JP2014024933A - リグニンを用いた自己硬化型樹脂 - Google Patents

リグニンを用いた自己硬化型樹脂 Download PDF

Info

Publication number
JP2014024933A
JP2014024933A JP2012165343A JP2012165343A JP2014024933A JP 2014024933 A JP2014024933 A JP 2014024933A JP 2012165343 A JP2012165343 A JP 2012165343A JP 2012165343 A JP2012165343 A JP 2012165343A JP 2014024933 A JP2014024933 A JP 2014024933A
Authority
JP
Japan
Prior art keywords
lignin
organic solvent
self
soluble
curing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012165343A
Other languages
English (en)
Inventor
Naoyuki Koyama
直之 小山
Ikuko Kikuchi
郁子 菊地
Akihito Goto
昭人 後藤
Mika Kofune
美香 小舩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012165343A priority Critical patent/JP2014024933A/ja
Publication of JP2014024933A publication Critical patent/JP2014024933A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】 植物由来のリグニンを原料とし耐熱性、高強度、難燃性、抗菌性に優れた自己硬化型樹脂を提供する。
【解決手段】 有機溶媒に可溶性のリグニンとホルムアルデヒドをアルカリの存在下で反応させて得られる自己硬化型樹脂。リグニン中のフェノールとホルムアルデヒドのモル比が1.0〜3.0、重量平均分子量が100〜7000、硫黄原子の含有率が2質量%以下であると好ましい。有機溶媒に可溶性のリグニンが、水のみを用いた処理方法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものであると好ましい。
【選択図】 なし

