JP2013520673A - 質量分析計の反応および衝突セルのためのガス送達システム - Google Patents

質量分析計の反応および衝突セルのためのガス送達システム Download PDF

Info

Publication number
JP2013520673A
JP2013520673A JP2012554435A JP2012554435A JP2013520673A JP 2013520673 A JP2013520673 A JP 2013520673A JP 2012554435 A JP2012554435 A JP 2012554435A JP 2012554435 A JP2012554435 A JP 2012554435A JP 2013520673 A JP2013520673 A JP 2013520673A
Authority
JP
Japan
Prior art keywords
gas
cell
output
delivery system
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012554435A
Other languages
English (en)
Inventor
ハミッド アール. バディエイ,
カベ カーエン,
Original Assignee
ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド filed Critical ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド
Publication of JP2013520673A publication Critical patent/JP2013520673A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/105Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87877Single inlet with multiple distinctly valved outlets

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

セルベースの質量分析計のためのガス送達システムは、ガス源に連結された入力を有する質量流量コントローラを含む。三方弁は、質量流量コントローラの出力に連結された入力と、真空システムに連結された第1の出力と、通常、反応または衝突セルに連結された第2の出力とを含む。セルは、質量分析計の真空チャンバの内側に位置付けられ、三方弁の第2の出力は、セルの入口に連結され、質量流量コントローラは、セルにガスを提供し、真空チャンバ内の圧力に対してセル内側の圧力を増加させる。

