JP2014011944A - 電力変換装置及び電力変換方法 - Google Patents

電力変換装置及び電力変換方法 Download PDF

Info

Publication number
JP2014011944A
JP2014011944A JP2012149468A JP2012149468A JP2014011944A JP 2014011944 A JP2014011944 A JP 2014011944A JP 2012149468 A JP2012149468 A JP 2012149468A JP 2012149468 A JP2012149468 A JP 2012149468A JP 2014011944 A JP2014011944 A JP 2014011944A
Authority
JP
Japan
Prior art keywords
phase
duty command
value
command value
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012149468A
Other languages
English (en)
Inventor
Tatsuya Mori
辰也 森
Tetsuya Kojima
鉄也 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012149468A priority Critical patent/JP2014011944A/ja
Publication of JP2014011944A publication Critical patent/JP2014011944A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

【課題】電圧変調率が高い場合においても電流検出を可能とする。
【解決手段】三相の電圧指令に対応する三相デューティ指令値と搬送波とを比較することによりPWM制御される三相インバータの各相の下アーム側にて下アームスイッチング素子と直列接続される電流検出用抵抗素子の電圧降下に基づいて各相の電流を検出する電力変換装置であって、上記三相のデューティ指令値を大きさの順に最大相、中間相、最小相とするとき、上記中間相の下アームスイッチング素子の通電時間が所定値未満となる場合に、上記中間相のデューティ指令値を負の方向にシフトする電流検出期間および上記中間相のデューティ指令値を正の方向にシフトする電圧調整期間を設け、上記各相の電流を上記電流検出期間にて検出する制御装置を備えている。
【選択図】図1

