JP2013191524A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013191524A
JP2013191524A JP2012058958A JP2012058958A JP2013191524A JP 2013191524 A JP2013191524 A JP 2013191524A JP 2012058958 A JP2012058958 A JP 2012058958A JP 2012058958 A JP2012058958 A JP 2012058958A JP 2013191524 A JP2013191524 A JP 2013191524A
Authority
JP
Japan
Prior art keywords
electrolyte secondary
secondary battery
electrode group
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012058958A
Other languages
Japanese (ja)
Other versions
JP6021367B2 (en
Inventor
Masanori Tanaka
政典 田中
Hidesato Saruwatari
秀郷 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012058958A priority Critical patent/JP6021367B2/en
Publication of JP2013191524A publication Critical patent/JP2013191524A/en
Application granted granted Critical
Publication of JP6021367B2 publication Critical patent/JP6021367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having a gas adsorbent exhibiting a high adsorption ability over a wide pressure range.SOLUTION: The nonaqueous electrolyte secondary battery includes an electrode group in which positive electrodes and negative electrodes are arranged with a separator interposed therebetween, a battery container for housing the electrode group, an insulation member for insulating between the positive and negative electrodes of the electrode group and the battery container, and a nonaqueous electrolyte for wetting the electrode group housed in the battery container. The insulation member contains a gas adsorbent having more than one maximum value in the range of 0.2-1.5 nm of pore size distribution.

Description

本発明の実施形態は、非水電解質二次電池に関する。   Embodiments described herein relate generally to a non-aqueous electrolyte secondary battery.

近年、急速に普及しているハイブリッド電気自動車、プラグイン電気自動車等の電気自動車の電源には、充放電可能な直方体状の非水電解質二次電池、例えばリチウムイオン二次電池が主として用いられている。リチウムイオン二次電池は、正極と負極とをセパレータを介して捲回または積層した電極群と、電極群を収容する電池容器(ケース)と、電池容器に収容された電極群を浸潤する非水電解液とを有する。電池容器は、たとえばアルミニウムまたはアルミニウム合金製で直方体状をなしている。   In recent years, chargeable / dischargeable rectangular parallelepiped non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are mainly used as power sources for electric vehicles such as hybrid electric vehicles and plug-in electric vehicles that are rapidly spreading. Yes. A lithium ion secondary battery is a non-aqueous solution that infiltrates an electrode group in which a positive electrode and a negative electrode are wound or stacked via a separator, a battery container (case) that houses the electrode group, and an electrode group that is housed in the battery container. An electrolyte solution. The battery container is made of, for example, aluminum or an aluminum alloy and has a rectangular parallelepiped shape.

この電気自動車の電源には、長寿命、高信頼性の非水電解質二次電池が必要となる。そのため、分解ガスの発生の原因となる水分を低減するゼオライトをセパレータ表面や電極の内部に含有させたリチウム二次電池が提案されている。   A power source for this electric vehicle requires a long-life, highly reliable nonaqueous electrolyte secondary battery. For this reason, a lithium secondary battery has been proposed in which zeolite that reduces the moisture that causes generation of cracked gas is contained on the separator surface or inside the electrode.

特開平11−260416号公報JP-A-11-260416

しかし、たとえば大気圧で高い吸着能を示す細孔径の大きなガス吸着剤を用いた場合、低圧での吸着能が低くなる。そのため、電極表面に小さな気泡が発生しても、低圧ではガス吸着能が発揮されず、抵抗の増大や容量の低下を引き起こすという問題がある。   However, for example, when a gas adsorbent having a large pore size that exhibits high adsorption capability at atmospheric pressure is used, the adsorption capability at low pressure is low. Therefore, even if small bubbles are generated on the electrode surface, there is a problem that the gas adsorption ability is not exhibited at a low pressure, causing an increase in resistance and a decrease in capacity.

本発明が解決しようとする課題は、広い圧力範囲で高い吸着能を備えるガス吸着剤を有する非水電解質二次電池を提供することである。   The problem to be solved by the present invention is to provide a non-aqueous electrolyte secondary battery having a gas adsorbent having high adsorbability over a wide pressure range.

実施形態によれば、正極と負極とをセパレータを介して配置した電極群と、前記電極群を収容する電池容器と、前記電極群の正極および負極と電池容器との間を絶縁する絶縁部材と、前記電池容器に収容された前記電極群を浸潤する非水電解液とを有する非水電解質二次電池が提供される。前記絶縁部材はガス吸着剤を含み、前記ガス吸着剤は細孔径分布において0.2nm以上1.5nm以下の範囲に2つ以上の極大値を持つ。   According to the embodiment, an electrode group in which a positive electrode and a negative electrode are disposed via a separator, a battery container that houses the electrode group, and an insulating member that insulates between the positive electrode and the negative electrode of the electrode group and the battery container There is provided a nonaqueous electrolyte secondary battery having a nonaqueous electrolyte solution infiltrating the electrode group accommodated in the battery container. The insulating member includes a gas adsorbent, and the gas adsorbent has two or more maximum values in a range of 0.2 nm to 1.5 nm in the pore size distribution.

実施形態に係る非水電解質二次電池を示す分解斜視図。The disassembled perspective view which shows the nonaqueous electrolyte secondary battery which concerns on embodiment. 実施形態に係る非水電解質二次電池の電極群を示す分解斜視図。The disassembled perspective view which shows the electrode group of the nonaqueous electrolyte secondary battery which concerns on embodiment. 図1に示す非水電解質二次電池を下方から見た分解斜視図。The disassembled perspective view which looked at the nonaqueous electrolyte secondary battery shown in FIG. 1 from the downward direction. 図1に示す非水電解質二次電池の外観を示す斜視図。The perspective view which shows the external appearance of the nonaqueous electrolyte secondary battery shown in FIG. 実施例1におけるガス吸着剤の細孔径分布を示す図。FIG. 3 is a graph showing a pore size distribution of a gas adsorbent in Example 1.