Description

本発明は、地球環境保全を考慮した植物由来のリグニンとホルムアルデヒドを反応させて得られる自己硬化型樹脂に関するものである。
近年、化石資源を焼却することで発生する二酸化炭素量の増加に伴い、地球温暖化の問題が関心を集めるようになった。そこで地球温暖化防止の観点からバイオマス(生物資源)の有効活用が見直されている。近年、包装資材、家電製品の部材、自動車用部材などのプラスチックを植物由来樹脂(バイオプラスチック)に置き換える動きが活発化している。
前記植物由来樹脂の具体例としては、ジャガイモやサトウキビやトウモロコシ等の糖質を醗酵させて得られた乳酸をモノマーとし、これを用いて化学重合を行い作製したポリ乳酸:PLA(PolyLactic Acid)や、澱粉を主成分としたエステル化澱粉、微生物が体内に生産するポリエステルである微生物産生樹脂:PHA(PolyHydroxy Alkanoate)、発酵法で得られる1,3−プロパンジオールと石油由来のテレフタル酸とを原料とするPTT(Poly Trimethylene Telephtalate)等が挙げられる。
また、PBS(Poly Butylene Succinate)は、現在は石油由来の原料が用いられているが、今後においては、植物由来樹脂として作製する研究が開発されており、主原料の一つであるコハク酸を植物由来で作製する技術についての開発がなされている。
これらの植物由来原料を用いた樹脂は、サニタリー分野、雑貨などに加え、OA関連用部品または自動車用内装部品等の幅広い分野に導入されている。一方、電器・電子機器、自動車内部部品のような用途においては、安全上の問題から機械的強度、耐熱性、電気絶縁性が要求される。耐熱性に関してはこれまでにも、植物由来原料を用いた樹脂、特にポリ乳酸樹脂において種々の試みがなされてきた。しかし、植物由来樹脂はいずれも熱可塑性であり(非特許文献1参照)、耐熱性において課題がある。また、生分解性樹脂に難燃剤を配合することで難燃性を発現している(特許文献1参照)。
従来の耐熱性、高い機械強度、電気絶縁性を兼ね備えた樹脂としてはフェノール樹脂が挙げられる。フェノール樹脂は最も古い歴史を持つ樹脂であり、熱可塑性のノボラック型と自己硬化性のレゾール型に大別される。上記用途のほか、化粧板、木材加工用接着剤としても広く利用されている。
こうした石油由来の硬化性樹脂を植物由来の原料から製造する事が注目されている。特に植物由来の熱硬化性樹脂原料として、古くからリグニンが注目されてきた。リグニンは木材中に20〜35質量%含まれるフェノール骨格を有する天然高分子である。国内で容易に入手できるリグニンとして、例えば、リグニンスルホン酸塩が挙げられるが、水溶性であり、有機溶媒に難溶である。そのため、硬化剤及び硬化促進剤との相溶性が悪く、均質な硬化物が得られなかった。
硬化剤等への相溶性が良好なリグニンとして爆砕リグニンが挙げられる。爆砕リグニンは有機溶媒に可溶で各種樹脂への相溶性も良好である事からエポキシ樹脂への硬化剤用途が検討されている(非特許文献2)。一方、爆砕リグニンはノボラック型のフェノール樹脂と同様熱可塑性であり、各種硬化剤、硬化促進剤の存在下以外では硬化せず、そのままでは自己硬化型の熱硬化樹脂とはならないという課題があった。
特開2007−002120号公報
土肥義治(編) 生分解性高分子材料、工業調査会 1990年発行 岡部ら ネットワークポリマー, Vol.32, 130−134頁, 2011年
そこで本発明においては、環境負荷低減化の観点から、植物由来のリグニンを利用した自己硬化型樹脂を提供することを目的とする。特に植物由来であるリグニンを主原料とし、従来得られなかった自己硬化性の熱硬化樹脂材料を提供することにある。
本発明は以下の通りである。
(1) 有機溶媒に可溶性のリグニンとホルムアルデヒドをアルカリの存在下で反応させて得られる自己硬化型樹脂。
(2) 有機溶媒に可溶性のリグニン中のフェノールとホルムアルデヒドのモル比が1.0〜3.0である上記(1)に記載の自己硬化型樹脂。
(3) 前記有機溶媒に可溶性のリグニンの重量平均分子量が、100〜7000である上記(1)又は(2)に記載の自己硬化型樹脂。
(4) 前記有機溶媒に可溶性のリグニン中の硫黄原子の含有率が2質量%以下である上記(1)〜(3)のいずれかに記載の自己硬化型樹脂。
(5) 有機溶媒に可溶性のリグニンが、水のみを用いた処理方法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである上記(1)〜(4)のいずれかに記載の自己硬化型樹脂。
(6) リグニンが、植物原料に水蒸気を圧入し、瞬時に圧力を開放することで植物原料を爆砕する水蒸気爆砕法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである上記(1)〜(5)のいずれかに記載の自己硬化型樹脂。
本発明によれば、化石資源使用量の削減、及び二酸化炭素の排出量の低減効果が得られ、環境負荷低減化に好適な自硬化性の樹脂材料である自己硬化型樹脂が提供できた。また、樹脂成分の主原料としてリグニンを使用することで、耐熱性や機械強度に優れた自己硬化型樹脂を提供することができた。
本発明によれば、樹脂成分の主原料として有機溶媒に可溶性のリグニンとホルムアルデヒドを反応させて得られる自己硬化型樹脂を使用することで、前記効果に加え、難燃効果、抗菌性を付与した自己硬化性樹脂成形材料を提供できた。
