JP2013229216A - Lithium ion secondary battery and nonaqueous electrolytic solution - Google Patents

Lithium ion secondary battery and nonaqueous electrolytic solution Download PDF

Info

Publication number
JP2013229216A
JP2013229216A JP2012101273A JP2012101273A JP2013229216A JP 2013229216 A JP2013229216 A JP 2013229216A JP 2012101273 A JP2012101273 A JP 2012101273A JP 2012101273 A JP2012101273 A JP 2012101273A JP 2013229216 A JP2013229216 A JP 2013229216A
Authority
JP
Japan
Prior art keywords
carbonate
lithium ion
ion secondary
secondary battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012101273A
Other languages
Japanese (ja)
Other versions
JP5846031B2 (en
Inventor
Kenta Kotani
研太 小谷
Masahiro Tsuchiya
匡広 土屋
Yu Nishimura
悠 西村
Masahiro Shinkai
正博 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012101273A priority Critical patent/JP5846031B2/en
Publication of JP2013229216A publication Critical patent/JP2013229216A/en
Application granted granted Critical
Publication of JP5846031B2 publication Critical patent/JP5846031B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery achieving excellent initial discharge capacity as well as excellent discharge capacity at low temperatures.SOLUTION: A lithium ion secondary battery includes: a positive electrode; a negative electrode including a carbon material; and a nonaqueous electrolytic solution including an electrolyte that is dissolved in a nonaqueous solvent containing 0.1-7 mass% of a cyclic carbonate, a chain carbonate and a compound represented by the following formula (1) with respect to the nonaqueous electrolytic solution. [In the formula (1), R, R, Rand Reach independently represent hydrogen, halogen, a 1-6C alkyl group or a 1-6C alkyl group having halogen in a side chain.]

Description

本発明は、リチウムイオン二次電池及び非水電解液に関する。   The present invention relates to a lithium ion secondary battery and a non-aqueous electrolyte.

リチウムイオン二次電池はニッケルカドミウム電池、ニッケル水素電池と比べ、軽量、高容量であるため、携帯電子機器用電源として広く応用されている。またハイブリッド自動車や、電気自動車用に搭載される電源として有力な候補ともなっている。しかしながら、近年の携帯電子機器の小型化、高機能化に伴い、これらの電源となるリチウムイオン二次電池への更なる高容量化が期待されている。リチウムイオン二次電池は、主として、負極、正極、セパレータ、非水電解液から構成されており、各電池特性の更なる向上のための様々な検討がなされている。   Lithium ion secondary batteries are lighter and have higher capacity than nickel cadmium batteries and nickel metal hydride batteries, and thus are widely applied as power sources for portable electronic devices. It is also a promising candidate as a power source for hybrid vehicles and electric vehicles. However, with the recent miniaturization and higher functionality of portable electronic devices, further increase in capacity is expected for lithium ion secondary batteries serving as these power sources. Lithium ion secondary batteries are mainly composed of a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte, and various studies for further improvement of the battery characteristics have been made.

例えば、非水電解液の非水溶媒は、融点が比較的低く、導電率が比較的高く、電位窓(電気化学窓)が比較的広く、かつ、電解質を溶解したときに低温においても高いイオン伝導性を得ることが可能なものが好ましい。この観点からプロピレンカーボネートが好ましく使用されている。しかし、高結晶化した黒鉛などの炭素材を構成材料として使用した負極(アノード)を備える場合には、特に充電時において陰極(放電時において負極として機能する電極をいう。)でのプロピレンカーボネートの分解が進行する問題があった。   For example, the non-aqueous solvent of the non-aqueous electrolyte has a relatively low melting point, a relatively high conductivity, a relatively wide potential window (electrochemical window), and high ions even at low temperatures when the electrolyte is dissolved. Those capable of obtaining conductivity are preferred. From this viewpoint, propylene carbonate is preferably used. However, when a negative electrode (anode) using a carbon material such as highly crystallized graphite as a constituent material is provided, the propylene carbonate at the cathode (referred to as an electrode functioning as a negative electrode during discharge) particularly during charging. There was a problem that decomposition progressed.

プロピレンカーボネートの分解が進行するとガスが発生し、これに伴って負極の炭素材の剥がれや分解等が起こり、使用中に容量や充放電サイクル特性等の電池特性が徐々に低下する問題が起こる。また、プロピレンカーボネートの分解が進行すると分解生成物が負極に堆積し、この堆積物の影響により上述の電池特性の低下がさらに進行すると考えられる。   As the decomposition of propylene carbonate proceeds, gas is generated, and the carbon material of the negative electrode is peeled off, decomposed, and the like, and the battery characteristics such as capacity and charge / discharge cycle characteristics gradually deteriorate during use. Further, as the decomposition of propylene carbonate proceeds, decomposition products are deposited on the negative electrode, and it is considered that the above-described deterioration in battery characteristics further proceeds due to the influence of this deposit.

そこで、非水溶媒としてプロピレンカーボネートを含有する非水電解液へ1,3−プロパンスルトン、又は、1,4−ブタンスルトンを添加することにより、上記のプロピレンカーボネートの分解反応の進行を抑制することを意図した電池が提案されている(例えば、特許文献1及び特許文献2参照)。   Therefore, by adding 1,3-propane sultone or 1,4-butane sultone to a non-aqueous electrolyte containing propylene carbonate as a non-aqueous solvent, it is possible to suppress the progress of the above-described decomposition reaction of propylene carbonate. Intended batteries have been proposed (see, for example, Patent Document 1 and Patent Document 2).

