JP2013058429A - Electrode catalyst having oxygen-reducing property - Google Patents

Electrode catalyst having oxygen-reducing property Download PDF

Info

Publication number
JP2013058429A
JP2013058429A JP2011196798A JP2011196798A JP2013058429A JP 2013058429 A JP2013058429 A JP 2013058429A JP 2011196798 A JP2011196798 A JP 2011196798A JP 2011196798 A JP2011196798 A JP 2011196798A JP 2013058429 A JP2013058429 A JP 2013058429A
Authority
JP
Japan
Prior art keywords
ruthenium oxide
electrode catalyst
catalyst
electrode
oxide nanosheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011196798A
Other languages
Japanese (ja)
Other versions
JP5792567B2 (en
Inventor
Wataru Sugimoto
渉 杉本
Christophe Chauvin
ショーバン クリストフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2011196798A priority Critical patent/JP5792567B2/en
Publication of JP2013058429A publication Critical patent/JP2013058429A/en
Application granted granted Critical
Publication of JP5792567B2 publication Critical patent/JP5792567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode catalyst having an oxygen-reducing property to offer excellent catalytic activity and durability.SOLUTION: The electrode catalyst which is used with a platinum-based electrode catalyst in a solid polymer fuel cell, for example, is composed of ruthenium oxide nanosheets, and the ruthenium oxide nanosheets have a scaly shape. When the dimensions of the ruthenium oxide nanosheet are represented by the average of the maximum length and the length intersecting the maximum length at the midpoint at a right angle, the dimensions of 65% or more of all the nanosheets are in the range of 50 to 350 nm, and the mode diameter is in the range of 100 to 250 nm. The ruthenium oxide nanosheets and an electrode catalyst containing a platinum catalyst supported by a carbon black support, preferably form a composite electrode catalyst.

Description

本発明は、酸素還元能を有する電極触媒に関し、さらに詳しくは、固体高分子形燃料電池用電極の触媒として好ましく用いられ、触媒活性及び耐久性をより向上させることができる酸素還元能を有する電極触媒に関する。   The present invention relates to an electrode catalyst having an oxygen reducing ability, and more specifically, an electrode having an oxygen reducing ability which can be preferably used as a catalyst for an electrode for a polymer electrolyte fuel cell and can further improve catalytic activity and durability. Relates to the catalyst.

固体高分子形燃料電池(PEFC)は、小型軽量で高出力を発揮できるため、主に燃料電池自動車や家庭用のコージェネレーション電源として注目を集めている。こうした固体高分子形燃料電池は、水素と酸素の化学反応を利用した地球に優しい新エネルギー源として期待されている。その基本構造は、負極(燃料極)、電解質(固体高分子膜)及び正極(空気極)を貼り合わせて一体化した膜/電極接合体(Membrane Electrode Assembly:MEAともいう。)を、反応ガスの供給流路が形成されたバイポーラプレート(bipolar plate。「導電板」ともいう。)で挟んで1つの基本単位(「単セル(single cell)」ともいう。)が構成されている。そして、その単セルを積層して直列接続したセルスタック(fuel cell stack)構造にして高電圧を得ている。   The polymer electrolyte fuel cell (PEFC) is attracting attention as a fuel cell vehicle and a cogeneration power source for home use because it is small and lightweight and can exhibit high output. Such a polymer electrolyte fuel cell is expected as a new energy source friendly to the earth using a chemical reaction between hydrogen and oxygen. The basic structure is a membrane / electrode assembly (also referred to as MEA) in which a negative electrode (fuel electrode), an electrolyte (solid polymer membrane), and a positive electrode (air electrode) are bonded together, and a reactive gas. A basic unit (also referred to as a “single cell”) is formed by being sandwiched between bipolar plates (also referred to as “conductive plates”) in which a supply flow path is formed. And the high voltage is obtained with the cell stack (fuel cell stack) structure which laminated | stacked the single cell and connected in series.

負極では、水素やメタノール等の燃料が供給され、水素イオンと電子に分解し、生成した水素イオンは固体電解質膜内を移動し、電子は導線内を通って正極へと移動する。この負極では、一般にカーボンブラック担体上に白金触媒を担持したものや、カーボンブラック担体上にルテニウム−白金合金触媒を担持したものが用いられている。また、固体高分子膜は、負極で生成した水素イオンを正極に移動するように作用し、ナフィオン(Nafion、デュポン社の登録商標)等が用いられている。そして、水素イオンは水和され、固体電解質膜中の水分が負極から正極に移動することになる。また、正極では、固体電解質膜内を移動した水素イオンと、導線内を移動した電子とが空気中の酸素に反応して水を生成する。   In the negative electrode, a fuel such as hydrogen or methanol is supplied and decomposed into hydrogen ions and electrons. The generated hydrogen ions move in the solid electrolyte membrane, and the electrons move through the conductor to the positive electrode. As this negative electrode, those in which a platinum catalyst is supported on a carbon black support or those in which a ruthenium-platinum alloy catalyst is supported on a carbon black support are generally used. The solid polymer film acts to move hydrogen ions generated at the negative electrode to the positive electrode, and Nafion (registered trademark of DuPont) or the like is used. Then, hydrogen ions are hydrated, and moisture in the solid electrolyte membrane moves from the negative electrode to the positive electrode. In the positive electrode, hydrogen ions that have moved in the solid electrolyte membrane and electrons that have moved in the conductive wire react with oxygen in the air to generate water.

こうした構成の固体高分子形燃料電池では、理論上は高い電圧が得られるが、電極反応の損失等で実際の電圧が低くなってしまうという問題がある。また、燃料効率、触媒の耐性を含む電極寿命、触媒として使用する白金コストと入手性等の問題がある。   In the polymer electrolyte fuel cell having such a configuration, a high voltage can be theoretically obtained, but there is a problem that an actual voltage becomes low due to loss of electrode reaction or the like. In addition, there are problems such as fuel efficiency, electrode life including catalyst resistance, platinum cost and availability as a catalyst.

こうした中、本発明者は、固体高分子形燃料電池用電極の触媒(以下「電極触媒」ともいう。)として、カーボンブラック担体上に白金触媒を担持した電極触媒に、酸化ルテニウムナノシート(「ルテニウム酸ナノシート」ともいう。)を添加した複合電極触媒を用い、電極を作製した(特許文献1)。また、本発明者は、その酸化ルテニウムナノシート及びその製造方法についても検討している(特許文献2)。   Under these circumstances, the present inventors have used a ruthenium oxide nanosheet (“ruthenium”) as an electrode catalyst (hereinafter also referred to as “electrode catalyst”) for a polymer electrolyte fuel cell electrode, in which a platinum catalyst is supported on a carbon black carrier. An electrode was produced using a composite electrode catalyst to which "acid nanosheet" was added (Patent Document 1). Moreover, this inventor is also examining the ruthenium oxide nanosheet and its manufacturing method (patent document 2).