以下、本発明をさらに詳細に説明する。
リグニンの基本骨格は一般的にヒドロキシフェニルプロパン単位を基本単位とする架橋構造の高分子である。樹木は親水性の線状高分子の多糖類(セルロースとヘミセルロース)と疎水性の架橋構造リグニンの相互侵入網目(IPN)構造を形成している。リグニンは樹木の約25質量%を占め、不規則かつ極めて複雑なポリフェノールの化学構造をしている。フェノール類は燃焼の際、黒鉛を形成し易いため難燃性に優れることが知られている。本発明は植物から得られたこの複雑な構造をそのまま活かし、アルカリ存在下でリグニン及びホルムアルデヒドを反応させて自己硬化型樹脂材料とするものであって、当該リグニンが有機溶媒に可溶であることを特長としている。
リグニンの原料に特に制限は無い。スギ、マツ、ヒノキ等の針葉樹、ブナ等の広葉樹、竹、稲わら、バガス、ヤシガラ等の植物原料が使用される。植物原料からリグニンを分離し取り出す方法としては、水を用いた分離技術を用いた方法が好ましい。使用するリグニンが、水のみを用いた処理方法により、セルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得たリグニンである。また、リグニンを取得する方法としては、水蒸気爆砕法がより好ましい。水蒸気爆砕法は高温高圧の水蒸気による加水分解と、圧力を瞬時に開放することによる物理的破砕効果により、植物を短時間に破砕するものである。
水蒸気爆砕の条件は特に限定しないが、通常、原料を水蒸気爆砕装置用の耐圧容器に入れ、1.5〜6.0MPaの水蒸気を圧入し、1〜30分間放置した後、瞬時に圧力を開放することにより爆砕する。なお、前記有機溶媒可溶リグニンは、水蒸気爆砕リグニンとも表す。また、原料として、リグニンが抽出できれば特に限定しないが、例えば、スギ、竹、稲わら、麦わら、ひのき、アカシア、ヤナギ、ポプラ、バガス、ヤシガラ、とうもろこし、サトウキビ、米穀、ユーカリ、エリアンサスなどが挙げられる。
この方法は硫酸法、クラフト法など他の分離方法と比較し、硫酸、亜硫酸塩等を用いることなく、水のみを使用するので、クリーンな分離方法である。この方法では、リグニン中に硫黄原子を含まないリグニン、又は、硫黄原子の含有率が少ないリグニンが得られる。通常、リグニン中の硫黄原子の含有率は、2質量%以下が好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが特に好ましい。硫黄原子の含有量が増大すると親水性のスルホン酸基が増加するため、有機溶剤への溶解性が低下するおそれがある。本発明者らは、さらに、爆砕物から有機溶媒による抽出により、リグニンの分子量を制御し得ることを見出した。
前記リグニンの重量平均分子量は、ポリスチレン換算値において、100〜7000が好ましく、さらに200〜5000が好ましく、500〜4000であることが特に好ましい。リグニンの重量平均分子量が7000を超えると反応後の樹脂の流動性が低下するおそれがある。重量平均分子量が100未満であるとフェノール基と未結合の芳香族成分が多くなるため樹脂材料の強度が低下するおそれがある。
なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレン換算した値を使用した。検量線は、標準ポリスチレンの5サンプルセット(PStQuick MP−H、PStQuick B[東ソー株式会社製、商品名])を用いて1次式で近似した。GPCの条件を、以下に示した。
装置:(ポンプ:L−2130型[株式会社日立ハイテクノロジーズ製])、
(検出器:L−2490型RI[株式会社日立ハイテクノロジーズ製])、
(カラムオーブン:L−2350[株式会社日立ハイテクノロジーズ製])
カラム:Gelpack GL−A120S+GL−A170S(計2本)(株式会社日立ハイテクノロジーズ製、商品名)
溶離液:テトラヒドロフラン
試料濃度:10mg/2mL
注入量:200μL
流量:2.05mL/分
測定温度:25℃
本発明で用いるリグニンの抽出に用いる有機溶媒は、1種又は2種以上複数の混合のアルコール溶媒、アルコールと水を混合した含水アルコール溶媒、そのほかの有機溶媒または、水と混合した含水有機溶媒を使用することができる。水にはイオン交換水を使用することが好ましい。水との混合溶媒の含水率は0〜70質量%が好ましい。リグニンは水への溶解度が低いため、水のみを溶媒とするとリグニンを抽出することが困難である。また、用いる溶媒を選択することにより、得られるリグニンの重量平均分子量を制御することが可能である。リグニンの抽出に用いられる有機溶媒としてはアルコール、トルエン、ベンゼン、N−メチルピロリドン、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、メチルセロソルブ(エチレングリコールモノメチルエーテル)、シクロヘキサノン、ジメチルホルムアミド、酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどがあり、これらは二種類以上、混合して用いることができる。
有機溶媒でリグニンを取りだした際、リグニン以外の例えばセルロースやヘミセルロースのような成分が、含まれていてもよい。また、これらのリグニンをアセチル化、メチル化、ハロゲン化、ニトロ化、スルホン化、硫化ナトリウムや硫化水素との反応等によって作製されたリグニン誘導体も含む。