Description

本明細書に使用される見出しは、系統化目的のためだけのものであって、本願に説明される主題をいかようにも限定するものとして解釈されるべきではない。
(関連出願の引用)
本願は、2010年2月26日出願の同時係属中の米国仮特許出願第61/308,748号の正規出願である。米国仮特許出願第61/308,748号の内容全体は、参照することによって、本明細書に組み込まれる。
質量分析計は、種々の種類の試料の元素および分子組成を決定するための分析器具である。一般に、質量分析計は、気相分子をイオン化するイオン源、または溶液中に存在するイオンを気相に変換するイオン源を含む。質量分析器は、その質量対電荷比別に、イオンを選別する。四重極質量分析器は、振動電場を使用して、選択的に、無線周波数(RF)四重極磁場を通過するイオンの経路を安定化または不安定化させる質量選択フィルタである。単一の質量/電荷比のみ、随時、システムを通過するが、レンズ上の電位の変化によって、広範囲の質量対電荷比値が、継続的または離散中継点の連続として、連続的に高速走査可能となる。
飛行時間(TOF)質量分析器は、静電加速器を利用して、同一電荷を伴うすべてのイオンに同一量の運動エネルギーを伝える。イオンが検出器に到達するのにかかる時間が、測定される。イオンの質量対電荷比は、イオンが検出器に到達するのにかかる時間から決定することができる。粒子すべてが、同一電荷を有する場合、その運動エネルギーは、等しく、かつその速度は、その質量対電荷比にのみ依存するであろう。その結果、より軽いイオンが、最初に、検出器に到達するであろう。
質量分析計はまた、イオンを検出し、したがって、測定された各イオンの存在度を計算するためのデータを提供する検出器を含む。質量分析は、定性的および定量的用途の両方を有する。これらとして、未知の化合物の識別、分子内の元素の同位体組成の決定、およびその***を観察することによる化合物の構造の決定が挙げられる。他の用途として、試料中の化合物の量の定量化、または真空中のイオンおよび中性物質の化学的性質の基礎の研究が挙げられる。質量分析は、現在、多種多様の化合物の物理、化学、または生物学的特性を研究する分析実験室において、非常に一般的に使用されている。
試料の元素組成は、最初に、試料をイオン化源に暴露し、次いで、質量分析器によって分析される、気相原子イオンを生成することによって、質量分析計(MS)を使用して、分析される。イオン源の種類の1つは、試料入口において石英管を包囲し、誘導コイルの作用によって、プラズマを発生させる、高周波数誘導コイルである。そのような誘導イオン源を使用する質量分析計は、一般に、誘導結合プラズマ質量分析計(ICP−MS)と称される。誘導結合プラズマ質量分析計は、衝突またはイオン/分子反応を通して、干渉イオンを除去する、衝突および/または反応セルを含み得る。衝突および/または反応セルは、質量分析計の真空チャンバ内で従来の質量分析器(四重極、TOF、二重集束、イオン移動度等)の前または後に位置付けられる、多重極(四重極、六重極、八重極等)によって取り囲まれ、アンモニア、メタン、酸素、フッ化メチル、および水素等の反応ガス、あるいはヘリウムまたはネオン等の不活性衝突ガスによって充填することができる。チャンバは、1種類のガスで充填することができる、または2つ以上の種類のガスの混合物で充填することができる。衝突ガス分子は、干渉イオンと衝突し、干渉を排除するか、またはある程度減衰させることができる。反応ガス分子は、選択的に、干渉イオンと反応し、干渉を排除する、またはある程度減衰させることができる。
明細書内での「一実施形態」または「ある実施形態」という語句の参照は、実施形態と併せて説明される、特定の特徴、構造、または特性が、本教示の少なくとも一実施形態に含まれることを意味する。明細書中の種々の場所における「一実施形態では」という語句の表出は、必ずしも、すべて同一実施形態を指すわけではない。
本願の教示の方法の個々のステップは、本教示が動作可能のままである限り、任意の順番で、および/または同時に、行い得ることを理解されたい。さらに、本願の教示の装置および方法は、本教示が動作可能のままである限り、任意の数または全部の説明される実施形態を含むことが可能であることを理解されたい。
次に、付随の図面に示されるように、その例示的実施形態を参照して、本願の教示をより詳細に説明する。本願の教示は、種々の実施形態および実施例と併せて説明されるが、本願の教示をそのような実施形態に限定されることを意図するものではない。対照的に、本願の教示は、当業者によって理解されるように、種々の代替、修正、および均等物を包含する。本明細書の教示へのアクセスを有する当業者は、本明細書に説明されるように、本開示の範囲内にある、付加的実装、修正、および実施形態、ならびに他の使用分野を認識するであろう。
衝突/反応セルを伴う、誘導結合プラズマ質量分析計は、種々の動作モードを有する。通気セル動作モードでは、衝突/反応セルは、衝突ガスまたは反応ガスで加圧されない。イオンは、真空チャンバの他のエリアと比較して、衝突速度または反応速度のどんな増大も伴わずに、かつ真空チャンバの他のエリアと比較して、ガス分子とのどんな付加的反応も伴わずに、直接、セルを通過する。加圧セル動作モードでは、セルは、衝突ガスまたは反応ガスによって加圧される。セルを通過するイオンは、衝突ガスとの弾性衝突を有し、そのエネルギーを喪失し得るか、または反応ガスと反応し得る。
いくつかの動作モードでは、衝突/反応セルを伴う誘導結合プラズマ質量分析計は、通気セル動作モードと加圧セル動作モードとの間で、または異なるガスを使用する2つの加圧セルモード間で、動作モードを高速変更することが要求され得る。例えば、通気セル動作モードと加圧セル動作モードとの間を交互に切り替えることによって、器具は、非干渉および干渉同位体の両方の質量対電荷比を測定することが可能となる。
しかしながら、動作モードの高速切替は、いくつかの技術的課題を呈し得る。衝突または反応ガスは、比較的に低流量において、高真空下、衝突/反応セルに送達されることにより、所望の動作圧力の超過を回避することができる。いくつかの器具では、流量は、10mL/分未満である。そのような低流量は、セルへとつながる空圧機器の死容積の充填時間の減速をもたらし得る。その結果、セルを加圧し、分析のための信号を安定化させるために要求される時間が、多くの場合、容認し難いほど、長くなり得る。このように、セルを加圧し、信号を安定化されるために要求される時間が長いことによって、混合モード方法が使用される場合、試料処理量を低下させ、質量分光分析の動作費用に著しく影響を及ぼし得る。