特開2000−3724号公報JP 2000-3724 A 特開2000−3725号公報JP 2000-3725 A

しかしながら、上述した特許文献1及び2に記載された従来のリチウムイオン二次電池においては、炭素材を負極として使用した場合、プロピレンカーボネートの分解を抑制することで、リチウムイオン二次電池として十分な初期放電容量が得られる反面、温度特性、特に近年要求されるようになってきた低温における放電時に十分な容量を得ることができなかった。   However, in the conventional lithium ion secondary batteries described in Patent Documents 1 and 2 described above, when a carbon material is used as the negative electrode, suppressing decomposition of propylene carbonate is sufficient as a lithium ion secondary battery. While an initial discharge capacity can be obtained, a sufficient capacity cannot be obtained at the time of discharge at a low temperature, which has recently been required particularly in temperature characteristics.

本発明は、上記課題に鑑みてなされたものであり、優れた初期放電容量を有するとともに、−10℃の低温でも十分な放電容量が得られるリチウムイオン二次電池及び非水電解液を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a lithium ion secondary battery and a non-aqueous electrolyte that have an excellent initial discharge capacity and can obtain a sufficient discharge capacity even at a low temperature of −10 ° C. For the purpose.

本発明によるリチウムイオン二次電池は、正極と、炭素材を含む負極と、非水溶媒に電解質が溶解されている非水電解液と、を備え、前記非水溶媒は環状カーボネート、鎖状カーボネート、及び下記式(1)で表される化合物を含み、前記化合物を前記非水電解液に対して0.1〜7質量%含むことを特徴とする。

Figure 2013229216

[式(1)中、R、R、R、Rはそれぞれ独立で、水素、ハロゲン、炭素数1〜6のアルキル基、または側鎖にハロゲンを有する炭素数1〜6のアルキル基である。] A lithium ion secondary battery according to the present invention includes a positive electrode, a negative electrode including a carbon material, and a nonaqueous electrolytic solution in which an electrolyte is dissolved in a nonaqueous solvent. The nonaqueous solvent includes a cyclic carbonate and a chain carbonate. And a compound represented by the following formula (1), wherein the compound is contained in an amount of 0.1 to 7% by mass with respect to the non-aqueous electrolyte.
Figure 2013229216

[In the formula (1), R 1 , R 2 , R 3 and R 4 are each independently hydrogen, halogen, an alkyl group having 1 to 6 carbon atoms, or an alkyl having 1 to 6 carbon atoms having halogen in the side chain. It is a group. ]

式(1)で表される化合物は、リチウムイオン二次電池の負極と非水電解液との界面における皮膜形成に寄与し、非水溶媒の分解など副作用を抑制することで、初期放電容量、及び−10℃での十分な放電容量を実現できるものと推察する。   The compound represented by the formula (1) contributes to film formation at the interface between the negative electrode of the lithium ion secondary battery and the non-aqueous electrolyte, and suppresses side effects such as decomposition of the non-aqueous solvent. And it is assumed that a sufficient discharge capacity at −10 ° C. can be realized.

本発明のリチウムイオン二次電池は、化合物のR、R、R及びRがFであることが好ましい。 In the lithium ion secondary battery of the present invention, R 1 , R 2 , R 3 and R 4 of the compound are preferably F.

本発明のリチウムイオン二次電池は、化合物のRがCFであり、R、R及びRがFであることが好ましい。 In the lithium ion secondary battery of the present invention, it is preferable that R 1 of the compound is CF 3 and R 2 , R 3 and R 4 are F.

本発明によれば、優れた初期放電容量を有するとともに、−10℃の低温でも十分な放電容量が得られるリチウムイオン二次電池及び非水電解液を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while having the outstanding initial discharge capacity, the lithium ion secondary battery and non-aqueous electrolyte which can obtain sufficient discharge capacity also at low temperature of -10 degreeC can be provided.

リチウムイオン二次電池の模式図である。It is a schematic diagram of a lithium ion secondary battery.

以下に添付図面を参照して、本発明の好適な実施形態について説明する。ただし、本発明にかかる非水電解液及びそれを用いたリチウムイオン二次電池は、以下の実施形態に限定されるものではない。なお、図面の寸法比率は図示の比率に限られるものではない。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. However, the non-aqueous electrolyte and the lithium ion secondary battery using the same according to the present invention are not limited to the following embodiments. In addition, the dimensional ratio of drawing is not restricted to the ratio of illustration.

(リチウムイオン二次電池)
図1に、本実施形態のリチウムイオン二次電池10を模式的に示す。図1のリチウムイオン二次電池10は、リチウムイオンを吸蔵・放出する材料(正極活物質,負極活物質)を含む正極20及び負極30と、正極20と負極30との間にあって本発明に係る電解液が保持されたセパレータ40から構成されている。
(Lithium ion secondary battery)
FIG. 1 schematically shows a lithium ion secondary battery 10 of the present embodiment. The lithium ion secondary battery 10 in FIG. 1 is between the positive electrode 20 and the negative electrode 30 including materials (positive electrode active material, negative electrode active material) that occlude / release lithium ions, and between the positive electrode 20 and the negative electrode 30 and is related to the present invention. It is comprised from the separator 40 with which electrolyte solution was hold | maintained.

(負極)
負極30は、負極集電体32の両面に負極活物質層31を備えて構成されている。さらに負極活物質層31は、負極活物質材料と、導電助剤と、結着剤とを含む塗料を負極集電体に塗布することによって形成されている。
(Negative electrode)
The negative electrode 30 includes a negative electrode active material layer 31 on both sides of a negative electrode current collector 32. Further, the negative electrode active material layer 31 is formed by applying a paint containing a negative electrode active material, a conductive additive, and a binder to the negative electrode current collector.

