JP2013170593A - 軸受、モータ装置及びロボット装置 - Google Patents

軸受、モータ装置及びロボット装置 Download PDF

Info

Publication number
JP2013170593A
JP2013170593A JP2012033168A JP2012033168A JP2013170593A JP 2013170593 A JP2013170593 A JP 2013170593A JP 2012033168 A JP2012033168 A JP 2012033168A JP 2012033168 A JP2012033168 A JP 2012033168A JP 2013170593 A JP2013170593 A JP 2013170593A
Authority
JP
Japan
Prior art keywords
bearing
shape
axial direction
rotating shaft
open end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012033168A
Other languages
English (en)
Inventor
Masashi Okada
正思 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012033168A priority Critical patent/JP2013170593A/ja
Publication of JP2013170593A publication Critical patent/JP2013170593A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

【課題】軸受と回転軸との間での当該回転軸の径方向の相対的な変動を低減すること。
【解決手段】軸受は、回転軸の周面の近傍に配置される第1面を有する支持部と、前記周面と前記第1面との間に配置される複数の転動部と、を備え、前記支持部は、前記第1面に形成された開放端を有するスリットを有し、前記開放端は、前記回転軸の軸方向と直交する方向視において、前記軸方向に対して非平行な形状を有する。
【選択図】図1