特開2004−315347号公報(実施例8)JP 2004-315347 A (Example 8) 特開2010−280977号公報JP 2010-280977 A

上記した固体高分子形燃料電池では、電極触媒に高価な白金を用いることによるコスト削減に対する障害や、電極触媒自体の耐性が十分ではないという問題がある。しかし、電極触媒を構成する白金の実質的な使用量を低減できない場合であっても、できるだけ触媒活性を向上させたり、耐性を向上させたりすることができれば、相対的に白金の使用量を低減させることができることになる。   The polymer electrolyte fuel cell described above has a problem of cost reduction due to the use of expensive platinum as an electrode catalyst and a problem that the resistance of the electrode catalyst itself is not sufficient. However, even if the substantial amount of platinum that constitutes the electrode catalyst cannot be reduced, if the catalytic activity can be improved or the resistance can be improved as much as possible, the amount of platinum used can be relatively reduced. Will be able to.

本発明は、上記課題を解決するためになされたものであって、その目的は、固体高分子形燃料電池用電極の触媒として好ましく用いられ、触媒活性及び耐久性をより向上させることができる酸素還元能を有する電極触媒を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and the object thereof is oxygen which can be preferably used as a catalyst for a polymer electrolyte fuel cell electrode and can further improve catalytic activity and durability. The object is to provide an electrocatalyst having a reducing ability.

本発明者は、固体高分子形燃料電池用電極に用いる電極触媒について検討している過程で、触媒活性及び耐久性をより向上させることができる電極触媒の寸法依存性を見出した。そして、そうした電極触媒は固体高分子形燃料電池用の電極触媒として効果があるとともに、酸素還元能を有する電極触媒として広く応用可能であることを見出し、本発明を完成させた。   In the course of studying an electrode catalyst used for an electrode for a polymer electrolyte fuel cell, the present inventor has found the dimensional dependence of an electrode catalyst that can further improve the catalytic activity and durability. The inventors have found that such an electrode catalyst is effective as an electrode catalyst for a polymer electrolyte fuel cell and can be widely applied as an electrode catalyst having an oxygen reducing ability, thereby completing the present invention.

上記課題を解決するための本発明の第1の観点に係る酸素還元能を有する電極触媒は、白金系電極触媒とともに用いられる酸化ルテニウムナノシートかならなる電極触媒であって、前記酸化ルテニウムナノシートが、鱗片形状からなり、最大長さと該最大長さの中点で直交する長さとの平均を該酸化ルテニウムナノシートの寸法としたとき、該寸法が50nm以上350nm以下のものが全体の65%以上であり、且つモード径が100nm以上250nm以下であることを特徴とする。   The electrode catalyst having oxygen reducing ability according to the first aspect of the present invention for solving the above problems is an electrode catalyst made of a ruthenium oxide nanosheet used together with a platinum-based electrode catalyst, and the ruthenium oxide nanosheet comprises: When the average of the maximum length and the length orthogonal to the midpoint of the maximum length is the dimension of the ruthenium oxide nanosheet, the dimension is 50 nm or more and 350 nm or less, and the dimension is 65% or more of the whole. The mode diameter is 100 nm or more and 250 nm or less.

この発明によれば、上記寸法の酸化ルテニウムナノシートからなる電極触媒を白金系触媒の電極触媒とともに用いて複合電極触媒とすれば、その複合電極触媒からなる電極触媒、好ましくは固体高分子形燃料電池用電極触媒の耐性をより向上させることができる。その結果、この酸化ルテニウムナノシートを用いれば、相対的に白金の使用量を低減させることができる。   According to the present invention, when an electrode catalyst comprising a ruthenium oxide nanosheet having the above dimensions is used together with an electrode catalyst of a platinum-based catalyst to form a composite electrode catalyst, an electrode catalyst comprising the composite electrode catalyst, preferably a polymer electrolyte fuel cell The resistance of the electrode catalyst can be further improved. As a result, if this ruthenium oxide nanosheet is used, the amount of platinum used can be relatively reduced.

上記課題を解決するための本発明の第2の観点に係る酸素還元能を有する電極触媒は、白金系電極触媒と、酸化ルテニウムナノシート触媒とを有する複合電極触媒であって、前記酸化ルテニウムナノシートが、鱗片形状からなり、最大長さと該最大長さの中点で直交する長さとの平均を該酸化ルテニウムナノシートの寸法としたとき、該寸法が50nm以上350nm以下のものが全体の65%以上であり、且つモード径が100nm以上250nm以下であることを特徴とする。   The electrode catalyst having oxygen reducing ability according to the second aspect of the present invention for solving the above-mentioned problem is a composite electrode catalyst having a platinum-based electrode catalyst and a ruthenium oxide nanosheet catalyst, wherein the ruthenium oxide nanosheet is , When the average of the maximum length and the length orthogonal to the midpoint of the maximum length is the dimension of the ruthenium oxide nanosheet, the dimension is 50 nm or more and 350 nm or less when the average is 65% or more And the mode diameter is 100 nm or more and 250 nm or less.

この発明によれば、白金系電極触媒と上記寸法の酸化ルテニウムナノシートとを有する複合電極触媒であるので、酸素還元能を有する電極触媒、好ましくは固体高分子形燃料電池用の電極触媒の耐性をより向上させることができる。   According to this invention, since it is a composite electrode catalyst having a platinum-based electrode catalyst and a ruthenium oxide nanosheet having the above dimensions, the resistance of an electrode catalyst having oxygen reducing ability, preferably an electrode catalyst for a polymer electrolyte fuel cell is improved. It can be improved further.

本発明に係る酸素還元能を有する電極触媒において、前記白金系触媒が、カーボンブラック担体上に白金触媒を担持した電極触媒であることが好ましい。   In the electrode catalyst having oxygen reducing ability according to the present invention, the platinum catalyst is preferably an electrode catalyst having a platinum catalyst supported on a carbon black carrier.

本発明に係る酸素還元能を有する電極触媒は、固体高分子形燃料電池用の負極に用いられることが好ましい。   The electrode catalyst having oxygen reducing ability according to the present invention is preferably used for a negative electrode for a polymer electrolyte fuel cell.

本発明に係る酸素還元能を有する電極触媒によれば、その酸化ルテニウムナノシートを白金系電極触媒とともに用いることにより、酸素還元能を有する電極触媒、好ましくは固体高分子形燃料電池用電極触媒の耐性をより向上させることができる。その結果、この酸化ルテニウムナノシートを用いれば、相対的に白金の使用量を低減させることができる。   According to the electrode catalyst having oxygen reducing ability according to the present invention, by using the ruthenium oxide nanosheet together with the platinum-based electrode catalyst, the resistance of the electrode catalyst having oxygen reducing ability, preferably the electrode catalyst for polymer electrolyte fuel cell Can be further improved. As a result, if this ruthenium oxide nanosheet is used, the amount of platinum used can be relatively reduced.

本発明に係る電極触媒である酸化ルテニウムナノシートのAFM像である。It is an AFM image of a ruthenium oxide nanosheet which is an electrode catalyst according to the present invention. 本発明に係る複合電極触媒とPt/C単独触媒の場合の、3100rpm、2200rpm、1600rpm、1200rpm、800rpm及び400rpmにおける0.8V(vsRHE)の電流密度の逆数を、ω−1/2に対してプロットしたグラフである。In the case of the composite electrode catalyst according to the present invention and the Pt / C single catalyst, the reciprocal of the current density of 0.8 V (vs RHE) at 3100 rpm, 2200 rpm, 1600 rpm, 1200 rpm, 800 rpm and 400 rpm is expressed as ω −1/2 . This is a plotted graph.