以下、図1ないし図4を参照して実施形態に係る非水電解質二次電池を説明する。   Hereinafter, the nonaqueous electrolyte secondary battery according to the embodiment will be described with reference to FIGS. 1 to 4.

図1は、実施形態に係る非水電解質二次電池を示す分解斜視図である。図1に示す非水電解質二次電池1は角形電池であり、概略的には、直方体形状の電池容器31内に扁平形状の電極群32を収容し、封口部材37で電池容器31を封口し、電池容器31に収容された電極群32を非水電解液(図示せず)で浸潤した構造を有する。   FIG. 1 is an exploded perspective view showing a nonaqueous electrolyte secondary battery according to an embodiment. The nonaqueous electrolyte secondary battery 1 shown in FIG. 1 is a prismatic battery. In general, a flat electrode group 32 is accommodated in a rectangular parallelepiped battery container 31, and the battery container 31 is sealed with a sealing member 37. The electrode group 32 housed in the battery container 31 is infiltrated with a non-aqueous electrolyte (not shown).

図2は電極群を示す分解斜視図である。図2に示すように、偏平型の電極群32は、シート状の正極3とシート状の負極4とを、それらの間にセパレータ5を介在させた状態で捲回したものである。より具体的には、電極群32は、正極3と負極4とを、それらの間にセパレータ5を介在させた状態で渦巻状に捲回した後、その横断面形状が電池容器31の横断面形状に対応する四角形状となるように、全体を加圧して形成される。電極群32の最外層(最外周)には、セパレータ5が配置される。正極3は、例えば金属箔からなる帯状の正極集電体と、正極集電体の長辺3cに平行な一端部からなる正極集電タブ3aと、少なくとも正極集電タブ3aの部分を除いて正極集電体に積層された正極活物質層3bとを含む。負極4は、例えば金属箔からなる帯状の負極集電体と、負極集電体の長辺4cに平行な一端部からなる負極集電タブ4aと、少なくとも負極集電タブ4aの部分を除いて負極集電体に積層された負極活物質層4bとを含む。   FIG. 2 is an exploded perspective view showing the electrode group. As shown in FIG. 2, the flat electrode group 32 is obtained by winding a sheet-like positive electrode 3 and a sheet-like negative electrode 4 with a separator 5 interposed therebetween. More specifically, in the electrode group 32, the positive electrode 3 and the negative electrode 4 are wound in a spiral shape with the separator 5 interposed therebetween, and then the cross-sectional shape thereof is the cross-sectional shape of the battery container 31. It is formed by pressurizing the whole so as to form a square shape corresponding to the shape. The separator 5 is disposed on the outermost layer (outermost periphery) of the electrode group 32. The positive electrode 3 includes, for example, a strip-shaped positive electrode collector made of a metal foil, a positive electrode current collector tab 3a having one end parallel to the long side 3c of the positive electrode current collector, and at least a portion of the positive electrode current collector tab 3a. And a positive electrode active material layer 3b laminated on the positive electrode current collector. The negative electrode 4 includes, for example, a strip-shaped negative electrode current collector made of a metal foil, a negative electrode current collector tab 4a composed of one end parallel to the long side 4c of the negative electrode current collector, and at least a portion of the negative electrode current collector tab 4a. And negative electrode active material layer 4b laminated on the negative electrode current collector.

このような正極3、セパレータ5および負極4は、電極群の捲回軸に沿って、正極集電タブ3aがセパレータ5から一方向に突出し、負極集電タブ4aがセパレータ5から反対方向に突出するように、正極3および負極4の位置をずらして捲回される。このように捲回することにより、図1および図2に示したように、電極群32の一方の端面から正極集電体が積層された正極集電タブ3aが突出し、電極群32の他方の端面から負極集電体が積層された負極集電タブ4aが突出する。非水電解液(図示せず)は、電極群32に保持される。   In the positive electrode 3, the separator 5, and the negative electrode 4, the positive electrode current collecting tab 3 a protrudes in one direction from the separator 5 and the negative electrode current collecting tab 4 a protrudes in the opposite direction along the winding axis of the electrode group. Thus, the positive electrode 3 and the negative electrode 4 are wound with the positions shifted. By winding in this way, as shown in FIGS. 1 and 2, the positive electrode current collecting tab 3 a on which the positive electrode current collector is laminated protrudes from one end face of the electrode group 32, and the other electrode group 32 has the other side. The negative electrode current collector tab 4a on which the negative electrode current collector is laminated protrudes from the end face. A non-aqueous electrolyte (not shown) is held in the electrode group 32.

図1に示すように、電池容器31の蓋10の上面に、正極端子12および負極端子14がそれぞれガスケット11,13を介して装着される。蓋10の内面(下面)には絶縁体21が設けられている。こうした蓋10、正極端子12、負極端子14、ガスケット11,13、および絶縁体21によって封口部材37が構成される。   As shown in FIG. 1, the positive electrode terminal 12 and the negative electrode terminal 14 are attached to the upper surface of the lid 10 of the battery container 31 via gaskets 11 and 13, respectively. An insulator 21 is provided on the inner surface (lower surface) of the lid 10. A sealing member 37 is constituted by the lid 10, the positive terminal 12, the negative terminal 14, the gaskets 11 and 13, and the insulator 21.