図1は、質量分析計のための公知の衝突/反応セルガス送達システム100を例証する。図1に示されるガス送達システム100は、第1および第2のガスを衝突/反応セル108に送達するための第1のガスチャネル104および第2のガスチャネル106を伴う、ガスマニホールド102を含む。例えば、第1のガスは、アンモニア等の反応ガスであり得、第2のガスは、ヘリウム等の衝突ガスであり得る。第1および第2のガスはまた、異なる種類の反応ガスまたは異なる種類の衝突ガスであり得る。当業者は、ガス送達システム100が、ガスマニホールド102に連結された任意の数のガスチャネルを含むことができることを理解するであろう。図1に示されるガス送達システム100では、ユーザは、第1および第2のガスチャネル104、106を制御し、第1のガスチャネル104、第2のガスチャネル106、または第1および第2のガスチャネル104、106の両方によって提供されるガスを選択する。
第1のガスチャネル104は、例えば、ガスシリンダ110内に含まれるアンモニア等の反応ガス源である第1のガス源を含む。調整器112は、ガスシリンダ110の出口に連結される。調整器112は、質量流量コントローラ114の入力および質量分析計内の衝突/反応セル108に衝突/反応ガスを提供する低圧ガスマニホールド102に好適である圧力に、出力ガス供給圧力を制御する。例えば、調整器112の出力におけるガス圧は、数ポンド/平方インチであり得る。いくつかの周知のシステムは、約5−50ポンド/平方インチの出力圧力を使用する。
多くのガス供給源は、調整器112の出力をガスチャネル104の残りに連結する、ユニオン継手116を含む。そのようなユニオン継手116によって、ユーザは、容易かつ迅速に、ガスシリンダ110を変更し、より多くのガスを提供すること、またはガスの種類を変更することが可能となる。ユニオン継手116の出力は、ガスシリンダ110をガスチャネル104の残りから隔離する二方遮断弁118に接続される。
いくつかのガス送達システムでは、ゲッタ120等のガス清浄器が、ガス中の望ましくない分子(例えば、不純物)を除去するために、二方遮断弁118に連結される。例えば、ゲッタ120は、反応セル108内に競合反応が存在しないように、反応ガス内の望ましくない種を除去するために使用される。いくつかのシステムでは、ゲッタ120は、ガスから水分および/または酸素を除去するために使用される。例えば、酸化ジルコニウムは、ゲッタ120として、使用することができる。多数の他の種類のガス清浄器もまた、使用することができる。
質量流量コントローラ114は、ゲッタ120、または、随意のゲッタ120が存在しない場合、二方遮断弁118に連結される。質量流量コントローラ114は、衝突/反応セル108への反応ガスの流量を測定および制御する。質量流量コントローラは、典型的には、特定の範囲の流量において、具体的種類のガスの流量を制御するように設計および較正される。
パージ弁122は、ゲッタ120と質量流量コントローラ114との間に連結され、ユーザは、ガスシリンダ110からのガスラインをパージすること、または二方遮断弁118から質量流量コントローラ114の入力までをパージすることが可能となる。パージ弁122の出口は、排出システムに連結される。加圧動作モードでは、パージ弁122は、閉鎖され、ガスは、パージ弁122を通して転向され、排気されることなく、ゲッタ120から質量流量コントローラ114に、無制限に通過する。パージ動作モードでは、パージ弁122は、開放され、ガスライン内のガスは、パージライン124を通して、排出システムに排気される。パージ動作モードでは、二方遮断弁118は、閉鎖することができ、二方遮断弁118と質量流量コントローラ114との間のガスラインのみ、排出システムを通して、排気される。
第2のガスチャネル106は、例えば、第2のガスシリンダ110’内に含まれるヘリウム等の衝突ガス、または酸素等の別の反応ガスのガス源である第2のガス源を含む。調整器112’は、第2のガスシリンダ110’の出口に連結され、質量分析計内の衝突/反応セル108に衝突ガスを提供する、質量流量コントローラ114’の入力および低圧ガスマニホールド102に好適な圧力に、出力ガス供給圧力を制御する。ユニオン継手116’は、調整器112’の出力をガスチャネル106の残りに連結する。ユニオン継手116’の出力は、第2のガスシリンダ110’をガスチャネル106の残りから隔離する、二方遮断弁118’に接続される。図1に示される第2のガスチャネル106は、衝突ガスから望ましくない分子を除去するために、常に必要ではないため、ゲッタを含まない。しかしながら、いくつかの実施形態では、ゲッタは、望ましくない分子を除去するために、第1および第2のガス供給源104、106両方内に含まれる。第2の質量流量コントローラ114’は、二方遮断弁118’に連結され、衝突/反応セル108への反応ガスの流量を測定および制御するために使用される。第2のパージ弁122’は、第2の質量流量コントローラ114’と二方遮断弁118’との間に連結され、ユーザは、第2のガスシリンダ110’からまたは二方遮断弁118’から質量流量コントローラ114’の入力へのガスラインをパージすることが可能となる。パージ弁122’の出口は、排出システムに連結される。
パージ弁122’が閉鎖されると、ガスは、パージ弁122’を通して転向されることなく、二方遮断弁118’から第2の質量流量コントローラ114’に、無制限に通過する。パージ動作モードでは、パージ弁122’は、開放され、ガスライン内のガスは、パージライン124’を通して、排出システムに排気される。パージ動作モードでは、二方遮断弁118’は、閉鎖することができ、二方遮断弁118’と質量流量コントローラ114’との間のガスラインのみ、排出システムを通して、排気される。
質量流量コントローラは、多くの場合、閉鎖出力位置に構成されると、その出力ポートを通して、ガスのある程度の漏出を被る。質量流量コントローラの製造業者は、多くの場合、下流の高真空システム内へのガスの漏出が存在しないことを保証するために、質量流量コントローラの出力の下流に、正二方遮断弁を設置することを推奨する。したがって、第2の二方遮断弁126、126’は、典型的には、第1の質量流量コントローラ114および第2の質量流量コントローラ114’それぞれの出力とガスマニホールド102の入力との間に連結される。これらの二方遮断弁126、126’は、マニホールド102へのすべてのガス流を確実に遮断し、真空チャンバ108内への漏出を防止するために必要とされる。マニホールド102の出力は、真空チャンバ壁128を通して、衝突/反応セル108内に連結される。衝突または反応ガスは、所望のガス圧力が達成されるまで、セル108内に流動する。
