted in order to improve the performance of the carbon fibers thus obtained and to obtain stable quality.

ポリアクリロニトリル系繊維束の耐炎化処理においては、200〜300℃の酸化性気体が循環する熱処理室の入口と出口の両側面に複数のガイドローラーを配し、供給される繊維束をローラーで折り返しながら複数回熱処理室内を走行させて処理するのが一般的である。 In the flameproofing treatment of polyacrylonitrile fiber bundles, a plurality of guide rollers are arranged on both sides of the inlet and outlet of the heat treatment chamber in which an oxidizing gas at 200 to 300 ° C is circulated, and the supplied fiber bundles are folded back by the rollers. However, it is common to run the heat treatment chamber a plurality of times for treatment.

炭素繊維束の製造工程における耐炎化工程では、微粒子が繊維束に付着した場合、その微粒子が繊維束に傷をつけ、強度低下を引き起こすなどの悪影響を与えることが知られている。 In the flame resistance step in the carbon fiber bundle manufacturing process, it is known that when fine particles adhere to the fiber bundle, the fine particles damage the fiber bundle and cause an adverse effect such as a decrease in strength.

この問題を解決すべく、特許文献1では耐炎化炉の熱処理室内を循環する酸化雰囲気をフィルタで濾過することにより、繊維束への微粒子の付着を抑制して炭素繊維束の引張強度を改善させる方法が開示されている。 In order to solve this problem, in Patent Document 1, by filtering the oxidizing atmosphere circulating in the heat treatment chamber of the flame-resistant furnace with a filter, the adhesion of fine particles to the fiber bundle is suppressed and the tensile strength of the carbon fiber bundle is improved. The method is disclosed.

また、特許文献2では炭素繊維束製造工程雰囲気にクラス100のフィルタを介した気体を給気し、炭素繊維束製造工程全体の雰囲気をクリーン化することで炭素繊維束の引張強度を改善させる方法が開示されている。 Further, in Patent Document 2, a method of improving the tensile strength of the carbon fiber bundle by supplying gas through a class 100 filter to the atmosphere of the carbon fiber bundle manufacturing process to clean the atmosphere of the entire carbon fiber bundle manufacturing process. Is disclosed.

一方、特許文献3では耐炎化工程での熱処理量の均一化を目的として、耐炎化炉の炭素繊維前駆体繊維束の出入り口に囲い体を設け、囲い体内部の温度を制御することが提案されている。 On the other hand, Patent Document 3 proposes to control the temperature inside the enclosure by providing an enclosure at the entrance and exit of the carbon fiber precursor fiber bundle of the flameproof furnace for the purpose of equalizing the amount of heat treatment in the flameproofing process. ing.

なお、炭素繊維前駆体繊維束の製造においては、焼成工程を経て得られる炭素繊維の単繊維の円相当断面積が小さく、表面が一定の粗さであることが好ましく、特許文献4では前駆体繊維束の繊度を調整するとともに、製糸・焼成の条件、特に製糸におけるエアギャップ紡糸や焼成での延伸と組み合わせてそのような特性の炭素繊維を製造することが開示されている。 In the production of the carbon fiber precursor fiber bundle, it is preferable that the cross-sectional area equivalent to the circle of the single fiber of the carbon fiber obtained through the firing step is small and the surface has a constant roughness. It is disclosed that the fineness of the fiber bundle is adjusted and carbon fibers having such characteristics are produced in combination with the conditions of yarn making and firing, particularly air gap spinning in yarn making and drawing in firing.

さらに製糸工程で使用する界面活性剤に関して、特許文献5では単糸繊度が特定の範囲の炭素繊維の製造工程において耐炎化・炭化における耐熱性を向上させるため、特定の方法で測定した熱安定性が高いシリコーン系の界面活性剤を使用することが好ましいことが開示されている。 Further, regarding the surfactant used in the yarn making process, in Patent Document 5, in order to improve the heat resistance in flame resistance and carbonization in the carbon fiber manufacturing process in which the single yarn fineness is in a specific range, the thermal stability measured by a specific method is obtained. It is disclosed that it is preferable to use a silicone-based surfactant having a high value.

特開2010−222723号公報Japanese Unexamined Patent Publication No. 2010-222723 特開昭50−52323号公報Japanese Unexamined Patent Publication No. 50-52323 特開2008−138325号公報Japanese Unexamined Patent Publication No. 2008-138325 特表2010−510406号公報Special Table 2010-510406 特開2006−307407号公報Japanese Unexamined Patent Publication No. 2006-307407

しかしながら特許文献1の方法では、外気に由来する異物が耐炎化炉周辺に滞留したり、耐炎化処理される際に前駆体繊維束から発生する微粒子成分が、熱処理室に糸が出入りするためのスリット部から炉外に漏れ出すことにより、耐炎化炉周辺雰囲気の微粒子濃度が高くなったりするため、熱処理室外を通過する繊維束への微粒子の付着は抑制できず、品質向上及び安定化の効果は限定的であった。 However, in the method of Patent Document 1, foreign matter derived from the outside air stays around the flame-resistant furnace, or fine particle components generated from the precursor fiber bundle during the flame-resistant treatment allow the threads to enter and exit the heat treatment chamber. Leakage from the slit to the outside of the furnace increases the concentration of fine particles in the atmosphere around the flame-resistant furnace, so it is not possible to suppress the adhesion of fine particles to the fiber bundles passing through the outside of the heat treatment chamber, which has the effect of improving quality and stabilizing. Was limited.

また、特許文献2の方法では、クラス100レベルの空気をどのように給気するか、すなわち、風量や換気回数についての条件が未開示であり、製造設備のコストやランニングコストを抑えて実質的に高い効果を得る方法は開示されていない。 Further, in the method of Patent Document 2, how to supply class 100 level air, that is, the conditions regarding the air volume and the ventilation frequency are not disclosed, and the cost of the manufacturing equipment and the running cost are suppressed and substantially. No method is disclosed to obtain a high effect on the above.

さらに、特許文献3の方法でも、囲い体の大きさや空気の供給量や循環比、その内部の空気に存在する微粒子に関しては規定されておらず、単に温度を制御することを目的としており、耐炎化炉外での繊維束への異物付着を抑制することができず、高引張強度の炭素繊維束を得ることは困難であった。 Further, even in the method of Patent Document 3, the size of the enclosure, the amount of air supplied, the circulation ratio, and the fine particles existing in the air inside the enclosure are not specified, and the purpose is simply to control the temperature and flame resistance. It was not possible to suppress the adhesion of foreign matter to the fiber bundle outside the conversion furnace, and it was difficult to obtain a carbon fiber bundle with high tensile strength.

一方、特許文献4によって前駆体の紡糸条件を調整し、焼成条件、特に特定の延伸倍率と組み合わせて、繊度が小さく特定の表面形態を有する炭素繊維を得、特許文献5に開示されているような耐熱性の良好な油剤を使用することによって高強度の炭素繊維を得ようとしても、耐炎化時に発生する微粒子の対策を考慮しない場合は、その品質を安定して得るには困難があった。 On the other hand, according to Patent Document 4, the spinning conditions of the precursor are adjusted, and in combination with firing conditions, particularly a specific draw ratio, carbon fibers having a small fineness and a specific surface morphology are obtained, as disclosed in Patent Document 5. Even if it is attempted to obtain high-strength carbon fiber by using an oil agent having good heat resistance, it is difficult to obtain stable quality without considering measures for fine particles generated during flame resistance. ..

そこで、本発明の目的は、上記従来技術の問題点を解決しようとするものであり、繊維束への異物付着を抑制し、高強度で繊度斑の小さい炭素繊維束を低コストで製造できる方法を提供するものである。 Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and a method capable of producing a carbon fiber bundle having high strength and small fineness unevenness at low cost by suppressing adhesion of foreign matter to the fiber bundle. Is to provide.