正極リード35は、貫通孔35bを有する接続プレート35aと、接続プレートから二又に分岐して下方に延出した集電部35cとを有する。負極リード36も同様に、貫通孔36bを有する接続プレート36aと、接続プレートから二又に分岐して下方に延出した集電部36cとを有する。   The positive electrode lead 35 includes a connection plate 35a having a through hole 35b, and a current collecting portion 35c that bifurcates from the connection plate and extends downward. Similarly, the negative electrode lead 36 includes a connection plate 36a having a through hole 36b, and a current collecting portion 36c that bifurcates from the connection plate and extends downward.

図3は非水電解質二次電池を下方から見た分解斜視図である。図3に示すように、封口部材37を構成する絶縁体21は、裏面に第1および第2の凹部24および25を有する。第1の凹部24内には正極リード35の接続プレート35aが取り付けられ、第2の凹部25内には負極リード36の接続プレート36aが取り付けられる。正極リード35の貫通孔35bは絶縁体21の第1の貫通孔22と連通し、負極リード36の貫通孔36bは絶縁体21の第2の貫通孔23と連通する。   FIG. 3 is an exploded perspective view of the nonaqueous electrolyte secondary battery as viewed from below. As shown in FIG. 3, the insulator 21 constituting the sealing member 37 has first and second recesses 24 and 25 on the back surface. A connection plate 35 a for the positive electrode lead 35 is attached in the first recess 24, and a connection plate 36 a for the negative electrode lead 36 is attached in the second recess 25. The through hole 35 b of the positive electrode lead 35 communicates with the first through hole 22 of the insulator 21, and the through hole 36 b of the negative electrode lead 36 communicates with the second through hole 23 of the insulator 21.

正極端子12は、蓋10と絶縁体21と正極リード35とに対して、かしめ接続により接合され、負極端子14は、蓋10と絶縁体21と負極リード36とに対して、かしめ接続により接合される。これにより、正極端子12と正極リード35が電気的に接続され、負極端子14と負極リード36が電気的に接続される。   The positive electrode terminal 12 is bonded to the lid 10, the insulator 21, and the positive electrode lead 35 by caulking connection, and the negative electrode terminal 14 is bonded to the lid 10, the insulator 21, and the negative electrode lead 36 by caulking connection. Is done. Thereby, the positive electrode terminal 12 and the positive electrode lead 35 are electrically connected, and the negative electrode terminal 14 and the negative electrode lead 36 are electrically connected.

正極リード35は二又の集電部35cの間に電極群32の正極導電タブ3aの外周を挟んでこれと接合され、負極リード36は二又の集電部36cの間に電極群32の負極導電タブ4aの外周を挟んでこれと接合される。こうして、正極リード35と電極群32の正極導電タブ3aとが電気的に接続され、負極リード36と電極群32の負極導電タブ4aとが電気的に接続される。   The positive electrode lead 35 is joined to the forked current collector portion 35c with the outer periphery of the positive electrode conductive tab 3a of the electrode group 32 sandwiched therebetween, and the negative electrode lead 36 is joined to the forked current collector portion 36c of the electrode group 32. The negative electrode conductive tab 4a is joined to the outer periphery of the negative electrode conductive tab 4a. Thus, the positive electrode lead 35 and the positive electrode conductive tab 3a of the electrode group 32 are electrically connected, and the negative electrode lead 36 and the negative electrode conductive tab 4a of the electrode group 32 are electrically connected.

正極リード35と正極導電タブ3aとの接合部分および負極リード36と負極導電タブ4aとの接合部分は、絶縁部材40,41で被覆される。絶縁部材40,41は、二つ折りにした絶縁テープ38,39によって電極群32に固定される。   The joint portion between the positive electrode lead 35 and the positive electrode conductive tab 3 a and the joint portion between the negative electrode lead 36 and the negative electrode conductive tab 4 a are covered with insulating members 40 and 41. The insulating members 40 and 41 are fixed to the electrode group 32 by insulating tapes 38 and 39 folded in half.

図4は非水電解質二次電池の外観を示す斜視図である。上記のようにして電池容器31内に電極群32を収容し、電池容器31の開口を封口部材37で封口し、電解液注入口19から電解液を注入し、封止栓20で電解液注入口19を封止する。   FIG. 4 is a perspective view showing the external appearance of the nonaqueous electrolyte secondary battery. As described above, the electrode group 32 is housed in the battery container 31, the opening of the battery container 31 is sealed with the sealing member 37, the electrolytic solution is injected from the electrolytic solution injection port 19, and the electrolytic solution is injected with the sealing plug 20. The inlet 19 is sealed.

次に、正極活物質、負極活物質、セパレータ、非水電解液、電池容器、および絶縁部材の材料について説明する。   Next, materials for the positive electrode active material, the negative electrode active material, the separator, the non-aqueous electrolyte, the battery container, and the insulating member will be described.

正極活物質は、特に限定されるものではなく、種々の酸化物、例えば、リチウム含有コバルト酸化物(例えば、LiCoO)、二酸化マンガン、リチウムマンガン複合酸化物(例えば、LiMn、LiMnO)、リチウム含有ニッケル酸化物(例えば、LiNiO)、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8Co0.2)、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。 The positive electrode active material is not particularly limited, and various oxides such as lithium-containing cobalt oxide (for example, LiCoO 2 ), manganese dioxide, lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2). ), Lithium-containing nickel oxide (eg, LiNiO 2 ), lithium-containing nickel cobalt oxide (eg, LiNi 0.8 Co 0.2 O 2 ), lithium-containing iron oxide, vanadium oxide containing lithium, Examples thereof include chalcogen compounds such as titanium sulfide and molybdenum disulfide.