質量分析計のための衝突/反応セルガス送達システム100の本公知の構成では、質量流量コントローラ114、114’と第2の二方遮断弁126、126’との間に蓄積される、望ましくないガスが存在する。本望ましくないガスの蓄積は、測定を行うために、第2の二方遮断弁126、126’が開放されると、衝突/反応セル108内に望ましくない大量のガス流をもたらす。衝突/反応セル108内への大量のガス流は、時として、ガス流超過と称される。本ガス流超過の影響は、分析信号を安定化させるために要求される時間を増加させる。多くのセルベースの質量分析計器具は、ガス流超過を最小限にするために、最適セルサイズより小さいサイズを使用する。
本教示の方法および装置は、第2の二方遮断弁126、126’が開放されると、質量分析計の衝突/反応セル108内のガス流超過を低減または排除することに関する。本出願人の教示による、質量分析計の衝突/反応セルのためのガス送達システムの一側面は、質量流量コントローラ126、126’の出力とガスマニホールド102との間のガスラインをパージするために、三方弁または類似デバイスおよび/または真空システム構成を使用することである。一実施形態では、三方弁は、質量流量コントローラ114、114’の出力とガスマニホールド102の入力との間に位置付けられる。
本願の教示は、好ましいおよび例示的実施形態に従って、そのさらなる利点とともに、付随の図面と関連して検討される、以下の発明を実施するための形態により具体的に説明される。当業者は、以下に説明される図面が、例証目的にすぎないことを理解するであろう。図面は、必ずしも、正確な縮尺ではなく、代わりに、概して、本発明の原理を例証するために強調される。図面は、本出願人の教示の範囲をいかようにも限定することを意図するものではない。
図1は、質量分析計のための公知の衝突/反応セルガス送達システムを例証する。 図2は、本出願人の教示による、質量分析計のための衝突/反応セルガス送達システムを例証する。
図2は、本出願人の教示による、質量分析計のための衝突/反応セルガス送達システム200を例証する。ガス送達システム200は、図1に関連して説明された、ガス送達システム100に類似する。ガス送達システム200は、第1および第2のガス源を含む、第1のおよび第2のガスチャネル202、204を含む。例えば、本出願人の教示を例証する目的のために、第1のガス源は、アンモニア等の反応ガスを含むガスシリンダ206であり得、第2のガス源は、ヘリウム等の衝突ガスを含む第2のガスシリンダ206’であり得る。
いくつかの実施形態では、ガス送達システムは、第1および第2のガス源のうちの少なくとも1つ内にガスマニホールド(図示せず)を含む。これらの実施形態では、少なくとも2つのガスシリンダは、ガスマニホールドに連結される。例えば、第1のガス源は、少なくとも1つの衝突ガスおよび少なくとも1つの反応ガスに連結されるガスマニホールドを含むことができるか、または少なくとも2つの異なる反応ガスに連結されるガスマニホールドを含むことができる。類似設計を単一の反応または衝突ガスのために使用することができることは、当業者によって理解されるであろう。加えて、2つ超えるガスチャネルを伴う、マニホールドは、本教示に説明される概念を使用して、設計することができる。
第1の調整器208は、第1のガスシリンダ206の出口に連結され、第2の調整器208’は、第2のガスシリンダ206’の出口に連結される。調整器208、208’は、質量流量コントローラ210、210’の入力、および、質量分析計内の衝突/反応セル214に衝突および反応ガスを提供する低圧ガスマニホールド212に好適な圧力に、出力ガス供給圧力を制御する。第1のユニオン継手216は、第1の調整器208の出力を第1のガスチャネル202に連結し、第2のユニオン継手216’は、第2の調整器208’の出力を第2のガスチャネル204に連結する。第1のユニオン継手216の出力は、図1に関連して説明されるように、望ましくない分子(例えば、不純物)を除去する、ゲッタ218に連結される。第2のガスチャネル204は、衝突ガスを提供し、衝突ガスから望ましくない分子を除去するために、常に必要ではないため、ゲッタを含まない。しかしながら、いくつかの実施形態では、ゲッタは、望ましくない分子を除去するために、第1および第2のガス供給源202、204両方内に含まれる。
ゲッタ218は、第1の質量流量コントローラ210に連結される。第1のパージ弁220は、ゲッタ218と第1の質量流量コントローラ210との間に連結される。第1のパージ弁220によって、ユーザは、第1のガスシリンダ206から第1の質量流量コントローラ210の入力へのガスラインをパージ可能となる。第2のユニオン継手216’は、第2の質量流量コントローラ210’に連結される。第2のパージ弁220’は、第2のユニオン継手216’と第2の質量流量コントローラ210’との間に連結される。第2のパージ弁220’によって、ユーザは、第2のガスシリンダ206’から第2の質量流量コントローラ210’の入力へのガスラインをパージ可能となる。パージ弁220、220’の出口は、排出システムに連結される。
第1の質量流量コントローラ210の出力は、第1の三方弁222の入力に連結される。第1の三方弁222の第1の出力は、真空ポンプシステム等の真空システムに連結される。例えば、第1の三方弁222の第1の出力は、セル214を伴う質量分析計真空チャンバを排気するために使用される、粗引きポンプまたはターボ分子真空ポンプに連結することができる。要求される圧力は、例えば、1マイクロトルから最大数トルの範囲内であり得、質量分析計器具の具体的設計および三方弁222の内部漏出速度(すなわち、漏出を通して)に依存して、より高いまたはより低くあり得る。第1の三方弁222の第2の出力は、ガスマニホールド212の第1の入力等、セルの入口またはコネクタに連結することができる。
同様に、第2の質量流量コントローラ210’の出力は、第2の三方弁222’の入力に連結される。第2の三方弁222’の第1の出力は、真空システムに連結される。第2の三方弁222’の第2の出力は、ガスマニホールド212の第2の入力等、セルの入口またはコネクタに連結することができる。マニホールド212の出力は、真空チャンバ壁224を通して、衝突/反応セル214内に連結される。本出願人の教示のガス送達システムの利点の1つは、三方弁222、222’にわたる圧力差を減少させ、図1に関連して説明された二方弁126、126’と比較して、三方弁222、222’の内部漏出要件を大幅に緩和することであり得る。本圧力差の減少は、安価な三方弁の使用を可能にし得る。