前記リグニン中に含まれるフェノール基(P)とホルムアルデヒド(F)のモル比F/Pは1.0以上、3.0以下であることが好ましい。さらに好ましくは1.1以上、2.7の範囲であり、より好ましくは1.2以上、2.5以下である。F/P比が小さすぎると樹脂の硬化速度が低下してしまい、高すぎると反応時にゲル化してしまうからである。
前記反応時のアルカリとしては水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物のほか、アンモニア、テトラメチルアンモニウムヒドロキシド、アルキルアミン等を使用することができる。
前記反応時の温度に制限はないが、60〜130℃の範囲が好適である。反応時間は0.5時間から5時間の範囲が好ましく適用できる。
反応して得られた縮合物を加熱減圧することで、自己硬化型樹脂を得ることができる。さらにこの樹脂に各種フィラ、離型剤、難燃剤を混合分散することで自己硬化性樹脂成形材料とすることができる。有機フィラとして木粉、パルプ、綿粉、植物繊維等を、無機フィラとしてシリカ、タルク、炭酸カルシウム、ガラス繊維、炭素繊維等が好適に使用できる。離型剤としてはステアリン酸亜鉛等が使用可能である。難燃剤としては水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、トリフェニルフォスフェート等のリン系の難燃剤を併用してもよい。
前記のようにして得られた自己硬化型樹脂は、樹脂成分としてリグニンを含有している。リグニンはフェニルプロパンの架橋体であり、フェノール樹脂と同様に芳香族環を多く含む。芳香族環炭素は容易に燃焼せず炭化反応を起こす事から、本発明の自己硬化型樹脂は難燃性を有しているという特徴がある。さらに分子内に多くのフェノール性水酸基を有する事から、微生物等に対する抗菌作用を有するという特徴がある。
以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
(実施例1)
(リグニンの抽出)
リグニン抽出原料としては、竹を使用した。適当な大きさにカットした竹材を水蒸気爆砕装置の3Lの耐圧容器に入れ、3.5MPaの水蒸気を圧入し、4分間保持した。その後バルブを急速に開放することで爆砕処理物を得た。洗浄液のpHが6以上になるまで得られた爆砕処理物を水により洗浄して水溶性成分を除去した。その後、真空乾燥機で残存水分を除去した。得られた乾燥体100gに抽出溶媒(アセトン)1000mlを加え、3時間攪拌した後、ろ過により繊維物質を取り除いた。得られた濾液から抽出溶媒(アセトン)を除去し、リグニンを得た。得られたリグニンは常温(25℃)で茶褐色の粉末であった。
(リグニンの分析)
溶媒溶解性は、前記リグニン1gを、有機溶媒10mlに加えて評価した。常温(25℃)で容易に溶解した場合は「○」、50〜70℃で溶解した場合は「△」、加熱しても溶解しなかった場合を「×」として、評価した。溶媒群1としてアセトン、シクロヘキサノン、テトラヒドロフラン、溶媒群2としてメタノール、エタノール、メチルエチルケトンとして溶解性を評価した結果、溶媒群1ではいずれも「○」、溶媒群2ではいずれも「△」の判定であった。
リグニン中の硫黄原子の含有率は燃焼分解−イオンクロマトグラフ法により定量した。用いた装置は株式会社三菱化学アナリテック製自動試料燃焼装置(AQF−100)及び日本ダイオネクス株式会社製イオンクロマトグラフ(ICS−1600)であり、上記リグニン中の硫黄原子の含有率は0.2質量%であった。さらに、示差屈折計を備えたゲルパーミエーションクロマトグラフィー(GPC)にてリグニンの分子量を測定した。多分散度の小さいポリスチレンを標準試料として用い、移動相をテトラヒドロフランとして使用し、カラムとして株式会社日立ハイテクノロジーズ製ゲルパックGL−A120SとGL−A170Sとを直列に接続して分子量測定を行った。その測定結果、重量平均分子量は2400であった。
上記で得られたリグニン(有機溶媒可溶リグニン)の水酸基当量は無水酢酸−ピリジン法により水酸基価を、電位差滴定法により酸価を測定し求めた(下記の水酸基当量及びエポキシ当量の単位は、グラム/当量であって以下g/eq.で表わす。)。アセトン抽出竹由来リグニンの水酸基当量は140g/eq.であった。リグニンのフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)を以下の方法で決定した。リグニン2gのアセチル化処理を行い、未反応のアセチル化剤を留去し、乾燥させたものを、重クロロホルムに溶解させ、1H−NMR(BRUKER社製、V400M、プロトン基本周波数400.13MHz)により測定した。アセチル基由来のプロトンの積分比(フェノール性水酸基に結合したアセチル基由来:2.2〜3.0ppm、アルコール性水酸基に結合したアセチル基由来:1.5〜2.2ppm)からモル比を決定したところ、P/A比は2.2/1.0であり、フェノール性水酸基当量は202g/eq.であった。
還流装置と攪拌羽根を備えた300mLの4ツ口セパラブルフラスコに、前記リグニン20g、40質量%ホルムアルデヒド水溶液11.2gを加え攪拌した。ホルムアルデヒド(F)とリグニン中のフェノール(P)のモル比は1.5であった。50質量%炭酸ナトリウム水溶液12gを徐々に滴下しながら、100℃で2時間加熱し、液状の樹脂組成物を得た。さらに、木粉16.3gを加え均一になるまで攪拌し、その後減圧して水分を蒸発させ、冷却後に粉砕して樹脂組成物を得た。樹脂組成物中のリグニン及び木粉の含有量(植物由来度)は89質量%であった。