負極活物質は、特に限定されるものではなく、例えば、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブなど)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金など)、リチウムチタン酸化物(例えば、スピネル型のチタン酸リチウム)等を挙げることができる。   The negative electrode active material is not particularly limited. For example, a graphite material or a carbonaceous material (for example, graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor carbonaceous material, resin fired body, etc.), chalcogen compound (For example, titanium disulfide, molybdenum disulfide, niobium selenide, etc.), light metal (for example, aluminum, aluminum alloy, magnesium alloy, lithium, lithium alloy, etc.), lithium titanium oxide (for example, spinel type lithium titanate) Etc.

セパレータは、特に限定されるものではなく、例えば、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物などを用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー、セルロースなどを挙げることができる。   The separator is not particularly limited, and for example, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene copolymer, and cellulose.

非水電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製される。非水溶媒は、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフランなどを挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質は、例えば、過塩素酸リチウム(LiClO)、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)などのリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L〜3mol/Lとすることが望ましい。電解質の濃度が低すぎると十分なイオン導電性を得ることができない場合がある。一方、高すぎると電解液に完全に溶解できない場合がある。 The non-aqueous electrolyte is prepared by dissolving an electrolyte (for example, a lithium salt) in a non-aqueous solvent. Nonaqueous solvents include, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ- BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more. Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and trifluoromethanesulfonic acid. A lithium salt such as lithium (LiCF 3 SO 3 ) can be given. The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / L to 3 mol / L. If the electrolyte concentration is too low, sufficient ionic conductivity may not be obtained. On the other hand, if it is too high, it may not be completely dissolved in the electrolyte.

電池容器には、例えば、アルミニウム、アルミニウム合金、鉄(Fe)、ニッケル(Ni)めっきした鉄、ステンレス(SUS)などを用いることができる。正極端子、負極端子、正極リード、負極リードには、例えば、アルミニウムもしくはアルミニウム合金から形成することが望ましい。   For the battery container, for example, aluminum, aluminum alloy, iron (Fe), nickel (Ni) plated iron, stainless steel (SUS), or the like can be used. For example, the positive electrode terminal, the negative electrode terminal, the positive electrode lead, and the negative electrode lead are preferably formed of aluminum or an aluminum alloy.

絶縁部材に使用される樹脂としては、電解液に侵されにくい樹脂であればいかなる樹脂でも使用可能であるが、例えば、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体、エチレン酢酸ビニルアルコール共重合体、エチレン・アクリル酸共重合体、エチレン・エチルアクリレート共重合体、エチレン・メチルアクリレート共重合体、エチレンメタクリルアクリレート共重合体、エチレン・メチルメタクリル酸共重合体、アイオノマー、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリテトラフルオロエチレンなどを用いることができ、上記樹脂は、1種類を単独で使用してもよく、また、複数の種類を混合して使用してもよい。中でも、ポリプロピレンまたはポリエチレンを用いることが好ましい。   As the resin used for the insulating member, any resin can be used as long as it is resistant to the electrolytic solution. For example, polyethylene, polypropylene, ethylene vinyl acetate copolymer, ethylene vinyl acetate alcohol copolymer, Ethylene / acrylic acid copolymer, ethylene / ethyl acrylate copolymer, ethylene / methyl acrylate copolymer, ethylene methacryl acrylate copolymer, ethylene / methyl methacrylic acid copolymer, ionomer, polyacrylonitrile, polyvinylidene chloride, poly Tetrafluoroethylene, polychlorotrifluoroethylene, polyphenylene ether, polyethylene terephthalate, polytetrafluoroethylene, and the like can be used, and the above resin may be used alone or in a plurality of types. It may be used in the combined. Among these, it is preferable to use polypropylene or polyethylene.

ガス吸着剤としては、ゼオライトが好ましい。ゼオライトは、他のガス吸着剤であるシリカゲルや活性アルミナや活性炭素材料と比べて細孔径の極大値が小さく、細孔に電解質が入りにくい。   As the gas adsorbent, zeolite is preferable. Zeolite has a small maximum pore diameter compared to other gas adsorbents such as silica gel, activated alumina, and activated carbon material, and it is difficult for electrolyte to enter the pores.

ガス吸着剤の細孔径は、0.2nm以上1nm以下が好ましい。細孔径が小さすぎると、ガスを吸着できなくなる場合がある。細孔径が大きすぎると、細孔に電解質が入り、ガスを吸着できなくなる場合がある。ガス吸着剤は、細孔径分布において0.2nm以上1.5nm以下の範囲に2つ以上の極大値を持つ。たとえば、ガス吸着剤として2種類以上のゼオライトを用いる。2種類以上のゼオライトは、各々、単分散に近い細孔径分布を示す。   The pore size of the gas adsorbent is preferably 0.2 nm or more and 1 nm or less. If the pore diameter is too small, gas may not be adsorbed. If the pore diameter is too large, electrolyte may enter the pores and gas may not be adsorbed. The gas adsorbent has two or more maximum values in the range of 0.2 nm to 1.5 nm in the pore size distribution. For example, two or more types of zeolite are used as the gas adsorbent. Two or more types of zeolite each show a pore size distribution close to monodispersion.

ガス吸着剤は、絶縁部材に含ませることが好ましい。ガス吸着剤を電極に含ませると、電極の製造工程中でガス吸着剤が水分を吸着する場合がある。ガス吸着剤をセパレータに含ませると、電池の組立工程中でガス吸着剤が水分を吸着する場合がある。蓋の内面の絶縁体に含ませると、蓋を組み立てるカシメにおいて、絶縁体が割れる場合がある。   The gas adsorbent is preferably included in the insulating member. When the gas adsorbent is included in the electrode, the gas adsorbent may adsorb moisture during the manufacturing process of the electrode. When the gas adsorbent is included in the separator, the gas adsorbent may adsorb moisture during the battery assembly process. If it is included in the insulator on the inner surface of the lid, the insulator may break in the caulking for assembling the lid.