本出願人の教示による、多くのセルベースの質量分析計器具では、セル214は、二重用途セルである。質量分析は、通気動作モードで行うことができ、セル214は、加圧されず、イオンは、セル214を通過し、真空チャンバ内の他のエリア内のイオンと同一圧力を被る。質量分析はまた、加圧動作モードで動作することもでき、衝突または反応ガスは、セル214を加圧することができ、イオンは、セルを通過するのに伴って、衝突または反応ガスの圧力上昇を被り得る。
通気動作モードでは、質量流量コントローラの出力210、210’からのいかなるガスも、真空システムに指向される。本動作モードでは、第1および第2の三方弁222、222’の第1の出力は、開放され、質量流量コントローラ210、210’と三方弁222、222’との間のライン内に存在し得るあらゆるガスと、第1および第2の質量流量コントローラ210、210’が、閉鎖位置に構成された場合に第1および第2の質量流量コントローラ210、210’の出力から漏出するガスとが、真空システムに連結されたガスライン226、226’を通して排気される。第1および第2の三方弁222、222’の第2の出力は、いかなるガスも、マニホールド212に流動しないように、閉鎖される。本出願人の教示の一実施形態では、第1および第2の三方弁222、222’の第1の出力は、通常、ユーザによって励起されない場合、通気動作モードである。
加圧動作モードでは、質量流量コントローラの出力210または210’(または、両方)からのガスは、ガスマニホールド212のそれぞれの入力に指向される。本動作モードでは、第1または第2の(または、両方の)三方弁222、222’の第2の出力は、開放され、ガスを質量流量コントローラ210または210’(または、両方)からマニホールド212の入力へと流動させる。本出願人の教示の一実施形態では、第1および第2の三方弁222、222’の第2の出力は、通常、ユーザが、測定を行うように、質量分析計に命令する場合のみ、ガスが、マニホールド212の入力に流動するように、ユーザによって励起されない場合は、通気動作モードで閉鎖され、励起される場合、開放される。衝突または反応ガスは、所望のガス圧力に到達するまで、真空チャンバ内のセル214内に流動し、これは、いくつかの質量分析計器具では、数ミリトルから数十ミリトルの範囲である。ガス流は、分析中、一定のままであり得るか、または種々のイオンを分析するために、ユーザによって変更することができる。ヘリウム等の衝突ガスが使用される場合、衝突ガス分子は、一定のイオンと衝突し、それによって、これらのイオンのエネルギーを低下させることができる。そのエネルギーが、衝突ガスによって低下された望ましくないイオンの伝送を防止するために、エネルギー障壁が、セル214の排出口に位置付けられ、得る。アンモニア等の反応ガスが使用される場合、反応ガス分子は、選択的に、いくつかのイオンと反応し、イオンを除去および中和することができる。
本出願人の教示による、質量分析計のための衝突/反応セルガス送達システムの利点の1つは、質量流量コントローラ210、210’の下流のガスライン内の衝突および反応ガスの内部容積を大幅に低減することができることであり得る。これらのガスライン内の衝突および反応ガスの容積の大幅な低減は、比較的に低流量において、衝突/反応セル214の充填時間を著しく改善することができ、典型的に、流量は、10mL/分未満である。したがって、本出願人の教示による、質量分析計のための衝突/反応セルガス送達システムは、特に、高速通気/加圧が、ある動作モードから別の動作モードに切り替えるために必須である用途に有用であり得る。
通気動作モードから加圧動作モードに切り替える場合、セル内側の圧力が、所望のレベルに到達するまでに、遅延が存在する。圧力上昇の間、分析信号は、安定せず、有意義なデータを取得することができない。いくつかの器具は、信号の短期間精度が、相対標準偏差(RSD)に関して3%を上回るまで、待機する。
例えば、本出願人の教示のガス送達システムは、所望の衝突または反応ガスが、セル214内に入り、セル内の衝突または反応を利用して、測定を行うための所望の圧力を達成する、通気動作モードから加圧動作モードへの切替時間を短縮することができる。加えて、本教示のガス送達システムは、所望の衝突または反応ガスが、セル214から真空ポンプシステムに排気される、加圧動作モードから通気動作モードへの切替時間を短縮することができる。これらの切替時間は、数分から、本出願人の教示のガス送達システムを使用して、10秒以下に短縮することができる。
いくつかの市販のセルベースの質量分析計と比較して、本出願人の教示のガス送達システムを使用した切替時間は、6から10倍の範囲で高速となり得る。比較的に高速の切替時間は、少なくとも部分的に、質量流量コントローラ114、114’とガスマニホールド102への入力との間の二方遮断弁126、126’(図1)が開放される場合の衝突または反応ガスの突発が存在しないために達成され得る。実際に、比較的に高速の切替時間は、比較的に高速のデータ可用性、より高い試料処理量、および分析コストの削減を伴う、セルベースの質量分析計器具をもたらすことができる。
質量流量コントローラ210、210’とガスマニホールド212の入力との間のガスライン228、228’の内径は、本出願人の教示による、ガス送達システムにおける重要なパラメータであり得る。これらのガスライン228、228’の内径が大き過ぎる場合、衝突または反応ガスが充填する死容積が大き過ぎ、その結果、セル214を充填および通気するための時間が容認可能でないほど長くかかるであろう。また、これらのガスライン228、228’の内径が小さ過ぎる場合、ガスコンダクタンスが、低く過ぎ、切替時間が、容認可能でないほど長くなるであろう。質量流量コントローラ210、210’とガスマニホールド212の入力との間のガスライン228、228’は、比較的に小さい死容積を有するが、依然として、十分なガス流動コンダクタンスを有し、迅速に、ガスラインをパージし、質量分析計の安定状態動作を迅速に達成する流量でセルを充填する内径によって、サイズ決定されることができることを発見した。これらの目標を達成することができる、ガスライン228、228’の特定の内径は、同時に、ガスライン228、228’の長さ等の質量分析計器具の物理的寸法と、ガスライン228、228’を通る衝突および反応ガスの種類ならびに流量に依存する。本教示を具現化する、一特定の質量分析計器具では、ガスライン228、228’の本内径は、30/1000〜80/1000インチの範囲内であり得る。
(均等物)
本出願人の教示は、種々の実施形態と併せて説明されるが、本出願人の教示がそのような実施形態に限定されることを意図するものではない。対照的に、本出願人の教示は、当業者によって理解されるように、教示の精神および範囲から逸脱することなく、本明細書に成され得る、種々の代替、修正、および均等物を包含する。