Description

本発明は電力変換装置及び電力変換方法に関し、特に、電流検出用抵抗素子としてのシャント抵抗を備えた電力変換装置および電力変換方法に関する。
電力変換装置の電流検出器として、三相インバータの各相の下アーム素子と直流電源負極側との間に設けられるシャント抵抗の電圧降下に基づいて、各相の電流値を検出する下アームシャント電流検出方式が、構成が簡単で、低コストの方式として知られている。
下アームシャント電流検出方式は、三相の下アーム素子がオン状態となる期間には、三相のシャント抵抗の電圧降下に基づき、三相の電流を取得することができる。また、三相のうち、二相の下アーム素子がオン状態となる期間には、二相のシャント抵抗の電圧降下に基づき、キルヒホッフの法則を用いることで、三相の電流を取得することができる。ただし、これらいずれの期間も、三相の電圧指令値と搬送波との関係によっては短くなり得る。そして、これらの期間が短いときには、上記期間の開始に伴うリンギングによって、三相の電流として適切な値を取得することが困難となる。
この課題に対し、特許文献1に記載された従来の3相回転機の制御装置では、インバータの下アーム素子の2相がオン状態となる期間及び3相がオン期間側となる期間のいずれかを選択的に拡大すべく、搬送波と比較対象となる電圧指令値を補正することで、搬送波の1周期に渡って、電圧指令値の相対的な大小関係を保持しつつ、インバータの上アーム素子または下アーム素子をオン状態に固定する固定手段と、選択的に拡大された期間内にシャント抵抗の出力を取り込むことで、3相回転機を流れる電流を取得している。
特開2008−48504号公報
特許文献1に記載された従来の3相回転機の制御装置では、三相インバータの電圧変調率が高い場合に、三相の電圧指令値のうち、2番目に大きい電圧指令値に対応する相の下アーム素子の通電期間が、シャント抵抗にて電流を正しく取得するのに必要とする期間を確保できなくなるという問題点があった。
本発明は、かかる問題点を解決するためになされたものであり、電圧変調率が高い場合においても、シャント抵抗にて取得する電流に基づいて電力変換することが可能な、電力変換装置及び電力変換方法を得ることを目的とする。
本発明は、三相の電圧指令に対応する三相デューティ指令値と搬送波とを比較することによりPWM制御される三相インバータの各相の下アーム側にて下アームスイッチング素子と直列接続される電流検出用抵抗素子の電圧降下に基づいて各相の電流を検出する電力変換装置であって、上記三相のデューティ指令値を大きさの順に最大相、中間相、最小相とするとき、上記中間相の下アームスイッチング素子の通電時間が所定値未満となる場合に、上記中間相のデューティ指令値を負の方向にシフトする電流検出期間および上記中間相のデューティ指令値を正の方向にシフトする電圧調整期間を設け、上記各相の電流を上記電流検出期間にて検出する制御装置を備えたことを特徴とする電力変換装置である。
本発明は、三相の電圧指令に対応する三相デューティ指令値と搬送波とを比較することによりPWM制御される三相インバータの各相の下アーム側にて下アームスイッチング素子と直列接続される電流検出用抵抗素子の電圧降下に基づいて各相の電流を検出する電力変換装置であって、上記三相のデューティ指令値を大きさの順に最大相、中間相、最小相とするとき、上記中間相の下アームスイッチング素子の通電時間が所定値未満となる場合に、上記中間相のデューティ指令値を負の方向にシフトする電流検出期間および上記中間相のデューティ指令値を正の方向にシフトする電圧調整期間を設け、上記各相の電流を上記電流検出期間にて検出する制御装置を備えたことを特徴とする電力変換装置であるので、シフトされる前の上記中間相においてはスイッチング素子の通電時間が所定値未満となる場合においても、上記電流検出期間において上記中間相を負の方向にシフトすることにより、上記中間相の下アーム素子の通電時間を確保した上で上記電流を検出し、上記電圧調整期間にて上記中間相を正の方向へシフトすることにより、上記中間相の電圧を調整することができるので、従来に比べ電圧変調率が高い場合においても、上記電流に基づいて電力変換することが可能となる。
本発明に係る電力変換装置の構成図である。 本発明に係るPWM制御部の構成図である。 本発明に係るPWM制御部の各部の動作波形を示す波形図である。 本発明に係る電流検出部の動作を示すフローチャートである。 本発明の実施の形態1に係るデューティ指令演算部の動作を示すフローチャートである。 本発明に係るオフセット電圧加算前後における三相電圧指令波形図である。 本発明に係る三相電圧指令に対する三相デューティ指令波形図である。 本発明に係る中間相の下アームスイッチング素子の通電時間が所定値未満となる場合の上記中間相に対するデューティ波形図である。 本発明に係る電流検出部、モータ制御部、デューティ指令演算部、PWM制御部の動作タイミングを示すタイミングチャートである。 本発明の実施の形態1の効果を説明する説明図である。 変調率90%における特許文献1に記載の方式の波形説明図である。 変調率95%における特許文献1に記載の方式の波形説明図である。 変調率95%における特許文献1に記載の方式の波形説明図である。 特許文献1に記載の方式の波形説明図である。 変調率95%における本発明の実施の形態1に記載の方式の波形説明図である。 本発明の実施の形態2におけるデューティ指令演算部の動作を示すフローチャートである。 本発明の実施の形態2の効果を説明する説明図である。 本発明に係る下アームスイッチング素子のゲート信号オン時間とリンギングの関係に関する説明図である。 本発明の実施の形態3におけるデューティ指令演算部の動作を示すフローチャートである。 本発明の実施の形態3の効果を説明する説明図である。 変調率95%における本発明の実施の形態3に記載の方式の波形説明図である。
実施の形態1.
図1〜15は、この発明の実施の形態1を示すものであり、図1は電力変換装置の構成図、図2はPWM制御部の構成図、図3はPWM制御部の各部の動作波形を示す波形図、図4は電流検出部の動作を示すフローチャート、図5は実施の形態1におけるデューティ指令演算部の動作を示すフローチャート、図6はオフセット電圧加算前後における三相電圧指令波形図、図7は三相電圧指令に対する三相デューティ指令波形図、図8は中間相の下アームスイッチング素子の通電時間が所定値未満となる場合の上記中間相に対するデューティ波形図、図9は電流検出部、モータ制御部、デューティ指令演算部、PWM制御部の動作タイミングを示すタイミングチャート、図10は実施の形態1の効果を説明する説明図、図11は変調率90%における特許文献1に記載の方式の波形説明図、図12は変調率95%における特許文献1に記載の方式の波形説明図、図13は変調率95%における特許文献1に記載の方式の波形説明図、図14は特許文献1に記載の方式の波形説明図、図15は変調率95%における実施の形態1に記載の方式の波形説明図である。
図1に示すように、直流電源1に電力変換装置11を介してモータ3が接続されている。電力変換装置11は、平滑コンデンサ2、電流検出用抵抗素子であるシャント抵抗4,5,6、モータ制御部7、デューティ指令演算部8、PWM制御部9、電流検出部10、上アームのスイッチング素子Qu、Qv、Qw、下アームのスイッチング素子Qx、Qy、Qzを有する。上アームのスイッチング素子Quと下アームのスイッチング素子Qxとが直列に接続され、上アームのスイッチング素子Qvと下アームのスイッチング素子Qyとが直列に接続され、上アームのスイッチング素子Qwと下アームのスイッチング素子Qzとが直列に接続され、本発明における3相分のアーム回路を構成している。スイッチング素子Qu、Qv、Qw、Qx、Qy、Qzには、例えば電界効果トランジスタが用いられる。なお、モータ制御部7、デューティ指令演算部8、PWM制御部9、および、電流検出部10が、本発明における制御装置である。平滑コンデンサ2は直流電源1に接続され、直流電源1からの直流電力は、電力変換装置11においてスイッチング素子Qu、Qv、Qw、Qx、Qy、Qzをスイッチングすることにより交流電力に変換され、モータ3に供給される。
モータ制御部7は、電流検出部10より検出したモータ電流(Iu,Iv,Iw)と外部から与えられる速度指令f*とに基づき、U相の電圧指令値Vu、V相の電圧指令値Vv、W相の電圧指令値Vwを出力する。
デューティ指令演算部8では、モータ制御部7から出力された三相電圧指令値(Vu,Vv,Vw)から、後述する電流検出期間TiにおけるU相のデューティ指令値Du1、V相のデューティ指令値Dv1、W相のデューティ指令値Dw1、及び、電圧調整期間TvにおけるU相のデューティ指令値Du2、V相のデューティ指令値Dv2、W相のデューティ指令値Dw2を出力する。
PWM制御部9は、図2の構成図に示すように、搬送波発生部21、電流検出期間設定部22、U相デューティ選択器23a、V相デューティ選択器23b、W相デューティ選択器23c、U相比較部24a、V相比較部24b、W相比較部24c、および反転部25a、25b、25cを有する。
搬送波発生部21は、搬送波周波数指令に基づいて、周波数fcの三角波である搬送波Cを出力する。図3に搬送波Cの波形を示す。搬送波Cは周期Tc(=1/fc)、最高値1、最小値0の三角波である。
電流検出期間設定部22は、複数の三角波からなる搬送波Cの周期のうち、1周期を電流検出期間Ti、残りの周期を電圧調整期間Tvとして振り分けるためのフラグflag_iを出力する。フラグflag_iは搬送波Cの1周期を電流検出期間Tiに振り分けるときに1を出力し、搬送波Cの1周期を電圧調整期間Tvに振り分けるときに0を出力する。図3にフラグflag_iの波形例を示す。図3では、搬送波Cの3周期に等しい周期Tsのうち、搬送波Cの始めの1周期を電流検出期間Tiとし、フラグflag_iとして1を出力する。そして、搬送波Cの残りの2周期を電圧調整期間Tvとしフラグflag_iとして0を出力する。なお、図3の例では、周期Tsを搬送波Cの3周期に等しい周期としたが、Tsは搬送波CのN(N:2以上の自然数)周期に設定し、その周期Tsのうち搬送波Cの1周期分を電流検出期間Tiに設定し、残りの搬送波CのN−1周期分を電圧調整期間Tvに設定すればよい。このように、各周期Tsにおいて、最初の搬送波Cの1周期分を電流検出期間Tiに設定し、残りの搬送波CのN−1周期分を電圧調整期間Tvに設定するため、電流検出期間Tiと電圧調整期間Tvとが交互に切り替わる構成となっている。