Description

本発明は、軸受、モータ装置及びロボット装置に関する。
例えば旋回系機械を駆動させるアクチュエータとして、モータ装置が用いられている。(例えば、特許文献1参照)このようなモータ装置として、例えば電動モータや超音波モータなど、高トルクを発生させることが可能なモータ装置が広く知られている。また、モータ装置は、回転軸を回転駆動させる駆動部と、回転軸を回転可能に支持する軸受とを備える構成となっている(例えば、特許文献2参照)。
このようなモータ装置において、例えば軸受と回転軸との間に隙間が形成されている場合や、軸受が弾性変形する場合などには、軸受と回転軸とが回転軸の径方向(ラジアル方向)に相対的に移動する場合がある。このような相対移動はモータ装置の安定した駆動の妨げとなる。
特開平2−311237号公報 特開平10−196649号公報
近年では、ヒューマノイドロボットの関節部分など、より精密な部分を駆動させるモータ装置が求められており、電動モータや超音波モータなどの既存のモータにおいてもトルクの制御性等、細密で高精度な駆動を行うことができる構成が求められている。また、例えば上述のようなモータ装置において、軸受と回転軸との間における回転軸の径方向への相対的な変動は回避されることが求められている。
しかしながら、上述のようなモータ装置の構成においては、例えば、軸受の剛性を大きくすると軸受の回転抵抗が大きくなるために、又は、軸受の回転抵抗を小さくすると軸受の剛性が小さくなるために、軸受と回転軸との間における回転軸の径方向への相対的な変動が生じてしまう場合がある。
本発明に係る態様は、軸受と回転軸との間での当該回転軸の径方向の相対的な変動を低減することが可能な軸受、モータ装置及びロボット装置を提供することを目的とする。
本発明に係る一態様の軸受は、回転軸の周面の近傍に配置される第1面を有する支持部と、前記周面と前記第1面との間に配置される複数の転動部と、を備え、前記支持部は、前記第1面に形成された開放端を有するスリットを有し、前記開放端は、前記回転軸の軸方向と直交する方向視において、前記軸方向に対して非平行な形状を有する。
本発明に係る一態様の軸受は、回転軸の周面の近傍に配置される第1面を有する支持部と、前記周面と前記第1面との間に配置される複数の転動部と、を備え、前記支持部は、前記第1面に形成された開放端を有するスリットを有し、前記開放端は、前記回転軸の軸方向における、前記スリットの両端である第1端と第2端とを有し、前記第1端及び前記第2端は、周方向において、互いにずれた位置を有する。
本発明に係る一態様の軸受は、回転軸の周面の近傍に配置される第1面を有する支持部と、前記周面と前記第1面との間に配置される複数の転動部と、を備え、前記支持部は、前記第1面に形成された開放端を有するスリットを有し、前記開放端は、前記回転軸の軸方向と直交する方向視において、前記軸方向に対して平行な第1形状と、前記軸方向に対して非平行な第2形状とを含む形状を有し、前記回転軸の軸方向に沿った前記第1形状の長さは、前記転動部のそれに比べて短い。
本発明に係る一態様のモータ装置は、回転軸を回転駆動させる駆動部と、当該回転軸を回転可能に支持する軸受とを備え、当該軸受として、上記態様に従う軸受が用いられている。
本発明に係る一態様のロボット装置は、従えば、回転軸部材と、当該回転軸部材を回転させるモータ装置とを備え、当該モータ装置として、上記態様に従うモータ装置が用いられている。
本発明に係る態様によれば、軸受と回転軸との間での当該回転軸の径方向の相対的な変動を低減することが可能となる。
本発明の第一実施形態に係るモータ装置の構成を示す図。 本実施形態に係るモータ装置の構成を示す断面図。 本実施形態に係るモータ装置の軸受基板の構成を示す図。 本実施形態に係るモータ装置の軸受基板の構成を示す斜視図。 本実施形態に係るモータ装置の軸受基板の構成を示す図。 本実施形態に係るモータ装置の駆動基板の構成を示す図。 本実施形態に係るモータ装置の伝達基板の構成を示す図。 本実施形態に係るモータ装置の一部の構成を示す図。 本実施形態に係るモータ装置の一部の構成を示す図。 本実施形態に係るモータ装置の特性を示すグラフ。 本実施形態に係るモータ装置の動作を示す図。 本実施形態に係るモータ装置の動作を示す図。 本実施形態に係るモータ装置の動作を示す図。 本実施形態に係るモータ装置の動作を示す図。 本実施形態に係るモータ装置の軸受基板の動作を示す図。 本実施形態に係るモータ装置の軸受基板の動作を示す図。 本実施形態に係るモータ装置の製造工程を示す図。 本発明の第二実施形態に係るロボットハンドの構成を示す模式図。 本実施形態に係るモータ装置の他の構成を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。 本実施形態に係る不連続部の変形例を示す図。
[第1実施形態]
以下、図面に基づき、本発明の第1実施形態を説明する。
図1は、本実施形態に係るモータ装置MTRの一例を示す概略構成図である。図2は、図1におけるA−A´断面に沿った構成を示す図である。
図1及び図2に示すように、モータ装置MTRは、回転軸SFと、当該回転軸SFに対して回転駆動力を伝達させる伝達基板TSと、回転駆動力を発生させる駆動基板DSと、伝達基板TS及び駆動基板DSを保持する軸受基板HSと、駆動基板DSによる回転駆動を制御する制御装置CONTとを有している。モータ装置MTRは、回転軸SFに対して伝達基板TS、駆動基板DS及び軸受基板(軸受)HSが取り付けられた構成である。回転軸SFは、例えば円筒状に形成されている。
以下、各図の説明においてはXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。回転軸SFの軸方向をZ軸方向とし、当該Z軸方向に垂直な平面上の直交方向をそれぞれX軸方向及びY軸方向とする。また、X軸、Y軸、及びZ軸周りの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。
回転軸SFのZ方向の実質的に中央部には、駆動基板DSが例えば2つ重ねて配置されている。当該2つの駆動基板DSに対してZ軸方向の両側(+Z側及び−Z側)には、伝達基板TSが例えば2つずつ重ねて設けられている。2つの駆動基板DS及び4つの伝達基板TSはそれぞれZ軸方向において接触しており、基板位置決め部材AL(図1参照)によって連結されている。
基板位置決め部材ALの一部は連結体の+Z方向及び−Z方向にそれぞれはみ出しており、当該はみ出した部分には軸受基板HSが連結されている。このように一体的に設けられた駆動基板DS及び伝達基板TSの連結体は、1対の軸受基板HSによって挟みこまれた構成になっている。軸受基板HSは、回転軸SFを回転可能に支持する機能と共に、駆動基板DS及び伝達基板TSがZ軸方向にずれないように保持するストッパとしての機能を有している。
図2に示すように、回転軸SFは、伝達基板TSに囲まれる部分に拡径部11を有し、駆動基板DSに囲まれる部分に縮径部12を有している。拡径部11は、例えば軸受基板HSに支持される回転軸SFの部分に比べて、径が大きくなっている部分である。縮径部12は、例えば軸受基板HSに支持される回転軸SFの部分に比べて、径が小さくなっている部分である。回転軸SFは、拡径部11及び縮径部12を含めた部分において共通の回転軸(回転軸心)Cを有している。
軸受基板HSは、例えば、転動部材(転動部)15を介して回転軸SFを回転可能に支持している。図1に示すように、軸受基板HSは、回転軸SFの外周面SFaとの間に転動部材15を介して回転軸SFを回転可能に支持する構成となっている。
転動部材15は、円筒状又は円柱状に形成されており、その軸心が回転軸SFの軸方向と平行になるよう回転軸SFの外周面SFaの一周に亘って複数設けられている。なお、転動部材15は、回転軸SFの軸方向と異なる方向に配置されてもよい。また、転動部材15は、例えば、ニードルベアリング、テーパローラベアリングやクロスローラベアリングに用いられるころ部材(例、円柱状部材、円筒状部材)、ボールベアリングに用いられる玉状部材、などが用いられる。
また、本実施形態における転動部材15は、回転軸SFの周面とこの周面に対向する対向面(第1面)50aとの両方に線又は点で接触するように配置されている。例えば、転動部材15が回転軸SFの周面とこの周面に対向する対向面50aとの両方に線で接触する場合、回転軸SFの周面と対向面50aとに対する転動部材15の接触面積が点で接触する場合に比べて大きいため、本実施形態における軸受は高い剛性を得ることができる。
図3A及び図3Bは、軸受基板HSをXY平面に平行な平面で切った状態を示す断面図である。図3Bは、図3AをZ軸方向+側から見た斜視図である。
図3A及び図3Bに示すように、軸受基板HSは、金属材料や樹脂材料などを用いて板状に形成されている。軸受基板HSは、中央開口部50、第一開口部51、第二開口部52及び第三開口部53を有している。中央開口部50は、軸受基板HSのXY方向の中央部に形成されている。中央開口部50は、Z方向に軸受基板HSを貫通して形成されたZ方向視で円形の貫通穴である。中央開口部50は、回転軸SFを貫通させる(回転軸SFが挿入される)部分である。
中央開口部50の内周面は、回転軸SFの周面の近傍に配置され、回転軸SFの周面に対向する対向面50aとなる。また、軸受基板HSのうち中央開口部50の周縁部は、回転軸SFを保持する支持部(回転軸支持部)61となる。したがって、本実施形態では、支持部61は、板状部材である軸受基板HSの一部に形成された構成となっている。支持部61は、例えば弾性変形可能な寸法に形成されている。なお、本実施形態における対向面50aは、回転軸SFの周面に平行に形成されている。
第一開口部51、第二開口部52及び第三開口部53は、中央開口部50の周方向に沿って例えば等しい角度ずつずれた位置に配置されている。第一開口部51、第二開口部52及び第三開口部53は、それぞれ軸受基板HSをZ方向に貫通して形成されている。第一開口部51は、X方向を長手方向とするように形成されている。第一開口部51の長手方向の寸法は、中央開口部50の径と実質的に等しくなっている。第二開口部52及び第三開口部53は、それぞれZ方向視で円形に形成されている。
支持部61の対向面50aは、当該対向面50aにおいて不連続な部分となる少なくとも1つの不連続部(スリットの開放端)57aを有する。また、少なくとも1つの不連続部57aの少なくとも一部は、回転軸SFの軸方向とは異なる方向に形成されている(例、後述の図4など参照)。また、支持部61は、不連続部57aの少なくとも一部を含み、対向面50a(支持部61における回転軸SFの径方向内側の面、第1面)に接する中央開口部50から、対向面50aとは反対側の面(支持部61における回転軸SFの径方向外側の面、第一開口部51に接する面、第2面)まで形成された第一の隙間領域(第一切り欠き部、スリット)57を有している。第一切り欠き部が対向面50aに接する面、すなわち、対向面50a上の第一切り欠き部が、不連続部57aとなる。