Claims (23)

  1. セルベースの質量分析計のためのガス送達システムであって、前記ガス送達システムは、
    a.ガス源に連結された入力を有する質量流量コントローラと、
    b.前記質量流量コントローラの出力に連結された入力と、真空システムに連結された第1の出力と、第2の出力とを有する三方弁と、
    c.質量分析計の真空チャンバ内側に位置付けられたセルと
    を含み、
    前記三方弁の第2の出力は、前記セルの入口に連結され、前記質量流量コントローラは、前記真空チャンバ内の圧力に対して前記セル内側の圧力を増加させるガスを前記セルに提供する、ガス送達システム。
  2. 前記ガスは、衝突ガスを含む、請求項1に記載のガス送達システム。
  3. 前記ガスは、反応ガスを含む、請求項1に記載のガス送達システム。
  4. 前記三方弁の第1の出力は、通常、開放されており、前記三方弁の第2の出力は、通常、閉鎖されている、請求項1に記載のガス送達システム。
  5. 前記三方弁は、電気的に制御され、前記三方弁への信号が、前記三方弁の第2の出力を開放し、前記セルにガスを提供する、請求項1に記載のガス送達システム。
  6. 前記ガス源は、複数のガスシリンダに連結されたガスマニホールドを含む、請求項1に記載のガス送達システム。
  7. 前記ガス源と前記質量流量コントローラへの入力との間に位置付けられたパージ弁をさらに含み、前記パージ弁の出力は、排出ラインの入口に連結されている、請求項1に記載のガス送達システム。
  8. 前記質量流量コントローラの出力から前記セルの入力へのガスラインは、前記ガスラインをパージし、10秒以内に前記質量分析計の安定状態動作を達成する流量によって前記セルを充填するために十分なガス流動コンダクタンスを提供する内径を有している、請求項1に記載のガス送達システム。
  9. セルベースの質量分析計のためのガス送達システムであって、前記ガス送達システムは、
    a.複数の質量流量コントローラであって、前記複数の質量流量コントローラの各々は、複数のガス源のうちのそれぞれの1つの出力に連結された入力を有している、複数の質量流量コントローラと、
    b.複数の三方弁であって、前記複数の三方弁の各々は、前記複数の質量流量コントローラのうちのそれぞれの1つの出力に連結されている入力を有し、前記複数の三方弁の各々の第1の出力は、真空システムに連結されている、複数の三方弁と、
    c.質量分析計の真空チャンバ内側に位置付けられたセルと
    を含み、
    前記複数の三方弁の各々の第2の出力は、前記セルの入口に連結され、前記複数の質量流量コントローラのうちの少なくとも1つは、前記真空チャンバ内の圧力に対して前記セル内側の圧力を増加させるガスを前記セルに提供する、ガス送達システム。
  10. 前記ガスは、衝突ガスを含む、請求項9に記載のガス送達システム。
  11. 前記ガスは、反応ガスを含む、請求項9に記載のガス送達システム。
  12. 前記複数の三方弁の第1の出力は、通常、開放されており、前記複数の三方弁の第2の出力は、通常、閉鎖されている、請求項9に記載のガス送達システム。
  13. 前記複数の三方弁は、電気的に制御され、前記複数の三方弁の各々に印加される信号が、前記第2の出力を開放し、前記セルにガスを提供する、請求項9に記載のガス送達システム。
  14. 前記複数のガス源と前記複数の質量流量コントローラの入力との間に位置付けられている少なくとも1つのパージ弁をさらに含み、前記少なくとも1つのパージ弁の出力は、排出システムに連結されている、請求項9に記載のガス送達システム。
  15. 前記複数の質量流量コントローラのうちの少なくとも1つの出力から前記セルへのガスラインは、前記ガスラインをパージし、10秒以内に前記質量分析計の安定状態動作を達成する流量によって前記セルを充填するために十分なガス流動コンダクタンスを提供する内径を有している、請求項9に記載のガス送達システム。
  16. セルベースの質量分析計にガスを送達する方法であって、前記方法は、
    a.質量流量コントローラにガスを提供することと、
    b.前記質量流量コントローラの出力から前記ガスを排気することと、
    c.前記質量流量コントローラによって、前記ガスを計測し、計測されたガスを質量分析計内側のセルに方向づけることと
    を含む、方法。
  17. 前記ガスは、反応ガスを含む、請求項16に記載の方法。
  18. 前記ガスは、衝突ガスを含む、請求項16に記載の方法。
  19. 前記反応ガスは、アンモニア、メタン、酸素、フッ化メチル、および水素のうちの少なくとも1つを含む、請求項17に記載の方法。
  20. 前記衝突ガスは、ヘリウムおよびネオンのうちの少なくとも1つを含む、請求項18に記載の方法。
  21. 前記質量流量コントローラの出力から前記セルへのガスコンダクタンスを提供することをさらに含み、前記ガスコンダクタンスは、通気セル動作モードと加圧動作モードとの間で比較的に短い切替時間を達成する、請求項16に記載の方法。
  22. 前記ガスコンダクタンスは、前記質量流量コントローラの出力と前記セルとの間で低死容積を達成する、請求項21に記載の方法。
  23. 前記ガスコンダクタンスは、10秒以内に、前記質量分析計の安定状態動作を達成する流量によって前記セルを充填するために十分な大きさである、請求項21に記載の方法。
JP2012554435A 2010-02-26 2011-02-22 質量分析計の反応および衝突セルのためのガス送達システム Pending JP2013520673A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30874810P 2010-02-26 2010-02-26
US61/308,748 2010-02-26
PCT/IB2011/000363 WO2011104611A1 (en) 2010-02-26 2011-02-22 Gas delivery system for mass spectrometer reaction and collision cells