この樹脂組成物を50×10mm(厚み1mm)または130mm×13mmの金型に充填し、油圧真空加熱プレス機で面圧0.2MPa、180℃、10分プレスした後、オーブンで200℃、4時間硬化し、成形体を得た。
作製した成形体の曲げ強度及び曲げ弾性率はテンシロン(株式会社オリエンテック製)を用い、3点曲げ試験により評価した。50×10×1mmの試験片を用い、支点間距離30mm、試験速度1mm/分で測定した。その結果、曲げ強度は103MPa、曲げ弾性率は6.5GPaであった。
エスアイアイ・ナノテクノロジー株式会社製の動的粘弾性スペクトロメータ(EXSTARDMS6100)を用いて貯蔵弾性率及び損失正接(tanδ)を測定した。試験片40×5×1mm、チャック間距離20mm、測定温度範囲25〜300℃、昇温速度5℃/分、引張りモードの条件で測定し、1Hz時のtanδのピーク温度をガラス転移点としたところその値は240℃であった。
(抗菌性試験)
JIS Z2801に準じて、黄色ぶどう球菌に対する抗菌性を評価した。試験片上に菌液(生菌数2.5〜10×10の5乗個/mL)0.4mLを播き、35℃±1℃、24時間培養した。試験片上の生菌数を測定するため、サンプリングし、サンプルを適宜希釈し、寒天平板培養にて35℃±1℃、48時間培養して生菌数を得た。
R=[Log(B/A)−Log(C/A)]=[Log(B/C)]
R:抗菌活性値
A:無加工試験片における接種直後の生菌数の平均値(個)
B:無加工試験片における24時間後の生菌数の平均値(個)
C:抗菌加工試験片における24時間後の生菌数の平均値(個)
抗菌活性値2以上を抗菌性ありとした。形成された被膜の抗菌活性値は黄色ブドウ球菌に対して4.9であった。
(実施例2)
(リグニンの抽出及び分析)
抽出溶媒としてメタノールを用いた以外は実施例1と同様にリグニンを得た。実施例1と同様に元素分析及び分子量測定をした結果、それぞれリグニン中の硫黄原子の含有率0.2質量%、重量平均分子量は1900であった。実施例1と同様に溶媒溶解性を評価した結果、溶媒群1ではいずれも「○」、溶媒群2ではいずれも「○」の判定であった。リグニンのフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)を実施例1と同様の方法で実施した。
実施例2で得られたリグニンのP/A比は1.6/1.0であった。実施例1と同様に上記で得られたリグニン(有機溶媒可溶リグニン)の水酸基当量を測定した結果、水酸基当量は120g/eq.であった。以上の結果からフェノール性水酸基は195g/eq.であった。
実施例2記載のリグニンを用い、40質量%ホルムアルデヒド水溶液の量を11.0gとした以外は実施例1と同様に液状の樹脂組成物を得た。F/P比は1.2であった。さらに、水酸化アルミニウム16.3gを加え均一になるまで攪拌し、その後減圧して水分を蒸発させ、冷却後に粉砕して樹脂組成物を得た。樹脂組成物中のリグニンの含有量(植物由来度)は49質量%であった。
実施例1と同様に成形体を作製した。実施例1と同様に曲げ強度、曲げ弾性率、ガラス転移点を測定したところ、曲げ強度は98MPa、曲げ弾性率は8.7GPaであった。またガラス転移点は242℃であった。実施例1と同様に抗菌試験を実施した。作製した成形体の抗菌活性値は黄色ブドウ球菌に対して5.1であった。
難燃性の評価として、UL耐炎試験規格(UL94)に準じて行った。試験片として実施例2の成形体(厚さ3mm、長さ130mm、幅13mm)の大きさで作製成したものを使用した。垂直燃焼試験にて残炎時間は5秒以下であり、V−0レベルと判定された。
(比較例1)
リグニンの代替としてリグニンスルホン酸塩(バニレックスN、日本製紙株式会社製)を用い、樹脂組成物の作製を試みた。前記リグニンスルホン酸20g、40質量%ホルムアルデヒド溶液11.2gを加え攪拌した。50質量%炭酸ナトリウム水溶液12gを徐々に滴下しながら、100℃で2時間加熱し、液状の樹脂組成物を得た。さらに、木粉16.3gを加え均一になるまで攪拌し、その後減圧して水分を蒸発させ、冷却後に粉砕して樹脂組成物を得た。
この樹脂組成物を50×10mmまたは130mm×13mmの金型に充填し、油圧真空加熱プレス機で面圧0.2MPa、180℃、10分プレスしたが、脆い固形物となり成形体を得ることができなかった。
(比較例2)
リグニンとして実施例1のリグニンを用い樹脂組成物の作製を試みた。前記リグニン20gの粉体に木粉16.3gを加えて混合した。
この混合物を50×10mmまたは130mm×13mmの金型に充填し、油圧真空加熱プレス機で面圧0.2MPa、180℃、10分プレスしたが、脆い固形物となり成形体を得ることができなかった。
実施例1、2及び比較例1、2で得られた結果を纏めて表1に示した。
Figure 2014024933
水溶性のリグニンスルホン酸塩とホルムアルデヒドをアルカリ下で反応させた比較例1では、脆い固形物しか得られず自己硬化性樹脂成形材料を得ることができなかった。また、比較例2のようにリグニンと木粉を混合し成形しても成形材料を得ることができなかった。
これに対し、有機溶媒に可溶性のリグニンとホルムアルデヒドをアルカリの存在下で反応させて得られる自己硬化型樹脂の実施例1、2では、自己硬化性樹脂成形材料とすることができ、成形物は、耐熱性、機械強度や抗菌性に優れ、難燃性を付与することができる。