負極活物質材料は、天然黒鉛、人造黒鉛(難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等)等の炭素材の中から選ばれる少なくとも1種を含んでいる。
炭素材の層間距離d002が0.335〜0.338nmであり、かつ、炭素材の結晶子の大きさLc002が30〜120nmであるものが負極としての容量が大きく、サイクル特性も良好なため好ましい。このような条件を満たす炭素材としては、人造黒鉛、MCF(メソカーボンファイバ)等が挙げられる。なお、前記層間距離d002及び結晶子の大きさLc002は、X線回折法により求めることができる。
その他、例えば、Al、Si、Sn等のリチウムと化合物を形成することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)など公知の負極活物質材料を炭素材と混合させて使用してもよい。
The negative electrode active material includes at least one selected from carbon materials such as natural graphite and artificial graphite (non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, etc.).
A carbon material having an interlayer distance d002 of 0.335 to 0.338 nm and a carbon material crystallite size Lc002 of 30 to 120 nm is preferable because of its large capacity as a negative electrode and good cycle characteristics. . Examples of the carbon material satisfying such conditions include artificial graphite and MCF (mesocarbon fiber). The interlayer distance d002 and the crystallite size Lc002 can be obtained by an X-ray diffraction method.
In addition, for example, a metal capable of forming a compound with lithium such as Al, Si and Sn, an amorphous compound mainly composed of an oxide such as SiO 2 and SnO 2 , lithium titanate (Li 4 Ti 5 O A known negative electrode active material such as 12 ) may be mixed with a carbon material.

導電助剤は特に限定されず、公知の導電助剤を使用できる。例えば、カーボンブラックのような熱分解炭素、コークス類、ガラス状炭素類、有機高分子化合物焼成材料、炭素繊維あるいは活性炭などの炭素材が挙げられる。また、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛などの負極活物質材料を、形状を変えて使用してもよい。   The conductive auxiliary agent is not particularly limited, and a known conductive auxiliary agent can be used. Examples thereof include carbon materials such as pyrolytic carbon such as carbon black, cokes, glassy carbons, organic polymer compound fired materials, carbon fibers, and activated carbon. In addition, negative electrode active material such as non-graphitizable carbon, graphitizable carbon, and graphite may be used in different shapes.

カーボンブラックとしては、特に、アセチレンブラック、ケッチェンブラック等が好ましく、ケッチェンブラックが特に好ましい。電子伝導性の多孔体を含有させることにより負極活物質材料の粒子と結着剤の界面に空孔を形成でき、その空孔により負極活物質層31への非水電解液の染み込みを容易にすることができるので好ましい。   As carbon black, acetylene black, ketjen black and the like are particularly preferable, and ketjen black is particularly preferable. By including an electron conductive porous body, pores can be formed at the interface between the particles of the negative electrode active material and the binder, and the penetration of the non-aqueous electrolyte into the negative electrode active material layer 31 is facilitated by the pores. This is preferable.

結着剤は、上記の負極活物質材料の粒子と導電助剤の粒子とを結着可能なものであれば特に限定されない。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。また、この結着剤は、上記の負極活物質材料の粒子と導電助剤の粒子との結着のみならず、負極集電体32への結着に対しても寄与している。   The binder is not particularly limited as long as it can bind the particles of the negative electrode active material and the particles of the conductive additive. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), ethylene-tetrafluoro Examples thereof include fluorine resins such as ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE), and polyvinyl fluoride (PVF). Further, this binder contributes not only to the binding of the particles of the negative electrode active material and the particles of the conductive additive, but also to the binding to the negative electrode current collector 32.

負極集電体32は、リチウムイオン二次電池用の集電体に使用されている各種公知の金属箔を用いることができる。具体的には、銅箔を用いることが好ましい。   As the negative electrode current collector 32, various known metal foils used in current collectors for lithium ion secondary batteries can be used. Specifically, it is preferable to use a copper foil.

(正極)
正極20は、正極集電体22の両面に正極活物質層21を備えて構成されている。さらに正極活物質層21は、正極活物質材料と、導電助剤と、結着剤とを含む塗料を正極集電体22に塗布することによって形成されている。
(Positive electrode)
The positive electrode 20 includes a positive electrode active material layer 21 on both surfaces of a positive electrode current collector 22. Further, the positive electrode active material layer 21 is formed by applying a coating material including a positive electrode active material, a conductive additive, and a binder to the positive electrode current collector 22.

正極活物質材料は、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンと該リチウムイオンのカウンターアニオン(例えば、ClO4−)とのドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の正極活物質材料を使用できる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMn(x+y+z=1)で表される複合金属酸化物、リチウムバナジウム化合物(LiV5、LiVPO、LiV(PO、LiVOPO)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、FeまたはVを示す)、チタン酸リチウム(LiTi12)等の複合金属酸化物が挙げられる。 The positive electrode active material is composed of lithium ion occlusion and release, lithium ion desorption and insertion (intercalation), or doping and dedoping of a lithium ion and a counter anion of the lithium ion (for example, ClO 4− ). Is not particularly limited as long as it can be reversibly advanced, and a known positive electrode active material can be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and a general formula: LiNi x Co y Mn z O 2 (x + y + z = 1) Composite metal oxides, lithium vanadium compounds (LiV 2 O 5, LiVPO 4 , LiV 2 (PO 4 ) 3 , LiVOPO 4 ), olivine-type LiMPO 4 (where M represents Co, Ni, Mn, Fe or V) ) And composite metal oxides such as lithium titanate (Li 4 Ti 5 O 12 ).