以下、本発明に係る酸素還元能を有する電極触媒について詳しく説明するが、本発明は、その技術的範囲に含まれる範囲において下記の説明に限定されない。   Hereinafter, although the electrode catalyst which has the oxygen reduction ability which concerns on this invention is demonstrated in detail, this invention is not limited to the following description in the range included in the technical scope.

本発明に係る酸素還元能を有する電極触媒は、固体高分子形燃料電池用の電極触媒として好ましく用いられるものであって、(1)酸化ルテニウムナノシートからなる電極触媒、及び、(2)酸化ルテニウムナノシートからなる電極触媒と白金系電極触媒とからなる複合電極触媒、を包含するものである。前者の酸化ルテニウムナノシートからなる電極触媒は、白金系電極触媒の添加触媒として作用する。   The electrode catalyst having oxygen reducing ability according to the present invention is preferably used as an electrode catalyst for a polymer electrolyte fuel cell, and includes (1) an electrode catalyst composed of a ruthenium oxide nanosheet, and (2) ruthenium oxide. It includes a composite electrode catalyst comprising a nanosheet electrode catalyst and a platinum-based electrode catalyst. The former electrode catalyst comprising a ruthenium oxide nanosheet acts as an addition catalyst for a platinum-based electrode catalyst.

酸化ルテニウムナノシートは、厚さが理論的には約0.25nm〜0.40nmであり、測定ではnmオーダー〜サブnmオーダーの鱗片形状の化合物であり、縦と横がそれぞれ数百nm〜μmオーダーのサイズのシート状の結晶性ルテニウム酸化合物である。この酸化ルテニウムナノシートは、電気泳動法等で容易に積層させることができる。本発明では、酸素還元能を有する電極触媒、具体的には固体高分子形燃料電池の負極触媒として利用しているが、正極触媒としても利用でき、さらには擬似二重層キャパシタとしても利用できる。   The ruthenium oxide nanosheet is theoretically about 0.25 nm to 0.40 nm in thickness, and is a scaly compound in the order of nm to sub-nm in the measurement. The length and width are on the order of several hundred nm to μm, respectively. It is a sheet-like crystalline ruthenic acid compound of the size. This ruthenium oxide nanosheet can be easily laminated by electrophoresis or the like. In the present invention, it is used as an electrode catalyst having oxygen reducing ability, specifically, a negative electrode catalyst of a polymer electrolyte fuel cell, but it can also be used as a positive electrode catalyst, and further as a pseudo double layer capacitor.

酸化ルテニウムナノシートは、後述の実施例で説明するように、酸化ルテニウムナノシートが積層して形成された層状ルテニウム酸化合物、例えば層状酸化ルテニウム(水素型:H0.2RuO2.1)の層間にアルキルアンモニウムイオンを含むアルキルアンモニウム−層状ルテニウム酸層間化合物を提供することにより、剥離して得ることができる。 The ruthenium oxide nanosheet has a layered ruthenium acid compound formed by laminating ruthenium oxide nanosheets, for example, an alkylammonium ion between layers of layered ruthenium oxide (hydrogen type: H 0.2 RuO 2.1 ), as will be described in Examples below. By providing the containing alkylammonium-layered ruthenic acid intercalation compound, it can be obtained by peeling.

この酸化ルテニウムナノシートは、最大長さと該最大長さの中点で直交する長さとの平均を該酸化ルテニウムナノシートの寸法としたとき、その寸法が50nm以上350nm以下のものが全体の65%以上であり、且つモード径が100nm以上250nm以下であることに特徴がある(以下、この寸法範囲を「寸法C」ともいう。)。なお、「モード径」とは、出現比率がもっとも大きい粒子径チャンネル、すなわち粒子分布の極大値のことである。   In this ruthenium oxide nanosheet, when the average of the maximum length and the length perpendicular to the midpoint of the maximum length is taken as the dimension of the ruthenium oxide nanosheet, the dimension is 50 nm or more and 350 nm or less with 65% or more of the total. And the mode diameter is 100 nm or more and 250 nm or less (hereinafter, this dimension range is also referred to as “dimension C”). The “mode diameter” is the particle diameter channel with the highest appearance ratio, that is, the maximum value of the particle distribution.

上記範囲内の寸法を持つ酸化ルテニウムナノシートを電極触媒とし、白金系触媒の電極触媒とともに用いて複合電極触媒とすれば、その複合電極触媒からなる酸素還元能を有する電極触媒、具体的には固体高分子形燃料電池用電極触媒の耐性をより向上させることができる。その結果、この酸化ルテニウムナノシートを用いれば、相対的に白金の使用量を低減させることができる。   If a ruthenium oxide nanosheet having a size within the above range is used as an electrode catalyst and is used in combination with an electrode catalyst of a platinum-based catalyst, a composite electrode catalyst, an electrode catalyst having an oxygen reducing ability comprising the composite electrode catalyst, specifically a solid The resistance of the electrode catalyst for polymer fuel cells can be further improved. As a result, if this ruthenium oxide nanosheet is used, the amount of platinum used can be relatively reduced.

一方、酸化ルテニウムナノシートの寸法が上記範囲外の場合には、その範囲内のものと比較して、酸素還元能を有する電極触媒、具体的には固体高分子形燃料電池用の電極触媒の耐性が低下する。具体的には、後述の実験例で詳しく説明するが、寸法が100nm以上450nm以下の酸化ルテニウムナノシートが全体の65%以上であり且つモード径が150nm以上350nm以下である場合(以下、この寸法範囲を「寸法B」ともいう。)や、寸法が150nm以550nm以下の酸化ルテニウムナノシートが全体の70%以上であり且つモード径が200nm以上450nm以下である場合(以下、この寸法範囲を「寸法A」ともいう。)は、上記本発明の範囲のものと比べて、固体高分子形燃料電池用の電極触媒の耐性が低下する。   On the other hand, when the dimension of the ruthenium oxide nanosheet is out of the above range, the resistance of the electrode catalyst having an oxygen reducing ability, specifically, the electrode catalyst for the polymer electrolyte fuel cell is compared with that in the range. Decreases. Specifically, as will be described in detail in an experimental example described later, when the ruthenium oxide nanosheet having a dimension of 100 nm to 450 nm is 65% or more of the whole and the mode diameter is 150 nm to 350 nm (hereinafter, this dimension range). Or a ruthenium oxide nanosheet having a dimension of 150 nm or more and 550 nm or less and a mode diameter of 200 nm or more and 450 nm or less (hereinafter, this dimension range is referred to as “dimension A”). ”), The resistance of the electrode catalyst for a polymer electrolyte fuel cell is reduced as compared with the above-mentioned range of the present invention.