第一切り欠き部57は、支持部61のうち中央開口部50から第一開口部51までの部分(支持部61のうち第一開口部51に沿っている部分)を、第一部分61aと第二部分61bとに分断するように形成されている。第一部分61aと第二部分61bとは、第一切り欠き部57を挟んで対向して配置されている。また、第一部分61aと第二部分61bとは、少なくとも一部の対向面50aを有し、対向面50aにおいて不連続部57aを挟んで配置されている。
なお、本実施形態における隙間領域57は、支持部61の対応部分を切り欠くことによって形成されているが、例えば、分離された支持部61の部材によって形成されてもよい。例えば、本実施形態における隙間領域57は、支持部61が複数の部材で構成される場合、その複数の部材の配置によって形成されてもよい。また、本実施形態における隙間領域57は、所定部分まで連通させた貫通領域であるが、少なくとも一部が溝領域であってもよい。
不連続部57a又は第一切り欠き部57が設けられていることにより、支持部61が当該不連続部57a又は当該第一切り欠き部57を介して変形する構成となっている。
また、例えば軸受基板HSの材料が上記のような金属材料や樹脂材料である場合などには、支持部61が弾性変形しやすくなる。
例えば、第一部分61aと第二部分61bとの位置関係(例、距離など)については、ボルト部材(締結部材)BL及びボルト挿入部58を有する調整部ADによって調整される。ボルト部材BLは、軸受基板HSの+X側に形成されたボルト挿入部58から支持部61側へ向けて挿入されている。ボルト部材BLは、第一部分61aと第二部分61bとの間を貫通するように当該第一部分61aと第二部分61bとを固定する。ボルト部材BLによる固定状態を調整することにより、第一部分61aと第二部分61bとの距離が調整可能となっている。
図4は、図3AにおけるB−B´断面に沿った構成を示す図である。
図4に示すように、不連続部57aは、回転軸SFの軸方向(Z方向)と直交する方向視(例、Y方向視)において、回転軸SFの軸方向とは異なる方向に形成されている。なお、本実施形態における不連続部57aの少なくとも一部は、回転軸SFの軸方向と直交する方向視において軸方向に対して傾斜させて形成してもよいし、又は、回転軸SFの軸方向と直交する方向視において軸方向に対して所定の角度を有して形成してもよい。換言すると、不連続部57aの少なくとも一部は、回転軸SFの軸方向と直交する方向視において軸方向に対して傾斜する形状を有することができ、又は、回転軸SFの軸方向と直交する方向視において軸方向に対して所定の角度を有する形状を有することができる。
また、例えば、本実施形態における不連続部57aは、当該不連続部57aのうち少なくとも一部が軸方向と異なる方向に形成されている構成であればよい。換言すると、本実施形態において、スリット(隙間領域、第一切り欠き部57)57の開放端(不連続部)57aは、回転軸SFの軸方向と直交する方向視において、その軸方向に対して非平行な形状を有する。一例において、図4に示すように、開放端57aは、回転軸SFの軸方向と直交する方向視において軸方向に対して傾斜する形状を有することができる。他の一例において、開放端57aは、回転軸SFの軸方向と直交する方向視において、軸方向に対して直交する形状を有することができる、及び/又は、湾曲形状を有することができる。
また、図3A及び図3Bに示すように、回転軸SFの回転軸方向視(Z方向視)では、第一切り欠き部57は、対向面50aの法線方向に沿って形成されている。
なお、回転軸SFの回転軸方向視(Z方向視)において、第一切り欠き部57が円弧状に形成されている構成であっても構わない。換言すると、回転軸SFの回転軸方向視(Z方向視)において、第一切り欠き部57が直線状又は円弧状を有することができる。不連続部57aは、中央開口部50に挿入される回転軸SFの外周形状に倣うように形成されている。
また、図4に示すように、支持部61は、第一切り欠き部57に接する面(第一切り欠き部57を構成する面)を有する第一部分61aと第二部分61bとを備える。図4に示すように、第一部分61aにおける第一切り欠き部57に接する面の少なくとも一部は、回転軸SFの軸方向に対して傾斜している。また、第二部分61bにおける第一切り欠き部57に接する面の少なくとも一部は、回転軸SFの軸方向に対して傾斜している。
なお、第一切り欠き部57は、軸受基板HSの中央開口部50の周方向(すなわち、回転軸SFの周方向:θZ方向)に対して傾いて形成されてもよい。
図4において、第一切り欠き部57は、一例として、中央開口部50における中心線αよりも+X側かつ+Z側の位置から−X側かつ−Z側の位置まで、中心線αを跨ぐように形成されている。したがって、第一切り欠き部57によって間隔を空けて分断される第一部分61a及び第二部分61bは、Z方向視で少なくとも一部同士が重なった状態となっている。
図3A及び図3Bに示すように、軸受基板HSは、第一開口部51と第二開口部52とを接続する第一溝部(第一スリット部)55、及び、第二開口部52と第三開口部53とを接続する第二溝部(第二スリット部)56を有している。第一溝部55及び第二溝部56は、中央開口部50の周方向に沿って形成されている。
第一開口部51から第一溝部55、第二開口部52、第二溝部56を順に経由して第三開口部53に至る部分(第二隙間領域(第二切り欠き部)54)は、Z方向視において、中央開口部50の周方向に沿った円環の一部の形状になるように形成されている。すなわち、第二切り欠き部54は、回転軸SFを少なくとも部分的に囲う形状を有している。第二切り欠き部54が形成されていることにより、支持部61の一部が軸受基板HSの他の部分と切り離された状態となる。したがって、支持部61の一部が弾性変形しやすい構成となる。なお、Z方向視において、第二切り欠き部54が円弧状、多角形状、くの字状(V字状)又はコの字状(U字状)に形成されている構成であっても構わない。なお、Z方向視において、第二切り欠き部54の少なくとも一部が直線状に形成されている構成であっても構わない。
第二切り欠き部54は、中央開口部50に挿入される回転軸SFの外周形状に倣うように形成されている。なお、本実施形態における第二隙間領域54は、軸受基板HSの対応部分を切り欠くことによって形成されているが、例えば、分離された支持部61の部材によって形成されてもよい。例えば、本実施形態における第二隙間領域54は、支持部61が複数の部材で構成される場合、その複数の部材の配置によって形成されてもよい。また、本実施形態における第二隙間領域54は、所定部分まで連通させた貫通領域であるが、少なくとも一部が溝領域であってもよい。
次に、モータ装置MTRの駆動系の構成を説明する。
図5は、駆動基板DSの構成を示す平面図である。
駆動基板DSは、例えばステンレス等の材料を用いて矩形の板状に形成されている。駆動基板DSは、図中+Y方向の端部に支持部47を有している。当該支持部47のX方向中央部には、−Y方向に延びるように接続部46が形成されており、接続部46の−Y方向の先端には、駆動ベース部45が形成されている。駆動ベース部45には、駆動部ACが保持されている。
駆動部ACは、例えばピエゾ素子などの電気機械変換素子を備えた駆動素子31及び32を有している。駆動素子31及び駆動素子32は、電気機械変換素子に電圧が印加されることにより、Y方向に伸縮する構成である。制御装置CONTは駆動部ACに接続されており、当該駆動部ACに対して制御信号を供給可能になっている。なお、駆動部ACは、磁歪素子、電磁石、VCM(ボイスコイルモータ)などを用いる構成であっても構わない。
駆動素子31及び32は、駆動ベース部45によってそれぞれ貫通部40から外れた位置で保持されている。貫通部40と駆動素子31及び32との間は、例えば接続部46を介して離間している。駆動素子31及び32は、貫通部40に対してX方向に対象な位置に配置されている。当該駆動素子31及び32は、それぞれ−Y側の端部を保持されている。駆動素子31及び32は−Y側端部のY方向の位置が固定されるため、伸縮する際には+Y側端部がY方向に移動することとなる。当該駆動素子31の+Y側の端部は可動部41の接続面41aに接続されている(連続している)。また、当該駆動素子32の+Y側の端部は可動部42の接続面42aに接続されている(連続している)。駆動素子31及び32が伸縮することにより、接続面41a及び接続面42aに対して+Y側に押圧力が加えられたり、−Y側に引きつける力が加えられたりするようになっている。
駆動基板DSの接続部46には、Z方向視で実質的に中央部に貫通部40が形成されている。貫通部40は、Z方向視で実質的に円形に形成された開口部であり、駆動基板DSの表裏を貫通して形成されている。貫通部40には、回転軸SFの縮径部12が挿入される。駆動基板DSには、当該貫通部40の他、例えば開口部30A〜30D及び開口部35が形成されている。
開口部30A〜30Dは、駆動基板DSの4つの角部にそれぞれ設けられており、各々例えば円形に形成されている。開口部30A〜30Dは、連結部材CNが挿入される。開口部35は、例えば駆動基板DSの4つの角部に1つずつ配置されている。各開口部35には、例えば基板位置決め部材ALが挿入される。
4つの開口部35のうち、例えば+Y側の2つの角部に配置される開口部35C及び開口部35Dは、それぞれ開口部30C及び開口部30Dへ向けて突出部を有している。また、開口部35Cには−X側の辺に到達する切り込み部が形成されており、開口部35Dには+X側の辺に到達する切り込み部が形成されている。
このため、例えば可動部41は、開口部35Cと開口部30Cとの間の支持部43によって支持部47に支持されることになる。同様に、可動部42は、開口部35Dと開口部30Dとの間の支持部44によって支持部47に支持されることになる。当該構成により、可動部41は支持部43を中心にθZ方向に回動可能であり、可動部42は支持部44を中心にθZ方向に回動可能である。
図6は、伝達基板TSの構成を示す平面図である。
伝達基板TSは、例えばステンレス等の材料を用いて矩形の板状に形成されている。伝達基板TSには、Z方向視で実質的に中央部に貫通部10が形成されている。貫通部10は、Z方向視で実質的に円形に形成された開口部であり、伝達基板TSの表裏を貫通して形成されている。貫通部10には、回転軸SFの拡径部11が挿入される。伝達基板TSには、当該貫通部10の他、例えば開口部20A〜20D、伝達部BT、接続部24A、24B及び開口部25が形成されている。