更に、正極活物質材料以外の各構成要素(導電助剤、結着剤)は、負極30で使用されるものと同様の物質を使用することができる。したがって、正極20に含まれる結着剤も、上記の正極活物質材料の粒子と導電助剤の粒子との結着のみならず、正極集電体22への結着に対しても寄与している。   Furthermore, the same material as that used in the negative electrode 30 can be used for each constituent element (conductive aid and binder) other than the positive electrode active material. Therefore, the binder contained in the positive electrode 20 contributes not only to the binding of the particles of the positive electrode active material and the particles of the conductive additive, but also to the binding to the positive electrode current collector 22. Yes.

正極集電体22は、リチウムイオン二次電池用の集電体に使用されている各種公知の金属箔を用いることができる。具体的には、アルミニウム箔を用いることが好ましい。   As the positive electrode current collector 22, various known metal foils used for current collectors for lithium ion secondary batteries can be used. Specifically, it is preferable to use an aluminum foil.

(セパレータ)
セパレータ40は絶縁性の多孔体から形成されていれば、材料、製法等は特に限定されず、公知のリチウムイオン二次電池に用いられているセパレータを使用することができる。例えば、絶縁性の多孔体としては、公知のポリオレフィン樹脂、具体的にはポリエチレン、ポリプロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどを重合した結晶性の単独重合体または共重合体が挙げられる。これらの単独重合体または共重合体は、1種を単独で使用することができるが、2種以上のものを混合して用いてもよい。また、単層であっても複層であってもよい。
(Separator)
As long as the separator 40 is formed of an insulating porous material, the material, the manufacturing method, and the like are not particularly limited, and a separator used in a known lithium ion secondary battery can be used. For example, as the insulating porous material, a known polyolefin resin, specifically, a crystalline homopolymer or copolymer obtained by polymerizing polyethylene, polypropylene, 1-butene, 4-methyl-1-pentene, 1-hexene, or the like. A polymer is mentioned. These homopolymers or copolymers can be used alone or in combination of two or more. Further, it may be a single layer or a multilayer.

(非水電解液)
非水電解液は、非水溶媒に電解質が溶解されている。非水溶媒として、環状カーボネート、鎖状カーボネート、及び下記式(1)で表される化合物を含み、この化合物を前記非水電解液に対して0.1〜7質量%含むことを特徴とする。

Figure 2013229216

[式(1)中、R、R、R、Rはそれぞれ独立で、水素、ハロゲン、炭素数1〜6のアルキル基、または側鎖にハロゲンを有する炭素数1〜6のアルキル基である。] (Nonaqueous electrolyte)
In the nonaqueous electrolytic solution, an electrolyte is dissolved in a nonaqueous solvent. As a non-aqueous solvent, a cyclic carbonate, a chain carbonate, and a compound represented by the following formula (1) are included, and this compound is included in an amount of 0.1 to 7% by mass with respect to the non-aqueous electrolyte. .
Figure 2013229216

[In the formula (1), R 1 , R 2 , R 3 and R 4 are each independently hydrogen, halogen, an alkyl group having 1 to 6 carbon atoms, or an alkyl having 1 to 6 carbon atoms having halogen in the side chain. It is a group. ]

式(1)で表される化合物は、炭素材を有する負極表面での皮膜形成に寄与し、非水溶媒を構成する化合物の不必要な重合や分解を抑制する効果があると考えられる。また、非水電解液の融点を下げ、低温における非水電解液の粘度上昇を抑制する効果もあると考えられる。   The compound represented by Formula (1) contributes to film formation on the surface of the negative electrode having a carbon material, and is considered to have an effect of suppressing unnecessary polymerization and decomposition of the compound constituting the nonaqueous solvent. It is also considered that there is an effect of lowering the melting point of the non-aqueous electrolyte and suppressing an increase in the viscosity of the non-aqueous electrolyte at a low temperature.

式(1)で表される化合物は含有量が0.1質量%以上存在すると強固な被膜形成ができ、特に高温保存時には容量維持が可能になる。また、式(1)で表される化合物の含有量を7質量%以内に抑えることでインピーダンスの増大を抑え、十分な電池容量が得ることができる。   When the content of the compound represented by the formula (1) is 0.1% by mass or more, a strong film can be formed, and the capacity can be maintained particularly at high temperature storage. Further, by suppressing the content of the compound represented by the formula (1) within 7% by mass, an increase in impedance can be suppressed, and a sufficient battery capacity can be obtained.

式(1)で表される化合物の例としては、次のようなものが考えられる。表1にR、R、R及びRの組み合わせを列挙した。 Examples of the compound represented by the formula (1) are as follows. Table 1 lists the combinations of R 1 , R 2 , R 3 and R 4 .

Figure 2013229216
Figure 2013229216

具体的には、R、R、R、RがすべてFとなる化合物が好ましい例として挙げられる。この化合物は、融点が−30℃以下と低く、低温においても粘度の上昇が少ない。そのため、この化合物を含むリチウムイオン二次電池は、低温でもある程度非水電解液のイオン伝導性を確保でき、十分な放電容量を示すことができる。非水電解液全体を100質量%としたときに、0.5〜5質量%含まれていることが好ましく、1〜3質量%含まれていることが特に好ましい。 Specifically, preferred examples include compounds in which R 1 , R 2 , R 3 , and R 4 are all F. This compound has a low melting point of −30 ° C. or less, and its viscosity does not increase even at low temperatures. Therefore, the lithium ion secondary battery containing this compound can secure the ion conductivity of the non-aqueous electrolyte to some extent even at a low temperature, and can exhibit a sufficient discharge capacity. When the total amount of the non-aqueous electrolyte is 100% by mass, the content is preferably 0.5 to 5% by mass, and particularly preferably 1 to 3% by mass.