こうした寸法の酸化ルテニウムナノシートは、酸素還元能を有する電極触媒であれば例えば固体高分子形燃料電池用の電極触媒等に利用できるが、通常は、白金系電極触媒、具体的にはカーボンブラック担体上に白金触媒を担持した電極触媒への添加触媒として好ましく用いられる。   The ruthenium oxide nanosheet having such dimensions can be used as an electrode catalyst for a polymer electrolyte fuel cell, for example, as long as it is an electrode catalyst having an oxygen reducing ability, but is usually a platinum-based electrode catalyst, specifically a carbon black carrier. It is preferably used as an addition catalyst to an electrode catalyst carrying a platinum catalyst thereon.

以下、実験例により本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail by experimental examples.

[酸化ルテニウムナノシートの作製]
最初に、酸化ルテニウムナノシートを得るための層状酸化ルテニウムを作製した。層状酸化ルテニウムは、酸化ルテニウムとアルカリ金属(ナトリウム、カリウム等)との複合酸化物であり、中でもK0.2RuO2.1・nH2O、及びNa0.2RuO2・nH2Oは、イオン交換能を利用することで層一枚単位にまで層剥離することが可能であるので、これにより酸化ルテニウムナノシートを得ることができる。
[Production of ruthenium oxide nanosheets]
First, layered ruthenium oxide for obtaining a ruthenium oxide nanosheet was prepared. Layered ruthenium oxide is a complex oxide of ruthenium oxide and alkali metals (sodium, potassium, etc.). Among them, K 0.2 RuO 2.1 · nH 2 O and Na 0.2 RuO 2 · nH 2 O utilize ion exchange capacity. By doing so, it is possible to delaminate the layer as a unit, so that a ruthenium oxide nanosheet can be obtained.

具体的には、先ず、酸化ルテニウム(RuO2)と炭酸カリウム(K2CO3)とをモル比8:5の割合となるように量り取り、メノウ乳鉢を用いてアセトン中で1時間湿式混合した。その後、錠剤成形器を用いて混合粉末をペレット化した。このペレットをアルミナボートにのせ、管状炉にてアルゴン流通下で850℃、12時間焼成した。焼成後、ペレットを粉砕し、イオン交換蒸留水で洗浄し、上澄み液を取り除いた。この操作を上澄み液が中性になるまで繰り返したものを層状酸化ルテニウム(カリウム型)とした。 Specifically, first, ruthenium oxide (RuO 2 ) and potassium carbonate (K 2 CO 3 ) are weighed so as to have a molar ratio of 8: 5, and wet-mixed in acetone for 1 hour using an agate mortar. did. Thereafter, the mixed powder was pelletized using a tablet molding machine. The pellet was placed on an alumina boat and fired at 850 ° C. for 12 hours in a tubular furnace under an argon flow. After firing, the pellets were pulverized, washed with ion exchange distilled water, and the supernatant was removed. A layered ruthenium oxide (potassium type) was obtained by repeating this operation until the supernatant became neutral.

次に、層状酸化ルテニウム(カリウム型)に1MのHClを加え、60℃のウォーターバス内で72時間酸処理をして、層状酸化ルテニウム(カリウム型)に含まれるKイオンを水素イオン(プロトン)に置換した。その後、イオン交換蒸留水で洗浄し上澄み液を取り除いた。この操作を上澄み液が中性になるまで繰り返し、ろ過後に、層状酸化ルテニウム(水素型:H0.2RuO2.1)の粉末を得た。 Next, 1M HCl is added to layered ruthenium oxide (potassium type), and acid treatment is performed in a water bath at 60 ° C. for 72 hours, so that K + ions contained in layered ruthenium oxide (potassium type) are converted into hydrogen ions (protons). ). Thereafter, the supernatant was removed by washing with ion-exchanged distilled water. This operation was repeated until the supernatant became neutral. After filtration, layered ruthenium oxide (hydrogen type: H 0.2 RuO 2.1 ) powder was obtained.

得られた層状酸化ルテニウム(水素型:H0.2RuO2.1)に、酸化ルテニウムナノシートを得る剥離剤としての10%TBAOH水溶液を加えた。層状酸化ルテニウム(水素型:H0.2RuO2.1)の濃度を、TBAOHとプロトンとの割合で、TBA/H=1.5、5、10に変えてそれぞれ用いた。それぞれについて、層状酸化ルテニウム(水素型:H0.2RuO2.1)を蒸留水に加え、大きいサイズ(寸法A)のナノシートを得るために5日間振とうさせ、普通サイズ(寸法B)のナノシートを得るために10日間振とうさせ、小さいサイズ(寸法C)のナノシートを得るために10日間振とうさせた後さらに3時間超音波処理を行った。この方法で単層剥離させた酸化ルテニウムナノシートを2000rpmで30分間遠心分離した後、上澄み液を回収して、超純水にて濃度を0.02g/Lまで希釈した酸化ルテニウムナノシート水分散液を得た。 To the obtained layered ruthenium oxide (hydrogen type: H 0.2 RuO 2.1 ), 10% TBAOH aqueous solution as a release agent for obtaining a ruthenium oxide nanosheet was added. The concentration of layered ruthenium oxide (hydrogen type: H 0.2 RuO 2.1 ) was changed to TBA + / H + = 1.5, 5 and 10 in the ratio of TBAOH and proton, respectively. For each, layered ruthenium oxide (hydrogen type: H 0.2 RuO 2.1 ) is added to distilled water and shaken for 5 days to obtain a large size (dimension A) nanosheet, to obtain a normal size (dimension B) nanosheet And then sonicated for 3 hours after shaking for 10 days in order to obtain a small size (dimension C) nanosheet. The ruthenium oxide nanosheet peeled off by this method was centrifuged at 2000 rpm for 30 minutes, and then the supernatant liquid was recovered, and an aqueous dispersion of ruthenium oxide nanosheet diluted with ultrapure water to a concentration of 0.02 g / L was obtained. Obtained.

[作製された酸化ルテニウムナノシートの寸法]
図1は、この方法で単層剥離させた酸化ルテニウムナノシートのAFM像である。このAFM像は、先ず、シリコンウエハを1質量%ポリビニルアルコール−ポリジアリルアミン共重合ポリマー水溶液中に10分間浸漬した後、水で数回洗浄し、乾燥した。次に、0.08mg/mLのナノシート水分散液に2分浸漬後、水で数回洗浄し、乾燥した。この過程をそれぞれの酸化ルテニウムナノシートについて同じように行った。酸化ルテニウムナノシートの寸法A〜Cは、このAFM層の観察画像から測定した。具体的には、鱗片形状の酸化ルテニウムナノシートについて、最大長さとその最大長さの中点で直交する長さとを測定し、それらの平均を出して「寸法」とした。これを70〜80箇所繰り返した。
[Dimensions of the produced ruthenium oxide nanosheet]
FIG. 1 is an AFM image of a ruthenium oxide nanosheet peeled by a single layer by this method. In this AFM image, first, a silicon wafer was immersed in a 1% by mass polyvinyl alcohol-polydiallylamine copolymer aqueous solution for 10 minutes, then washed several times with water and dried. Next, it was immersed in a 0.08 mg / mL nanosheet aqueous dispersion for 2 minutes, washed several times with water, and dried. This process was performed in the same manner for each ruthenium oxide nanosheet. The dimensions A to C of the ruthenium oxide nanosheet were measured from the observed image of this AFM layer. Specifically, for the scale-shaped ruthenium oxide nanosheet, the maximum length and the length orthogonal at the midpoint of the maximum length were measured, and the average of them was taken as the “dimension”. This was repeated at 70 to 80 locations.