開口部20A〜20Dは、伝達基板TSの4つの角部にそれぞれ設けられており、各々例えば円形に形成されている。開口部20A〜20Dは、連結部材CNが挿入されている。例えば、開口部20A及び上記駆動基板DSの開口部30Aには、同一の連結部材CNが挿入される。また、開口部20B及び上記駆動基板DSの開口部30Bには、同一の連結部材CNが挿入される。
伝達部(伝達部材)BTは、ベルト部(伝達部材)23、第一端部(移動部)21及び第二端部(移動部)22を有している。
ベルト部23は、貫通部10によって形成された壁部(内周部)10aに沿って例えば帯状に形成され、例えば弾性変形可能な程度の厚さに形成されている。ベルト部23は、貫通部10に挿入される回転軸SFを囲うように配置される。換言すると、回転軸SFは、貫通部10のうちベルト部23によって囲まれる空間に挿入される。ベルト部23は、例えば回転軸SFの周面(例、外周面、内周面)のうち少なくとも一部に掛けることができるようになっている。
ベルト部23には、複数の切り込み部23aが形成されている。切り込み部23aは、例えばベルト部23の外周面(内周部10aに対向する面)に、Z方向を長手方向とする溝のように形成されている。切り込み部23aは、例えばベルト部23の長手方向(内周部10aに沿った方向)の全体(全周)に亘って実質的に等間隔に形成されている。切り込み部23aは、回転軸SFの周方向へのベルト部23の変形又は移動を促進する。
ベルト部23の第一端部21は、接続部24Aを介して開口部20Aに接続されている。接続部24Aは、開口部20Aに対して+X方向に延在し、更に伝達基板TSのX方向の中央部よりも−X側の位置において+Y方向に伸び、第一端部21に接続されている。
ベルト部23の第二端部22は、接続部24Bを介して開口部20Bに接続されている。
接続部24Bは、開口部20Bに対して−X方向に延在し、更に伝達基板TSのX方向の中央部よりも+X側の位置において+Y方向に伸び、第二端部22に接続されている。
第一端部21及び第二端部22は、回転軸SFの外周上の基準位置Fを挟んで配置されている。本実施形態では、例えば図1における回転軸SFの−Y側端部を基準位置Fとした構成となっている。また、開口部20A及び20Bは、それぞれ第一端部21、第二端部22及び基準位置Fを挟む位置に設けられている。このため、連結部材CNは、第一端部21、第二端部22及び基準位置Fを挟む位置で伝達基板TSに連結されていることになる。
開口部20C及び20Dは、開口部20A及び20Bに比べて径が大きくなるように形成されている。このため、開口部20C及び20Dに挿入された連結部材CNは、伝達基板TSに対して押圧力を加えることなく開口部20C及び20D内で移動することが可能となる。開口部25は、例えば伝達基板TSの4つの角部に1つずつ配置されている。各開口部25には、例えば基板位置決め部材ALが挿入される。
図5に示す駆動基板DSにおいて、駆動素子31及び32が伸びる方向に変形すると、駆動素子31及び32の各+Y側端部が+Y側に移動し、接続面41a及び42aが+Y方向に押圧される。この押圧力により、可動部41は支持部43を中心にθZ方向(図5の反時計回りの方向)に回動し、可動部41に設けられた開口部30Aの位置が+X方向に移動する。よって、開口部30Aに挿入される連結部材CNは+X方向に移動する。また、可動部42は、支持部44を中心にθZ方向(図5の時計回りの方向)に回動し、可動部42に設けられた開口部30Bの位置が−X方向に移動する。よって、開口部30Bに挿入される連結部材CNは−X方向に移動する。
また、駆動素子31及び32が縮む方向に変形すると、駆動素子31及び32の各+Y側端部が−Y側に移動し、接続面41a及び42aが−Y方向に引き付けられる。この引き付けの力により、可動部41は支持部43を中心にθZ方向(図5の時計回りの方向)に回動し、可動部41に設けられた開口部30Aの位置が−X方向に移動する。よって、開口部30Aに挿入される連結部材CNは−X方向に移動する。また、可動部42は、支持部44を中心にθZ方向(図5の反時計回りの方向)に回動し、可動部42に設けられた開口部30Bの位置が+X方向に移動する。よって、開口部30Bに挿入される連結部材CNは+X方向に移動する。
また、図6に示す伝達基板TSにおいては、例えば開口部20Aに挿入された連結部材CNが+X方向に移動すると、接続部24Aが当該連結部材CNに押されて+X方向に移動する。接続部24Aが+X方向に移動すると、第一端部21は当該移動に伴って+X方向に移動する。また、開口部20Aに挿入された連結部材CNが−X方向に移動すると、接続部24Aが当該連結部材CNに引っ張られて−X方向に移動する。接続部24Aが−X方向に移動すると、第一端部21は当該移動に伴って−X方向に移動する。
接続部24Bは、例えば開口部20Bに挿入された連結部材CNが−X方向に移動すると、当該連結部材CNに押されて−X方向に移動する。接続部24Bが−X方向に移動すると、第二端部22は当該移動に伴って−X方向に移動する。
また、接続部24Bは、開口部20Bに挿入された連結部材CNが+X方向に移動すると、当該連結部材CNに引っ張られて+X方向に移動する。接続部24Bが+X方向に移動すると、第二端部22は当該移動に伴って+X方向に移動する。
したがって、例えば駆動素子31及び32が共に伸びると、第一端部21と第二端部22とが近づく。このため、ベルト部23が回転軸SF(拡径部11)に巻きつき、当該ベルト部23に張力が加わる。また、例えば駆動素子31及び32が共に縮むと、第一端部21と第二端部22とが遠ざかる。このため、ベルト部23が回転軸SFから離れて弛緩する。
駆動基板DSの駆動素子31及び32の伸縮は、可動部41及び42及び連結部材CNを介して伝達基板TSの接続部24A及び24Bに伝達され、第一端部21及び第二端部22を移動させる駆動力としてベルト部23に伝わるようになっている。このように、駆動基板DS及び伝達基板TSは、駆動部ACによる駆動力が伝達部BTに伝達して作用するように連結されている。
図7Aは、本実施形態のモータ装置MTRの一部の構成を示す図である。図7Bは、図7AにおけるC−C´断面に沿った構成を示す図である。本実施形態では、図7Aに示すように、1つの駆動基板DSに対して2つの伝達基板TS設けられ、当該2つの伝達基板TSがZ軸方向に駆動基板DSを挟むように配置された構成となっている。
また、本実施形態では、例えば図1、図2及び図7Bに示すように、駆動基板DSと2つの伝達基板TSとの組が2組設けられ、各組のY方向の向きが反対になっている。
また、各組は、それぞれ伝達基板TS又は駆動基板DSの1枚分の厚さ(Z軸方向の寸法)だけZ軸方向にずれて配置されている。このため、各組の駆動基板DS同士が接触し、当該駆動基板DSに対して+Z側に配置された伝達基板TS同士が接触し、当該駆動基板DSに対して−Z側に配置された伝達基板TS同士が接触した状態になっている。
すなわち、駆動基板DSと2つの伝達基板TSとの組と、別の駆動基板DSと2つの伝達基板TSとの組とが、前述の基板1枚分の厚さの隙間を互いに補間(充填)するように配置される。
この場合、図7Bに示すように、一方の組において開口部20A及び30Aを通る連結部材CNが、他方の組において開口部20C及び30Cを通ることになる。同様に、一方の組において開口部20B及び30Bを通る連結部材CNが、他方の組において開口部20D及び30Dを通ることになる。本実施形態の構成においては、開口部20C及び30C、開口部20D及び30Dは、それぞれ開口部20A及び30A、開口部20B及び30Bよりも径が大きくなるように形成され、連結部材CNがそれぞれの内部を移動可能に設けられている。このため、異なる組における駆動動作が互いに干渉しないようになっている。
次に、回転軸SFの駆動動作を説明する。
本実施形態に係るモータ装置MTRにおいて、回転軸SFを駆動させる原理を説明する。回転軸SFを駆動させる際には、回転軸SFに巻き掛けられた伝達部BTに有効張力を生じさせ、当該有効張力によって回転軸SFにトルクを伝達する。
オイラーの摩擦ベルト理論により、回転軸SFに巻き掛けられた伝達部BTの第一端部21側の張力T1及び第二端部22側の張力T2が下記[数1]を満たすとき、伝達部BTと回転軸SFとの間で摩擦力が生じ、伝達部BTが回転軸SFに対して滑りを生じることの無い状態(回転力伝達状態)で回転軸SFと共に移動する。この移動により、回転軸SFにトルクが伝達される。ただし、[数1]において、μは伝達部BTと回転軸SFとの間の見かけ上の摩擦係数であり、θは伝達部BTの有効巻き付き角である。
Figure 2013170593
このとき、トルクの伝達に寄与する有効張力は、(T1−T2)によって表される。上記[数1]に基づいて有効張力(T1−T2)を求めると、[数2]のようになる。[数2]は、T1を用いて有効張力を表す式である。
Figure 2013170593
上記[数2]より、回転軸SFに伝達されるトルクは駆動素子31の張力T1によって一意に決定されることがわかる。[数2]の右辺のT1の係数部分は、伝達部BTと回転軸SFとの間の摩擦係数μ及び伝達部BTの有効巻き付き角θにそれぞれ依存する。図8は、摩擦係数μを変化させたときの有効巻き付き角θと係数部分の値との関係を示すグラフである。グラフの横軸は有効巻き付き角θを示しており、グラフの縦軸は係数部分の値を示している。
図8に示すように、例えば摩擦係数μが0.3の場合には、有効巻き付き角θが300°以上のときに係数部分の値が0.8以上となっている。このことから、摩擦係数μが0.3の場合には、有効巻き付き角θを300°以上とすることにより、駆動素子31による張力T1の80%以上の力が回転軸SFのトルクに寄与することがわかる。この巻き付き角の他、図8のグラフから、例えば伝達部BTと回転軸SFとの間の摩擦係数を大きくするほど、係数部分の値が大きくなることが推定される。
このように、トルクの大きさは駆動素子31の張力T1によって一意に決定されることになり、例えば伝達部BTの移動距離などには実質的に無関係であることがわかる。したがって、例えば駆動素子31及び駆動素子32に用いられるピエゾ素子などは、数ミリ程度の小型素子であっても、数百ニュートン以上の力を出すことができるので非常に大きな回転力を付与することができる。
このような原理に基づいて、制御装置(制御部)CONTは、図9に示すように、まず、第一端部(移動部)21が+X方向に、第二端部(移動部)22が−X方向にそれぞれ移動するように駆動素子31及び駆動素子32を変形させる。この動作により、伝達部(伝達部材)BTの第一端部(移動部)21側には張力T1が発生し、伝達部(伝達部材)BTの第二端部(移動部)22側には張力T2が発生する。したがって、伝達部BTに有効張力(T1−T2)が発生する。