かかる課題を解決するための本発明は、以下の構成からなる。すなわち、酸化性気体中でポリアクリロニトリル系繊維束を耐炎化処理する熱処理室と、ポリアクリロニトリル系繊維束の進行方向を変えるためのローラーと、熱処理室とローラーとを囲う囲い体と、囲い体内部であって熱処理室を含まない領域に微粒子除去手段を介して気体を給気する給気ラインと、囲い体内部であって熱処理室を含まない領域の気体を外部に排気する排気ラインとを有する耐炎化炉を用い、(式1)、(式2)、(式3)を満たす条件下でポリアクリロニトリル系繊維束を耐炎化処理して耐炎化繊維束を得る耐炎化工程と、耐炎化繊維束を300〜2000℃の温度で炭素化処理して炭素繊維束を得る炭素化工程とを少なくとも有する炭素繊維束の製造方法である。
/F>1.00 ・・・(式1)
/V≧5.0 ・・・(式2)
/V>3.0 ・・・(式3)
(但し、F:囲い体への給気流量[m/hr]、F:囲い体からの排気流量[m/hr]、V:熱処理室体積[m]、V:囲い体内部であって熱処理室を含まない領域の体積[m]、である)。
The present invention for solving such a problem has the following configurations. That is, a heat treatment chamber for flame-resistant treatment of the polyacrylonitrile-based fiber bundle in an oxidizing gas, a roller for changing the traveling direction of the polyacrylonitrile-based fiber bundle, an enclosure surrounding the heat treatment chamber and the roller, and the inside of the enclosure. It has an air supply line that supplies gas to the region that does not include the heat treatment chamber via the fine particle removing means, and an exhaust line that exhausts the gas to the outside in the region that does not include the heat treatment chamber inside the enclosure. A flame-resistant step of using a flame-resistant furnace to heat-treat a polyacrylonitrile-based fiber bundle under conditions satisfying (Equation 1), (Formula 2), and (Formula 3) to obtain a flame-resistant fiber bundle, and a flame-resistant fiber. It is a method for producing a carbon fiber bundle having at least a carbonization step of carbonizing the bundle at a temperature of 300 to 2000 ° C. to obtain a carbon fiber bundle.
F 1 / F 2 > 1.00 ... (Equation 1)
F 1 / V 2 ≧ 5.0 ・ ・ ・ (Equation 2)
V 2 / V 1 > 3.0 ... (Equation 3)
(However, F 1 : supply air flow rate to the enclosure [m 3 / hr], F 2 : exhaust flow rate from the enclosure [m 3 / hr], V 1 : heat treatment chamber volume [m 3 ], V 2 : The volume of the area inside the enclosure that does not include the heat treatment chamber [m 3 ]).

また、本発明では、上記の耐炎化工程において、以下に規定する微粒子濃度が3000個/リットル以下でポリアクリロニトリル系繊維束を耐炎化処理することが好ましい。 Further, in the present invention, in the above flameproofing step, it is preferable to perform the flameproofing treatment of the polyacrylonitrile fiber bundle at a fine particle concentration of 3000 pieces / liter or less as defined below.

更に、本発明では、上記のポリアクリロニトリル系繊維束が、本文中に規定する界面活性剤の耐熱性が20%以上であるシリコーン油剤がポリアクリロニトリル系繊維束の質量に対して0.2〜3.0質量%付与されたものであることが好ましい。 Further, in the present invention, in the above-mentioned polyacrylonitrile-based fiber bundle, the silicone oil agent in which the heat resistance of the surfactant specified in the text is 20% or more is 0.2 to 3 with respect to the mass of the polyacrylonitrile-based fiber bundle. It is preferably given in an amount of 0.0% by mass.

ここで、本発明で規定する「微粒子濃度」および「界面活性剤の耐熱性」は以下のとおり定義される。 Here, the "fine particle concentration" and the "heat resistance of the surfactant" defined in the present invention are defined as follows.

<微粒子濃度>
試料気体流量0.5リットル/分で34秒間(合計0.283リットル)気体を吸引し、0.283リットルに含まれる0.5μm以上1.0μm未満、1.0μm以上2.0μm未満、2.0μm以上5.0μm未満、5.0μm以上の4段階粒子数を同時に計測し、その値をD0.5、D1.0、D2.0、D5.0(個/0.283リットル)とするとき、以下の換算式によって各粒子の濃度を5.0μmの粒子数に換算した値を求める。ここで、微粒子濃度の測定場所は、熱処理室に糸が出入りする場所の最下部の炉外ローラー周囲10cmの場所とし、光散乱式パーティクルカウンタ(例えば、RION社 KC−01E)を用いて測定する。この測定を連続して3回実施し、その平均値を微粒子濃度とする。
<Particle concentration>
The gas is sucked for 34 seconds (0.283 liters in total) at a sample gas flow rate of 0.5 liters / minute, and 0.5 μm or more and less than 1.0 μm, 1.0 μm or more and less than 2.0 μm contained in 0.283 liters, 2 Simultaneously measure the number of particles in four stages of 0.0 μm or more and less than 5.0 μm and 5.0 μm or more, and measure the values as D 0.5 , D 1.0 , D 2.0 , D 5.0 (pieces / 0.283). In the case of (liter), the value obtained by converting the concentration of each particle into the number of particles of 5.0 μm is obtained by the following conversion formula. Here, the measurement location of the fine particle concentration is a location 10 cm around the outer roller at the bottom of the location where the yarn enters and exits the heat treatment chamber, and the measurement is performed using a light scattering type particle counter (for example, RION KC-01E). .. This measurement is carried out three times in succession, and the average value is taken as the fine particle concentration.

5.0μmの粒子数への換算式=[{D0.5/(5.0/0.5)}+{D1.0/(5.0/1.0)}+{D2.0/(5.0/2.0)}+D5.0]/0.283(個/リットル)。 Conversion formula to the number of particles of 5.0 μm = [{D 0.5 / (5.0 / 0.5) } + {D 1.0 / (5.0 / 1.0) } + {D 2. 0 / (5.0 / 2.0)} + D 5.0] /0.283 (pieces / liter).

<界面活性剤の耐熱性>
乳化状態にある界面活性剤を、予め105℃・5時間乾燥したときの質量を基準とし、熱天秤分析によって空気中昇温速度10℃/分で240℃まで昇温し、240℃・2時間保持し、雰囲気を窒素に切り替えて10℃/分で昇温して、到達温度450℃・30秒保持した時点での質量保持率(%)を耐熱性とする。
<Heat resistance of surfactant>
Based on the mass of the emulsified surfactant when it is dried at 105 ° C for 5 hours in advance, the temperature is raised to 240 ° C at a heating rate of 10 ° C / min in air by thermal balance analysis, and the temperature is raised to 240 ° C for 2 hours. The heat resistance is defined as the mass retention rate (%) at the time when the temperature is maintained, the atmosphere is switched to nitrogen, the temperature is raised at 10 ° C./min, and the temperature is maintained at 450 ° C. for 30 seconds.

本発明の炭素繊維束の製造方法では、熱処理室周辺に囲い体を設け、囲い体内部で熱処理室を含まない領域の換気条件を規定することで、炭素繊維のストランド引張強度が高く、長手方向の繊度斑が小さい炭素繊維束を製造することができる。 In the method for producing a carbon fiber bundle of the present invention, by providing an enclosure around the heat treatment chamber and defining ventilation conditions in a region inside the enclosure that does not include the heat treatment chamber, the strand tensile strength of the carbon fibers is high and the longitudinal direction is long. It is possible to produce a carbon fiber bundle having a small fineness unevenness.

本発明の実施形態の一例である耐炎化炉の概略構成断面図である。It is a schematic block diagram of the flame-resistant furnace which is an example of embodiment of this invention.

本発明において原料として用いられるポリアクリロニトリル系繊維束は、アクリルニトリルの単独重合体あるいは共重合体を、有機または無機溶媒を用いて紡糸することで得ることができる。 The polyacrylonitrile-based fiber bundle used as a raw material in the present invention can be obtained by spinning a homopolymer or copolymer of acrylic nitrile using an organic or inorganic solvent.

本発明で使用されるポリアクリロニトリル系繊維束の製造方法には特に制限がないが、湿式紡糸または乾湿式紡糸が好ましく用いられ、その後、延伸、水洗、油剤付与、乾燥緻密化、必要あれば後延伸などの工程を経て得ることができる。 The method for producing the polyacrylonitrile fiber bundle used in the present invention is not particularly limited, but wet spinning or dry wet spinning is preferably used, followed by drawing, washing with water, oiling, drying and densification, if necessary. It can be obtained through steps such as stretching.