Claims (6)

  1. 有機溶媒に可溶性のリグニンとホルムアルデヒドをアルカリの存在下で反応させて得られる自己硬化型樹脂。
  2. 有機溶媒に可溶性のリグニン中のフェノールとホルムアルデヒドのモル比が1.0〜3.0である請求項1に記載の自己硬化型樹脂。
  3. 前記有機溶媒に可溶性のリグニンの重量平均分子量が、100〜7000である請求項1又は2に記載の自己硬化型樹脂。
  4. 前記有機溶媒に可溶性のリグニン中の硫黄原子の含有率が2質量%以下である請求項1〜3のいずれかに記載の自己硬化型樹脂。
  5. 有機溶媒に可溶性のリグニンが、水のみを用いた処理方法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである請求項1〜4のいずれかに記載の自己硬化型樹脂。
  6. リグニンが、植物原料に水蒸気を圧入し、瞬時に圧力を開放することで植物原料を爆砕する水蒸気爆砕法によりセルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得られたものである請求項1〜5のいずれかに記載の自己硬化型樹脂。
JP2012165343A 2012-07-26 2012-07-26 リグニンを用いた自己硬化型樹脂 Pending JP2014024933A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165343A JP2014024933A (ja) 2012-07-26 2012-07-26 リグニンを用いた自己硬化型樹脂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165343A JP2014024933A (ja) 2012-07-26 2012-07-26 リグニンを用いた自己硬化型樹脂