制御装置CONTは、伝達部BTに有効張力を発生させた状態を保持しつつ、図10に示すように、伝達部BTの第一端部21が+X方向に移動するように、かつ、第二端部22が+X方向に移動するように駆動素子31及び駆動素子32を変形させる(駆動動作)。この動作において、制御装置CONTは、第一端部21の移動距離と第二端部22の移動距離とを等しくさせる。この動作により、伝達部BTと回転軸SFとの間に摩擦力が発生した状態で伝達部BTが移動し、当該移動と共に回転軸SFがθZ方向に回転する。
本実施形態では、伝達部BTと回転軸SFとの間の摩擦係数μが例えば0.3であり、伝達部BTが回転軸SFに実質的に1回転(360°)巻き掛けられている。したがって、図8のグラフを参照すると、駆動素子31の張力T1の85%程度の力がトルクとして回転軸SFに伝達されることになる。
制御装置CONTは、第一端部21及び第二端部22を所定距離だけ移動させた後、図11に示すように、第一端部21が駆動の開始位置(所定位置)へ戻るように、かつ、第二端部22が移動しないように、駆動素子31だけを変形させる。この動作により、第一端部21が−X方向へ移動し、伝達部BTの巻き掛けが緩んだ状態になる。つまり、伝達部BTに付加されていた有効張力が解除された状態になる。この状態においては、伝達部BTと回転軸SFとの間に摩擦力は発生せず、回転軸SFは慣性によって回転し続けることになる。
制御装置CONTは、伝達部BTの巻き掛けを緩ませた後、図12に示すように、第二端部22が駆動の開始位置(所定位置)へ戻るように駆動素子32を変形させる。この動作により、伝達部BTの巻き掛けが緩んだまま、すなわち、有効張力が発生しないまま、伝達部BTの第二端部22が駆動の開始位置(所定位置)へ戻っていく(復帰動作)。
第二端部22が駆動開始位置に戻される直前になったら、制御装置CONTは、駆動素子31を変形させて第一端部21を+X方向に移動させる。この動作により、第二端部22が駆動開始位置に戻されるのと実質的に同時に、第一端部21側に張力T1が発生し、第二端部22側に張力T2が発生する。これにより、駆動開始時に伝達部BTに有効張力を付加させた状態(図9の状態)と同様の状態となる。
伝達部BTに有効張力が付加された後、制御装置CONTは、伝達部BTの第一端部21が+X方向に移動するように駆動素子31を変形させ、第二端部22が+X方向に移動するように駆動素子32を変形させる(駆動動作)。このとき、第一端部21の移動距離と第二端部22の移動距離とを等しくさせる。この動作により、伝達部BTと回転軸SFとの間に摩擦力が発生した状態で伝達部BTが移動し、当該移動と共に回転軸SFがθZ方向に回転する。
この後、制御装置CONTは、伝達部BTに付加されていた有効張力を再度解除させる。制御装置CONTは、有効張力を図11のように解除させた後、伝達部BTの第一端部21及び第二端部22が開始位置に戻るように移動させる(復帰動作)。このように制御装置CONTが上記駆動動作と復帰動作とを駆動部ACに繰り返し行わせることにより、回転軸SFがθZ方向に回転し続けることになる。
また、図13A及び図13Bは、回転軸SFが軸受基板HSに転動部材15を挟んで装着された状態において、支持部61が弾性変形する様子を示す図である。上記の駆動動作を行う場合、図13Aに示すように、支持部61は、第一部分61aと第二部分61bとが回転軸SFの径方向の外側に開くように弾性変形する。
例えば、本実施形態では、第一切り欠き部57、第二開口部52及び第三開口部53が支持部61に設けられているため、支持部61は、これら第一切り欠き部57、第二開口部52及び第三開口部53をそれぞれ頂点として実質的に三角形状に変形する。このように、回転軸SFを保持する支持部61が弾性変形することにより、支持部61から転動部材15を介して回転軸SFの中心へ向けてラジアル方向の弾性力が発生する。この弾性力により、支持部61及び転動部材15と回転軸SFとの間に隙間が形成されるのを抑えることができる。なお、ボルト部材BLによって第一部分61aと第二部分61bとの位置関係を調整することで、当該弾性力を調整することができる。
図13Bに示すように、本実施形態における構成では、第一部分61aと第二部分61bとがZ軸方向視で少なくとも一部同士が重なる状態となる。そのため、転動部材15が不連続部57aを移動する場合であっても、転動部材15は、対向面50aのうち第一部分61aを含む面と第二部分61bを含む面とのうち少なくとも一方と接触する構成となっている。また、不連続部57aが回転軸SFの外周面SFaに倣って、Y方向視で斜め方向(回転軸SFの回転軸に対して傾斜した方向)に形成されているため、転動部材15が第一切り欠き部57に入り込むことが実質的になく、支持部61及び転動部材15と回転軸SFとの間における隙間の形成が低減される。
また、本実施形態では、少なくとも一つの不連続部57aの少なくとも一部が回転軸SFの軸方向とは異なる方向に形成されているため、軸受と回転軸SFとの間での当該回転軸SFの径方向の相対的な変動を低減できる。
また、本実施形態では、少なくとも一つの不連続部57aの少なくとも一部が回転軸SFの軸方向とは異なる方向に形成されているため、回転軸SFの回転の円滑性を妨げることなく、当該回転軸SFを回転可能に支持することができる。
また、図13A及び図13Bに示すように、本実施形態における軸受は、支持部61を実質的に三角形状に変形させることによって、第一部分61aにおいて第二部分61bと対向する部分のうちの対向面50aの側の端部61aeが転動部材15と接しない構成となるため、回転軸SFの回転の円滑性を妨げることなく、当該回転軸SFを回転可能に支持することができる。同様に、本実施形態における軸受は、支持部61を実質的に三角形状に変形させることによって、第二部分61bにおいて第一部分61aと対向する部分のうちの対向面50aの側の端部61beが転動部材15と接しない構成となるため、回転軸SFの回転の円滑性を妨げることなく、当該回転軸SFを回転可能に支持することができる。
このように、本実施形態における軸受は、転動部材15が第一切り欠き部57を通過する場合に、転動部材15が第一切り欠き部57に入ることがないように、対向面50aのうち第一部分61aを含む面と第二部分61bを含む面とを経由して転動部材15を円滑に移動させることができる。このため、回転軸SFの回転の円滑性を妨げることなく、当該回転軸SFを回転可能に支持することができる。また、上述のように、本実施形態における軸受は、回転軸SFの回転抵抗を小さくでき、回転軸SFに対するラジアル方向の剛性を高くすることができる。なお、本実施形態の軸受において、上述の不連続部57a、第一切り欠き部57及び第二切り欠き部54のそれぞれの数は、任意の数(例、1つ又は複数)で構成されても構わない。また、本実施形態における軸受は、上述のような調整部ADを複数有する構成であっても構わない。
次に、上記のモータ装置MTRの製造方法を説明する。
モータ装置MTRを製造する場合、まず、伝達基板TS同士、駆動基板DS同士、そして軸受基板HS同士をそれぞれ形成する。例えば図14に示すように、複数の基板Sを積層させ、当該複数の基板Sをまとめて切削加工して形成する。例えば、ワイヤーなど金属の線状部材Lに電圧を印加して放電させた状態とし、このワイヤーと複数の基板Sとを相対的に移動させながら、糸鋸のように複数の基板Sを切削加工する。この切削加工を、例えば伝達基板TSの形成、駆動基板DSの形成、軸受基板HSの形成のそれぞれについて行う。なお、軸受基板HSには、X方向に長手方向を有する第一開口部51が形成されているため、線状部材Lを通す場合に有用となる。
また、上記の他、伝達基板TS、駆動基板DS、軸受基板HSの鋳型を作成し、鋳造によって形成するようにしても構わない。また、伝達基板TS、駆動基板DS、軸受基板HSの押し型を用いて、押し出し成形によって形成するようにしても構わない。更に、フォトリソグラフィ法を用いたパターニングによって、伝達基板TS、駆動基板DS、軸受基板HSを形成しても構わない。伝達基板TS、駆動基板DS、軸受基板HSを形成した後、駆動部ACを駆動基板DSの駆動ベース部45に取り付け、伝達基板TSと駆動基板DSとを上記のように連結し、軸受基板HSを接続することで、モータ装置MTRが完成する。
このように、本実施形態によれば、回転軸SFの外周面SFaに対向する対向面50aを有し、第一切り欠き部57及び対向面50aの一部に不連続部57aが形成された支持部61と、外周面SFaと対向面50aとに挟まれ、回転軸SFに平行に配置された複数の転動部材15と、支持部61の少なくとも一部が外周面SFaの側に弾性変形するように、支持部61のうち第一切り欠き部57を挟んで配置される第一部分61aと第二部分61bとの位置関係を調整するボルト部材BLとを備えることとしたので、回転軸SFを保持した状態で支持部61を弾性変形させることができる。
このため、支持部61から転動部材15を介して回転軸SFの中心へ向けてラジアル方向の弾性力を発生させることができる。この弾性力により、支持部61及び転動部材15と回転軸SFとの間に隙間が形成されるのを抑えることができる。これにより、小型の構成であっても、軸受基板HSと回転軸SFとの間での当該回転軸SFの径方向の相対的な変動を抑制することが可能となる。
また、本実施形態によれば、回転軸SFを回転駆動させる駆動基板DS及び伝達基板TSと、回転軸SFを回転可能に支持する軸受基板HSとを備え、伝達基板TSが回転軸SFの外周面SFaの少なくとも一部に掛けられた伝達部BTを有し、駆動基板DSが当該伝達部BTに接続され伝達部BTを移動させる駆動部ACとを有し、回転軸SFと伝達部BTとの間を回転力伝達状態として伝達部BTを一定距離移動させる駆動動作及び回転力伝達状態を解消した状態で伝達部BTを所定の位置に戻す復帰動作を駆動部ACに行わせる制御装置CONTを更に備えるので、回転軸SFの径方向における振動が抑えられた高性能で小型のモータ装置MTRを提供することができる。
[第二実施形態]
次に、本発明の第二実施形態を説明する。
図15は、第一実施形態に記載のモータ装置MTRを備えるロボット装置RBTの一部(指部分の先端)の構成を示す図である。
同図に示すように、ロボット装置RBTは、末節部101、中節部102及び関節部103を有しており、末節部101と中節部102とが関節部103を介して接続された構成になっている。関節部103には軸支持部103a及び軸部103bが設けられている。軸支持部103aは中節部102に固定されている。軸部103bは、軸支持部103aによって固定された状態で支持されている。
末節部101は、接続部101a及び歯車101bを有している。接続部101aには、関節部103の軸部103bが貫通した状態になっており、当該軸部103bを回転軸として末節部101が回転可能になっている。この歯車101bは、接続部101aに固定されたベベルギアである。接続部101aは、歯車101bと一体的に回転するようになっている。