本発明で使用するポリアクリロニトリル系繊維束に付与される界面活性剤は、耐熱性の観点から、耐炎化、とくにその初期の耐熱性を確保して、油剤による微粒子の発生を出来るだけ抑制するために、シリコーン系油剤を乳化又は分散したものが好ましい。特に、少なくともその一部にアミノ変性シリコーンを含む場合、耐熱性が向上するので好ましい。アクリロニトリル系繊維束に付与するシリコーン系油剤の付着量は、好ましくはポリアクリロニトリル系繊維束の質量に対して0.2〜3.0質量%、より好ましくは0.3〜2.0質量%である。かかるシリコーン系油剤には、さらに界面活性剤、熱安定剤などが加えられていてもよい。 From the viewpoint of heat resistance, the surfactant applied to the polyacrylonitrile-based fiber bundle used in the present invention ensures flame resistance, particularly its initial heat resistance, and suppresses the generation of fine particles due to the oil agent as much as possible. In addition, a silicone-based oil is preferably emulsified or dispersed. In particular, when amino-modified silicone is contained at least in a part thereof, heat resistance is improved, which is preferable. The amount of the silicone-based oil attached to the acrylonitrile-based fiber bundle is preferably 0.2 to 3.0% by mass, more preferably 0.3 to 2.0% by mass, based on the mass of the polyacrylonitrile-based fiber bundle. is there. Further, a surfactant, a heat stabilizer and the like may be added to the silicone-based oil agent.

また、シリコーン系油剤の種類としては、ジメチルシロキサンならびにそれらの官能基が変性されたものが好ましく用いられ、それらの例としては、アミノ基で変性したアミノ変性ジメチルシロキサンの他、ポリエーテル変性、エポキシ変性、チオエーテル変性などの一種又は2種以上の変性シリコーンが好ましく用いられ、またそれらの単独や混合、他の成分との混合を行い適用することが出来る。 Further, as a type of silicone-based oil agent, dimethylsiloxane and those in which their functional groups are modified are preferably used, and examples thereof include amino-modified dimethylsiloxane modified with an amino group, polyether-modified, and epoxy. One or more modified silicones such as modified and thioether modified are preferably used, and they can be applied alone or mixed, or mixed with other components.

本発明においては、熱安定性が高いものが好ましく、上記のとおり定義される界面活性剤の耐熱性が20%以上のものを用いることが、耐炎化での微粒子発生の抑制と単糸同士の接着を防止する上で好ましく、50%以上のものであることがより好ましい。このような特性を有する界面活性剤は、例えばアミノ変性ジメチルシロキサンをノニオン界面活性剤で乳化したものと、ポリエーテル変性シリコーンを混合して調製することにより、上記耐熱性と乳化安定性が両立した界面活性剤を得ることが出来る。 In the present invention, those having high thermal stability are preferable, and those having a heat resistance of 20% or more of the surfactant defined as described above are used to suppress the generation of fine particles in flame resistance and to suppress the generation of fine particles between single yarns. It is preferable in preventing adhesion, and more preferably 50% or more. A surfactant having such properties is prepared by mixing, for example, an amino-modified dimethylsiloxane emulsified with a nonionic surfactant and a polyether-modified silicone, thereby achieving both heat resistance and emulsion stability. A surfactant can be obtained.

このようなシリコーン系油剤を付与することで、紡糸工程におけるポリアクリロニトリル系繊維束の収束性、柔軟性、工程安定性、及び帯電防止性が向上する。さらに耐炎化処理および炭素化処理における、通過性、収束性、および融着防止性が向上するとともに、本発明において、特に耐炎化工程で品質に悪影響を与える微粒子の発生を抑制することにより、強度の向上を達成することが出来る。 By adding such a silicone-based oil agent, the convergence, flexibility, process stability, and antistatic property of the polyacrylonitrile-based fiber bundle in the spinning process are improved. Further, the passability, convergence, and fusion prevention property in the flame resistance treatment and the carbonization treatment are improved, and in the present invention, the strength is suppressed by suppressing the generation of fine particles which adversely affect the quality especially in the flame resistance process. Can be achieved.

このようにして得られたポリアクリロニトリル系繊維束を、好ましくは200〜300℃の所定の温度で耐炎化処理を行う。ここで、耐炎化炉は図1に示されるように熱処理室7、ローラー14などから構成される。 The polyacrylonitrile-based fiber bundle thus obtained is subjected to a flame resistance treatment at a predetermined temperature of preferably 200 to 300 ° C. Here, the flame-resistant furnace is composed of a heat treatment chamber 7, a roller 14, and the like as shown in FIG.

このとき、繊維束はローラー14により進行方向を逆に変えて、熱処理室内の横断を繰り返すことが好ましい。具体的には、繊維束の横断を複数回繰り返すことで熱処理室の長手方向の機長が短くなり、耐炎化炉の小型化が可能となる。 At this time, it is preferable that the fiber bundle is repeatedly traversed in the heat treatment chamber by changing the traveling direction in the opposite direction by the roller 14. Specifically, by repeating the crossing of the fiber bundle a plurality of times, the length of the heat treatment chamber in the longitudinal direction is shortened, and the flameproof furnace can be miniaturized.

また、折り返し部の少なくとも一部のローラーは完全に炉外に設置されていることが好ましい。炉外に設置されることによって、生産状態の確認が容易となるとともに、万一毛羽等の巻付きが発生した場合でも、作業者が熱処理室7内に直接入ることなく容易に処置することが可能となる。 Further, it is preferable that at least a part of the rollers of the folded portion is completely installed outside the furnace. By installing it outside the furnace, it is easy to check the production status, and even if fluff or the like wraps around, the operator can easily handle it without directly entering the heat treatment chamber 7. It will be possible.

酸化性気体の循環方式としては酸化性気体が繊維束と垂直方向に循環する直交流と、水平方向に循環する平行流が用いられ、またローラーの配置としては、水平方向にローラー14が設置されている横型耐炎化炉と、垂直方向に設置されている縦型耐炎化炉が用いられるが、本発明では特にその熱風の循環方向、ローラーの配置に制限は無い。 As a circulation method of the oxidizing gas, a orthogonal flow in which the oxidizing gas circulates perpendicularly to the fiber bundle and a parallel flow in which the oxidizing gas circulates in the horizontal direction are used, and as the arrangement of the rollers, the rollers 14 are installed in the horizontal direction. A horizontal flame-resistant furnace and a vertical flame-resistant furnace installed in the vertical direction are used, but in the present invention, the circulation direction of the hot air and the arrangement of the rollers are not particularly limited.

また、ローラー14と、熱処理室7の間にシール室12を設けることが好ましい。シール室12を設けることで、熱処理室7への雰囲気からの冷風の漏れ込みを防ぐことができ、エネルギー使用量の削減が可能となる。 Further, it is preferable to provide a seal chamber 12 between the roller 14 and the heat treatment chamber 7. By providing the seal chamber 12, it is possible to prevent cold air from leaking from the atmosphere into the heat treatment chamber 7, and it is possible to reduce the amount of energy used.

本発明は、上述の熱処理室7を覆う囲い体1、囲い体内部で熱処理室7を含まない領域(以下、領域Aと記述する)中に気体を給気する給気ライン2ならびに給気ファン3、領域A中の気体を外部に排気する排気ライン4ならびに排気ファン5などで構成される耐炎化炉を用いて耐炎化処理をするに際し、その給排気条件を規定するものである。具体的には、囲い体への給気流量をF[m/hr]、囲い体からの排気流量をF[m/hr]、囲い体1の内部で、熱処理室7の体積をV[m]、囲い体1の内部で、熱処理室7を含まない領域(領域A)の体積をV[m]とするとき、
/F>1.00 ・・・(式1)
/V≧5.0 ・・・(式2)
/V>3.0 ・・・(式3)
を満たす条件下で炭素繊維前駆体繊維束を耐炎化処理する必要がある。
In the present invention, the enclosure 1 that covers the heat treatment chamber 7 described above, the air supply line 2 that supplies gas into the region inside the enclosure that does not include the heat treatment chamber 7 (hereinafter, referred to as region A), and the air supply fan. 3. The air supply / exhaust conditions are defined when the flameproofing treatment is performed using a flameproofing furnace composed of an exhaust line 4 for exhausting the gas in the region A to the outside and an exhaust fan 5. Specifically, the air supply flow rate to the enclosure is F 1 [m 3 / hr], the exhaust flow rate from the enclosure is F 2 [m 3 / hr], and the volume of the heat treatment chamber 7 inside the enclosure 1. Is V 1 [m 3 ], and the volume of the region (region A) that does not include the heat treatment chamber 7 inside the enclosure 1 is V 2 [m 3 ].
F 1 / F 2 > 1.00 ... (Equation 1)
F 1 / V 2 ≧ 5.0 ・ ・ ・ (Equation 2)
V 2 / V 1 > 3.0 ... (Equation 3)
It is necessary to make the carbon fiber precursor fiber bundle flame-resistant under the conditions satisfying the above conditions.