Publications (1)

Publication Number Publication Date
JP2013520673A true JP2013520673A (ja) 2013-06-06

Family

ID=44262695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012554435A Pending JP2013520673A (ja) 2010-02-26 2011-02-22 質量分析計の反応および衝突セルのためのガス送達システム

Country Status (4)

Country Link
US (1) US8373117B2 (ja)
EP (1) EP2539917B1 (ja)
JP (1) JP2013520673A (ja)
WO (1) WO2011104611A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021031A (ja) * 2015-07-14 2017-01-26 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー ガス流の制御
JP2017133985A (ja) * 2016-01-29 2017-08-03 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. プラズマ分光分析装置
JP2020532827A (ja) * 2017-09-01 2020-11-12 パーキンエルマー・ヘルス・サイエンシーズ・カナダ・インコーポレイテッドPerkinelmer Health Sciences Canada, Inc. ガス混合物を使用してイオンを選択するシステムおよび方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190253B2 (en) 2010-02-26 2015-11-17 Perkinelmer Health Sciences, Inc. Systems and methods of suppressing unwanted ions
SG10201501031YA (en) 2010-02-26 2015-04-29 Perkinelmer Health Sci Inc Fluid chromatography injectors and injector inserts
EP2539915A4 (en) 2010-02-26 2016-08-10 Perkinelmer Health Sci Inc PLASMA MASS SPECTROMETRY WITH ION SUPPRESSION
JP5604165B2 (ja) 2010-04-19 2014-10-08 株式会社日立ハイテクノロジーズ 質量分析装置
JP5722008B2 (ja) * 2010-11-24 2015-05-20 株式会社日立国際電気 半導体デバイスの製造方法、半導体デバイス及び基板処理装置
US20140083544A1 (en) 2012-09-21 2014-03-27 Brian Chan Manifolds and methods and systems using them
US20140230910A1 (en) * 2013-02-20 2014-08-21 Agilent Technologies, Inc. Split-channel gas flow control
GB201314977D0 (en) * 2013-08-21 2013-10-02 Thermo Fisher Scient Bremen Mass spectrometer
TWI546847B (zh) * 2013-12-27 2016-08-21 日立國際電氣股份有限公司 基板處理裝置及半導體裝置的製造方法
EP3105775B1 (en) * 2014-02-14 2019-11-13 PerkinElmer Health Sciences, Inc. Systems and methods for automated optimization of a multi-mode inductively coupled plasma mass spectrometer
JP6004041B2 (ja) * 2015-05-18 2016-10-05 株式会社島津製作所 タンデム四重極型質量分析装置
JP2019035607A (ja) * 2017-08-10 2019-03-07 株式会社島津製作所 分析装置
US11275029B2 (en) * 2018-12-07 2022-03-15 Elemental Scientific Lasers, Llc Controlled separation of laser ablation sample gas for direction to multiple analytic detectors
JP2024064401A (ja) * 2022-10-28 2024-05-14 株式会社島津製作所 質量分析装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237444U (ja) * 1988-09-02 1990-03-12
JPH07272739A (ja) * 1994-03-30 1995-10-20 Osaka Gas Co Ltd 燃料電池パージ装置
JP2000036280A (ja) * 1998-07-17 2000-02-02 Shimadzu Corp イオン化装置
JP2005243426A (ja) * 2004-02-26 2005-09-08 Shimadzu Corp 質量分析装置
JP2006092980A (ja) * 2004-09-27 2006-04-06 Hitachi High-Technologies Corp 質量分析装置
US20070292991A1 (en) * 2006-06-20 2007-12-20 Lisa Edith Helberg Method for quantification of analytes in a titanium, tin or silcon tetrachloride sample
US20100178423A1 (en) * 2009-01-13 2010-07-15 Asm Japan K.K. Method for controlling flow and concentration of liquid precursor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5065794A (en) * 1990-11-26 1991-11-19 Union Carbide Industrial Gases Technology Corporation Gas flow distribution system
US5703360A (en) * 1996-08-30 1997-12-30 Hewlett-Packard Company Automated calibrant system for use in a liquid separation/mass spectrometry apparatus
US6062246A (en) * 1997-04-08 2000-05-16 Hitachi Metals Ltd. Mass flow controller and operating method thereof
WO2000063956A1 (fr) * 1999-04-20 2000-10-26 Sony Corporation Procede et dispositif pour realiser un depot de couches minces, et procede pour la production d'un dispositif a semiconducteur a couches minces
US7257987B2 (en) * 2000-01-25 2007-08-21 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University Method and apparatus for sample analysis
KR100706243B1 (ko) * 2005-02-22 2007-04-11 삼성전자주식회사 질화 텅스텐 증착 장치 및 증착 방법
CN1978701A (zh) * 2005-12-05 2007-06-13 中芯国际集成电路制造(上海)有限公司 改善介电层过程形成的集成电路的击穿电压的方法和装置
IL176724A (en) * 2006-07-06 2010-06-16 Aviv Amirav Method and apparatus for pulsed flow modulation gas chromatography mass spectrometry with supersonic molecular beams
GB0618016D0 (en) * 2006-09-13 2006-10-18 Boc Group Plc Method of recycling hydrogen
US9105457B2 (en) * 2010-02-24 2015-08-11 Perkinelmer Health Sciences, Inc. Cone-shaped orifice arrangement for inductively coupled plasma sample introduction system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237444U (ja) * 1988-09-02 1990-03-12
JPH07272739A (ja) * 1994-03-30 1995-10-20 Osaka Gas Co Ltd 燃料電池パージ装置
JP2000036280A (ja) * 1998-07-17 2000-02-02 Shimadzu Corp イオン化装置
JP2005243426A (ja) * 2004-02-26 2005-09-08 Shimadzu Corp 質量分析装置
JP2006092980A (ja) * 2004-09-27 2006-04-06 Hitachi High-Technologies Corp 質量分析装置
US20070292991A1 (en) * 2006-06-20 2007-12-20 Lisa Edith Helberg Method for quantification of analytes in a titanium, tin or silcon tetrachloride sample
US20100178423A1 (en) * 2009-01-13 2010-07-15 Asm Japan K.K. Method for controlling flow and concentration of liquid precursor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021031A (ja) * 2015-07-14 2017-01-26 サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー ガス流の制御
JP2017133985A (ja) * 2016-01-29 2017-08-03 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. プラズマ分光分析装置
JP2020532827A (ja) * 2017-09-01 2020-11-12 パーキンエルマー・ヘルス・サイエンシーズ・カナダ・インコーポレイテッドPerkinelmer Health Sciences Canada, Inc. ガス混合物を使用してイオンを選択するシステムおよび方法
JP7117371B2 (ja) 2017-09-01 2022-08-12 パーキンエルマー・ヘルス・サイエンシーズ・カナダ・インコーポレイテッド ガス混合物を使用してイオンを選択するシステムおよび方法