もう1つの好ましい例として、RがCFであり、R、R及びRがFとなる化合物が挙げられる。この化合物も融点が低く、低温において粘度上昇が少ないため、低温でも特性を発揮することができる。非水電解液全体を100質量%としたときに0.1〜3質量%含まれていることが好ましく、0.5〜2質量%含まれていることが特に好ましい。 Another preferred example is a compound in which R 1 is CF 3 and R 2 , R 3 and R 4 are F. Since this compound also has a low melting point and little increase in viscosity at low temperatures, it can exhibit properties even at low temperatures. When the total amount of the non-aqueous electrolyte is 100% by mass, the content is preferably 0.1 to 3% by mass, and particularly preferably 0.5 to 2% by mass.

非水溶媒中の環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネートやブチレンカーボネートが挙げられる。中でもエチレンカーボネートを含むことが好ましく、プロピレンカーボネートやブチレンカーボネートと混合して使用してもよい。   Examples of the cyclic carbonate in the non-aqueous solvent include ethylene carbonate, propylene carbonate, and butylene carbonate. Among them, it is preferable to contain ethylene carbonate, and it may be used by mixing with propylene carbonate or butylene carbonate.

また、鎖状カーボネートとしては、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが挙げられ、この中から選ばれる1種または2種以上を含むことが好ましい。その他、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタンなどを混合して使用してもよい。   Examples of the chain carbonate include diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate, and it is preferable to include one or more selected from these. In addition, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, and the like may be mixed and used.

非水溶媒中の環状カーボネートと鎖状カーボネートの割合は体積にして3:7〜1:1にすることが好ましい。   The ratio of the cyclic carbonate and the chain carbonate in the non-aqueous solvent is preferably 3: 7 to 1: 1 in terms of volume.

電解質は、導電性の観点から、特にLiPFを含むことが好ましい。LiClO、LiBF、LiAsF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)などの電解質を複数種混合して用いてもよい。 In particular, the electrolyte preferably contains LiPF 6 from the viewpoint of conductivity. LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 A plurality of electrolytes such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ) and LiN (CF 3 CF 2 CO) 2 may be mixed and used.

LiPFを非水溶媒に溶解する際は、非水電解液中の溶質の濃度を、0.5〜2.0mol/Lに調整することが好ましい。電解質の濃度が0.5mol/L以上であると、非水電解液の導電性を充分に確保することができ、充放電時に十分な容量が得られやすい。また、電解質の濃度が2.0mol/L以内に抑えることで、非水電解液の粘度が過度に大きくならず、リチウムイオンの移動度を充分に確保することができるため、充放電時に十分な容量が得られやすくなる。 When LiPF 6 is dissolved in a non-aqueous solvent, the concentration of the solute in the non-aqueous electrolyte is preferably adjusted to 0.5 to 2.0 mol / L. When the concentration of the electrolyte is 0.5 mol / L or more, the conductivity of the nonaqueous electrolytic solution can be sufficiently secured, and a sufficient capacity can be easily obtained during charging and discharging. In addition, by suppressing the electrolyte concentration to within 2.0 mol / L, the viscosity of the non-aqueous electrolyte does not become excessively large and the mobility of lithium ions can be sufficiently secured. Capacity becomes easy to be obtained.

LiPFをその他の電解質と混合する場合にも、非水電解液中のリチウムイオン濃度が0.5〜2.0mol/Lに調整することが好ましく、LiPFからのリチウムイオン濃度がその50mol%以上含まれることがさらに好ましい。 Even when LiPF 6 is mixed with another electrolyte, the lithium ion concentration in the non-aqueous electrolyte is preferably adjusted to 0.5 to 2.0 mol / L, and the lithium ion concentration from LiPF 6 is 50 mol%. More preferably, it is contained.

本発明の非水電解液は、二次電池の構成部材、特にリチウムイオン二次電池の構成部材として好適に使用される。リチウムイオン二次電池を構成する非水電解液以外の構成部材については特に限定されず、従来使用されている種々の構成部材を使用できる。   The non-aqueous electrolyte of the present invention is suitably used as a constituent member of a secondary battery, particularly as a constituent member of a lithium ion secondary battery. The constituent members other than the non-aqueous electrolyte constituting the lithium ion secondary battery are not particularly limited, and various conventionally used constituent members can be used.

以下、実施例及び比較例を挙げて本発明について更に詳しく説明するが、本発明はこれらの実施例に何ら限定されない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in more detail, this invention is not limited to these Examples at all.

(実施例1)
以下に示す手順により実施例1〜14、比較例1〜4リチウムイオン二次電池を作製した。
先ず、負極を作製した。負極の作製においては、負極活物質材料として人造黒鉛(90質量%)、導電助剤としてカーボンブラック(2質量%)、結着剤としてポリフッ化ビニリデン(PVDF)(8質量%)を混合し、溶剤のN−メチル−2−ピロリドン(NMP)中に分散させ、スラリーを得た。得られたスラリーをドクターブレード法により集電体である電解銅箔に塗布し、110℃で乾燥させた。乾燥後に圧延を行い、負極を得た。
Example 1
Examples 1 to 14 and Comparative Examples 1 to 4 lithium ion secondary batteries were prepared according to the following procedure.
First, a negative electrode was produced. In the production of the negative electrode, artificial graphite (90% by mass) as a negative electrode active material, carbon black (2% by mass) as a conductive additive, and polyvinylidene fluoride (PVDF) (8% by mass) as a binder are mixed. A slurry was obtained by dispersing in N-methyl-2-pyrrolidone (NMP) as a solvent. The obtained slurry was applied to an electrolytic copper foil as a current collector by a doctor blade method and dried at 110 ° C. After drying, rolling was performed to obtain a negative electrode.