U相デューティ選択器23aは、フラグflag_i、および、U相デューティ指令値Du1,Du2が入力され、フラグflag_iに応じて、U相デューティ指令値Du1,Du2のいずれか一方を選択出力する。具体的には、フラグflag_iが1のとき、U相デューティ指令値Du1を出力し、フラグflag_iが0のとき、U相デューティ指令値Du2を出力する。同様に、V相デューティ選択器23bは、フラグflag_iに応じて、V相デューティ値Dv1,Dv2のいずれか一方を選択出力する。具体的には、フラグflag_iが1のとき、V相デューティ値Dv1を出力し、フラグflag_iが0のとき、V相デューティ値Dv2を出力する。さらに、W相デューティ選択器23cは、フラグflag_iに応じて、W相デューティ値Dw1,Dw2のいずれか一方を選択出力する。具体的には、フラグflag_iが1のとき、W相デューティ値Dw1を出力し、フラグflag_iが0のとき、V相デューティ値Dw2を出力する。
ゲート信号Guを出力するU相比較部24aは、U相デューティ選択器23aの出力と搬送波発生部21から出力された搬送波Cとを比較して、図3に示すように、U相デューティ選択器23aの出力の方が大きいときはレベル1を出力し、一方、小さいまたは同じであるときはレベル0を出力する。また、ゲート信号Gxを出力する反転部25aは、図3に示すように、U相比較部24aの出力の反転信号をゲート信号Gxとして出力する。具体的には、ゲート信号Guがレベル1のとき、レベル0のゲート信号Gxを出力し、ゲート信号Guがレベル0のとき、レベル1のゲート信号Gxを出力する。同様に、ゲート信号Gvを出力するV相比較部24bは、V相デューティ選択器23bの出力と搬送波Cとを比較して、図3に示すように、V相デューティ選択器24bの出力の方が大きいときはレベル1を出力し、一方、小さいまたは同じであるときはレベル0を出力する。また、ゲート信号Gyを出力する反転部25bは、図3に示すように、ゲート信号Gvの反転信号をゲート信号Gyとして出力する。すなわち、ゲート信号Gvがレベル1のとき、レベル0のゲート信号Gyを出力し、ゲート信号Gvがレベル0のとき、レベル1のゲート信号Gyを出力する。さらに、ゲート信号Gwを出力するW相比較部24cは、W相デューティ選択器23cの出力と搬送波Cとを比較して、図3に示すように、W相デューティ選択器23cの出力の方が大きいときはレベル1を出力し、一方、小さいまたは同じであるときはレベル0を出力する。また、ゲート信号Gzを出力する反転部25cは、図3に示すように、ゲート信号Gwの反転信号を、ゲート信号Gzとして出力する。すなわち、ゲート信号Gwがレベル1のとき、レベル0のゲート信号Gzを出力し、ゲート信号Gwがレベル0のとき、レベル1のゲート信号Gzを出力する。
PWM制御部9は以上のようなゲート信号Gu、Gv、Gw、Gx、Gy、及びGzを出力し、それらのゲート信号により、スイッチング素子Qu、Qv、Qw、Qx、Qy、及びQzをそれぞれ制御する。具体的には、ゲート信号が1のとき、スイッチング素子をオンし、ゲート信号が0のとき、スイッチング素子をオフにする。
電流検出部10は、シャント抵抗4、5、6に生じる電圧vRU、vRV、vRWと、シャント抵抗値Ru、Rv、Rwと、デューティ指令演算部8が出力するU〜W相のデューティ指令値Du1、Dv1、Dw1と、PWM制御部9が出力するフラグflag_i及び搬送波Cとに基づいて、U〜W相電流Iu、Iv、Iwを検出する。
電流検出部10の動作を、図4のフローチャートにより説明する。まずはじめに、ステップS41で、搬送波Cが1であるかを判定し、1ならばステップS42を実行し、1以外ならば再びステップS41を実行する。ステップS42では、フラグflag_iが1であるかを判定し、1ならばステップS43を実行し、1以外ならば再びステップS41を実行する。
ステップS43では、U相デューティ指令値Du1と基準デューティDxとを比較する。ここで、基準デューティDxとは、シャント抵抗4の電圧降下より電流検出が可能な下アームスイッチング素子Qxの通電時間の下限値txより決まるデューティ値である。従って、a相(a=U,V,W)のデューティ指令値Daが基準デューティDx以下の場合、当該a相の下アームスイッチング素子の通電時間がtx以上となるため、a相での電流検出は可能であり、一方、a相(a=U,V,W)のデューティ指令値Daが基準デューティ値Dx未満の場合、a相の下アームスイッチング素子の通電時間がtx未満となるため、a相での電流検出は不可能である。ステップS43では、U相デューティ指令値Du1と基準デューティDxとを比較し、U相デューティ指令値Du1が基準デューティ値Dx以下の場合、ステップS44を実行し、U相デューティ指令値Du1が基準デューティ値Dxよりも大きい場合、ステップ46dを実行してU〜W相電流Iu〜Iwを求める。
ステップS46dでは、V相電流Ivはシャント抵抗5に生じる電圧vRV及びシャント抵抗値Rvに基づいて求められ(Iv=vRV/Rv)、同様に、W相電流Iwはシャント抵抗6に生じる電圧vRW及びシャント抵抗値Rwに基づいて求められる(Iw=vRW/Rw)。一方、U相電流Iuは、ステップS43にてU相の下アームのスイッチング素子Qxのオン時間が、電流検出が可能なオン時間より短いと判定されているため、シャント抵抗4の電圧降下vRU及びシャント抵抗値Ruに基づいて求めることは不可能である。よって、U相電流Iuは、三相電流の和が零となることを利用し、キルヒホッフの法則を用いて、V相電流Iv及びW相電流Iwに基づいて求められる(Iu=−Iv−Iw)。
ステップS44では、V相デューティ指令値Dv1と基準デューティDxとを比較する。V相デューティ指令値Dv1が基準デューティ値Dx以下の場合、ステップS45を実行し、V相デューティ指令値Dv1が基準デューティ値Dxよりも大きい場合、ステップS46cを実行する。
ステップS46cでは、U相電流Iuはシャント抵抗4に生じる電圧vRU及びシャント抵抗値Ruに基づいて求められ(Iu=vRU/Ru)、同様に、W相電流Iwはシャント抵抗6に生じる電圧vRW及びシャント抵抗値Rwに基づいて求められ(Iw=vRW/Rw)、V相電流は、ステップS44にてV相の下アームのスイッチング素子のオン時間が、電流検出が可能なオン時間より短いと判定されているため、シャント抵抗5の電圧降下vRV及びシャント抵抗値Rvに基づいて求めることは不可能であるである。よって、V相電流Ivはキルヒホッフの法則を用いて三相電流の和が零となることを利用し、U相電流Iu及びW相電流Iwに基づいて求められる(Iv=−Iu−Iw)。
ステップS45では、W相デューティ指令値Dw1と基準デューティDxとを比較する。W相デューティ指令値Dw1が基準デューティ値Dx以下の場合、ステップS46aを実行し、W相デューティ指令値Dw1が基準デューティ値Dwよりも大きい場合、ステップS46bを実行する。
ステップS46aでは、U相電流Iuは、シャント抵抗4に生じる電圧vRU及びシャント抵抗値Ruに基づいて求められ(Iu=vRU/Ru)、同様に、V相電流Ivはシャント抵抗5に生じる電圧vRV及びシャント抵抗値Rvに基づいて求められ(Iv=vRV/Rv)、さらに、W相電流Iwは、シャント抵抗6に生じる電圧vRW及びシャント抵抗値Rwに基づいて求められる(Iw=vRW/Rw)。
ステップS46bでは、U相電流Iuは、シャント抵抗4に生じる電圧vRU及びシャント抵抗値Ruに基づいて求められ(Iu=vRU/Ru)、同様に、V相電流Ivは、シャント抵抗5に生じる電圧vRV及びシャント抵抗値Rvに基づいて求められ(Iv=vRV/Rv)、W相電流Iwは、ステップS45にてW相の下アームのスイッチング素子のオン時間が、電流検出が可能なオン時間より短いと判定されているため、シャント抵抗6の電圧降下vRW及びシャント抵抗値Rwに基づいて求めることは不可能である。よって、W相電流Iwは、キルヒホッフの法則を用いて、三相電流の和が零となることを利用し、U相電流Iu及びV相電流Ivに基づいて求められる(Iw=−Iu−Iv)。
次に、デューティ指令演算部8の動作を、図5のフローチャートにより説明する。ステップS51では、オフセット電圧Voffsetを演算する。オフセット電圧Voffsetとは、電力変換装置11より出力される電圧の、直流電源1の出力電圧Vdcに対する割合、即ち、電圧変調率を向上させる目的で、U〜W相電圧Vu、Vv、Vwに加算する電圧である。なお、本発明において、電圧変調率とは、電力変換装置11より出力される線間電圧振幅の、直流電源1の電圧Vdcに対する割合と定義する。図6に一例を示す。図6の例では、図6の1段目に示すU〜W相電圧Vu、Vv、Vwに対し、図6の2段目に示すオフセット電圧Vofsetは、U〜W相電圧Vu、Vv、Vwの3倍の周波数成分の三角波とする。
ステップS52で、オフセット電圧VoffsetをU〜W相電圧Vu、Vv、Vwに加算する。こうして、ステップS52でオフセット電圧Voffsetが加算されたU、V、W相電圧をそれぞれVuh、Vvh、Vwhとする。Vuh、Vvh、Vwhを、図6の3段目に示す。
Vuh=Vu+Voffset
Vvh=Vv+Voffset
Vwh=Vw+Voffset
ステップS53では、オフセット電圧Voffsetが加算されたU〜W相電圧Vuh〜Vwhを、下記の数式により、U〜W相デューティ指令値Du〜Dwに変換する。
Du=Vuh/Vdc+0.5
Dv=Vvh/Vdc+0.5
Dw=Vwh/Vdc+0.5