Also Published As

Publication number Publication date
US20110210241A1 (en) 2011-09-01
EP2539917A1 (en) 2013-01-02
EP2539917B1 (en) 2019-01-23
WO2011104611A1 (en) 2011-09-01
US8373117B2 (en) 2013-02-12

Similar Documents

Publication Publication Date Title
JP2013520673A (ja) 質量分析計の反応および衝突セルのためのガス送達システム
US8859957B2 (en) Systems and methods for sample analysis
US6806468B2 (en) Capillary ion delivery device and method for mass spectroscopy
US10304672B2 (en) Mass spectrometer, use thereof, and method for the mass spectrometric examination of a gas mixture
CA2698361C (en) Multi-pressure stage mass spectrometer and methods
US8648293B2 (en) Calibration of mass spectrometry systems
EP2710623B1 (en) System for analyzing a sample
JPH06310091A (ja) 大気圧イオン化質量分析計
EP2086000A2 (en) Methods and Apparatus for Reducing Noise in Mass Spectrometry
JP2011043495A (ja) Gc−ms分析装置
CN104966660B (zh) 一种质子转移质谱仪及其使用方法
US20160260594A1 (en) Sample Inlet and Vacuum System for Portable Mass Spectrometer
US11875982B2 (en) Multi-modal ionization for mass spectrometry
CN105390364B (zh) 可检测中性分子产物和离子产物的质谱装置及其操作方法
US9188564B2 (en) Ionisation method for a universal gas analyzer
Spesyvyi et al. In‐tube collision‐induced dissociation for selected ion flow‐drift tube mass spectrometry, SIFDT‐MS: a case study of NO+ reactions with isomeric monoterpenes
TWI700480B (zh) 將含顆粒樣品引入分析儀器之系統及使用方法
CN107706081B (zh) 质谱***、色谱-质谱***及二者的使用方法
US6147346A (en) Mass spectrometer
AU2012360196B2 (en) In situ generation of ozone for mass spectrometers
WO2007082265B1 (en) Dosing method and apparatus for low-pressure systems
US20220214307A1 (en) Ion analyzer
WO2022070584A1 (ja) 質量分析方法及び質量分析装置
JP2024064401A (ja) 質量分析装置
JPH08315767A (ja) 微量ガス分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150612