次に、正極を作製した。正極の作製においても、正極活物質材料としてLiNi1/3Co1/3Mn1/3(90質量%)、導電助剤としてカーボンブラック(6質量%)、結着剤としてPVDF(4質量%)を混合し、NMP中に分散させ、スラリーを得た。得られたスラリーを集電体であるアルミニウム箔に塗布して乾燥させ、圧延を行い、正極を得た。 Next, a positive electrode was produced. Also in the production of the positive electrode, LiNi 1/3 Co 1/3 Mn 1/3 O 2 (90% by mass) as the positive electrode active material, carbon black (6% by mass) as the conductive additive, and PVDF (4 as the binder) (Mass%) was mixed and dispersed in NMP to obtain a slurry. The obtained slurry was applied to an aluminum foil as a current collector, dried, rolled, and a positive electrode was obtained.

次に、非水電解液を調製した。非水溶媒としてエチレンカーボネート、ジエチルカーボネートを体積比3:7で混合した中に、電解質としてLiPFを1.0mol/Lの割合で添加した。更に、この溶液に対して、式(1)でR、R、R、RがFとなる化合物(以下T1と略す。)を非水電解液に対して0.1質量%になるよう添加して非水電解液を得た。 Next, a non-aqueous electrolyte was prepared. While mixing ethylene carbonate and diethyl carbonate as a non-aqueous solvent at a volume ratio of 3: 7, LiPF 6 was added as an electrolyte at a rate of 1.0 mol / L. Furthermore, the compound (hereinafter abbreviated as T1) in which R 1 , R 2 , R 3 , and R 4 are F in Formula (1) is 0.1% by mass with respect to the non-aqueous electrolyte. This was added to obtain a non-aqueous electrolyte.

得られた負極及び正極の間にポリエチレンからなるセパレータを挟んで積層し積層体(素体)を得た。得られた積層体をアルミラミネートパックに入れ、このアルミラミネートパックに非水電解液を注入した後に真空シールし、リチウムイオン二次電池(縦:60mm、横:85mm、厚さ:3mm)を作製した。なお、アルミラミネートパックのフィルムには、非水電解液に接触する合成樹脂製の最内部の層(変性ポリプロピレンからなる層)、アルミニウム箔からなる金属層、ポリアミドからなる層がこの順で順次積層された積層体を使用した。そして、この複合包装フィルムを2枚重ね合せてその縁部を熱圧着して作製した。   A laminated body (element body) was obtained by laminating a separator made of polyethylene between the obtained negative electrode and positive electrode. The obtained laminate is placed in an aluminum laminate pack, a non-aqueous electrolyte is injected into the aluminum laminate pack, and then vacuum-sealed to produce a lithium ion secondary battery (length: 60 mm, width: 85 mm, thickness: 3 mm). did. In addition, on the film of the aluminum laminate pack, the innermost layer (layer made of modified polypropylene) made of synthetic resin that comes into contact with the non-aqueous electrolyte, the metal layer made of aluminum foil, and the layer made of polyamide are sequentially laminated in this order. The laminated body used was used. And two sheets of this composite packaging film were piled up, and the edge part was produced by thermocompression bonding.

(実施例2〜14及び比較例1〜4)
非水溶媒の組み合わせと塩濃度、非水電解液に添加する化合物の種類及び添加量を表2示すように変えた以外は、実施例1と同様にして実施例2〜14及び比較例1〜4のリチウムイオン二次電池を作製した。なお、表2中、「EC」はエチレンカーボネートを、「DEC」はジエチルカーボネートを、「EMC」はエチルメチルカーボネートを、「PC」はプロピレンカーボネートを表し、T2は式(1)でRがCFであり、R、R及びRがFで表される化合物を示す。
(Examples 2-14 and Comparative Examples 1-4)
Examples 2 to 14 and Comparative Examples 1 to 1 were the same as Example 1 except that the combination and salt concentration of the nonaqueous solvent, the type and amount of the compound added to the nonaqueous electrolyte were changed as shown in Table 2. No. 4 lithium ion secondary battery was produced. In Table 2, “EC” represents ethylene carbonate, “DEC” represents diethyl carbonate, “EMC” represents ethyl methyl carbonate, “PC” represents propylene carbonate, T2 represents formula (1), and R 1 represents CF 3 is a compound in which R 2 , R 3 and R 4 are represented by F.

得られた実施例1〜14及び比較例1〜3のリチウムイオン二次電池を用いて、各電池特性を評価した。   Each battery characteristic was evaluated using the obtained lithium ion secondary battery of Examples 1-14 and Comparative Examples 1-3.