図7は、三相電圧指令に対する三相デューティ指令波形図である。図7の1段目は、U〜W相電圧Vuh〜Vwhであり、図7の2段目は、図7の1段目のU〜W相電圧Vuh〜Vwhのそれぞれに対するU〜W相デューティ指令値Du〜Dwである。
ステップS54では、U〜W相デューティ指令値Du〜Dwを互いに比較し、デューティ指令値を大きさの順に最大相、中間相、最小相とするとき、2番目に大きいものを中間相デューティ指令値Dmidとする。
Dmid=mid(Du,Dv,Dw)
ステップS55では、ステップS54で求めた中間相デューティ指令値Dmidと中間相デューティ基準値Dmidt1とを比較し、中間相デューティ指令値Dmidの方が大きい場合、ステップS56aを実行し、一方、中間相デューティ指令値Dmidが小さいかあるいは同じである場合、ステップS56bを実行する。ここで、中間相デューティ基準値Dmidt1は、中間相の下アームのスイッチング素子の通電時間が、中間相のシャント抵抗による電圧降下に基づいて中間相の電流値を正しく検出するのに必要な時間以上の時間(所定値)を確保すべく設定されたものである。よって、中間相デューティ基準値Dmidt1は先に述べた基準デューティDx以下の値となる。
ステップS56aでは、ステップS54にて求められた中間相デューティ指令値Dmidに対し、ΔV1だけ差し引いた中間相デューティ指令値Dmid1及びΔV2だけ加算した中間相デューティ指令値Dmid2を算出する。
Dmid1=Dmid−ΔV1
Dmid2=Dmid+ΔV2
ここで、ΔV1は、中間相デューティ指令値Dmid1が中間相デューティ基準値Dmidt1以下となる値に設定する。ΔV2は、電流検出期間Tiに、中間相デューティ指令値DmidよりもΔV1だけ低い中間層デューティ指令値Dmid1を出力したことによる電力変換装置11の中間相における出力電圧の誤差を補償する目的で、電圧調整期間Tvにおいて中間相デューティ指令値Dmidに加算されるもので、式(1)により与えられる。
ΔV2 = ΔV1/(N−1) (1)
ΔV2を(1)式で与えることにより、電流検出期間Tiにて出力される中間相デューティ指令値Dmid1と電圧調整期間Tvにて出力される中間相デューティ指令値Dmid2の平均値は、ステップS54にて求められた中間相デューティ指令値Dmidに一致するため、電力変換装置11から出力される中間相に対応する電圧は、電流検出期間Tiと電圧調整期間Tvとで構成される1期間Tsにおいて、電圧誤差は発生しない。ただし、ΔV2の計算は(1)式に限られるものではなく、(1)式で与えられる値よりも小さい値に設定された場合においても、電流検出期間Tiに中間相デューティ指令値DmidよりもΔV1だけ低い中間相デューティ指令値Dmid1を出力したことによる電力変換装置11の中間相における出力電圧の誤差を低下させることが可能である。
ステップS56bでは、ステップS54にて求められた中間相デューティ指令値Dmidの値を、そのまま、Dmid1及びDmid2として出力する。
次に、ステップS57では、中間相デューティ指令値DmidがU相デューティ指令値Duに一致するか否かを判定し、一致する場合、ステップS59aを実行し、一致しない場合、ステップS58を実行する。
ステップS58では、中間相デューティ指令値DmidがV相デューティ指令値Dvに一致するか否かを判定し、一致する場合、ステップS59bを実行し、一致しない場合、ステップS59cを実行する。
ステップS59aでは、電流検出期間Tiに出力するU、V、W相デューティ指令値Du1、Dv1、Dw1、及び、電圧調整期間Tvに出力するU、V、W相デューティ指令値Du2、Dv2、Dw2を式(2)〜(5)の演算を実施することで求める。
Dv1 = Dv2 = Dv (2)
Dw1 = Dw2 = Dw (3)
Du1 = Dmid1 (4)
Du2 = Dmid2 (5)
同様に、ステップS59bでは、電流検出期間Tiに出力するU、V、W相デューティ指令値Du1、Dv1、Dw1、及び、電圧調整期間Tvに出力するU、V、W相デューティ指令値Du2、Dv2、Dw2を式(6)〜(9)の演算を実施することで求める。
Du1 = Du2 = Du (6)
Dw1 = Dw2 = Dw (7)
Dv1 = Dmid1 (8)
Dv2 = Dmid2 (9)
同様に、ステップS59cでは、電流検出期間Tiに出力するU、V、W相デューティ指令値Du1、Dv1、Dw1、及び、電圧調整期間Tvに出力するU、V、W相デューティ指令値Du2、Dv2、Dw2を式(10)〜(13)の演算を実施することで求める。
Du1 = Du2 = Du (10)
Dv1 = Dv2 = Dv (11)
Dw1 = Dmid1 (12)
Dw2 = Dmid2 (13)
図8は、中間相デューティ指令値の波形例である。図8の1、2、3段目にそれぞれ中間相デューティ指令値Dmid、Dmid1、Dmid2の波形例を示す。中間相デューティ基準値Dmidt1は0.9に設定している。中間相デューティ指令値Dmidが中間相デューティ基準値Dmidt1を超えるとき、ステップS56aの処理により、中間相デューティ指令値Dmid1は、中間相デューティ指令値Dmidに対しΔV1が差し引かれ、中間相デューティ指令値Dmid2は、中間相デューティ指令値Dmidに対しΔV2が加算される。一方、中間相デューティ指令値Dmidが中間相デューティ基準値Dmidt1以下の場合は、ステップS56bの処理により、中間相の下アームのスイッチング素子のオン時間が、中間相のシャント抵抗の電圧降下に基づいて中間相の電流を検出するのに必要な時間(所定値)以上となるため、中間相デューティ指令値Dmidをそのまま中間相デューティ指令値Dmid1、Dmid2として出力する。
このように、本実施の形態1では、中間相の下アームスイッチング素子の通電時間が所定値未満となる場合に、当該中間相を負の方向にΔV1だけシフトする電流検出期間Tiおよび当該中間相を正の方向にΔV2だけシフトする電圧調整期間Tvを設け、各相(U,V,W)の電流を当該電流検出期間Tiにて検出する。
図9は、図7における、U〜W相デューティ指令値がAのタイミングにおける、電流検出部10、モータ制御部7、デューティ指令演算部8、PWM制御部9の動作タイミングを示すタイミングチャートである。横軸tは時刻を示し、kは2以上の自然数である。周期Ts(k−1)にてモータ制御部7およびデューティ指令演算部8にて演算されたデューティ指令値Du1(k−1)、Dv1(k−1)、Dw1(k−1)、Du2(k−1)、Dv2(k−1)、及びDw2(k−1)を、時刻t(k)において、PWM制御部9に反映する。なお、時刻t(k)は、周期Ts(k−1)の終了時刻であるとともに、周期ts(k)の開始時刻である。PWM制御部9では、周期Ts(k)において、電流検出期間Ti(k)にてデューティ指令値Du1(k−1)、Dv1(k−1)、及びDw1(k−1)を搬送波Cと比較し、電圧調整期間Tv(k)にてデューティ指令値Du2(k−1)、Dv2(k−1)、及びDw2(k−1)を搬送波Cと比較することでゲート信号Gu、Gv、Gw、Gx、Gy、及びGzが出力される(図9においてGx、Gy、及びGzは省略)。周期Ts(k)において、搬送波C及びフラグflg_iが共に1となる時刻tc(k)にて、電流検出部10がU〜W相電流iu(k)、iv(k)、iw(k)を取得し、U〜W相電流iu(k)、iv(k)、iw(k)に基づいて、モータ制御部7およびデューティ指令演算部8のK回目の演算を行なう。モータ制御部7およびデューティ指令演算部8のK回目の演算により求められたデューティ指令値Du1(k)、Dv1(k)、Dw1(k)、Du2(k)、Dv2(k)及びDw2(k)を時刻t(k+1)にてPWM制御部9へ反映する。なお、時刻t(k+1)は、周期Ts(k)の終了時刻であるとともに、周期ts(k+1)の開始時刻である。PWM制御部9では、周期Ts(k+1)にて、デューティ指令値Du1(k)、Dv1(k)、Dw1(k)、Du2(k)、Dv2(k)及びDw2(k)が反映されたゲート信号Gu、Gv、Gw、Gx、Gy、及びGzが出力される(図9においてGx、Gy、及びGzは省略)。
図10は、実施の形態1の効果を説明する説明図であり、図3に対し、図5に示したデューティ指令演算部8におけるステップS53にて求められたデューティ指令値Dv、および、デューティ指令値Dvを搬送波Cと比較することで求められる、V相上アームスイッチング素子ゲート信号G'v及びV相下アームスイッチング素子ゲート信号G'yを追加している。ただし、デューティ指令値Dvの最大相をU相、中間相をV相、最小相をW相とし、V(中間相)デューティ指令値Dvは中間相デューティ基準値Dmit1より大きいものとする。本発明の電力変換装置11においては、電流検出期間TiのV(中間)相のデューティ指令値Dv1を、図5のステップS53にて求められたV(中間)相デューティ指令値Dvより小さな値に設定することにより、V相の下アームスイッチング素子の通電時間をtyからty1に拡大している。さらに、電圧調整期間TvのV(中間)相のデューティ指令値Dv2を図5のステップS53にて求められたV(中間)相デューティ指令値Dvより大きな値とすることにより、電流検出期間TiにおけるV(中間)相のデューティ指令値Dv1とV(中間)相の図5のステップS53にて求められたデューティ指令値Dvの差分を補正している。
よって、ゲート信号G'yの通電時間をty及びゲート信号Gyの通電時間ty1とし、先に述べたシャント抵抗の電圧降下より電流検出が可能な下アームスイッチング素子の通電時間の下限値txとの関係が(14)式となる場合、図5におけるステップS56aを実施し、電流検出期間TiにおけるV相(中間相)デューティ指令をDvからDv1にシフトとすることによって、本発明の電力変換装置ではV(中間)相のシャント抵抗の電圧降下vRVに基づく電流検出が可能となる。
ty < tx < ty1 (14)