絶縁部材に含まれるガス吸着剤の含有率は、10質量%以上60質量%以下が好ましい。ガス吸着剤の含有率が低すぎると、ガス吸着剤が樹脂で取り囲まれるため、吸着能が無くなる場合がある。ガス吸着剤の含有率が高すぎると、絶縁部材を成型加工できない場合がある。   The content of the gas adsorbent contained in the insulating member is preferably 10% by mass or more and 60% by mass or less. If the content of the gas adsorbent is too low, the gas adsorbent is surrounded by the resin, so that the adsorbing ability may be lost. If the content of the gas adsorbent is too high, the insulating member may not be molded.

絶縁部材の加工方法は、特に限定されるものではないが、樹脂成型等が挙げられる。成型方法は、切削成型や射出成型や押出成型が挙げられる。   Although the processing method of an insulating member is not specifically limited, Resin molding etc. are mentioned. Examples of the molding method include cutting molding, injection molding, and extrusion molding.

実施形態によれば、電池内部でガスが発生しても抵抗が上がらず、容量が低下しない非水電解液二次電池を提供できる。   According to the embodiment, it is possible to provide a non-aqueous electrolyte secondary battery in which resistance does not increase even when gas is generated inside the battery, and the capacity does not decrease.

以下、実施例について説明する。   Examples will be described below.

[正極の作製]
正極活物質として、LiNi1/3Co1/3Mn1/3とLiCoOを用い、LiNi1/3Co1/3Mn1/3とLiCoOとが2:1となるように混合した。この活物質とアセチレンブラックとグラファイトとポリフッ化ビニリデンとを100:2:2:3の割合で混合し、N−メチル−2−ピロリドンを溶媒としてプラネタリミキサで混練、攪拌し、正極スラリーを作製した。その後、塗工装置で、単位面積当たりの塗布量が110g/mとなるように厚さ20μmのアルミニウム箔に塗布し、ロールプレス機で電極密度が3.4g/ccとなるように圧延した。
[Production of positive electrode]
As the positive electrode active material, using LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiCoO 2, LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiCoO 2 and 2: 1 so as Mixed. This active material, acetylene black, graphite, and polyvinylidene fluoride were mixed at a ratio of 100: 2: 2: 3, and kneaded and stirred with a planetary mixer using N-methyl-2-pyrrolidone as a solvent to prepare a positive electrode slurry. . Thereafter, it was applied to an aluminum foil having a thickness of 20 μm so that the coating amount per unit area was 110 g / m 2 with a coating device, and rolled with a roll press so that the electrode density was 3.4 g / cc. .

[負極の作製]
負極活物質として、LiTi12を用いた。この活物質とグラファイトとポリフッ化ビニリデンとを100:5:3の割合で混合し、N−メチル−2−ピロリドンを溶媒としてプラネタリミキサで混練、攪拌し、負極スラリーを作製した。その後、塗工装置で、単位面積当たりの塗布量が110g/mとなるように厚さ12μmのアルミニウム箔に塗布し、ロールプレス機で電極密度が2.4g/ccとなるように圧延した。
[Production of negative electrode]
Li 4 Ti 5 O 12 was used as the negative electrode active material. This active material, graphite, and polyvinylidene fluoride were mixed at a ratio of 100: 5: 3, and kneaded and stirred with a planetary mixer using N-methyl-2-pyrrolidone as a solvent to prepare a negative electrode slurry. Thereafter, it was applied to an aluminum foil having a thickness of 12 μm so that the coating amount per unit area was 110 g / m 2 with a coating device, and rolled with a roll press so that the electrode density was 2.4 g / cc. .

[電極群の作製]
上記正極と負極と30μmのセルロースセパレータとを捲回装置で捲回し、巻き止めテープを貼り電極群32とした。
[Production of electrode group]
The positive electrode, the negative electrode, and a 30 μm cellulose separator were wound with a winding device, and an anti-winding tape was attached to form an electrode group 32.

[実施例1]
図1のように、正極端子12と電極群32の正極タブ3aとを、リード35を介して溶接して電気的に接続した。同様に、負極端子14と電極群32の負極タブ4aとを、リード15を介して溶接して電気的に接続した。このようにして電極群32と封口部材37とを一体にして、ガス吸着剤を含む絶縁部材40,41をリード35,36およびタブ3a,4aを固定するように被せ、電池容器31に挿入し、レーザーにより溶接した。
[Example 1]
As shown in FIG. 1, the positive electrode terminal 12 and the positive electrode tab 3 a of the electrode group 32 were welded and electrically connected via a lead 35. Similarly, the negative electrode terminal 14 and the negative electrode tab 4 a of the electrode group 32 were welded and electrically connected via the lead 15. In this way, the electrode group 32 and the sealing member 37 are integrated, and the insulating members 40 and 41 containing the gas adsorbent are covered so as to fix the leads 35 and 36 and the tabs 3a and 4a, and are inserted into the battery container 31. Welded by laser.

絶縁部材は以下のようにして作製した。ガス吸着剤として、細孔径の極大値が0.4nmであるユニオン昭和製4A型モレキュラーシーブと、細孔径の極大値が1.0nmであるユニオン昭和製13X型モレキュラーシーブとを、30質量%と20質量%の比率で、ポリプロピレンとともに混合し、射出成型した。   The insulating member was produced as follows. As gas adsorbent, Union Showa 4A type molecular sieve having a maximum pore diameter of 0.4 nm and Union Showa 13X type molecular sieve having a maximum pore diameter of 1.0 nm were 30% by mass. The mixture was mixed with polypropylene at a ratio of 20% by mass and injection molded.