その結果、大きいサイズ(寸法A)のナノシートを得るために5日間振とうさせた場合の酸化ルテニウムナノシートの寸法は、150nm以550nm以下の酸化ルテニウムナノシートが全体の70%以上であり且つモード径が200nm以上450nm以下であった。また、普通サイズ(寸法B)のナノシートを得るために10日間振とうさせた場合の酸化ルテニウムナノシートの寸法は、100nm以上450nm以下の酸化ルテニウムナノシートが全体の65%以上であり且つモード径が150nm以上350nm以下であった。また、小さいサイズ(寸法C)のナノシートを得るために10日間振とうさせた後さらに3時間超音波処理を行った場合の酸化ルテニウムナノシートの寸法は、50nm以上350nm以下のものが全体の65%以上であり、且つモード径が100nm以上250nm以下であった。   As a result, the size of the ruthenium oxide nanosheet when shaken for 5 days to obtain a nanosheet having a large size (dimension A) is 70% or more of the total ruthenium oxide nanosheet of 150 nm to 550 nm and the mode diameter is It was 200 nm or more and 450 nm or less. The size of the ruthenium oxide nanosheet when shaken for 10 days to obtain a nanosheet of normal size (dimension B) is 100% or more and 450 nm or less of the ruthenium oxide nanosheet is 65% or more of the whole and the mode diameter is 150 nm. It was 350 nm or less. Further, in order to obtain a nanosheet having a small size (dimension C), the size of the ruthenium oxide nanosheet when the ultrasonic treatment is further performed for 3 hours after shaking for 10 days is 65% to 50% of the whole. The mode diameter was 100 nm or more and 250 nm or less.

こうした寸法の酸化ルテニウムナノシートが分散した3種の酸化ルテニウムナノシート水分散液として、下記の実験に用いた。   Three types of ruthenium oxide nanosheet aqueous dispersions in which ruthenium oxide nanosheets having such dimensions were dispersed were used in the following experiments.

[実験1/複合電極触媒の調製]
酸化ルテニウムナノシートをPt/C(カーボンブラック担体上に白金触媒を担持した電極触媒)と組み合わせるために、先ず、約10mg/mLのPt/Cを超純水中に加え、攪拌及び超音波処理を行って分散させた。この溶液に、適量の酸化ルテニウム水分散液を、攪拌しながらゆっくり滴下した。酸化ルテニウムナノシート水分散液の濃度は任意に調整できるが、ここでは10mg/mLとした。こうした濃度の酸化ルテニウムナノシート水分散液を滴下して、複合電極触媒のモル比が、酸化ルテニウム:Pt=0.3:1となるように調整した。
[Experiment 1 / Preparation of composite electrode catalyst]
In order to combine ruthenium oxide nanosheets with Pt / C (electrode catalyst having a platinum catalyst supported on a carbon black support), first, about 10 mg / mL Pt / C is added to ultrapure water, and stirring and sonication are performed. Went and dispersed. An appropriate amount of an aqueous ruthenium oxide dispersion was slowly added dropwise to this solution while stirring. The concentration of the aqueous dispersion of ruthenium oxide nanosheets can be adjusted arbitrarily, but here it was 10 mg / mL. The aqueous dispersion of ruthenium oxide nanosheets having such a concentration was dropped, and the molar ratio of the composite electrode catalyst was adjusted to be ruthenium oxide: Pt = 0.3: 1.

さらに、均一な反応を確保するために、撹拌、超音波処理及び超純水洗浄を行い、過剰なTBAOHを除去した後、懸濁液を120℃で一晩乾燥させて電極触媒紛体を得た。酸化ルテニウムナノシートとPt/Cとの均一化は、懸濁液を攪拌した後、数時間静置して沈殿させ、液の色が黒から透明になることによって判断した。この段階では、酸化ルテニウムナノシートもPt/Cも安定していることを確認した。得られた複合電極触媒は、窒素雰囲気下で保存した。   Furthermore, in order to ensure a uniform reaction, stirring, ultrasonic treatment and ultrapure water washing were performed to remove excess TBAOH, and then the suspension was dried overnight at 120 ° C. to obtain an electrode catalyst powder. . The homogenization of the ruthenium oxide nanosheet and Pt / C was judged by stirring the suspension and then allowing it to stand for several hours to precipitate, so that the color of the liquid changed from black to transparent. At this stage, it was confirmed that both the ruthenium oxide nanosheet and Pt / C were stable. The obtained composite electrode catalyst was stored under a nitrogen atmosphere.

このように、TBA/H比が1.5、5、10の3種で、TBA/H=1.5の場合はナノシートサイズ大(寸法A)、普通(寸法B)及び小(寸法C)の3つ、TBA/H=5の場合もナノシートサイズ大(寸法A)、普通(寸法B)及び小(C)の3つ、TBA/H=10の場合はナノシートサイズ普通(B)及び小(寸法C)の2つの、合計8つの異なる酸化ルテニウムナノシート水分散液を用いて、Pt/C触媒と混合させて複合電極触媒を得た。 Thus, when the TBA + / H + ratio is 1.5, 5, 10, and 10 and TBA + / H + = 1.5, the nanosheet size is large (dimension A), normal (dimension B), and small In the case of three (dimension C), TBA + / H + = 5, when nanosheet size is large (dimension A), normal (dimension B) and small (C), and TBA + / H + = 10 A total of 8 different ruthenium oxide nanosheet aqueous dispersions of nanosheet size normal (B) and small (dimension C) were mixed with Pt / C catalyst to obtain a composite electrode catalyst.

[実験2/触媒インク及び電極の準備]
イソプロピルアルコール/超純水溶液(75/25体積割合)25mLに、18.5mgの複合電極触媒を混合して、触媒インクを準備した。電極に対して良好な密着性を確保するために、プロトン伝導性バインダーとして、5質量%のナフィオン(Nafion、デュポン社の登録商標)溶液100μLを加えた。この触媒インクを30分間超音波処理して分散させた。
[Experiment 2: Preparation of catalyst ink and electrode]
18.5 mg of a composite electrode catalyst was mixed with 25 mL of isopropyl alcohol / ultra pure aqueous solution (75/25 volume ratio) to prepare a catalyst ink. In order to ensure good adhesion to the electrode, 100 μL of a 5% by mass Nafion (registered trademark of DuPont) solution as a proton conductive binder was added. This catalyst ink was dispersed by ultrasonic treatment for 30 minutes.

予め0.05μmのアルミナ粉末を用いてバフ研磨した直径6mmのグラッシーカーボンを、真空中で60℃で乾燥させた。こうしたグラッシーカーボンに触媒インクを塗布して固体高分子形燃料電池用の電極を作製した。なお、触媒インクの塗布は、電極上に設けられた複合電極触媒に含まれる酸化ルテニウムナノシートの含有量に関わらず、白金含有量が17.3μgとなるように塗布した。   Glassy carbon having a diameter of 6 mm, which was previously buffed with 0.05 μm alumina powder, was dried at 60 ° C. in a vacuum. A catalyst ink was applied to such glassy carbon to produce an electrode for a polymer electrolyte fuel cell. The catalyst ink was applied so that the platinum content was 17.3 μg regardless of the content of the ruthenium oxide nanosheet contained in the composite electrode catalyst provided on the electrode.