次に、特許文献1に対する本発明の特徴について説明する。図11、12はそれぞれ電力変換装置の電圧変調率90%、95%において、特許文献1に記載されている、1相の下アームスイッチング素子をオン状態に固定する手法を用いた場合におけるU〜W相デューティ指令値(Duh〜Dwh)、2番目に大きいデューティ指令値(中間相デューティ指令)Dmid、及び、中間相検出可否フラグflag_midを示す。中間相検出可否フラグflag_midとは、U〜W相デューティ指令値(Duh〜Dwh)のうち、中間相デューティ指令値Dmidが中間相デューティ基準値Dmidt1より大きい場合にレベル1を出力し、中間相デューティ指令値Dmidが中間相デューティ基準値Dmidt1以下の場合にレベル0を出力する。よって、中間相検出可否フラグflag_midがレベル0の場合は中間相での電流検出が可能であり、レベル1の場合は中間相での電流検出が不可能であることを意味する。ただし、中間相デューティ基準値Dmidt1はデューティ基準Dxに等しく設定するものとし、中間相デューティ基準値Dmidt1(=Dx)として0.8とする。図11より、変調率90%に対しては、常に中間相検出可否フラグflag_midがレベル0となっているため、中間相での電流検出が可能である。しかし、図12より、変調率95%に対しては、電圧位相θvによって中間相検出可否フラグflag_midがレベル1となる。図12に対して、特許文献1に記載されている、1相の上アームスイッチング素子をオン状態に固定する手法を用い、変調率95%とした場合の波形図を図13に示す。図13より、電圧位相によっては中間相検出可否フラグflag_midがレベル1となる。さらに、図14では、図12の三段目に示した電流検出可否フラグflag_outを一段目に示し、図13の三段目に示した電流検出可否フラグflag_outを二段目に示している。図14より、一段目の電流検出可否フラグflag_outと二段目の電流検出可否フラグflag_outが共にレベル1となる場合(点線で囲まれた領域)がある。よって、特許文献1に記載されているように、搬送波の1周期にわたって上アームのスイッチング素子または下アームのスイッチング素子の1相のスイッチング素子をオン状態に固定した場合においても、それらの両者が共に中間相の電流を検出できない電圧位相θvが存在するため、U〜W相のうち少なくとも2相の電流を該少なくとも2相のシャント抵抗の電圧降下に基づいて検出したうえで、変調率95%の電圧を出力することは不可能である。
図15は、電圧変調率95%における、本発明の電力変換装置におけるU〜W相デューティ指令値(Duh〜Dwh)およびU〜W相デューティ指令値(Duh〜Dwh)のうち2番目に大きいデューティ指令値(中間相デューティ指令)Dmid、電流検出期間Tiに出力する中間相デューティ指令値Dmid1、電圧調整期間Tvに出力する中間相デューティ指令値Dmid2、及び、中間相検出可否フラグflag_midであり、特許文献1に記載の方式を用いた場合の図12又は図13に対応する図である。ただし、図15では、図11、図12、及び、図13と同様に、中間相デューティ基準値Dmidt1はデューティ基準Dxに等しく設定するものとする。本発明の電力変換装置では、電流検出期間Tiにおいて電流検出を行うため、中間相検出可否フラグflag_midとして、電流検出期間Tiに出力する中間相デューティ指令値Dmid1と中間相デューティ基準値Dmidt1とを比較し、中間相デューティ指令値Dmid1が中間相デューティ基準値Dmidt1(=Dx)より大きい場合にレベル1、中間相デューティ指令値Dmid1が中間相デューティ基準値Dmidt1(=Dx)以下の場合にレベル0としている。
図15より、本発明の電力変換装置においては、全電圧位相θvに対して電流検出可否フラグがレベル0となっており、U〜W相のうち少なくとも2相の電流を該少なくとも2相のシャント抵抗の電圧降下に基づいて検出した上で変調率95%の電圧を出力することが可能である。なお、図11、図12、図13、及び図15においては、中間相デューティ基準値Dmidt1はデューティ基準Dxに等しく設定するものとしたが、中間相デューティ基準値Dmidt1をデューティ基準Dx未満に設定した場合とした場合においても、図5に示したデューティ指令演算部の動作を示すフローチャートにおいて、ステップS55において中間相デューティ指令値Dmidと比較される中間相デューティ基準値Dmidt1が小さくなるのみであるため、実施の形態1の効果が損なわれることはない。よって、中間相デューティ基準値Dmidt1は基準デューティDx以下に設定すればよい。
以上により、実施の形態1によれば、三相の電圧指令に対応する三相デューティ指令値と搬送波とを比較することによりPWM制御される三相インバータの各相の下アーム側にて下アームスイッチング素子と直列接続される電流検出用抵抗素子の電圧降下に基づいて各相の電流を検出する電力変換装置において、上記三相のデューティ指令値を大きさの順に最大相、中間相、最小相とするとき、中間相の下アームスイッチング素子の通電時間が所定値未満となる場合に、当該中間相を負の方向にシフトする電流検出期間Tiおよび当該中間相を正の方向にシフトする電圧調整期間Tvを設け、当該中間相の電流を電流検出期間Tiにて検出する制御装置を備えるようにしたので、シフトされる前の上記中間相においてはスイッチング素子の通電時間が所定値未満となる場合においても、上記電流検出期間において上記中間相を負の方向にシフトすることにより、上記中間相の下アーム素子の通電時間を確保した上で上記電流を検出し、上記電圧調整期間にて上記中間相を正の方向へシフトすることにより、上記中間相の電圧を調整することができるので、従来に比べ電圧変調率が高い場合においても、上記電流に基づいて電力変換することが可能となる。このように、本実施の形態1においては、従来の電力変換装置に対して、U〜W相のうちの少なくとも2相の電流を、当該少なくとも2相のシャント抵抗の電圧降下に基づいて検出した上で、電力変換装置11が出力可能な電圧変調率が向上するといった顕著な効果が得られる。これにより、電圧変調率が高い場合においても、検出された電流に基づいて電力変換装置を制御することが可能となる。
実施の形態2.
図16及び図17は、実施の形態2を示すものであり、図16は実施の形態2におけるデューティ指令演算部8の動作を示すフローチャート、図17は実施の形態2の効果を説明する説明図、図18は下アームスイッチング素子のゲート信号オン時間とリンギングの関係に関する説明図である。なお、本実施の形態2に係る電力変換装置11の構成は、上記の実施の形態1で説明した図1の構成と基本的に同じであるため、ここでは、図1およびその説明を参照し、以下では、実施の形態1と異なる部分について主に説明し、同一または相当する部分についての詳細な説明は省略する。
実施の形態2で、実施の形態1と異なるところは、実施の形態1で示したデューティ指令演算部8(図1参照)のフローチャート(図5)におけるステップS56aである。図16に示す実施の形態2におけるデューティ指令演算部8の動作を示すフローチャートでは、図5におけるステップS56aの代わりに、ステップS56cを実行する。以下、ステップ56cについて説明する。ステップS56cでは、ステップS54にて求められた中間相デューティ指令値DmidからΔV3だけ差し引くことで、中間相デューティ指令値Dmid1を求め、中間相デューティ指令値Dmid2を1に設定する。ここで、ΔV3は、電圧調整期間Tvの中間相デューティ指令値Dmid2を1とすることによる電力変換装置11の中間相における出力電圧の誤差を補償する目的で、電流検出期間Tiにおいて中間相デューティ指令値Dmidから減算されるもので、式(15)により与えられる。
ΔV3= (N−1)×(1−Dmid) (15)
ΔV3を(15)式で与えることにより、電流検出期間Tiにて出力される中間相デューティ指令値Dmid1と電圧調整期間Tvにて出力される中間相デューティ指令値Dmid2の平均値は、ステップS54にて求められた中間相デューティ指令値Dmidに一致するため、電力変換装置11から出力される中間相に対応する電圧は、周期Tsにおいて、電圧誤差は発生しない。ただし、ΔV3の計算は(15)式に限られるものではなく、(15)式で与えられる値よりも小さい値に設定してもよい。
図16の他のステップについては、実施の形態1で説明した図5のステップとそれぞれ同じであるため、同一符号を付して示し、ここでは説明を省略する。
ここで、図17について各部の動作波形を説明する。図17において、搬送波C、電流検出期間TiにおけるU〜W相デューティ指令値Du1〜Dw1、電圧調整期間TvにおけるU〜W相デューティ指令値Du2〜Dw2、ゲート信号Gu、Gv、Gw、Gx、Gy、及びGz、フラグflag_i、図16に示したデューティ指令演算部8におけるステップS53にて求められたデューティ指令値Dv、デューティ指令値Dvを搬送波Cと比較することで求められる、V相上アームスイッチング素子ゲート信号G'v及びV相下アームスイッチング素子ゲート信号G'yを示す。ただし、デューティ指令値の最大相をU相、中間相をV相、最小相をW相とし、V相(中間相)デューティ指令値Dvは中間相デューティ基準値Dmit1より大きいものとする。電流検出期間TiにおけるV相デューティ指令値Dv1が図16におけるDmid1に対応し、電圧調整期間TvにおけるV相デューティ指令値Dv2が図16におけるDmid2に対応する。