Publications (1)

Publication Number Publication Date
JP2014024933A true JP2014024933A (ja) 2014-02-06

Family

ID=50198881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165343A Pending JP2014024933A (ja) 2012-07-26 2012-07-26 リグニンを用いた自己硬化型樹脂

Country Status (1)

Country Link
JP (1) JP2014024933A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139074A1 (ja) * 2017-01-24 2018-08-02 ハリマ化成株式会社 ノボラック型フェノール樹脂、樹脂組成物およびノボラック型フェノール樹脂の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158022A (ja) * 1987-09-04 1989-06-21 Oji Paper Co Ltd リグニン−フェノール樹脂組成物
JP2005060590A (ja) * 2003-08-18 2005-03-10 Sekisui Chem Co Ltd 接着剤、木質系複合材料、木質系複合材料の製造方法及び接着体の剥離方法
WO2011099544A1 (ja) * 2010-02-10 2011-08-18 日立化成工業株式会社 樹脂組成物、成形体及び複合成形体
JP2011219715A (ja) * 2010-02-10 2011-11-04 Hitachi Chem Co Ltd 成形用樹脂コンパウンド材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158022A (ja) * 1987-09-04 1989-06-21 Oji Paper Co Ltd リグニン−フェノール樹脂組成物
JP2005060590A (ja) * 2003-08-18 2005-03-10 Sekisui Chem Co Ltd 接着剤、木質系複合材料、木質系複合材料の製造方法及び接着体の剥離方法
WO2011099544A1 (ja) * 2010-02-10 2011-08-18 日立化成工業株式会社 樹脂組成物、成形体及び複合成形体
JP2011219715A (ja) * 2010-02-10 2011-11-04 Hitachi Chem Co Ltd 成形用樹脂コンパウンド材料
JP2011218775A (ja) * 2010-02-10 2011-11-04 Hitachi Chem Co Ltd 木質系建材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139074A1 (ja) * 2017-01-24 2018-08-02 ハリマ化成株式会社 ノボラック型フェノール樹脂、樹脂組成物およびノボラック型フェノール樹脂の製造方法

Similar Documents

Publication Publication Date Title
JP5641302B2 (ja) 抗菌性樹脂組成物
Fache et al. Vanillin, a key-intermediate of biobased polymers
Collins et al. Valorization of lignin in polymer and composite systems for advanced engineering applications–a review
Wang et al. Highly resilient lignin-containing polyurethane foam
Doherty et al. Value-adding to cellulosic ethanol: Lignin polymers
Sen et al. Thermal properties of lignin in copolymers, blends, and composites: a review
Lochab et al. Naturally occurring phenolic sources: monomers and polymers
WO2011099544A1 (ja) 樹脂組成物、成形体及び複合成形体
Khan et al. Lignin-based adhesives and coatings
Hajirahimkhan et al. Ultraviolet curable coatings of modified lignin
JP2023024831A (ja) 改質リグニンの製造方法及び改質リグニン、並びに改質リグニン含有樹脂組成材料
WO2015046588A1 (ja) 樹脂組成物、成形体及び製造方法
Gerbin et al. Dual antioxidant properties and organic radical stabilization in cellulose nanocomposite films functionalized by in situ polymerization of coniferyl alcohol
John et al. Lignin fractionation and conversion to bio-based functional products
TW201726769A (zh) 純化木質素之製造方法、純化木質素、樹脂組成物及成形體
Qiao et al. Preparation and characterization of a Phenol-formaldehyde resin Adhesive obtained From Bio-ethanol Production residue
JP2012092282A (ja) 樹脂組成物及び成形体
Mi et al. Epoxidation of agricultural byproduct konjac fly powder and utilization in toughening and strengthening epoxy resin
JPWO2020162621A1 (ja) ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料
JP2014024933A (ja) リグニンを用いた自己硬化型樹脂
JP2014065779A (ja) リグニンを用いた熱硬化性樹脂組成物
Asada et al. Cured epoxy resin synthesized using acetone-soluble lignin and ligno-p-cresol obtained from steam-exploded wheat straw
Li Synthesis and characterization of copolymers from lignin
Conti Silva et al. Effective Lignin-Based Binders for Particle Boards
Xu et al. Research on Enhancing the Comprehensive Performance of Fir Wood through Chemical Modification with a Biobased Unsaturated Polyester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170105