中節部102は、筐体102a及び駆動装置ACTを有している。駆動装置ACTは、上記実施形態に記載のモータ装置MTRを用いることができる。駆動装置ACTは、筐体102a内に設けられている。駆動装置ACTには、回転軸部材104aが取り付けられている。回転軸部材104aの先端には、歯車104bが設けられている。この歯車104bは、回転軸部材104aに固定されたベベルギアである。歯車104bは、上記の歯車101bとの間で噛み合った状態になっている。
上記のように構成されたロボット装置RBTは、駆動装置ACTの駆動によって回転軸部材104aが回転し、当該回転軸部材104aと一体的に歯車104bが回転する。
歯車104bの回転は、当該歯車104bと噛み合った歯車101bに伝達され、歯車101bが回転する。当該歯車101bが回転することで接続部101aも回転し、これにより末節部101が軸部103bを中心に回転する。
このように、本実施形態によれば、低速高トルクの回転を出力することができる駆動装置ACTを搭載することにより、例えば減速器を用いない構成であっても直接末節部101を回転させることができる。さらに本実施形態では、駆動装置ACTが回転軸の径方向における振動が抑えられた構成であるため、安定した動作が可能となる。
本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。
例えば、上記構成に加えて、図16に示すように、回転軸SFのZ方向への移動を規制する移動規制部80が設けられた構成であっても構わない。また、例えば軸受基板HSをZ方向に挟む位置に移動規制部80及び81を配置する構成であっても構わない。
また、モータ装置MTRとして、回転軸SFの周面の少なくとも一部に掛けられた伝達部材と、当該伝達部材に接続され伝達部材を移動させる駆動素子と、回転軸SFと伝達部材との間を回転力伝達状態として伝達部材を一定距離移動させる駆動動作及び回転力伝達状態を解消した状態で伝達部材を所定の位置に戻す復帰動作を駆動素子に行わせる制御部と、を有する構成であれば、上記の構成に限られることは無く、異なる構成であっても構わない。
また、本実施形態における回転軸SFは、例えば、円筒状などのような中空の構成であってもよい、又は、円柱状などのような中実(中空でない構造)の構成であってもよい。なお、本実施形態における回転軸SFは、回転子SFを中空に形成する場合には、例えば回転子SFを円筒状に形成するなど、回転子SFの軸方向の両端が貫通されている構成にすることもできる。
また、本実施形態における回転軸SFは、例えば回転子SFの軸方向の両端が貫通されておらず、いずれか一方のみが開口されている構成にすることもできる。本実施形態における回転軸SFは、回転子SFの軸方向の両端のいずれも塞がれている構成としても構わない。
また、本実施形態における回転軸SFは、回転子SFの内部に適宜仕切りなどを配置しつつ内部を中空にする構成であっても構わない。
また、本実施形態における回転軸SFは、回転子SFの周面に溝部を形成する構成としても構わない。
なお、本実施形態における回転軸SFは、例えば回転子SFを中空に形成した場合において、回転子SFの表面に形成される溝部71の中に複数の孔部を設け、回転子SFの内外が孔部によって連通された構成としても構わない。
また、例えば、本実施形態におけるモータ装置MTRは、回転軸SFを中空に形成した構成の場合、上述の対向面50aを回転軸SFの内周面に対向させて配置するように構成であってもよい。このような場合、例えば、本実施形態の転動部材15は、上述の内周面とこの内周面に対向する対向面との間に配置される。
また、本実施形態における軸受基板(軸受)HSは、少なくとも一つの不連続部57aを備えている。ここで、本実施形態では、この不連続部57aにおける転動部材15の対向面50aに対する接触面積は、この不連続部57a以外における転動部材15の対向面50aに対する接触面積に対して、50%以上、又は90%以上となるように構成されている。ただし、この接触面積の比率は、対向面50aの幅や不連続部57aの幅や形状によって変えてもよい。
例えば、対向面50aの幅(例、図4のZ方向の幅)を8mm、不連続部57aの幅(例、図4のX方向の幅)を0.5mm、及び転動部材15の軸方向に対する不連続部57aの角度をθとすると、対向面50aに形成された不連続部57aの角度θは、上記の接触面積の比率が50%以上の場合、(0.5/sinθ)/8=50%、から約7°以上となる。また、上記の接触面積の比率が90%以上の場合、対向面50aに形成された不連続部57aの角度θは、約39°以上となる。ただし、不連続部57aの加工のしやすさを考慮すると、不連続部57aの角度θは、2°以上であってもよい。また、不連続部57aの加工の精度を考慮すると、不連続部57aの角度θは、10°以上60°以下であってもよい。
上記のように、本実施形態では、上述の不連続部57aの角度θは、2°以上60°以下、7°以上60°以下、又は39°以上60°以下で構成されている。ただし、不連続部57aの角度θにおける上限値は、60°以下でなくても、対向面50aの全周にかからない程度の角度以下であればよい。
また、本実施形態における不連続部57aの少なくとも一部は、回転軸SFの軸方向とは異なる方向に形成されてもよい。
例えば、回転軸SFの軸方向とは異なる方向に形成される不連続部57aの少なくとも一部の面積は、不連続部57aの全体の面積に対して50%以上、又は90%以上で、構成されてもよい。このとき、不連続部57aの少なくとも一部の、転動部材15に対する角度θは、特に限られず、例えば、90°でもよい。
また、本実施形態における不連続部57aは、上記接触面積の比率を満たすような不連続部57aの形状を有していれば、回転軸SFの軸方向と直交する方向視において、単一の直線線分でなくてもよい。また、例えば、本実施形態における不連続部57aは、対向面50aにおいて回転軸SFのラジアル方向に与えられる力(例、圧力)の変化を滑らかにできるような形状を有していれば、回転軸SFの軸方向と直交する方向視において、単一の直線線分でなくてもよい。不連続部(スリットの開放端)57aの形状の変形例を、図17A〜17Oに示す。ここで、図17A〜17Oの鏡像も、不連続部57aの変形例に含むことができる。
例えば、不連続部(スリットの開放端)57aが、回転軸SFの軸方向に対して直交する方向視(例えば、Y方向視)において、回転軸SFの軸方向に対して直交する方向(例えば、X方向)に延在する形状(第3形状FE3)、を含んでもよく(例えば、図17A〜17C)、湾曲する形状(第4形状FE4)、を含んでもよい(例えば、図17H,17I)。
また、例えば、不連続部(スリットの開放端)57aが、回転軸SFの軸方向に対して直交する方向視(例えば、Y方向視)において、回転軸SFの軸方向に対して平行な形状(第1形状FE1)、回転軸SFの軸方向に対して傾斜する形状(第2形状FE2)、上記第3形状(FE3)、上記第4形状(FE3)、のうち少なくとも2つを含む形状を有してもよい(例えば、図17D,17E,17M)。
また、例えば、不連続部(スリットの開放端)57aが、回転軸SFの軸方向に対して直交する方向視(例えば、Y方向視)において、上記第2形状FE2、上記第3形状FE3、及び上記第4形状FE4のうち少なくとも1つと、上記第1形状FE1と、を含む形状を有してもよい(例えば、図17J,17L)。
また、例えば、回転軸SFの軸方向における不連続部(スリットの開放端)57aの両端である第1端SE1と第2端SE2とが、回転軸SFの周方向において同じ位置にあってもよく(例えば、図17A)、回転軸SFの周方向において互いにずれた位置にあってもよい(例えば、図17B)。
本実施形態における不連続部57aは、回転軸SFの軸方向に対して直交する方向視(例えば、Y方向視)において少なくとも一つの段を有する階段形状(例えば、図17B,図17C)、ジグザグ状(例えば、図17G)、又は、少なくとも一つのX方向の凹凸を有する櫛形状(図17A)、に形成されてもよい。
本実施形態における不連続部57aは、複数の円弧(曲線)によって構成される階段形状(例えば、図17N)、又は、櫛形状(例えば、図17O)に形成されてもよい。
本実施形態における少なくとも一つの不連続部(スリットの開放端)57aは、第2形状FE2、第3形状FE3、及び第4形状FE4の少なくとも1つと、第1形状FE1とを含む形状を有し、回転軸SFの軸方向に沿った第1形状FE1の長さは、転動部材(転動部)15のそれに比べて短い。
本実施形態における軸受は、回転軸SFの周面SFaの近傍に配置される第1面(対向面50a)を有する回転軸支持部(支持部61)と、周面SFaと第1面(対向面50a)との間に配置される複数の転動部材(転動部)15と、を備え、第1面(対向面50a)は、少なくとも一つの不連続部(スリットの開放端)57aを有し、少なくとも一つの不連続部(スリットの開放端)57aは、回転軸SFの軸方向と直交する方向視(例えば、Y方向視)において、回転軸SFの軸方向に対して平行な第1形状SE1と、回転軸SFの軸方向に対して非平行な形状(前述の第2形状FE2、第3形状FE3、又は第4形状FE4)とを含む形状を有し、回転軸SFの軸方向に沿った第1形状FE1の長さは、転動部材(転動部)15のそれに比べて短い。
また、本実施形態における隙間領域(スリット)57は、Z方向視において回転軸SFの径方向に平行な単一の平面であるが、支持部61の弾性変形を妨げず、かつ、上記の接触面積の比率を満たすような不連続部57aの形状を有していれば、この隙間領域57の形状に限られない。
例えば、本実施形態における隙間領域(スリット)57は、図示しないが、Z方向視において回転軸SFの径方向から傾いた平面でもよく、単一の平面をY軸周りに捩った平面でもよく、複数の面を有していてもよく、少なくとも一部が曲面であってもよい。
また、上記で説明した駆動部として駆動基板DS及び伝達基板TSの他、電動モータや超音波モータなどの他の種類のモータ装置を用いても構わない。
また、上記実施形態では、転動部材15が回転軸SFの周方向に独立して設けられた構成を例に挙げて説明したが、これに限られることは無い。例えば、上記実施形態における複数の転動部材15は、当該複数の転動部材15同士の間の相対位置を変化させないようにしたニードルケージなどの転動ユニットを有する構成であっても構わない。
MTR…モータ装置 CONT…制御装置 SF…回転軸 TS…伝達基板 DS…駆動基板 HS…軸受基板 SFa…外周面 BL…ボルト部材 RBT…ロボット装置 ACT…駆動装置 15…転動部材(転動部) 50…中央開口部 50a…対向面(第1面) 51…第一開口部 52…第二開口部 53…第三開口部 54…第二切り欠き部 55…第一溝部 56…第二溝部 57…第一切り欠き部 57a…不連続部(スリットの開放端) 58…ボルト挿入部 61…支持部(回転軸支持部) 61a…第一部分 61b…第二部分 80、81…移動規制部