図17に示すように、電圧調整期間TvにおけるV相(中間相)のデューティ指令値Dv2が1にシフトされ、電圧調整期間TvにおいてGvが1にて固定されることにより、V相(中間相)の上アームスイッチング素子がオン状態に固定される。したがって、周期TsにおけるV相デューティ指令の平均値(電流検出期間TiにおけるV相デューティ指令値Dv1と電圧調整期間TvにおけるV相デューティ指令値Dv2の平均値)を図16のステップS53にて求められたV相デューティ指令値Dvに一致させる場合、電流検出期間Tiにおけるシフト量は、実施の形態1におけるシフト量ΔV1に比べ、実施の形態2におけるシフト量ΔV3の方が大きくなる。よって、電流検出期間TiにおけるV相(中間相)デューティ指令値Dv1(Dmid1)は、実施の形態1に比べ実施の形態2の方がより下へシフトされ、ゲート信号Gyがレベル1を出力する時間がより増大することにより下アームスイッチング素子の通電時間がより増大する。実施の形態1に比べて電流検出期間における中間相の下アームスイッチング素子の通電時間が増大することによって、中間相におけるシャント抵抗の電圧降下に発生するリンギングが電流検出タイミングにおいてより減衰しているので電流検出精度が向上する。以上の理由について波形例を用いて更に説明する。
図18は、V相下アームスイッチング素子のゲート信号GvとV相のシャント抵抗の電圧降下vRVの波形であり、V相のシャント抵抗の電圧降下vRVにリンギングが発生している。図18中のTaは電流値検出タイミングとし、タイミングTaにて電流検出部10がV相のシャント抵抗5の電圧降下vRVを検出する。図18(a)と図18(b)の差異は、V相下アームスイッチング素子のゲート信号Gvのオン時間であり、図18(a)に比べて、図18(b)の方が、レベル1の時間が長い。図18(a)と図18(b)において、電流検出タイミングTaにおける、定常値に対する誤差をそれぞれΔVru1、ΔVru2とすると、ΔVru2はΔVru1より小さい。よって、下アームスイッチング素子の通電時間が長い程、リンギングによる誤差の影響を小さくすることができる。
そのため、本実施の形態2では、リンギングによる誤差の影響を小さくために、電圧調整期間Tvにおける中間相の上アームスイッチング素子をオン状態に固定する。実施の形態2では、中間相の上アームスイッチング素子をオン状態に固定するために、3相のうち中間相のみを正の方向にシフトする。そのため、搬送波Cの1周期にわたって3相デューティ指令値の相対的な大小関係は保持されない。
以上により、実施の形態2によれば、上記の実施の形態1と同様の効果が得られ、さらに、本実施の形態2においては、上記の実施の形態1に比べ、電圧調整期間Tvにおける中間相の上アームスイッチング素子をオン状態に固定することにより、電流検出期間Tiにおける下アームスイッチング素子のオン時間が増大させることが可能となるため、正確に中間相のシャント抵抗の電圧降下に基づいて電流を検出することが可能となる。
実施の形態3.
図19、図20、及び図21は、実施の形態3を示すものであり、図19は実施の形態3におけるデューティ指令演算部8の動作を示すフローチャート、図20は実施の形態3の効果を示す説明図、図21は変調率95%における実施の形態3に記載の方式の波形説明図である。なお、本実施の形態3に係る電力変換装置11の構成は、上記の実施の形態1で説明した図1の構成と基本的に同じであるため、ここでは、図1およびその説明を参照し、以下では、実施の形態1、2と異なる部分について主に説明し、同一または相当する部分についての詳細な説明は省略する。
実施の形態3で、実施の形態1、2と異なるところは、デューティ指令演算部8のフローチャート(図5)におけるステップS55、ステップS56aである。図19に示す、実施の形態3におけるデューティ指令演算部8の動作を示すフローチャートでは、図5におけるステップS55の代わりにステップS55aを実行し、さらに、ステップS56aの代わりにステップS56eを実行する。
以下、ステップS55a及びS56eについて説明する。ステップS55aでは、ステップS54にて求められた中間相デューティ指令値Dmidと基準デューティDxとの比較を行い、中間相デューティ指令値Dmidが、基準デューティDxより大きい場合に、ステップS56eを実行し、一方、中間相デューティ指令値Dmidが基準デューティDx以下の場合ステップS56bを実行する。次に、ステップS56eでは、以下の(16)式、(17)式の演算を実施することにより、それぞれ、電流検出期間Ti、電圧調整期間Tvに出力される中間相デューティ指令値Dmid1、Dmid2を求める。
Dmid1 = Dx (16)
Dmid2 = Dmid + (Dmid −Dx)/(N−1) (17)
電流検出期間Tiおよび電圧調整期間Tvに出力される中間相デューティ指令値Dmid1、Dmid2を、それぞれ(16)式、(17)式で与えることにより、電流検出期間Tiにて出力される中間相デューティ指令値Dmid1と電圧調整期間Tvにて出力される中間相デューティ指令値Dmid2の平均値は、ステップS54にて求められた中間相デューティ指令値Dmidに一致するため、電力変換装置11から出力される中間相に対応する電圧は、電流検出期間Tiと電圧調整期間Tvとで構成される1期間Tsにおいて、電圧誤差は発生しない。
次に、図20について各部の動作波形を説明する。図20において、搬送波C、電流検出期間TiにおけるU〜W相デューティ指令値Du1〜Dw1、電圧調整期間TvにおけるU〜W相デューティ指令値Du2〜Dw2、ゲート信号Gu、Gv、Gw、Gx、Gy、及びGz、フラグflag_i、図19に示したデューティ指令演算部8におけるステップS53にて求められたデューティ指令値Dv、デューティ指令値Dvを搬送波Cと比較することで求められる、V相上アームスイッチング素子ゲート信号G'v及びV相下アームスイッチング素子ゲート信号G'yを示す。ただし、デューティ指令値の最大相をU相、中間相をV相、最小相をW相とし、V(中間相)デューティ指令値Dvは基準デューティDxより大きいものとする。よって、電流検出期間TiにおけるV相デューティ指令値Dv1が図19におけるDmid1に対応し、電圧調整期間TvにおけるV相デューティ指令値Dv2が図19におけるDmid2に対応する。図20に示すように、電流検出期間TiにおけるV相(中間相)デューティ指令値Dv1は基準デューティDxに等しい。よって、電流検出期間TiにおけるV相(中間相)の下アームスイッチング素子の通電時間は先に述べた電流検出が可能な下アームスイッチング素子の通電時間の下限値txに等しい。
図21は、実施の形態3において、電圧変調率95%でのU〜W相デューティ指令値Duh〜Dwh、U〜W相デューティ指令値Duh〜Dwhのうち2番目に大きいデューティ指令値(中間相デューティ指令値)Dmid、電流検出期間Tiに出力する中間相デューティ指令値Dmid1、電圧調整期間Tvに出力する中間相デューティ指令値Dmid2、及び中間相検出可否フラグflag_midであり、実施の形態1における方式を用いた場合の図15に対応する図である。図21は、図15に対し、中間相デューティ指令値Dmidに対する、電流検出期間Tiに出力する中間相デューティ指令値Dmid1の差分及び電圧調整期間Tvに出力する中間相デューティ指令値Dmid2の差分が小さい。
以下、この差分が小さい理由について説明する。中間相のシャント抵抗の電圧降下に基づいて電流検出を行うためには、中間相のデューティ指令値Dmid1は、基準デューティDx以下でなければならない。逆に考えると、電流検出期間Tiにおける中間相のデューティ指令値Dmid1を基準デューティDxに一致させるようにシフトさせると、電流検出期間Tiにおいて中間相のシャント抵抗の電圧降下に基づいて電流検出が行えるシフト値としては最小値となる。そこで、図19ではステップS56eを実行し、中間相デューティ指令値Dmidを電流検出期間TiにおいてはDxに一致させる。こうすることにより、電流検出期間Tiにおける中間相デューティ指令値Dmid1と中間相デューティ指令値Dmidとの差分を最小値とする。この場合、当然ながら電流検出期間Tiにおけるシフト値が最小値となるので、電圧調整期間Tvのシフト値も最小値とすることができる。
以上により、本実施の形態3によれば、上記の実施の形態1、2と同様の効果が得られるとともに、さらに、本実施の形態3においては、実施の形態1、2に比べ、電流検出期間Tiにおける中間相デューティ指令値を、シャント抵抗の電圧降下に基づいて電流検出が可能な下アームスイッチング素子のオン時間の下限値txより決まるデューティ値(制限値)に一致させることにより、中間相デューティ指令値の電流検出期間Tiにおけるシフト値および電圧調整期間Tvにおけるシフト値を最小にできる。これにより、キャリア周期Tcの1周期内で発生する電力変換装置11から出力される中間相電圧の、電流検出期間における負のシフト値及び電圧調整期間の正のシフト値をそれぞれ最小とすることが可能となる。
本発明における実施の形態1〜3では、中間相の下アームスイッチング素子の通電時間が所定値未満となる場合において、中間相のみを、電流調整期間において負の方向にシフトし、電圧調整期間において正の方向にシフトするものであり、最大相や最小相はシフトしない。この理由は、電圧変調率が高い場合、最大相は、搬送波Cの山の値に近くなるためシフトさせると搬送波Cの山の値を上回る場合が発生し、それにより電圧飽和が起こり最大相の電圧に誤差が発生する。同様に、電圧変調率が高い場合、最小相は搬送波Cの谷の値に近いため、シフトさせると搬送波Cの谷の値を下回るため電圧飽和が起こり最小相の電圧に誤差が発生する。更に、最小相は変調率に係らず下アームのスイッチング素子のオン時間が長いためシフトする必要性がない。これら最大相、最小相に対し、中間相のデューティ指令値は、電圧変調率が高い場合においても、搬送波Cの山の値および谷の値から余裕があるため、シフトを行なっても電圧飽和は生じない。よって、中間相のデューティ指令のみをシフトする構成とすることにより、電圧変調率が高い場合においても、電力変換装置より出力される電圧に電圧飽和が発生しないため、電圧誤差が生じない利点がある。
1 直流電源、2 平滑コンデンサ、3 モータ、4,5,6 シャント抵抗、7 モータ制御部、8 デューティ指令演算部、9 PWM制御部、10 電流検出部、21 搬送波発生部、22 電流検出期間設定部、23a U相デューティ選択器、23v V相デューティ選択器、23c W相デューティ選択器、24a U相比較部、24b V相比較部、24c W相比較部、25a,25b,25c 反転部。