[実験3/電気化学的測定]
回転ディスク電極(RDE)測定は、標準的な3電極電気化学セルで行った。カウンター電極として、炭素繊維(TohoTenax社製、HTA−3K、フィラメント番号:3000)を用い、参照電極として可逆水素電極(RHE)を用いた。RDE測定は、0.5Mの硫酸電解液中で行った。電極表面は、予め掃引速度50mV/秒、0.05V〜1.2V(vsRHE)、窒素バブリング下、25℃で、30サイクルした後に試料に供した。この前処理を行った後、脱気した0.5M硫酸電解液での直線走査ボルタンメトリーを、10mV/秒、1.2V〜0.05V(vsRHE、負方向掃)で、回転速度(ω)3100、2200、1600、1200、800及び400rpmで行い、耐性テスト前のLSV曲線を得た。
[Experiment 3 / Electrochemical measurement]
The rotating disk electrode (RDE) measurement was performed on a standard three-electrode electrochemical cell. Carbon fiber (manufactured by Toho Tenax, HTA-3K, filament number: 3000) was used as the counter electrode, and a reversible hydrogen electrode (RHE) was used as the reference electrode. RDE measurement was performed in a 0.5 M sulfuric acid electrolyte. The surface of the electrode was subjected to 30 cycles in advance at a sweep rate of 50 mV / sec, 0.05 V to 1.2 V (vs RHE), and nitrogen bubbling at 25 ° C. After this pretreatment, linear scanning voltammetry with degassed 0.5 M sulfuric acid electrolyte was performed at 10 mV / sec, 1.2 V to 0.05 V (vs RHE, negative sweep), and rotational speed (ω) 3100. 2200, 1600, 1200, 800 and 400 rpm were performed, and LSV curves before the resistance test were obtained.

その後、50mV/秒、0.05V〜0.9V(vsRHE)間で3サイクル繰り返し掃引した。3回目のサイクルは、電気化学活性比表面積(ECSA)評価のために使用した。ECSAは、水素吸着波の吸着電気量から算出した。酸化還元反応(ORR)は、酸素飽和0.5M硫酸での10mV/秒、1.2V〜0.05V(vsRHE)、各回転速度でのLSV(2サイクル)で特定した。脱気電解液で得られたLSVデータを、酸素飽和0.5M硫酸で得られたデータから差し引いた。   Thereafter, sweeping was repeated for 3 cycles between 50 mV / sec and 0.05 V to 0.9 V (vs RHE). The third cycle was used for electrochemically active specific surface area (ECSA) evaluation. ECSA was calculated from the amount of electricity absorbed by the hydrogen adsorption wave. The oxidation-reduction reaction (ORR) was specified by 10 mV / sec in oxygen-saturated 0.5 M sulfuric acid, 1.2 V to 0.05 V (vs RHE), and LSV (2 cycles) at each rotation speed. The LSV data obtained with the degassed electrolyte was subtracted from the data obtained with oxygen saturated 0.5M sulfuric acid.

電極触媒の耐性は、100mV/秒、酸素飽和0.5M硫酸、1600rpmでの1.2〜0.6V(vsRHE)の300CVサイクルを実行することにより評価した。なお、バックグラウンドとしてのLSVを再び窒素下で測定し、酸素下で同じパラメータで測定したLSVによってORRを評価した。   The resistance of the electrocatalyst was evaluated by performing a 300 CV cycle of 1.2-0.6 V (vs RHE) at 100 mV / sec, oxygen saturated 0.5 M sulfuric acid, 1600 rpm. In addition, LSV as a background was measured again under nitrogen, and ORR was evaluated by LSV measured under the same parameters under oxygen.

[実験結果]
(ORR活性に対する酸化ルテニウムナノシートのサイズの影響)
Koutecky-Levitchプロットを式(1)によって得た。式(1)中、nは酸素分子の電子数を表し、Fはファラデー定数を表し、Cはバルク酸素濃度を表し、Dは酸素の拡散係数を表し、vは電解質の粘性を表し、ωは電極の回転速度を表す。
[Experimental result]
(Effect of size of ruthenium oxide nanosheet on ORR activity)
A Koutecky-Levitch plot was obtained by equation (1). In formula (1), n represents the number of electrons in the oxygen molecule, F represents the Faraday constant, C represents the bulk oxygen concentration, D represents the oxygen diffusion coefficient, v represents the viscosity of the electrolyte, and ω represents Represents the rotation speed of the electrode.

図2は、Pt/C系電極触媒の場合の、3100rpm、2200rpm、1600rpm、1200rpm、800rpm及び400rpmにおける0.8V(vsRHE)の電流密度の逆数を、ω−1/2に対してプロットしたグラフである。ここでの結果は、図2中に黒塗り記号(●、◆、■、▲)で示した。また、図2の活性化支配電流密度jkは、式(1)によるKoutecky-Levichプロットから求めた。 FIG. 2 is a graph in which the reciprocal of the current density of 0.8 V (vs RHE) at 3100 rpm, 2200 rpm, 1600 rpm, 1200 rpm, 800 rpm, and 400 rpm is plotted against ω −1/2 in the case of a Pt / C-based electrode catalyst. It is. The results here are indicated by black symbols (●, ◆, ■, ▲) in FIG. Further, the activation dominant current density jk in FIG. 2 was obtained from the Koutecky-Levich plot according to the equation (1).

表1は、酸化ルテニウムナノシートの寸法とTBA/H比とで影響される初期活性値を示したものである。Pt/Cのみの電極触媒の初期質量活性は225AgPt −1であった。TBA/H比が1.5の場合の初期質量活性は、大(寸法A)、普通(寸法B)及び小(寸法C)のそれぞれについて、241AgPt −1、391AgPt −1及び407AgPt −1に増加した。普通サイズ(寸法B)の酸化ルテニウムナノシートの初期質量活性は、TBA/H比が10、5及び1.5のそれぞれについて、215AgPt −1、327A−1及び391AgPt −1に増加した。TBA/H比が1.5で、小サイズ(寸法C)の酸化ルテニウムナノシート−Pt/Cが、最も高い質量活性を示し、酸化ルテニウムナノシートを有しない電極触媒よりも80%高い407AgPt −1を示した。TBAの含有量が少なく、酸化ルテニウムナノシートの寸法が小さいほど質量活性が増加する傾向にあった。 Table 1 shows the initial activity values affected by the dimensions of the ruthenium oxide nanosheet and the TBA + / H + ratio. The initial mass activity of the Pt / C-only electrocatalyst was 225Ag Pt- 1 . The initial mass activity for a TBA + / H + ratio of 1.5 is 241 Ag Pt −1 , 391 Ag Pt −1 and 407 Ag for large (dimension A), normal (dimension B) and small (dimension C), respectively. Increased to Pt- 1 . The initial mass activity of normal size (dimension B) ruthenium oxide nanosheets increased to 215 Ag Pt −1 , 327 A −1 and 391 Ag Pt −1 for TBA + / H + ratios of 10, 5 and 1.5, respectively. . 407Ag Pt with a TBA + / H + ratio of 1.5 and a small size (dimension C) of ruthenium oxide nanosheets—Pt / C showing the highest mass activity and 80% higher than the electrocatalyst without the ruthenium oxide nanosheets -1 was shown. There was a tendency that the mass activity increased as the content of TBA + was smaller and the size of the ruthenium oxide nanosheet was smaller.