図5に、実施例1におけるガス吸着剤の細孔径分布を示す図。   FIG. 5 is a graph showing the pore size distribution of the gas adsorbent in Example 1.

注液口から電解液を入れ、注液口をレーザー溶接で塞ぎ、定格容量が20Ah、半充電状態での直流抵抗が0.80mΩの非水電解質二次電池とした。電解液は、非水溶媒としてエチレンカーボネートとジメチルカーボネートを1:1で混合したものを用い、電解質として2mol/lの6フッ化リン酸リチウムを用いた。電池のサイズは、幅が18.0cm、厚さが2.3cm、高さが10.0cm(端子は含まない)である。   An electrolyte was poured from the injection port, the injection port was closed by laser welding, and a non-aqueous electrolyte secondary battery having a rated capacity of 20 Ah and a DC resistance of 0.80 mΩ in a half-charged state was obtained. The electrolyte used was a mixture of ethylene carbonate and dimethyl carbonate 1: 1 as a non-aqueous solvent, and 2 mol / l lithium hexafluorophosphate as an electrolyte. The battery has a width of 18.0 cm, a thickness of 2.3 cm, and a height of 10.0 cm (not including terminals).

非水電解質二次電池を5個作製し、満充電状態で50℃の環境下に7日放置した。その後、定格容量を確認したところ、平均19.9Ahであり、直流抵抗は0.81mΩであった。厚さは2.3cmであった。その後さらに満充電状態で50℃の環境下に70日放置した。その後、定格容量を確認したところ、平均19.0Ahであり、直流抵抗は0.90mΩであった。厚さは2.5cmであった。   Five nonaqueous electrolyte secondary batteries were prepared and left in a fully charged state in an environment of 50 ° C. for 7 days. Thereafter, when the rated capacity was confirmed, the average was 19.9 Ah, and the DC resistance was 0.81 mΩ. The thickness was 2.3 cm. Thereafter, it was left in a fully charged state in an environment of 50 ° C. for 70 days. Then, when the rated capacity was confirmed, the average was 19.0 Ah, and the DC resistance was 0.90 mΩ. The thickness was 2.5 cm.

[実施例2]
実施例2では、ガス吸着剤として、細孔径の極大値が0.5nmであるユニオン昭和製5A型モレキュラーシーブと、細孔径の極大値が1.0nmであるユニオン昭和製13X型モレキュラーシーブとを、20質量%と20質量%の比率で使用した。
[Example 2]
In Example 2, as a gas adsorbent, Union Showa 5A type molecular sieve having a maximum pore diameter of 0.5 nm and Union Showa 13X type molecular sieve having a maximum pore diameter of 1.0 nm were used. , 20% by mass and 20% by mass.

上記実施例1と同様の手順により、実施例2の非水電解質二次電池を作製した。非水電解質二次電池を5個作製し、満充電状態で50℃の環境下に7日放置した。その後、定格容量を確認したところ、平均19.8Ahであり、直流抵抗は0.81mΩであった。厚さは2.3cmであった。その後さらに満充電状態で50℃の環境下に70日放置した。その後、定格容量を確認したところ、平均18.8Ahであり、直流抵抗は0.89mΩであった。厚さは2.5cmであった。   A nonaqueous electrolyte secondary battery of Example 2 was produced by the same procedure as in Example 1 above. Five nonaqueous electrolyte secondary batteries were prepared and left in a fully charged state in an environment of 50 ° C. for 7 days. Thereafter, when the rated capacity was confirmed, the average was 19.8 Ah, and the DC resistance was 0.81 mΩ. The thickness was 2.3 cm. Thereafter, it was left in a fully charged state in an environment of 50 ° C. for 70 days. Thereafter, when the rated capacity was confirmed, the average was 18.8 Ah, and the DC resistance was 0.89 mΩ. The thickness was 2.5 cm.

[実施例3]
実施例3では、ガス吸着剤として、細孔径の極大値が0.5nmであるユニオン昭和製5A型モレキュラーシーブと、細孔径の極大値が0.4nmであるユニオン昭和製4A型モレキュラーシーブとを、10質量%と30質量%の比率で使用した。
[Example 3]
In Example 3, as a gas adsorbent, a Union Showa 5A type molecular sieve having a maximum pore diameter of 0.5 nm and a Union Showa 4A type molecular sieve having a maximum pore diameter of 0.4 nm were used. They were used at a ratio of 10% by mass and 30% by mass.

上記実施例1と同様の手順により、実施例3の非水電解質二次電池を作製した。非水電解質二次電池を5個作製し、満充電状態で50℃の環境下に7日放置した。その後、定格容量を確認したところ、平均19.8Ahであり、直流抵抗は0.82mΩであった。厚さは2.3cmであった。その後さらに満充電状態で50℃の環境下に70日放置した。その後、定格容量を確認したところ、平均18.7Ahであり、直流抵抗は0.90mΩであった。厚さは2.5cmであった。   A nonaqueous electrolyte secondary battery of Example 3 was produced by the same procedure as in Example 1 above. Five nonaqueous electrolyte secondary batteries were prepared and left in a fully charged state in an environment of 50 ° C. for 7 days. Thereafter, when the rated capacity was confirmed, the average was 19.8 Ah, and the DC resistance was 0.82 mΩ. The thickness was 2.3 cm. Thereafter, it was left in a fully charged state in an environment of 50 ° C. for 70 days. Then, when the rated capacity was confirmed, the average was 18.7 Ah, and the DC resistance was 0.90 mΩ. The thickness was 2.5 cm.