Claims (6)

  1. 三相の電圧指令に対応する三相デューティ指令値と搬送波とを比較することによりPWM制御される三相インバータの各相の下アーム側にて下アームスイッチング素子と直列接続される電流検出用抵抗素子の電圧降下に基づいて各相の電流を検出する電力変換装置であって、
    上記三相のデューティ指令値を大きさの順に最大相、中間相、最小相とするとき、上記中間相の下アームスイッチング素子の通電時間が所定値未満となる場合に、上記中間相のデューティ指令値を負の方向にシフトする電流検出期間および上記中間相のデューティ指令値を正の方向にシフトする電圧調整期間を設け、上記各相の電流を上記電流検出期間にて検出する制御装置を
    備えたことを特徴とする電力変換装置。
  2. 上記所定値は、上記中間相の電流検出用抵抗素子にて上記電流の検出が可能な上記中間相の下アームスイッチング素子の通電時間の下限値とする
    ことを特徴とする請求項1に記載の電力変換装置。
  3. 上記制御装置は、上記電流検出期間において上記シフトされた中間相のデューティ指令値が所定の制限値となるように、上記電流検出期間における上記中間相のデューティ指令値を負の方向にシフトするものであって、
    上記制限値は上記所定値から決定される
    ことを特徴とする請求項2に記載の電力変換装置。
  4. 上記制御装置は、上記電圧調整期間における上記中間相のデューティ指令値を正の方向にシフトすることにより、上記電圧調整期間において上記中間相の上アームスイッチング素子をオン状態に固定する
    ことを特徴とする請求項1に記載の電力変換装置。
  5. 上記制御装置は、上記電流検出期間において負の方向にシフトされた上記中間相のデューティ指令値と上記電圧調整期間において正の方向にシフトされた上記中間相のデューティ指令値との平均値が、シフトされる前の上記中間相のデューティ指令値に一致するように、上記負の方向または上記正の方向へのシフトの量を決定する
    ことを特徴とする請求項1ないし4のいずれか1項に記載の電力変換装置。
  6. 三相の電圧指令に対応する三相デューティ指令値と搬送波とを比較することによりPWM制御される三相インバータの各相の下アーム側にて下アームスイッチング素子と直列接続される電流検出用抵抗素子の電圧降下に基づいて各相の電流を検出する電力変換方法であって、
    上記三相のデューティ指令値を大きさの順に最大相、中間相、最小相とするとき、上記中間相の下アームスイッチング素子の通電時間が所定値未満となる場合に、上記中間相のデューティ指令値を負の方向にシフトする電流検出期間および上記中間相のデューティ指令値を正の方向にシフトする電圧調整期間を設け、上記各相の電流を上記電流検出期間にて検出する
    ことを特徴とする電力変換方法。
JP2012149468A 2012-07-03 2012-07-03 電力変換装置及び電力変換方法 Pending JP2014011944A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012149468A JP2014011944A (ja) 2012-07-03 2012-07-03 電力変換装置及び電力変換方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012149468A JP2014011944A (ja) 2012-07-03 2012-07-03 電力変換装置及び電力変換方法