(式1)〜(式3)を満たすことで、高品質な炭素繊維束の製造を行うことが可能となる。 By satisfying (Equation 1) to (Equation 3), it becomes possible to produce a high-quality carbon fiber bundle.

具体的には、F/F>1.00を満たすことが必須であり、1.50>F/F≧1.05であることが好ましい。耐炎化工程周辺を給気過多で加圧状態にすることで、他工程で発生した微粒子が耐炎化工程に流入することを抑制し、耐炎化繊維素束に付着する微粒子の個数や、耐炎化繊維束の単糸表面の傷の個数を減少させることができる。一方、F/Fはかかる設備ないし運転コストの兼ね合いから1.50未満とすることが好ましい。 Specifically, it is essential to satisfy F 1 / F 2 > 1.00, and it is preferable that 1.50> F 1 / F 2 ≧ 1.05. By putting the area around the flame-resistant process under pressure due to excessive air supply, it is possible to suppress the inflow of fine particles generated in other processes into the flame-resistant process, and the number of fine particles adhering to the flame-resistant fiber bundle and making it flame-resistant. The number of scratches on the surface of the single yarn of the fiber bundle can be reduced. On the other hand, F 1 / F 2 is preferably less than 1.50 in consideration of such equipment and operating costs.

次に、F/V≧5.0を満たすことが必須であり、好ましくはF/V≧10、より好ましくはF/V≧15である。F/Vをかかる範囲とすることで、領域A中の体積に対する囲い体への給気流量が十分に大きくなるため、熱処理室から炉外へと漏れ出した微粒子や、他工程で発生した微粒子が耐炎化工程に流入することによる、汚染された領域A中の雰囲気を囲い体外部に排気することができ、耐炎化繊維束に付着する微粒子の個数や、耐炎化繊維束の単糸表面の傷の個数を減少させることができる。 Next, it is essential to satisfy F 1 / V 2 ≧ 5.0, preferably F 1 / V 2 ≧ 10, and more preferably F 1 / V 2 ≧ 15. By setting F 1 / V 2 to such a range, the air supply flow rate to the enclosure with respect to the volume in the region A becomes sufficiently large, so that fine particles leaked from the heat treatment chamber to the outside of the furnace and generated in other processes are generated. By flowing the fine particles into the flame-resistant process, the atmosphere in the contaminated region A can be exhausted to the outside of the enclosure, and the number of fine particles adhering to the flame-resistant fiber bundle and the single yarn of the flame-resistant fiber bundle can be exhausted. The number of scratches on the surface can be reduced.

さらに、本発明では、高品質と低コストを維持しつつ炭素繊維束の製造を行うためにV/V>3.0を満たすことが必要である。V/V≦3.0であると人が出入りした際、領域A中の温度変動が生じ、繊維束長手方向の繊度斑の原因となる。一方で、V/V≧20であると給排気に必要な給排気流量が増大するため一般的に設備費やランニングコスト面に難がある。したがって、V/Vの好ましい範囲としては、20.0>V/V>3.0であり、より好ましくは20.0>V/V>5.0、更に好ましくは20.0>V/V>9.0である。 Further, in the present invention, it is necessary to satisfy V 2 / V 1 > 3.0 in order to produce the carbon fiber bundle while maintaining high quality and low cost. When V 2 / V 1 ≤ 3.0, when a person goes in and out, the temperature fluctuates in the region A, which causes fineness unevenness in the longitudinal direction of the fiber bundle. On the other hand, when V 2 / V 1 ≥ 20, the supply / exhaust flow rate required for air supply / exhaust increases, which generally causes problems in terms of equipment cost and running cost. Therefore, the preferred range of V 2 / V 1 is 20.0> V 2 / V 1 > 3.0, more preferably 20.0> V 2 / V 1 > 5.0, and even more preferably 20. .0> V 2 / V 1 > 9.0.

また、領域Aへの給気は粒子除去装置6を介して給気することが必須である。ここで、用いられる粒子除去装置6に特に限定はなく、遠心力集塵機、電気集塵機、フィルタ集塵機などがあげられるが、設備費、ランニングコスト、メンテナンス性などの観点からフィルタ集塵機を用いることが好ましく、さらに好ましくは、粗塵用フィルタ、中高性能フィルタ、HEPAフィルタ、ULPAフィルタのいずれか1つもしくは複数を用いることが好ましい。 Further, it is essential to supply air to the region A via the particle removing device 6. Here, the particle removing device 6 used is not particularly limited, and examples thereof include a centrifugal dust collector, an electrostatic precipitator, and a filter dust collector. However, it is preferable to use the filter dust collector from the viewpoint of equipment cost, running cost, maintainability, and the like. More preferably, any one or more of a coarse dust filter, a medium-high performance filter, a HEPA filter, and a ULPA filter are used.

領域Aからの排気を行うことで、熱処理室内にて発生した後、炉外に漏れ出した微粒子を囲い体外部に排気することができる。 By exhausting from the region A, the fine particles that have been generated in the heat treatment chamber and then leaked to the outside of the furnace can be exhausted to the outside of the enclosure.

図1に示す形態においては、熱処理室7とローラー14の周辺を囲い体1で囲み、給気ファン3を介して領域Aに気体が給気し、排気ファン5を介して領域A中の気体が排気されている。気体が給気もしくは排気される位置に特に限定はないが、気体温度が低い場所から給気し、高いところから排気することが好ましい。 In the embodiment shown in FIG. 1, the heat treatment chamber 7 and the roller 14 are surrounded by an enclosure 1, gas is supplied to the region A via the air supply fan 3, and the gas in the region A is supplied via the exhaust fan 5. Is exhausted. The position where the gas is supplied or exhausted is not particularly limited, but it is preferable to supply the gas from a place where the gas temperature is low and exhaust the gas from a place where the gas temperature is high.

本発明における微粒子濃度とは、上記の定義のとおり、領域A中の、雰囲気中の下記する方法で測定された粒径0.5μm以上の粒子を、5.0μm相当に換算したときの1リットルあたりの個数のことを意味し、微粒子濃度が3000個/リットル以下となることが好ましい。 As defined above, the fine particle concentration in the present invention is 1 liter when particles having a particle size of 0.5 μm or more measured by the following method in the atmosphere in the region A are converted to equivalent to 5.0 μm. It means the number of particles per particle, and the concentration of fine particles is preferably 3000 particles / liter or less.

微粒子濃度を3000個/リットル以下とすることで、その微粒子がローラー上で繊維束を傷つけることを予防でき、高強度炭素繊維を得ることができる。微粒子濃度はF/FとF/VとV/Vおよび領域A給気ラインの粒子除去装置性能やポリアクリロニトリル系繊維束に付与される界面活性剤の耐熱性等によって制御可能である。 By setting the concentration of the fine particles to 3000 pieces / liter or less, it is possible to prevent the fine particles from damaging the fiber bundle on the roller, and it is possible to obtain high-strength carbon fibers. The fine particle concentration is controlled by the particle removal device performance of F 1 / F 2 and F 1 / V 2 and V 2 / V 1 and the region A air supply line, and the heat resistance of the surfactant applied to the polyacrylonitrile fiber bundle. It is possible.

用いられる囲い体1の材質に特に限定はないが、不燃性の観点からコンクリート、モルタル、石膏ボードなどを用いることが好ましい。また、図1に示すように、炭素繊維束の連続的な生産を可能とするため、被処理繊維束は入側糸道開口部10を通過した後、囲い体内部に設けられた熱処理室にて耐炎化処理を行い、最後に出側糸道開口部11を通過することが好ましい。また、シール性を向上させるために、糸道開口部10、11は繊維束の形状に合わせ、繊維束との接触が起こらない範囲で最小化することが好ましい。 The material of the enclosure 1 used is not particularly limited, but it is preferable to use concrete, mortar, gypsum board or the like from the viewpoint of nonflammability. Further, as shown in FIG. 1, in order to enable continuous production of carbon fiber bundles, the fiber bundles to be treated pass through the inlet side thread path opening 10 and then enter a heat treatment chamber provided inside the enclosure. It is preferable that the flameproof treatment is performed and finally the fiber passes through the exit side thread path opening 11. Further, in order to improve the sealing property, it is preferable that the thread path openings 10 and 11 are matched to the shape of the fiber bundle and minimized within a range where contact with the fiber bundle does not occur.