Claims (25)

  1. 回転軸の周面の近傍に配置される第1面を有する支持部と、
    前記周面と前記第1面との間に配置される複数の転動部と、
    を備え、
    前記支持部は、前記第1面に形成された開放端を有するスリットを有し、
    前記開放端は、前記回転軸の軸方向と直交する方向視において、前記軸方向に対して非平行な形状を有する、
    ことを特徴とする軸受。
  2. 前記開放端は、前記軸方向と直交する方向視において、前記軸方向に対して傾斜する形状を有する、
    ことを特徴とする請求項1に記載の軸受。
  3. 前記第1面は、前記周面に対して平行である、
    ことを特徴とする請求項1又は請求項2に記載の軸受。
  4. 前記スリットの隙間を調整する調整部をさらに備える、
    ことを特徴とする請求項1から請求項3のうちいずれか一項に記載の軸受。
  5. 前記調整部は、前記スリットを介して、前記回転軸に対して前記支持部を締める締結部材を有する、
    ことを特徴とする請求項4に記載の軸受。
  6. 前記支持部は、前記スリットの別の開放端が形成される第2面を有する、
    ことを特徴とする請求項1から請求項5のうちいずれか一項に記載の軸受。
  7. 前記支持部は、前記第2面が面する空間につながる隙間領域を有する、
    ことを特徴とする請求項6に記載の軸受。
  8. 前記隙間領域は、前記回転軸を少なくとも部分的に囲う形状を有する、
    ことを特徴とする請求項1から請求項7のうちいずれか一項に記載の軸受。
  9. 前記転動部は、前記回転軸の軸方向に平行な回転軸を有する、
    ことを特徴とする請求項1から請求項8のうちいずれか一項に記載の軸受。
  10. 前記開放端は、前記回転軸の軸方向と直交する方向視において、前記軸方向に対して直交する形状を有する、
    ことを特徴とする請求項1から請求項9のうちのいずれか一項に記載の軸受。
  11. 前記開放端は、前記回転軸の軸方向と直交する方向視において、湾曲形状を有する、
    ことを特徴とする請求項1から請求項10のうちのいずれか一項に記載の軸受。
  12. 前記開放端は、前記回転軸の軸方向と直交する方向視において、前記軸方向に対して平行な第1形状と、前記軸方向に対して傾斜する第2形状と、前記軸方向に対して直交する第3形状と、湾曲する第4形状との、少なくとも2つを含む形状を有する、
    ことを特徴とする請求項1から請求項11のうちのいずれか一項に記載の軸受。
  13. 前記開放端は、前記第2形状、前記第3形状、及び前記第4形状の少なくとも1つと、前記第1形状とを含む形状を有し、
    前記回転軸の軸方向に沿った前記第1形状の長さは、前記転動部のそれに比べて短い、
    ことを特徴とする請求項12に記載の軸受。
  14. 前記開放端は、前記回転軸の軸方向における、前記スリットの両端である第1端と第2端とを有し、
    前記第1端及び前記第2端は、周方向における同じ位置を有する、
    ことを特徴とする請求項1から請求項13のうちのいずれか一項に記載の軸受。
  15. 前記開放端は、前記回転軸の軸方向における、前記スリットの両端である第1端と第2端とを有し、
    前記第1端及び前記第2端は、周方向において、互いにずれた位置を有する、
    ことを特徴とする請求項1から請求項13のうちのいずれか一項に記載の軸受。
  16. 前記スリットは、前記回転軸の軸方向視において、直線形状及び非直線形状の少なくとも1つを有する別の開放端を有する、
    ことを特徴とする請求項1から請求項15のうちいずれか一項に記載の軸受。
  17. 前記複数の転動部は、前記周面の一周に亘って配置されている、
    ことを特徴とする請求項1から請求項16のうちいずれか一項に記載の軸受。
  18. 前記支持部は、板状部材の少なくとも一部である、
    ことを特徴とする請求項1から請求項17のうちいずれか一項に記載の軸受。
  19. 前記回転軸の軸方向における、前記支持部の移動を規制する移動規制部をさらに備える、
    ことを特徴とする請求項1から請求項18のうちいずれか一項に記載の軸受。
  20. 前記転動部は、前記周面と前記対向面との両方に接触する、
    ことを特徴とする請求項1から請求項19のうちいずれか一項に記載の軸受。
  21. 回転軸の周面の近傍に配置される第1面を有する支持部と、
    前記周面と前記第1面との間に配置される複数の転動部と、
    を備え、
    前記支持部は、前記第1面に形成された開放端を有するスリットを有し、
    前記開放端は、前記回転軸の軸方向における、前記スリットの両端である第1端と第2端とを有し、
    前記第1端及び前記第2端は、周方向において、互いにずれた位置を有する、
    ことを特徴とする軸受。
  22. 回転軸の周面の近傍に配置される第1面を有する支持部と、
    前記周面と前記第1面との間に配置される複数の転動部と、
    を備え、
    前記支持部は、前記第1面に形成された開放端を有するスリットを有し、
    前記開放端は、前記回転軸の軸方向と直交する方向視において、前記軸方向に対して平行な第1形状と、前記軸方向に対して非平行な第2形状とを含む形状を有し、
    前記回転軸の軸方向に沿った前記第1形状の長さは、前記転動部のそれに比べて短い、
    ことを特徴とする軸受。
  23. 回転軸を回転駆動させる駆動部と、
    前記回転軸を回転可能に支持する軸受と
    を備え、
    前記軸受として、請求項1から請求項22のうちいずれか一項に記載の軸受が用いられている
    モータ装置。
  24. 前記駆動部は、前記回転軸の周面の少なくとも一部に掛けられた伝達部材と、前記伝達部材に接続され前記伝達部材を移動させる駆動素子と、を有し、
    前記回転軸と前記伝達部材との間を回転力伝達状態として前記伝達部材を一定距離移動させる駆動動作及び前記回転力伝達状態を解消した状態で前記伝達部材を所定の位置に戻す復帰動作を前記駆動素子に行わせる制御部を備える
    請求項23に記載のモータ装置。
  25. 回転軸部材と、
    前記回転軸部材を回転させるモータ装置と
    を備え、
    前記モータ装置として、請求項23又は請求項24に記載のモータ装置が用いられている
    ロボット装置。
JP2012033168A 2012-02-17 2012-02-17 軸受、モータ装置及びロボット装置 Pending JP2013170593A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012033168A JP2013170593A (ja) 2012-02-17 2012-02-17 軸受、モータ装置及びロボット装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033168A JP2013170593A (ja) 2012-02-17 2012-02-17 軸受、モータ装置及びロボット装置