(触媒耐性に対する酸化ルテニウムナノシートサイズの影響)
上記した「ORR活性に対する酸化ルテニウムナノシートのサイズの影響」の検討と同様にして評価した。1600rpmでの耐性テスト(60℃、酸素下で300サイクル、0.6〜1.2V vsRHE)後のKoutecky-Levichプロットは、図2中に示した。ここでの結果は、図2中に白抜き記号(○、◇、□、△)で示した。
(Effect of ruthenium oxide nanosheet size on catalyst resistance)
The evaluation was performed in the same manner as in the above-described examination of “the influence of the size of the ruthenium oxide nanosheet on the ORR activity”. The Koutecky-Levich plot after a resistance test at 1600 rpm (60 ° C., 300 cycles under oxygen, 0.6-1.2 V vs RHE) is shown in FIG. The results here are indicated by white symbols (◯, ◇, □, Δ) in FIG.

表2は、酸化ルテニウムナノシートの寸法とTBA/H比とで影響される耐性試験後の活性値を示したものである。耐性試験後、TBA/H+比が1.5で、寸法Cの酸化ルテニウムナノシートを用いた複合電極触媒が最も高い質量活性を示し、酸化ルテニウムナノシートを有さない電極触媒よりも130%高い数値である234AgPt −1を示した。活性の保持は、耐久後の質量活性を初期質量活性で割って算出した。 Table 2 shows the activity values after the resistance test, which are influenced by the dimensions of the ruthenium oxide nanosheet and the TBA + / H + ratio. After endurance testing, the composite electrocatalyst with a TBA + / H + ratio of 1.5 and using a dimension C ruthenium oxide nanosheet exhibits the highest mass activity and is 130% higher than the electrocatalyst without the ruthenium oxide nanosheet A numerical value of 234Ag Pt −1 was shown. The retention of activity was calculated by dividing the mass activity after endurance by the initial mass activity.

以上の実験結果より、Pt/C触媒への酸化ルテニウムナノシートの添加は、初期質量活性と触媒の耐性の両方を向上させた。酸化ルテニウムナノシートは、触媒の全体的な電気抵抗を減少させるとともに、プロトン伝導性を向上する効果を奏し、その結果、好ましい結果が得られたより小さい寸法Cの酸化ルテニウムナノシートは、シート自体の重なり合いが減ること、及びその初期活性による三相界面の改善によって、より均一な複合電極触媒をえることができたと考えられた。TBA/H+比が1.5で、酸化ルテニウムナノシートの寸法C(小さい)場合のPt/C複合電極触媒は、Pt/C単独触媒よりも130%高い活性を示し、長期耐性に明確な差が認められた。なお、現時点での考察では、酸化ルテニウムナノシートを添加した複合電極触媒の耐性が向上する理由としては、負に帯電した酸化ルテニウムが、陽イオンのPt種の拡散を防ぐためであると考えられる。酸化ルテニウムは、Ptの溶解種として考えられているPtn+の捕獲サイトとして作用し得る。また、カーボンが腐食されると、酸化ルテニウムは、良い電子伝導体であり、Ptが沈殿物であるとしても、ORRに活性とすることができるので、Pt粒子の二次サポートとして機能することができると考えられる。 From the above experimental results, the addition of ruthenium oxide nanosheets to the Pt / C catalyst improved both initial mass activity and catalyst resistance. Ruthenium oxide nanosheets have the effect of reducing the overall electrical resistance of the catalyst and improving proton conductivity, and as a result, the smaller size C ruthenium oxide nanosheets with favorable results are not overlapping the sheets themselves. It was considered that a more uniform composite electrocatalyst could be obtained by the reduction and improvement of the three-phase interface due to its initial activity. The Pt / C composite electrocatalyst with a TBA + / H + ratio of 1.5 and a ruthenium oxide nanosheet size C (small) shows 130% higher activity than the Pt / C single catalyst, and is clear in long-term resistance Differences were noted. In the present discussion, it is considered that the reason why the composite electrode catalyst to which the ruthenium oxide nanosheet is added is improved is that negatively charged ruthenium oxide prevents the diffusion of Pt species of the cation. Ruthenium oxide can act as a capture site for Pt n + , which is considered as a dissolved species of Pt. Also, when carbon is corroded, ruthenium oxide is a good electron conductor, and even if Pt is a precipitate, it can be activated by ORR, so it can function as a secondary support for Pt particles. It is considered possible.

Claims (4)

白金系電極触媒とともに用いられる酸化ルテニウムナノシートかならなる電極触媒であって、
前記酸化ルテニウムナノシートが、鱗片形状からなり、最大長さと該最大長さの中点で直交する長さとの平均を該酸化ルテニウムナノシートの寸法としたとき、該寸法が50nm以上350nm以下のものが全体の65%以上であり、且つモード径が100nm以上250nm以下であることを特徴とする酸素還元能を有する電極触媒。
An electrode catalyst made of a ruthenium oxide nanosheet used with a platinum-based electrode catalyst,
The ruthenium oxide nanosheet has a scaly shape, and when the average of the maximum length and the length orthogonal to the midpoint of the maximum length is the dimension of the ruthenium oxide nanosheet, the entire dimension is 50 nm to 350 nm. An electrode catalyst having an oxygen reducing ability, wherein the mode diameter is from 100 nm to 250 nm.
白金系電極触媒と、酸化ルテニウムナノシート触媒とを有する複合電極触媒であって、
前記酸化ルテニウムナノシートが、鱗片形状からなり、最大長さと該最大長さの中点で直交する長さとの平均を該酸化ルテニウムナノシートの寸法としたとき、該寸法が50nm以上350nm以下のものが全体の65%以上であり、且つモード径が100nm以上250nm以下であることを特徴とする酸素還元能を有する電極触媒。
A composite electrode catalyst having a platinum-based electrode catalyst and a ruthenium oxide nanosheet catalyst,
The ruthenium oxide nanosheet has a scaly shape, and when the average of the maximum length and the length orthogonal to the midpoint of the maximum length is the dimension of the ruthenium oxide nanosheet, the entire dimension is 50 nm to 350 nm. An electrode catalyst having an oxygen reducing ability, wherein the mode diameter is from 100 nm to 250 nm.
前記白金系触媒が、カーボンブラック担体上に白金触媒を担持した電極触媒である、請求項2に記載の酸素還元能を有する電極触媒。   The electrode catalyst having oxygen reducing ability according to claim 2, wherein the platinum-based catalyst is an electrode catalyst having a platinum catalyst supported on a carbon black support. 固体高分子形燃料電池用の負極に用いられる、請求項1〜3のいずれか1項に記載の酸素還元能を有する電極触媒。   The electrode catalyst having oxygen reducing ability according to any one of claims 1 to 3, which is used for a negative electrode for a polymer electrolyte fuel cell.
JP2011196798A 2011-09-09 2011-09-09 Electrocatalyst with oxygen reduction ability Active JP5792567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011196798A JP5792567B2 (en) 2011-09-09 2011-09-09 Electrocatalyst with oxygen reduction ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011196798A JP5792567B2 (en) 2011-09-09 2011-09-09 Electrocatalyst with oxygen reduction ability