上記の実施形態においては、作業者が出入りするための出入り口の記載を省略しているが、トラブル時に迅速な処置が可能となるよう、作業者が出入りするための扉を設けることが好しく、作業者が出入りした際の温度変動を抑制するため、通常開閉できる扉の面積は作業者出入りできる範囲で最小化することが好ましい。 In the above embodiment, the description of the doorway for the worker to enter and exit is omitted, but it is preferable to provide a door for the worker to enter and exit so that a quick action can be taken in case of trouble. In order to suppress temperature fluctuations when an operator enters and exits, it is preferable to minimize the area of the door that can be normally opened and closed within the range in which the operator can enter and exit.

このようにして得られた耐炎化繊維束を、不活性雰囲気下で、好ましくは最高温度を300〜800℃の温度範囲内で予備炭化処理を行う。このように予備炭化処理を施した後、不活性雰囲気下で最高温度が1000〜2000℃の範囲で炭化処理することによって高強度な炭素繊維束を得ることができる。 The flame-resistant fiber bundle thus obtained is pre-carbonized in an inert atmosphere, preferably in a temperature range of a maximum temperature of 300 to 800 ° C. After the pre-carbonization treatment in this way, a high-strength carbon fiber bundle can be obtained by carbonizing the carbon fiber in an inert atmosphere in a maximum temperature range of 1000 to 2000 ° C.

ここで、予備炭化処理および炭化処理は不活性雰囲気中で行われるが、用いられる不活性ガスとしては、例えば、窒素、アルゴンおよびキセノンなどが好ましく例示され、ランニングコストの観点からは窒素が好ましく用いられる。 Here, the pre-carbonization treatment and the carbonization treatment are carried out in an inert atmosphere, and examples of the inert gas used are preferably nitrogen, argon and xenon, and nitrogen is preferably used from the viewpoint of running cost. Be done.

さらに、炭素繊維束は、その表面改質のため、電解処理することができる。かかる電解処理により、得られる複合材料において炭素繊維束とマトリックスとの接着性が適正化でき、繊維軸方向と非繊維軸方向の両方向にバランスのとれた強度特性が発現されるようになる。 Further, the carbon fiber bundle can be electrolyzed for surface modification. By such an electrolytic treatment, the adhesiveness between the carbon fiber bundle and the matrix can be optimized in the obtained composite material, and the strength characteristics balanced in both the fiber axial direction and the non-fiber axial direction can be exhibited.

次いで、得られる炭素繊維束に収束性を付与するため、サイジング処理をして、サイジング剤を付与することも好ましい。 Next, in order to impart convergence to the obtained carbon fiber bundle, it is also preferable to carry out a sizing treatment to impart a sizing agent.

最後に、これらの工程を経た炭素繊維束をボビンに巻き取ることにより、炭素繊維束を得ることができる。 Finally, the carbon fiber bundle that has undergone these steps can be wound around the bobbin to obtain the carbon fiber bundle.

本発明は、使用するアクリロニトリル系繊維束の単繊維繊度が0.5〜1.3dtexであり、炭化したときの単繊維の直径が3.8〜8.5μmであることが好ましい。1.3dtex以下および8.5μm以下とすることによって、繊維のプロセス通過性を一定の水準に保持し、又得られる炭素繊維強の特性も維持することが出来る。又、0.5dtex以上および3.8μm以上とすることによって、単糸の切断等によって生じるプロセス通過性の低下を防ぎ、生産性の低下も防ぐことが出来る。なおアクリロニトリル系単繊維の繊度と、炭素繊維単繊維の繊度は独立して変更できるわけではないが、用いる炭素繊維製造工程の条件によって変動するので、それぞれの値を上記の範囲とすることが好ましい。 In the present invention, it is preferable that the single fiber fineness of the acrylonitrile-based fiber bundle used is 0.5 to 1.3 dtex, and the diameter of the single fiber when carbonized is 3.8 to 8.5 μm. By setting the value to 1.3 dtex or less and 8.5 μm or less, the process passability of the fiber can be maintained at a certain level, and the obtained carbon fiber strength property can also be maintained. Further, by setting the thickness to 0.5 dtex or more and 3.8 μm or more, it is possible to prevent a decrease in process passability caused by cutting a single yarn and the like, and it is possible to prevent a decrease in productivity. The fineness of the acrylonitrile-based single fiber and the fineness of the carbon fiber single fiber cannot be changed independently, but they vary depending on the conditions of the carbon fiber manufacturing process used, so it is preferable to set each value in the above range. ..

本発明の炭素繊維束は、その断面の真円度が1.01〜1.07であるものが好ましく、1.02〜1.05であるものが更に好ましい。ここで真円度とは、炭素繊維束を常温硬化型エポキシ樹脂に包埋し、硬化後表面を研磨して走査型電子顕微鏡にて求めた。ここで、繊維束は弛みがない状態で研磨面に垂直となるようにして硬化させる。また電子顕微鏡の画像は、任意に選定した25本の単糸について、倍率3000倍で求めて、繊維断面を楕円として近似したときの最短距離を短径、最長距離を長径として真円度を長径/短径の値として定義する。 The carbon fiber bundle of the present invention preferably has a cross-sectional roundness of 1.01 to 1.07, and more preferably 1.02 to 1.05. Here, the roundness was determined by embedding a carbon fiber bundle in a room temperature curable epoxy resin, polishing the surface after curing, and using a scanning electron microscope. Here, the fiber bundle is cured so as to be perpendicular to the polished surface without slack. In the electron microscope image, 25 single threads selected arbitrarily are obtained at a magnification of 3000 times, and the shortest distance is the minor axis and the longest distance is the major axis when the fiber cross section is approximated as an ellipse, and the roundness is the major axis. / Defined as a minor axis value.

本発明の炭素繊維束の単糸の表面平滑性は、算術平均粗さRaで表したとき、好ましくは1.0nm〜15nm、さらに好ましくは2.0〜10nmである。これらは使用するアクリロニトリル系繊維束を紡糸するときに、原液のポリマ温度を可能な範囲で高く設定するとともに、湿式紡糸であれば、口金条件や紡糸浴の引取条件を組み合わせて得ることが出来、乾湿式紡糸であれば、やはり紡糸条件と、延伸条件などとを組み合わせ、それらを炭化することにより、ほぼ同程度の表面平滑性の炭素繊維を得ることが出来る。 The surface smoothness of the single yarn of the carbon fiber bundle of the present invention is preferably 1.0 nm to 15 nm, more preferably 2.0 to 10 nm when expressed in arithmetic mean roughness Ra. These can be obtained by setting the polymer temperature of the undiluted solution as high as possible when spinning the acrylonitrile-based fiber bundle to be used, and by combining the base conditions and the take-up conditions of the spinning bath in the case of wet spinning. In the case of dry-wet spinning, carbon fibers having substantially the same surface smoothness can be obtained by combining spinning conditions, drawing conditions, and the like and carbonizing them.

以下に本発明を実施例および比較例によりさらに具体的に説明する。表1には各種条件および微粒子濃度、評価結果の一覧を示す。なお、各特性の評価方法・測定方法は下記のとおりとした。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. Table 1 shows a list of various conditions, fine particle concentration, and evaluation results. The evaluation method and measurement method for each characteristic are as follows.

<界面活性剤(シリコーン油剤)の耐熱性>
乳化状態にある界面活性剤を、予め105℃・5時間乾燥したときの質量を基準とし、熱天秤分析によって空気中昇温速度10℃/分で240℃まで昇温し、240℃・2時間保持し、雰囲気を窒素に切り替えて10℃/分で昇温して、到達温度450℃・30秒保持した時点での質量保持率(%)を耐熱性とした。
<Heat resistance of surfactant (silicone oil)>
Based on the mass of the emulsified surfactant when it is dried in advance at 105 ° C for 5 hours, the temperature is raised to 240 ° C at a heating rate of 10 ° C / min in air by thermal balance analysis, and then 240 ° C for 2 hours. The mass retention rate (%) at the time when the temperature was maintained, the atmosphere was switched to nitrogen, the temperature was raised at 10 ° C./min, and the temperature reached 450 ° C. for 30 seconds was defined as heat resistance.