Publications (1)

Publication Number Publication Date
JP2014011944A true JP2014011944A (ja) 2014-01-20

Family

ID=50108163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012149468A Pending JP2014011944A (ja) 2012-07-03 2012-07-03 電力変換装置及び電力変換方法

Country Status (1)

Country Link
JP (1) JP2014011944A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024614A (zh) * 2015-06-30 2015-11-04 深圳市富晶科技有限公司 一种电机定子电流的采样方法
JP2016201885A (ja) * 2015-04-09 2016-12-01 三菱電機株式会社 インバータ装置およびインバータ装置を備えた電動機制御装置
WO2017064756A1 (ja) * 2015-10-13 2017-04-20 三菱電機株式会社 交流回転機の制御装置及びそれを備えた電動パワーステアリング装置
JP2017204907A (ja) * 2016-05-09 2017-11-16 株式会社デンソー 電力変換装置
CN107438943A (zh) * 2015-03-12 2017-12-05 三菱电机株式会社 交流旋转电机的控制装置和电动助力转向***的控制装置
KR20190063258A (ko) * 2017-11-29 2019-06-07 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 홈 어플라이언스
EP3477842A4 (en) * 2016-06-22 2019-06-19 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
JP2020089091A (ja) * 2018-11-27 2020-06-04 ニチコン株式会社 インバータ装置、その制御方法及び制御プログラム
CN116581961A (zh) * 2023-06-14 2023-08-11 深圳丹青新技术有限公司 一种三相逆变器电流采样方法和电机装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070152676A1 (en) * 2005-12-30 2007-07-05 Ls Industrial Systems Co., Ltd. Apparatus and method for detecting phase currents of inverter
JP2008048504A (ja) * 2006-08-11 2008-02-28 Denso Corp 3相回転機の制御装置
JP2010213407A (ja) * 2009-03-09 2010-09-24 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置及びその制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070152676A1 (en) * 2005-12-30 2007-07-05 Ls Industrial Systems Co., Ltd. Apparatus and method for detecting phase currents of inverter
JP2008048504A (ja) * 2006-08-11 2008-02-28 Denso Corp 3相回転機の制御装置
JP2010213407A (ja) * 2009-03-09 2010-09-24 Hitachi Industrial Equipment Systems Co Ltd 電力変換装置及びその制御方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10666169B2 (en) 2015-03-12 2020-05-26 Mitsubishi Electric Corporation Control device for AC rotary machine and control device for electric power steering
CN107438943B (zh) * 2015-03-12 2020-09-04 三菱电机株式会社 交流旋转电机的控制装置和电动助力转向***的控制装置
CN107438943A (zh) * 2015-03-12 2017-12-05 三菱电机株式会社 交流旋转电机的控制装置和电动助力转向***的控制装置
EP3270502A4 (en) * 2015-03-12 2018-11-21 Mitsubishi Electric Corporation Ac rotating electric machine control device and electric power steering control device
JP2016201885A (ja) * 2015-04-09 2016-12-01 三菱電機株式会社 インバータ装置およびインバータ装置を備えた電動機制御装置
CN105024614A (zh) * 2015-06-30 2015-11-04 深圳市富晶科技有限公司 一种电机定子电流的采样方法
WO2017064756A1 (ja) * 2015-10-13 2017-04-20 三菱電機株式会社 交流回転機の制御装置及びそれを備えた電動パワーステアリング装置
JPWO2017064756A1 (ja) * 2015-10-13 2017-11-30 三菱電機株式会社 交流回転機の制御装置及びそれを備えた電動パワーステアリング装置
CN108156837A (zh) * 2015-10-13 2018-06-12 三菱电机株式会社 交流旋转电机的控制装置及包括该控制装置的电动助力转向装置
CN108156837B (zh) * 2015-10-13 2020-12-11 三菱电机株式会社 交流旋转电机的控制装置及电动助力转向装置
US10432129B2 (en) 2015-10-13 2019-10-01 Mitsubishi Electric Corporation AC rotary machine control device and electric power steering device
JP2017204907A (ja) * 2016-05-09 2017-11-16 株式会社デンソー 電力変換装置
EP3477842A4 (en) * 2016-06-22 2019-06-19 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
KR20190063258A (ko) * 2017-11-29 2019-06-07 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR102457531B1 (ko) * 2017-11-29 2022-10-21 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 홈 어플라이언스
JP2020089091A (ja) * 2018-11-27 2020-06-04 ニチコン株式会社 インバータ装置、その制御方法及び制御プログラム
JP7154972B2 (ja) 2018-11-27 2022-10-18 ニチコン株式会社 インバータ装置、その制御方法及び制御プログラム
CN116581961A (zh) * 2023-06-14 2023-08-11 深圳丹青新技术有限公司 一种三相逆变器电流采样方法和电机装置
CN116581961B (zh) * 2023-06-14 2023-11-21 深圳丹青新技术有限公司 一种三相逆变器电流采样方法和电机装置

Similar Documents

Publication Publication Date Title
JP2014011944A (ja) 電力変換装置及び電力変換方法
JP5122505B2 (ja) 電力変換装置及びその制御方法
JP3844060B2 (ja) Pwmパルス制御方法
JP6086085B2 (ja) 電力変換装置、発電システム、電力変換装置の制御装置および電力変換装置の制御方法
US9362840B2 (en) Power conversion device
JP4715677B2 (ja) 3相回転機の制御装置
US7728538B2 (en) Method and related device for estimating the currents flowing in windings of a poly-phase electrical load at a certain instant
JP5263150B2 (ja) 電力変換装置
US7920395B2 (en) Pulse width modulation method for a power converter
JP4942569B2 (ja) 電力変換装置
US9130481B2 (en) Power converting appartatus
JP6178433B2 (ja) 電力変換装置
US9843273B2 (en) Power conversion apparatus, phase current detection apparatus, and phase current detection method
EP1921740A2 (en) Power converter control
JP2015201996A (ja) 電力変換装置、電力変換装置の制御装置および電力変換装置の制御方法
JPWO2011108169A1 (ja) インバータ装置及びその制御方法
JP6131360B1 (ja) 電力変換装置
JP5104083B2 (ja) 電力変換装置および電力変換方法
JP5852544B2 (ja) 3レベル電力変換装置
JP6500748B2 (ja) インバータの制御装置
JP2007097394A (ja) 電力変換器
JP3297184B2 (ja) 電力変換装置
JP2009089555A (ja) 交流直流変換装置
US20160065089A1 (en) Three-phase current converter with varied inductances and three-phase d-sigma control method thereof
JP2007006700A (ja) 電力変換器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027