Publications (2)

Publication Number Publication Date
JP2013058429A true JP2013058429A (en) 2013-03-28
JP5792567B2 JP5792567B2 (en) 2015-10-14

Family

ID=48134120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011196798A Active JP5792567B2 (en) 2011-09-09 2011-09-09 Electrocatalyst with oxygen reduction ability

Country Status (1)

Country Link
JP (1) JP5792567B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076375A1 (en) * 2013-11-25 2015-05-28 独立行政法人物質・材料研究機構 Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode
WO2015137322A1 (en) * 2014-03-11 2015-09-17 国立大学法人信州大学 Layered iridate salt, layered iridate, and iridium oxide nanosheets
WO2016108255A1 (en) * 2014-12-28 2016-07-07 国立大学法人信州大学 Membrane/electrode assembly and method for producing same
JP2017063034A (en) * 2015-09-25 2017-03-30 三星電子株式会社Samsung Electronics Co.,Ltd. Electrical conductors, production methods thereof, and devices including the same
JP2017141158A (en) * 2017-04-05 2017-08-17 国立大学法人信州大学 Iridium oxide nanosheet, dispersion solution containing the iridium oxide nanosheet and manufacturing method of the dispersion solution
CN108472631A (en) * 2016-01-19 2018-08-31 国立大学法人信州大学 Nuclear-shell structure type nanometer sheet
JP2021077468A (en) * 2019-11-06 2021-05-20 古河電気工業株式会社 Electrode catalyst material for fuel cell, catalyst ink, electrode catalyst layer and membrane electrode assembly
JP2021077470A (en) * 2019-11-06 2021-05-20 古河電気工業株式会社 Electrode catalyst material for fuel cel
JP2021077469A (en) * 2019-11-06 2021-05-20 古河電気工業株式会社 Electrode catalyst material for fuel cell, and electrode catalyst layer for fuel cell

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015076375A1 (en) * 2013-11-25 2015-05-28 独立行政法人物質・材料研究機構 Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode
JP6052752B2 (en) * 2013-11-25 2016-12-27 国立研究開発法人物質・材料研究機構 Oxygen reduction electrode catalyst, electrode catalyst for hydrogen generation reaction, and electrode
WO2015137322A1 (en) * 2014-03-11 2015-09-17 国立大学法人信州大学 Layered iridate salt, layered iridate, and iridium oxide nanosheets
JP2015171966A (en) * 2014-03-11 2015-10-01 国立大学法人信州大学 Layered iridium acid salt, layered iridium acid and iridium oxide nanosheet
US9689080B2 (en) 2014-03-11 2017-06-27 Shinshu University Layered alkali iridate, layered iridic acid, and iridium oxide nanosheet
WO2016108255A1 (en) * 2014-12-28 2016-07-07 国立大学法人信州大学 Membrane/electrode assembly and method for producing same
JP2017063034A (en) * 2015-09-25 2017-03-30 三星電子株式会社Samsung Electronics Co.,Ltd. Electrical conductors, production methods thereof, and devices including the same
CN108472631A (en) * 2016-01-19 2018-08-31 国立大学法人信州大学 Nuclear-shell structure type nanometer sheet
EP3406336A4 (en) * 2016-01-19 2019-07-10 Shinshu University Core-shell structure type nanosheet
US10985382B2 (en) 2016-01-19 2021-04-20 Shinshu University Core-shell structure type nanosheet
US11682773B2 (en) 2016-01-19 2023-06-20 Shinshu University Electrocatalyst
JP2017141158A (en) * 2017-04-05 2017-08-17 国立大学法人信州大学 Iridium oxide nanosheet, dispersion solution containing the iridium oxide nanosheet and manufacturing method of the dispersion solution
JP2021077468A (en) * 2019-11-06 2021-05-20 古河電気工業株式会社 Electrode catalyst material for fuel cell, catalyst ink, electrode catalyst layer and membrane electrode assembly
JP2021077470A (en) * 2019-11-06 2021-05-20 古河電気工業株式会社 Electrode catalyst material for fuel cel
JP2021077469A (en) * 2019-11-06 2021-05-20 古河電気工業株式会社 Electrode catalyst material for fuel cell, and electrode catalyst layer for fuel cell
JP7340418B2 (en) 2019-11-06 2023-09-07 古河電気工業株式会社 Electrocatalyst materials, catalyst inks, electrocatalyst layers and membrane electrode assemblies for fuel cells
JP7340419B2 (en) 2019-11-06 2023-09-07 古河電気工業株式会社 Electrocatalyst materials for fuel cells
JP7359384B2 (en) 2019-11-06 2023-10-11 古河電気工業株式会社 Electrocatalyst material for fuel cells and electrode catalyst layer for fuel cells

Also Published As

Publication number Publication date
JP5792567B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5792567B2 (en) Electrocatalyst with oxygen reduction ability
Sun et al. Graphene–Co 3 O 4 nanocomposite as an efficient bifunctional catalyst for lithium–air batteries
US7175930B2 (en) Conducting polymer-grafted carbon material for fuel cell applications
US7459103B2 (en) Conducting polymer-grafted carbon material for fuel cell applications
US20070003822A1 (en) Voltage cycling durable catalysts
US7195834B2 (en) Metallized conducting polymer-grafted carbon material and method for making
JP6138694B2 (en) Method for forming an electrode for an electrochemical cell
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
Cao et al. Nitrogen-doped porous graphene as a highly efficient cathodic electrocatalyst for aqueous organic redox flow battery application
He et al. Boosting the electrocatalytic performance of carbon nanotubes toward V (V)/V (IV) reaction by sulfonation treatment
CN110416553B (en) Proton membrane fuel cell catalyst, preparation method thereof and fuel cell system
US20100068591A1 (en) Fuel cell catalyst, fuel cell cathode and polymer electrolyte fuel cell including the same
JP5669432B2 (en) Membrane electrode assembly, fuel cell, and fuel cell activation method
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP6159283B2 (en) Fuel cell electrode catalyst
JP2001118583A (en) Fuel cell electrode and method for manufacturing the same
JP6727264B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP5065289B2 (en) Fuel cell electrode with reduced amount of noble metal and solid polymer fuel cell having the same
JP2020077581A (en) Catalyst layer
JP7359077B2 (en) Laminate for fuel cells
JP4996823B2 (en) Fuel cell electrode and fuel cell using the same
Gayen et al. Bidirectional energy & fuel production using RTO-supported-Pt–IrO 2 loaded fixed polarity unitized regenerative fuel cells
WO2016108255A1 (en) Membrane/electrode assembly and method for producing same
JP5570878B2 (en) Catalyst layer and catalyst paste for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150806

R150 Certificate of patent or registration of utility model

Ref document number: 5792567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250