[比較例1]
比較例1では、ガス吸着剤として、細孔径の極大値が0.5nmのゼオライトを1種類のみ使用した。
[Comparative Example 1]
In Comparative Example 1, only one type of zeolite having a maximum pore diameter of 0.5 nm was used as the gas adsorbent.

上記実施例1と同様の手順により、比較例1の非水電解質二次電池を作製した。非水電解質二次電池を5個作製し、満充電状態で50℃の環境下に7日放置した。その後、定格容量を確認したところ、平均19.8Ahであり、直流抵抗は0.81mΩであった。厚さは2.3cmであった。しかし、その後さらに満充電状態で50℃の環境下に70日放置し、定格容量を確認したところ、平均17.0Ahであり、直流抵抗は0.98mΩであった。厚さは2.8cmであった。   A nonaqueous electrolyte secondary battery of Comparative Example 1 was produced by the same procedure as in Example 1. Five nonaqueous electrolyte secondary batteries were prepared and left in a fully charged state in an environment of 50 ° C. for 7 days. Thereafter, when the rated capacity was confirmed, the average was 19.8 Ah, and the DC resistance was 0.81 mΩ. The thickness was 2.3 cm. However, when the battery was further left in a fully charged state in an environment of 50 ° C. for 70 days and the rated capacity was confirmed, the average was 17.0 Ah and the DC resistance was 0.98 mΩ. The thickness was 2.8 cm.

[比較例2]
比較例2では、ガス吸着剤として、細孔径の極大値が1.0nmのゼオライトを1種類のみ使用した。
[Comparative Example 2]
In Comparative Example 2, only one type of zeolite having a maximum pore diameter of 1.0 nm was used as the gas adsorbent.

上記実施例1と同様の手順により、比較例2の非水電解質二次電池を作製した。非水電解質二次電池を5個作製し、満充電状態で50℃の環境下に7日放置した。その後、定格容量を確認したところ、平均18.9Ahであり、直流抵抗は0.90mΩであった。電池は膨れ、厚さは2.5mmであった。その後さらに満充電状態で50℃の環境下に70日放置し、定格容量を確認したところ、平均18.7Ahであり、直流抵抗は0.98mΩであった。厚さは2.5cmであった。   A nonaqueous electrolyte secondary battery of Comparative Example 2 was produced by the same procedure as in Example 1. Five nonaqueous electrolyte secondary batteries were prepared and left in a fully charged state in an environment of 50 ° C. for 7 days. Thereafter, when the rated capacity was confirmed, the average was 18.9 Ah, and the DC resistance was 0.90 mΩ. The battery swelled and the thickness was 2.5 mm. Thereafter, the product was further left in a fully charged state at 50 ° C. for 70 days to check the rated capacity. As a result, the average capacity was 18.7 Ah, and the DC resistance was 0.98 mΩ. The thickness was 2.5 cm.

以上の実施例1〜3および比較例1,2の結果を表1に纏めた。実施例によれば、電池の後期の劣化だけでなく、初期の劣化により電池内部に低圧のガスが発生した際にも、ガス吸着剤によりガスが吸着されやすくなるため、電池性能を劣化することなく、電池の長寿命化、信頼性の向上が可能となる。

Figure 2013191524
The results of Examples 1 to 3 and Comparative Examples 1 and 2 are summarized in Table 1. According to the embodiment, not only the later deterioration of the battery, but also when the low pressure gas is generated inside the battery due to the initial deterioration, the gas adsorbent is likely to be adsorbed, so that the battery performance is deteriorated. Therefore, the battery life can be extended and the reliability can be improved.
Figure 2013191524

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

3…正極、3a…正極導電タブ、4…負極、4a…負極導電タブ、10…蓋、11,13…絶縁ガスケット、12…正極端子、14…負極端子、19…電解液注入口、20…封止栓、21…絶縁体、31…電池容器、32…電極群、33…正極導電タブ、34…負極導電タブ、35…正極リード、36…負極リード、37…封口部材、38,39…絶縁テープ、40,41…絶縁部材。   DESCRIPTION OF SYMBOLS 3 ... Positive electrode, 3a ... Positive electrode conductive tab, 4 ... Negative electrode, 4a ... Negative electrode conductive tab, 10 ... Cover, 11, 13 ... Insulation gasket, 12 ... Positive electrode terminal, 14 ... Negative electrode terminal, 19 ... Electrolyte injection port, 20 ... Seal plug, 21 ... insulator, 31 ... battery container, 32 ... electrode group, 33 ... positive electrode conductive tab, 34 ... negative electrode conductive tab, 35 ... positive electrode lead, 36 ... negative electrode lead, 37 ... sealing member, 38, 39 ... Insulating tape, 40, 41 ... insulating members.

Claims (3)

正極と負極とをセパレータを介して配置した電極群と、前記電極群を収容する電池容器と、前記電極群の正極および負極と電池容器との間を絶縁する絶縁部材と、前記電池容器に収容された前記電極群を浸潤する非水電解液とを有する非水電解質二次電池であって、
前記絶縁部材はガス吸着剤を含み、前記ガス吸着剤は細孔径分布において0.2nm以上1.5nm以下の範囲に2つ以上の極大値を持つことを特徴とする非水電解質二次電池。
An electrode group in which a positive electrode and a negative electrode are arranged via a separator, a battery container that houses the electrode group, an insulating member that insulates between the positive electrode and the negative electrode of the electrode group, and the battery container, and the battery container A non-aqueous electrolyte secondary battery having a non-aqueous electrolyte infiltrating the electrode group,
The non-aqueous electrolyte secondary battery, wherein the insulating member includes a gas adsorbent, and the gas adsorbent has two or more maximum values in a range of 0.2 nm to 1.5 nm in a pore size distribution.
前記ガス吸着剤はゼオライトであることを特徴とする請求項1に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the gas adsorbent is zeolite. 前記ガス吸着剤は2種類以上のゼオライトを含むことを特徴とする請求項1または2に記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the gas adsorbent contains two or more types of zeolite.
JP2012058958A 2012-03-15 2012-03-15 Nonaqueous electrolyte secondary battery Active JP6021367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058958A JP6021367B2 (en) 2012-03-15 2012-03-15 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058958A JP6021367B2 (en) 2012-03-15 2012-03-15 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2013191524A true JP2013191524A (en) 2013-09-26
JP6021367B2 JP6021367B2 (en) 2016-11-09

Family

ID=49391547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058958A Active JP6021367B2 (en) 2012-03-15 2012-03-15 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6021367B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015119306A1 (en) * 2014-02-04 2015-08-13 주식회사 코캄 Separator for lithium secondary battery and lithium secondary battery comprising same
WO2015136722A1 (en) * 2013-05-20 2015-09-17 栗田工業株式会社 Lithium ion battery and electronic device using same
CN112054152A (en) * 2020-09-30 2020-12-08 中航锂电技术研究院有限公司 Separator and battery
WO2022255495A1 (en) * 2021-06-04 2022-12-08 Apb株式会社 Battery pack

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155790A (en) * 1999-11-30 2001-06-08 Sony Corp Non-aqueous electrolyte cell
JP2007242454A (en) * 2006-03-09 2007-09-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic solution secondary battery
JP2008097940A (en) * 2006-10-10 2008-04-24 Nissan Motor Co Ltd Bipolar type secondary battery
JP2008146963A (en) * 2006-12-08 2008-06-26 Sony Corp Separator for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2008221125A (en) * 2007-03-13 2008-09-25 Hokkaido Univ Humidity conditioning and gas adsorption material and manufacturing method of the same
JP2011049066A (en) * 2009-08-27 2011-03-10 Toshiba Corp Battery
JP2011126739A (en) * 2009-12-17 2011-06-30 Tokuyama Corp Method for producing porous carbon material
JP2011207749A (en) * 2010-03-12 2011-10-20 Ngk Insulators Ltd Zeolite structure and method for producing the same
JP2011249269A (en) * 2010-05-31 2011-12-08 Panasonic Corp Laminate battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155790A (en) * 1999-11-30 2001-06-08 Sony Corp Non-aqueous electrolyte cell
JP2007242454A (en) * 2006-03-09 2007-09-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic solution secondary battery
JP2008097940A (en) * 2006-10-10 2008-04-24 Nissan Motor Co Ltd Bipolar type secondary battery
JP2008146963A (en) * 2006-12-08 2008-06-26 Sony Corp Separator for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2008221125A (en) * 2007-03-13 2008-09-25 Hokkaido Univ Humidity conditioning and gas adsorption material and manufacturing method of the same
JP2011049066A (en) * 2009-08-27 2011-03-10 Toshiba Corp Battery
JP2011126739A (en) * 2009-12-17 2011-06-30 Tokuyama Corp Method for producing porous carbon material
JP2011207749A (en) * 2010-03-12 2011-10-20 Ngk Insulators Ltd Zeolite structure and method for producing the same
JP2011249269A (en) * 2010-05-31 2011-12-08 Panasonic Corp Laminate battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136722A1 (en) * 2013-05-20 2015-09-17 栗田工業株式会社 Lithium ion battery and electronic device using same
WO2015119306A1 (en) * 2014-02-04 2015-08-13 주식회사 코캄 Separator for lithium secondary battery and lithium secondary battery comprising same
CN112054152A (en) * 2020-09-30 2020-12-08 中航锂电技术研究院有限公司 Separator and battery
WO2022255495A1 (en) * 2021-06-04 2022-12-08 Apb株式会社 Battery pack

Also Published As

Publication number Publication date
JP6021367B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
CN110400922B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6139194B2 (en) Nonaqueous electrolyte secondary battery
JP6606144B2 (en) Nonaqueous electrolyte battery electrode group
JP5783425B2 (en) Method for producing non-aqueous electrolyte secondary battery
CN103650201B (en) Nonaqueous electrolyte battery and battery component
JP2014007088A (en) Nonaqueous electrolytic secondary battery and method for manufacturing the same
WO2014050114A1 (en) Non-aqueous electrolyte secondary battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
US10957936B2 (en) Lithium ion secondary battery
JP6021367B2 (en) Nonaqueous electrolyte secondary battery
JP2015076293A (en) Nonaqueous electrolyte secondary battery
JP2014179248A (en) Nonaqueous electrolyte secondary battery
US10411232B2 (en) Secondary battery
WO2020202307A1 (en) Lithium ion secondary battery
WO2016171276A1 (en) Lithium ion cell
JP2016181457A (en) Flat plate type laminate battery and battery pack thereof
JP6125719B1 (en) Charging system and method for charging non-aqueous electrolyte battery
JP2014143003A (en) Nonaqueous electrolyte battery
JP7350761B2 (en) Nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery system
WO2023112576A1 (en) Positive electrode for secondary batteries, and secondary battery
JP2018190624A (en) Nonaqueous electrolyte secondary battery
JP2017182917A (en) Lithium ion secondary battery and method for manufacturing the same, and battery pack
JP2017107796A (en) Nonaqueous electrolyte secondary battery
JP2020126799A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R151 Written notification of patent or utility model registration

Ref document number: 6021367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151