Publications (1)

Publication Number Publication Date
JP2013170593A true JP2013170593A (ja) 2013-09-02

Family

ID=49264678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033168A Pending JP2013170593A (ja) 2012-02-17 2012-02-17 軸受、モータ装置及びロボット装置

Country Status (1)

Country Link
JP (1) JP2013170593A (ja)

Similar Documents

Publication Publication Date Title
JP6214193B2 (ja) 振動波駆動装置、二次元駆動装置、画像振れ補正装置、交換レンズ、撮像装置、及び自動ステージ
JP2017189081A (ja) 回転アクチュエータおよびロボット
JP5641041B2 (ja) モータ装置、モータ装置の製造方法及びロボット装置
JP5835212B2 (ja) モータ装置、モータ装置の製造方法及びロボット装置
JP5541163B2 (ja) モータ装置、装置及び回転子の駆動方法
JP5186318B2 (ja) ロボット関節およびトルク伝達力可変装置
JP2009296797A (ja) 慣性駆動アクチュエータ
WO2012111812A1 (ja) 軸受、モータ装置及びロボット装置
JP2013170593A (ja) 軸受、モータ装置及びロボット装置
JP2017035769A (ja) 4自由度機構
JP2018186656A5 (ja)
JP2009044838A (ja) 超音波アクチュエータ、及び圧電変位部の製造方法
JP2007006590A (ja) 保持ブレーキ内蔵モータ
JP2010259182A (ja) モータ装置、回転子の駆動方法及び軸部材の駆動方法
JP2005328639A (ja) 電気機械変換素子を用いた駆動装置
WO2011125719A1 (ja) モータ装置及び回転子の駆動方法並びにロボット装置
JP2011217490A (ja) モータ装置、回転子の駆動方法及びロボット装置
JP2012010520A (ja) モータ装置、回転子の駆動方法及びロボット装置
JP2012010522A (ja) モータ装置、回転子の駆動方法及びロボット装置
WO2017169580A1 (ja) 回転アクチュエータおよびロボット
JP2011217500A (ja) モータ装置、回転子の駆動方法及びロボット装置
EP4224698A1 (en) Vibration-type actuator capable of reducing variation in force generated between contact body and vibration body, multiaxial stage, multi-joint robot, and device
JP2012010519A (ja) モータ装置及び回転子の駆動方法並びにロボット装置
JP2001260095A (ja) マイクロマニピュレータおよびアクチュエータ
JP2006314174A (ja) 超音波モータ