(初期放電容量評価試験)
リチウムイオン二次電池作製後、恒温槽にて25℃に設定された環境下で充電を行い、その直後に放電を行った。なお、充電は30mAで4.2Vまで定電流定電圧充電を行い、放電は30mAで2.5Vまで定電流放電を行った。このときのリチウムイオン二次電池全体の放電容量(mAh)を初期放電容量とし、その結果を表2に示す。実施例に示すリチウムイオン二次電池は、いずれもT1またはT2を添加しない場合と比較して、25℃において大きな放電容量を示し、いずれも放電容量が実用的に十分なものであることが確認できた。
(Initial discharge capacity evaluation test)
After the production of the lithium ion secondary battery, the battery was charged in an environment set at 25 ° C. in a thermostatic chamber, and discharged immediately thereafter. The charging was performed at a constant current and constant voltage up to 4.2 V at 30 mA, and the discharging was performed at a constant current of 2.5 mA at 30 mA. The discharge capacity (mAh) of the entire lithium ion secondary battery at this time was defined as the initial discharge capacity, and the results are shown in Table 2. The lithium ion secondary batteries shown in the examples all show a large discharge capacity at 25 ° C. compared to the case where T1 or T2 is not added, and it is confirmed that the discharge capacity is practically sufficient. did it.

(放電温度特性評価試験)
初期放電容量評価試験後、リチウムイオン二次電池を入れた恒温槽の温度を−10℃に設定し、2時間待機した後、その温度において充放電を行った。なお、充電は30mAで4.2Vまで定電流定電圧充電を行い、放電は30mAで2.5Vまで定電流放電を行った。表2には、−10℃における放電容量を25℃における放電容量で除した容量保持率を記す。T1、またはT2を0.1〜7質量%含む非水電解液を用いたことにより、−10℃における放電容量の増加が確認された。
(Discharge temperature characteristic evaluation test)
After the initial discharge capacity evaluation test, the temperature of the thermostatic chamber containing the lithium ion secondary battery was set to −10 ° C., and after waiting for 2 hours, charging and discharging were performed at that temperature. The charging was performed at a constant current and constant voltage up to 4.2 V at 30 mA, and the discharging was performed at a constant current of 2.5 mA at 30 mA. Table 2 shows the capacity retention ratio obtained by dividing the discharge capacity at −10 ° C. by the discharge capacity at 25 ° C. An increase in discharge capacity at −10 ° C. was confirmed by using a nonaqueous electrolytic solution containing 0.1 to 7 mass% of T1 or T2.

Figure 2013229216
Figure 2013229216

10 リチウムイオン二次電池、20 正極、21 正極活物質層、22 正極集電体、30 負極、31 負極活物質層、32 負極集電体、40 セパレータ 10 lithium ion secondary battery, 20 positive electrode, 21 positive electrode active material layer, 22 positive electrode current collector, 30 negative electrode, 31 negative electrode active material layer, 32 negative electrode current collector, 40 separator

Claims (8)

正極と、
炭素材を含む負極と、
非水溶媒に電解質が溶解されている非水電解液と、を備え、
前記非水溶媒は環状カーボネート、鎖状カーボネート、及び下記式(1)で表される化合物を含み、前記化合物を前記非水電解液に対して0.1〜7質量%含むことを特徴とするリチウムイオン二次電池。
Figure 2013229216

[式(1)中、R、R、R、Rはそれぞれ独立で、水素、ハロゲン、炭素数1〜6のアルキル基、または側鎖にハロゲンを有する炭素数1〜6のアルキル基である。]
A positive electrode;
A negative electrode containing a carbon material;
A non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent, and
The non-aqueous solvent contains a cyclic carbonate, a chain carbonate, and a compound represented by the following formula (1), and contains 0.1 to 7% by mass of the compound with respect to the non-aqueous electrolyte. Lithium ion secondary battery.
Figure 2013229216

[In the formula (1), R 1 , R 2 , R 3 and R 4 are each independently hydrogen, halogen, an alkyl group having 1 to 6 carbon atoms, or an alkyl having 1 to 6 carbon atoms having halogen in the side chain. It is a group. ]
前記化合物は、R、R、R及びRがFであることを特徴とする請求項1に記載のリチウムイオン二次電池。 2. The lithium ion secondary battery according to claim 1 , wherein in the compound, R 1 , R 2 , R 3, and R 4 are F. 3 . 前記化合物は、RがCFであり、R、R及びRがFであることを特徴とする請求項1に記載のリチウムイオン二次電池。 2. The lithium ion secondary battery according to claim 1, wherein R 1 is CF 3 , and R 2 , R 3, and R 4 are F. 前記環状カーボネートはエチレンカーボネートを含み、
前記鎖状カーボネートはジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートから選ばれる少なくとも1つのカーボネートを含み、
前記電解質はLiPFを含むことを特徴とする請求項1から3いずれかに記載のリチウムイオン二次電池。
The cyclic carbonate includes ethylene carbonate,
The chain carbonate includes at least one carbonate selected from diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate,
The lithium ion secondary battery according to claim 1, wherein the electrolyte contains LiPF 6 .
非水溶媒に電解質が溶解されている非水電解液であって、
環状カーボネート、鎖状カーボネート、及び下記式(1)で表される化合物を含み、前記化合物を0.1〜7質量%含むことを特徴とする非水電解液。
Figure 2013229216

[式(1)中、R、R、R、Rはそれぞれ独立で、水素、ハロゲン、炭素数1〜6のアルキル基、または側鎖にハロゲンを有する炭素数1〜6のアルキル基である。]
A non-aqueous electrolyte in which an electrolyte is dissolved in a non-aqueous solvent,
A nonaqueous electrolytic solution comprising a cyclic carbonate, a chain carbonate, and a compound represented by the following formula (1), and containing 0.1 to 7% by mass of the compound.
Figure 2013229216