<微粒子濃度>
試料気体流量0.5リットル/分で34秒間(合計0.283リットル)気体を吸引し、0.283リットルに含まれる0.5μm以上1.0μm未満、1.0μm以上2.0μm未満、2.0μm以上5.0μm未満、5.0μm以上の4段階粒子数を同時に計測し、その値をD0.5、D1.0、D2.0、D5.0(個/0.283リットル)とするとき、以下の換算式によって各粒子の濃度を5.0μmの粒子数に換算した値を求めた。ここで、微粒子濃度の測定場所は、熱処理室に糸が出入りする場所の最下部の炉外ローラー周囲10cmの場所とし、光散乱式パーティクルカウンタ(例えば、RION社 KC−01E)を用いて測定した。この測定を連続して3回実施し、その平均値を微粒子濃度とした。
<Particle concentration>
The gas is sucked for 34 seconds (0.283 liters in total) at a sample gas flow rate of 0.5 liters / minute, and 0.5 μm or more and less than 1.0 μm, 1.0 μm or more and less than 2.0 μm contained in 0.283 liters, 2 Simultaneously measure the number of particles in four stages of 0.0 μm or more and less than 5.0 μm and 5.0 μm or more, and measure the values as D 0.5 , D 1.0 , D 2.0 , D 5.0 (pieces / 0.283). In the case of (liter), the value obtained by converting the concentration of each particle into the number of particles of 5.0 μm was obtained by the following conversion formula. Here, the measurement location of the fine particle concentration was a location 10 cm around the outer roller at the bottom of the location where the yarn enters and exits the heat treatment chamber, and the measurement was performed using a light scattering type particle counter (for example, KC-01E manufactured by RION). .. This measurement was carried out three times in succession, and the average value was taken as the fine particle concentration.

5.0μmの粒子数への換算式=[{D0.5/(5.0/0.5)}+{D1.0/(5.0/1.0)}+{D2.0/(5.0/2.0)}+D5.0]/0.283(個/リットル)。 Conversion formula to the number of particles of 5.0 μm = [{D 0.5 / (5.0 / 0.5) } + {D 1.0 / (5.0 / 1.0) } + {D 2. 0 / (5.0 / 2.0)} + D 5.0] /0.283 (pieces / liter).

<界面活性剤の耐熱性>
<相対ストランド引張強度>
JIS R 7601:1986の「樹脂含浸ストランド試験法」に従いストランド引張強度を測定し、以下の換算式によって比較例1のストランド引張強度に対する相対ストランド引張強度を使用した。
<Heat resistance of surfactant>
<Relative strand tensile strength>
The strand tensile strength was measured according to the "resin-impregnated strand test method" of JIS R 7601: 1986, and the relative strand tensile strength with respect to the strand tensile strength of Comparative Example 1 was used by the following conversion formula.

相対ストランド引張強度への換算式=T/T
ここで、Tは各実施例、比較例におけるストランド引張強度、Tは比較例1のストランド引張強度である。
Conversion formula to relative strand tensile strength = T / T 0
Here, T is the strand tensile strength in each Example and Comparative Example, and T 0 is the strand tensile strength in Comparative Example 1.

<炭素繊維束の長手方向の繊度斑>
炭素繊維束を20分おきにボビンに1分間巻き取った。これを24時間繰り返し、計72本のボビンを採取した。これらのボビンを温度23±5℃、相対湿度60±20%の雰囲気中に24時間以上放置したのち、同雰囲気中でそれぞれのボビンから長手方向に1m、撚りが入らないように切断したものを電子天秤で測定し、次式に基づいて長手方向の繊度斑を求めた。
<Vertical fineness spots on carbon fiber bundles>
The carbon fiber bundle was wound around the bobbin every 20 minutes for 1 minute. This was repeated for 24 hours, and a total of 72 bobbins were collected. These bobbins were left in an atmosphere with a temperature of 23 ± 5 ° C. and a relative humidity of 60 ± 20% for 24 hours or more, and then cut into pieces 1 m in the longitudinal direction from each bobbin in the same atmosphere so as not to be twisted. The measurement was performed with an electronic balance, and the fine spots in the longitudinal direction were determined based on the following equation.

長手方向繊度斑(%)=(σ/X)×100
ここで、σ:測定繊度全データの標準偏差、Xは測定繊度全データの平均値である。
Longitudinal fineness spot (%) = (σ / X) × 100
Here, σ: the standard deviation of all the measured fineness data, and X is the average value of all the measured fineness data.

なお、耐炎化工程では、作業者が運転状態の定期的な点検や、巻付きトラブルが発生したときなど領域Aに立ち入る。本実施例・比較例における炭素繊維束の長手方向の繊度斑は、必要時に人が領域Aに出入りして点検や巻付きトラブル対応を行った状況下において求められた。 In the flameproofing step, the operator enters the area A such as when the operator regularly inspects the operating state or when a winding trouble occurs. The fineness spots in the longitudinal direction of the carbon fiber bundles in the present example and the comparative example were obtained under the condition that a person went in and out of the area A when necessary to inspect and deal with winding troubles.

<単糸表面粗さ測定>
炭素繊維単糸表面上の形態は、原子間力顕微鏡を用いた算術平均粗さとして求めた。測定方法は、Veeco社Digital Instruments製 NanoScopeIIIa AFM Dimennsion 3000 ステージシステムを使用し、タッピングモードで測定する。サンプルは、単糸を1.5cmにカットし、銀ペーストでSiウェハに固定した。探針にシリコンカンチレバーを用いて、走査範囲2.5μm×2.5μmの範囲を走査速度0.33Hzで測定を行った。3視野から測定を行った表面粗さを定量的に評価するために、3次元表面粗さ評価を行い、中心線からの偏差の絶対値の平均値を算術平均粗さRaとして示した。なお、サイジング剤が付着している炭素繊維については、脱サイジングを行った後測定を実施した。
<Measurement of single yarn surface roughness>
The morphology on the surface of the carbon fiber single yarn was determined as the arithmetic mean roughness using an atomic force microscope. The measuring method uses a NanoScopeIIIa AFM Distance 3000 stage system manufactured by Digital Instruments of Veeco, and measures are performed in a tapping mode. For the sample, a single yarn was cut to 1.5 cm and fixed to a Si wafer with silver paste. Using a silicon cantilever as a probe, a measurement was performed in a scanning range of 2.5 μm × 2.5 μm at a scanning speed of 0.33 Hz. In order to quantitatively evaluate the surface roughness measured from three visual fields, a three-dimensional surface roughness evaluation was performed, and the average value of the absolute values of the deviations from the center line was shown as the arithmetic mean roughness Ra. The carbon fibers to which the sizing agent was attached were measured after being desized.

(比較例1)
アクリロニトリルとイタコン酸からなる共重合体を、ジメチルスルホキシドを溶媒とする溶液重合法により製造し、アクリル系共重合体の含有率が22質量%である紡糸原液を得た。この紡糸原液を、40℃で、孔数4,000の紡糸口金を用いて一旦空気中に吐出した後、10℃にコントロールした35質量%ジメチルスルホキシドの水溶液からなる凝固浴に導入する乾湿式紡糸法により凝固させた。得られた凝固糸を、水洗、延伸、油剤付与した後、乾燥させ、スチーム延伸し、単糸繊度1.1dtex、単糸本数12,000本のポリアクリロニトリル系繊維束を得た。
(Comparative Example 1)
A copolymer composed of acrylonitrile and itaconic acid was produced by a solution polymerization method using dimethyl sulfoxide as a solvent to obtain a spinning stock solution having an acrylic copolymer content of 22% by mass. This undiluted spinning solution is once discharged into the air at 40 ° C. using a spinning cap with 4,000 holes, and then introduced into a coagulation bath consisting of an aqueous solution of 35% by mass dimethyl sulfoxide controlled at 10 ° C. for dry-wet spinning. It was coagulated by the method. The obtained coagulated yarn was washed with water, stretched, oiled, dried, and steam-stretched to obtain a polyacrylonitrile fiber bundle having a single yarn fineness of 1.1 dtex and a single yarn number of 12,000.

ここで、油剤は、アミノ変性されたジメチルシロキサン油剤成分を、ノニオン系界面活性剤を用いて水分散系としたものと、ジメチルポリシロキサンをポリエチレングリコールで変性して水溶性にした油剤を純分で等量混合したものを用い、その耐熱性が56%のものを用いた。 Here, as the oil agent, the amino-modified dimethylsiloxane oil agent component is made into an aqueous dispersion system using a nonionic surfactant, and the oil agent obtained by modifying dimethylpolysiloxane with polyethylene glycol to make it water-soluble is pure. The mixture of equal amounts was used, and the heat resistance was 56%.

次いで、熱処理室周辺に囲いを設けていない横型熱風循環式の耐炎化炉にて220〜270℃で耐炎化処理を行った。その後、窒素雰囲気中300〜800℃の温度領域で予備炭化処理した後、1000〜1500℃の温度領域で炭化処理して単糸直径が6.9μm、密度1.80g/cm、単糸の真円度が1.03、算術平均粗さRaが3.2nmの炭素繊維束を得た。熱処理室に糸が出入りする場所の最下部の炉外ローラー周囲10cmの微粒子濃度は10000個/リットルであり、また繊度斑は1.2%であった。比較例1で得られた炭素繊維束のストランド引張強度を基準として1.00とした。 Next, a flameproofing treatment was performed at 220 to 270 ° C. in a horizontal hot air circulation type flameproofing furnace having no enclosure around the heat treatment chamber. Then, after pre-carbonization treatment in a temperature range of 300 to 800 ° C. in a nitrogen atmosphere, carbonization treatment was carried out in a temperature range of 1000 to 1500 ° C. to achieve a single yarn diameter of 6.9 μm, a density of 1.80 g / cm 3 , and a single yarn. A carbon fiber bundle having a roundness of 1.03 and an arithmetic mean roughness Ra of 3.2 nm was obtained. The concentration of fine particles 10 cm around the outer furnace roller at the bottom of the place where the yarn enters and exits the heat treatment chamber was 10,000 particles / liter, and the fineness unevenness was 1.2%. The strand tensile strength of the carbon fiber bundle obtained in Comparative Example 1 was set to 1.00 as a reference.

(実施例1)
比較例1と同様に作製したポリアクリロニトリル繊維束を、熱処理室周辺に囲いが設けられた横型熱風循環式の耐炎化炉にて220〜270℃で耐炎化処理を行い、次いで同様に予備炭化、炭化を行って単糸直径が6.9μm、密度1.80g/cm、単糸の真円度が1.04、算術平均粗さRaが2.9nmの炭素繊維束を得た。このとき、F/F=1.03、F/V=5.0、V/V=6.0とし、領域Aへの給気ラインの粒子除去装置6内のフィルタスペックは粒子除去性能が中程度のものを使用した。相対ストランド引張強度は1.08、繊度斑も0.8%であった。また、熱処理室に糸が出入りする場所の最下部のローラー周囲10cmの微粒子濃度は3400個/リットルと減少した。
(Example 1)
The polyacrylonitrile fiber bundle produced in the same manner as in Comparative Example 1 was subjected to flameproofing treatment at 220 to 270 ° C. in a horizontal hot air circulation type flameproofing furnace provided with an enclosure around the heat treatment chamber, and then precarbonized in the same manner. Carbonization was carried out to obtain a carbon fiber bundle having a single yarn diameter of 6.9 μm, a density of 1.80 g / cm 3 , a single yarn roundness of 1.04, and an arithmetic mean roughness Ra of 2.9 nm. At this time, F 1 / F 2 = 1.03, F 1 / V 2 = 5.0, V 2 / V 1 = 6.0, and the filter specifications in the particle removing device 6 of the air supply line to the region A. Used one with medium particle removal performance. The relative strand tensile strength was 1.08 and the fineness unevenness was 0.8%. In addition, the concentration of fine particles 10 cm around the lowermost roller where the yarn enters and exits the heat treatment chamber decreased to 3400 particles / liter.

(実施例2、4)
/Fがそれぞれ1.05、1.10であること以外はすべて実施例1と同様にして炭素繊維束を得た。その結果、炭素繊維束の相対ストランド引張強度はそれぞれ1.09、1.12であり、繊度斑はそれぞれ0.7%、0.6%と良好な結果となった。
(Examples 2 and 4)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that F 1 / F 2 were 1.05 and 1.10, respectively. As a result, the relative strand tensile strengths of the carbon fiber bundles were 1.09 and 1.12, respectively, and the fineness spots were 0.7% and 0.6%, respectively, which were good results.

(実施例3)
粒子除去装置6内のフィルタを粒子除去性能の高いものに交換した以外は実施例1と同様の方法で炭素繊維束を得た。熱処理室に糸が出入りする場所の最下部のローラー周辺の微粒子濃度は2900個/リットルであった。また、炭素繊維束の相対ストランド引張強度は1.12であり、繊度斑は0.7%と良好な結果となった。
(Example 3)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that the filter in the particle removing device 6 was replaced with one having high particle removing performance. The concentration of fine particles around the roller at the bottom of the place where the yarn enters and exits the heat treatment chamber was 2900 particles / liter. The relative strand tensile strength of the carbon fiber bundle was 1.12, and the fineness unevenness was 0.7%, which was a good result.

(実施例5、6)
/Fが1.05、F/Vがそれぞれ10.0、15.0であること以外はすべて実施例1と同様にして炭素繊維束を得た。その結果、炭素繊維束の相対ストランド引張強度はそれぞれ1.12、1.13であり、繊度斑も0.7%と良好な結果となった。
(Examples 5 and 6)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that F 1 / F 2 was 1.05 and F 1 / V 2 was 10.0 and 15.0, respectively. As a result, the relative strand tensile strengths of the carbon fiber bundles were 1.12 and 1.13, respectively, and the fineness unevenness was 0.7%, which was a good result.

(実施例7)
/Fが1.05、F/Vが15.0、V/Vが10.0であること以外はすべて実施例1と同様にして炭素繊維束を得た。その結果、炭素繊維束の相対ストランド引張強度は1.13であり、繊度斑は0.5%と良好な結果となった。
(Example 7)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that F 1 / F 2 was 1.05, F 1 / V 2 was 15.0, and V 2 / V 1 was 10.0. As a result, the relative strand tensile strength of the carbon fiber bundle was 1.13, and the fineness unevenness was 0.5%, which was a good result.

(実施例8)
/Vが3.5であること以外はすべて実施例2と同様にして炭素繊維束を得た。その結果繊度斑は0.9%とやや悪化したが、相対ストランド引張強度は1.09と良好な結果であった。
(Example 8)
A carbon fiber bundle was obtained in the same manner as in Example 2 except that V 2 / V 1 was 3.5. As a result, the fineness unevenness was slightly deteriorated to 0.9%, but the relative strand tensile strength was 1.09, which was a good result.

(実施例9)
油剤の成分の割合を調整することにより、耐熱性が35%の油剤を作製して用いた以外は、実施例3と同様の条件で炭素繊維を得た。その結果相対ストランド引張強度は1.07とやや低下したが、繊度斑は0.8%と良好な結果であった。
(Example 9)
Carbon fibers were obtained under the same conditions as in Example 3 except that an oil agent having a heat resistance of 35% was prepared and used by adjusting the ratio of the components of the oil agent. As a result, the relative strand tensile strength was slightly reduced to 1.07, but the fineness unevenness was 0.8%, which was a good result.

(実施例10)
油剤の成分の割合を調整することにより、耐熱性が18%の油剤を作製して用いた以外は、実施例9と同様の条件で炭素繊維を得た。その結果相対ストランド引張強度は1.05と低下したが、繊度斑は0.8%を保持することが出来た。
(Example 10)
Carbon fibers were obtained under the same conditions as in Example 9 except that an oil agent having a heat resistance of 18% was prepared and used by adjusting the ratio of the components of the oil agent. As a result, the relative strand tensile strength decreased to 1.05, but the fineness unevenness could be maintained at 0.8%.

(比較例2)
/Fが0.95、F/Vが3.0であること以外は実施例1と同様にして炭素繊維束を得た。炭素繊維束の相対ストランド引張強度は1.03と実施例1〜9に比べて発現しなかった。
(Comparative Example 2)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that F 1 / F 2 was 0.95 and F 1 / V 2 was 3.0. The relative strand tensile strength of the carbon fiber bundle was 1.03, which was not expressed as compared with Examples 1 to 9.

(比較例3)
/Vが3.0であること以外は実施例1と同様にして炭素繊維束を得た。炭素繊維束の相対ストランド引張強度は1.04と実施例1〜9に比べて発現しなかった。
(Comparative Example 3)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that F 1 / V 2 was 3.0. The relative strand tensile strength of the carbon fiber bundle was 1.04, which was not expressed as compared with Examples 1 to 9.

(比較例4)
/Fが0.95であること以外は実施例1と同様にして炭素繊維束を得た。炭素繊維束の相対ストランド引張強度は1.03と実施例1〜9に比べて発現しなかった。
(Comparative Example 4)
A carbon fiber bundle was obtained in the same manner as in Example 1 except that F 1 / F 2 was 0.95. The relative strand tensile strength of the carbon fiber bundle was 1.03, which was not expressed as compared with Examples 1 to 9.

(比較例5)
/Vが2.0であること以外はすべて実施例2と同様にして炭素繊維束を得た。その結果、相対ストランド引張強度が1.05と若干低下し、繊度斑が1.3%と大きく悪化した。作業員の出入りが繊度斑に影響したと考えられる。
(Comparative Example 5)
A carbon fiber bundle was obtained in the same manner as in Example 2 except that V 2 / V 1 was 2.0. As a result, the relative strand tensile strength was slightly reduced to 1.05, and the fineness unevenness was significantly deteriorated to 1.3%. It is probable that the entry and exit of workers affected the fine spots.

(比較例6)
領域Aへの給気ラインの粒子除去装置を経由せずに給気した以外はすべて実施例1と同様にして炭素繊維を得た。炭素繊維束の相対ストランド引張強度は1.02と実施例1〜9に比べて発現しなかった。
(Comparative Example 6)
Carbon fibers were obtained in the same manner as in Example 1 except that air was supplied to the region A without passing through the particle removing device of the air supply line. The relative strand tensile strength of the carbon fiber bundle was 1.02, which was not expressed as compared with Examples 1 to 9.

Figure 0006852405
Figure 0006852405

1:囲い体
2:給気ライン
3:給気ファン
4:排気ライン
5:排気ファン
6:粒子除去装置
7:熱処理室
8:ポリアクリロニトリル系繊維束
9:炭素繊維束生産設備建屋
10:入側糸道開口部
11:出側糸道開口部
12:シール室
13:循環ライン
14:ローラー
1: Enclosure 2: Air supply line 3: Air supply fan 4: Exhaust line 5: Exhaust fan 6: Particle removal device 7: Heat treatment room 8: Polyacrylonitrile fiber bundle 9: Carbon fiber bundle production equipment building 10: Entrance side Thread path opening 11: Exit side thread path opening 12: Seal chamber 13: Circulation line 14: Roller

Claims (1)

酸化性気体中でポリアクリロニトリル系繊維束を耐炎化処理する熱処理室と、ポリアクリロニトリル系繊維束の進行方向を変えるためのローラーと、熱処理室とローラーとを囲う囲い体と、囲い体内部であって熱処理室を含まない領域に微粒子除去手段を介して気体を給気する給気ラインと、囲い体内部であって熱処理室を含まない領域の気体を外部に排気する排気ラインとを有する耐炎化炉を用い、(式1)、(式2)、(式3)を満たす条件下でポリアクリロニトリル系繊維束を耐炎化処理して耐炎化繊維束を得る耐炎化工程と、耐炎化繊維束を300〜2000℃の温度で炭素化処理して炭素繊維束を得る炭素化工程とを少なくとも有する炭素繊維束の製造方法。
/F>1.00 ・・・(式1)
/V≧5.0 ・・・(式2)
/V>3.0 ・・・(式3)
(但し、F:囲い体への給気流量[m/hr]、F:囲い体からの排気流量[m/hr]、V:熱処理室体積[m]、V:囲い体内部であって熱処理室を含まない領域の体積[m]、である。)
A heat treatment chamber for flameproofing the polyacrylonitrile fiber bundle in an oxidizing gas, a roller for changing the traveling direction of the polyacrylonitrile fiber bundle, an enclosure surrounding the heat treatment chamber and the roller, and the inside of the enclosure. Flame resistant with an air supply line that supplies gas to the region that does not include the heat treatment chamber via the fine particle removing means and an exhaust line that exhausts the gas to the outside in the region that does not include the heat treatment chamber inside the enclosure. Using a furnace, a flame-resistant step of heat-treating the polyacrylonitrile-based fiber bundle under the conditions satisfying (formula 1), (formula 2), and (formula 3) to obtain a flame-resistant fiber bundle, and a flame-resistant fiber bundle A method for producing a carbon fiber bundle, which comprises at least a carbonization step of obtaining a carbon fiber bundle by carbonization treatment at a temperature of 300 to 2000 ° C.
F 1 / F 2 > 1.00 ... (Equation 1)
F 1 / V 2 ≧ 5.0 ・ ・ ・ (Equation 2)
V 2 / V 1 > 3.0 ... (Equation 3)
(However, F 1 : supply air flow rate to the enclosure [m 3 / hr], F 2 : exhaust flow rate from the enclosure [m 3 / hr], V 1 : heat treatment chamber volume [m 3 ], V 2 : The volume of the area inside the enclosure that does not include the heat treatment chamber [m 3 ].)
JP2017001598A 2017-01-10 2017-01-10 Manufacturing method of carbon fiber bundle Active JP6852405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001598A JP6852405B2 (en) 2017-01-10 2017-01-10 Manufacturing method of carbon fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001598A JP6852405B2 (en) 2017-01-10 2017-01-10 Manufacturing method of carbon fiber bundle

Publications (2)

Publication Number Publication Date
JP2018111891A JP2018111891A (en) 2018-07-19
JP6852405B2 true JP6852405B2 (en) 2021-03-31

Family

ID=62911798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001598A Active JP6852405B2 (en) 2017-01-10 2017-01-10 Manufacturing method of carbon fiber bundle

Country Status (1)

Country Link
JP (1) JP6852405B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322327B2 (en) * 2017-12-21 2023-08-08 東レ株式会社 Carbon fiber bundle and its manufacturing method
WO2020203531A1 (en) * 2019-04-03 2020-10-08 東レ株式会社 Method for producing flame-proof fiber bundle, and method for producing carbon fiber bundle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4463047B2 (en) * 2004-08-24 2010-05-12 東邦テナックス株式会社 Flameproofing furnace and flameproofing method
JP2007217835A (en) * 2006-02-17 2007-08-30 Toho Tenax Co Ltd Flameproofing treatment oven
JP2008095221A (en) * 2006-10-10 2008-04-24 Toray Ind Inc Method and apparatus for producing carbon fiber bundle
JP2008138325A (en) * 2006-12-04 2008-06-19 Toray Ind Inc Flame resistant furnace and method for producing flame resistant fiber bundle, and method for producing carbon fiber bundle
JP6064409B2 (en) * 2012-07-27 2017-01-25 東レ株式会社 Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP5496286B2 (en) * 2012-08-17 2014-05-21 三菱レイヨン株式会社 Carbon fiber manufacturing method

Also Published As

Publication number Publication date
JP2018111891A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP5834917B2 (en) Method for producing carbon fiber prepreg, method for producing carbon fiber reinforced composite material
US8129017B2 (en) Carbon fiber strand and process for producing the same
JP2018145541A (en) Carbon fiber bundle and method for production of the same
JP2018145540A (en) Method for production of carbon fiber bundle
JPH11241230A (en) Carbon fiber, precursor fiber for carbon fiber, composite material and production of carbon fiber
JP5161604B2 (en) Carbon fiber manufacturing method
JP6852405B2 (en) Manufacturing method of carbon fiber bundle
WO2018003836A1 (en) Carbon fiber bundle and method for manufacturing same
US20200190705A1 (en) Carbon fiber bundle and method of manufacturing same
JPS6052206B2 (en) Method for manufacturing acrylic carbon fiber
JP2006283227A (en) Method for producing carbon fiber
CN110168154B (en) Method for cleaning refractor oven and method for producing refractory fiber, carbon fiber, and graphitized fiber
JP2010133059A (en) Flameproofing furnace, and method for producing carbon fiber using the same
JP6064409B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP2016160560A (en) Method for manufacturing carbon fiber bundle
JP7322327B2 (en) Carbon fiber bundle and its manufacturing method
JP7468343B2 (en) Method for producing flame-retardant fiber bundle and method for producing carbon fiber bundle
WO2023140212A1 (en) Carbon fiber bundle
WO2019146487A1 (en) Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
JP2016037689A (en) Method for producing carbon fiber
JP2005179794A (en) Method for producing carbon fiber
WO2023008273A1 (en) Carbon fiber bundle and production method for same
JP2001131832A (en) Method for producing carbon yarn
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R151 Written notification of patent or utility model registration

Ref document number: 6852405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151