[In the formula (1), R 1 , R 2 , R 3 and R 4 are each independently hydrogen, halogen, an alkyl group having 1 to 6 carbon atoms, or an alkyl having 1 to 6 carbon atoms having halogen in the side chain. It is a group. ]
前記化合物は、R、R、R及びRがFであることを特徴とする請求項5に記載の非水電解液。 The non-aqueous electrolyte according to claim 5, wherein R 1 , R 2 , R 3 and R 4 are F in the compound. 前記化合物は、RがCFであり、R、R及びRがFであることを特徴とする請求項5に記載の非水電解液。 The non-aqueous electrolyte according to claim 5, wherein R 1 is CF 3 and R 2 , R 3, and R 4 are F. 前記環状カーボネートはエチレンカーボネートを含み、
前記鎖状カーボネートはジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートから選ばれる少なくとも1つのカーボネートを含み、
前記電解質はLiPFを含むことを特徴とする請求項5から7のいずれかに記載の非水電解液。
The cyclic carbonate includes ethylene carbonate,
The chain carbonate includes at least one carbonate selected from diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate,
The non-aqueous electrolyte according to claim 5, wherein the electrolyte contains LiPF 6 .
JP2012101273A 2012-04-26 2012-04-26 Lithium ion secondary battery and non-aqueous electrolyte Expired - Fee Related JP5846031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012101273A JP5846031B2 (en) 2012-04-26 2012-04-26 Lithium ion secondary battery and non-aqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012101273A JP5846031B2 (en) 2012-04-26 2012-04-26 Lithium ion secondary battery and non-aqueous electrolyte

Publications (2)

Publication Number Publication Date
JP2013229216A true JP2013229216A (en) 2013-11-07
JP5846031B2 JP5846031B2 (en) 2016-01-20

Family

ID=49676654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012101273A Expired - Fee Related JP5846031B2 (en) 2012-04-26 2012-04-26 Lithium ion secondary battery and non-aqueous electrolyte

Country Status (1)

Country Link
JP (1) JP5846031B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134986A (en) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10930976B2 (en) 2018-03-16 2021-02-23 Toyota Jidosha Kabushiki Kaisha Electrolyte solution and lithium ion battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157900A (en) * 2001-11-19 2003-05-30 Sony Corp Battery
JP2004047131A (en) * 2002-07-08 2004-02-12 Sony Corp Nonaqueous electrolyte battery
JP2005353579A (en) * 2004-05-11 2005-12-22 Denso Corp Non-aqueous electrolytic liquid composition and non-aqueous electrolytic liquid secondary battery using this composition
JP2006344390A (en) * 2005-06-07 2006-12-21 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2008181884A (en) * 2008-02-18 2008-08-07 Sony Corp Nonaqueous electrolyte battery
JP2008282613A (en) * 2007-05-09 2008-11-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JP2009104838A (en) * 2007-10-22 2009-05-14 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2010530118A (en) * 2007-06-15 2010-09-02 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device including the same
JP2011086632A (en) * 2010-12-21 2011-04-28 Hitachi Maxell Ltd Nonaqueous electrolytic solution secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157900A (en) * 2001-11-19 2003-05-30 Sony Corp Battery
JP2004047131A (en) * 2002-07-08 2004-02-12 Sony Corp Nonaqueous electrolyte battery
JP2005353579A (en) * 2004-05-11 2005-12-22 Denso Corp Non-aqueous electrolytic liquid composition and non-aqueous electrolytic liquid secondary battery using this composition
JP2006344390A (en) * 2005-06-07 2006-12-21 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2008282613A (en) * 2007-05-09 2008-11-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic secondary battery
JP2010530118A (en) * 2007-06-15 2010-09-02 エルジー・ケム・リミテッド Non-aqueous electrolyte and electrochemical device including the same
JP2009104838A (en) * 2007-10-22 2009-05-14 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2008181884A (en) * 2008-02-18 2008-08-07 Sony Corp Nonaqueous electrolyte battery
JP2011086632A (en) * 2010-12-21 2011-04-28 Hitachi Maxell Ltd Nonaqueous electrolytic solution secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134986A (en) * 2016-01-27 2017-08-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10930976B2 (en) 2018-03-16 2021-02-23 Toyota Jidosha Kabushiki Kaisha Electrolyte solution and lithium ion battery

Also Published As

Publication number Publication date
JP5846031B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
KR102069213B1 (en) Method for preparing lithium secondary battery having high-temperature storage properties
JP5664685B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
KR101678798B1 (en) Method for producing nonaqueous electrolyte secondary battery
JP2008097879A (en) Lithium ion secondary battery
JP2014049294A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
KR102206590B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
JP6484995B2 (en) Lithium ion secondary battery
US20170317383A1 (en) Lithium-ion secondary battery
JP2016085836A (en) Nonaqueous liquid electrolyte for lithium ion secondary batteries, and lithium ion secondary battery
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5708597B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP7250401B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP5614433B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5846031B2 (en) Lithium ion secondary battery and non-aqueous electrolyte
JP2016085837A (en) Lithium ion secondary battery
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
JP5655828B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5708598B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP6031965B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
KR102132878B1 (en) Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same
WO2015037522A1 (en) Nonaqueous secondary battery
JP2015125949A (en) Lithium ion secondary battery
JP5614432B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
WO2020213268A1 (en) Nonaqueous electrolytic solution, nonvolatile electrolyte, and secondary battery
US10944098B2 (en) Negative electrode active material particle, negative electrode, lithium-ion secondary battery, and production method of negative electrode active material particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5846031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees