JP2021077469A - Electrode catalyst material for fuel cell, and electrode catalyst layer for fuel cell - Google Patents

Electrode catalyst material for fuel cell, and electrode catalyst layer for fuel cell Download PDF

Info

Publication number
JP2021077469A
JP2021077469A JP2019201188A JP2019201188A JP2021077469A JP 2021077469 A JP2021077469 A JP 2021077469A JP 2019201188 A JP2019201188 A JP 2019201188A JP 2019201188 A JP2019201188 A JP 2019201188A JP 2021077469 A JP2021077469 A JP 2021077469A
Authority
JP
Japan
Prior art keywords
electrode catalyst
catalyst material
conductive material
electrode
nanocrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019201188A
Other languages
Japanese (ja)
Other versions
JP7359384B2 (en
Inventor
秀和 都築
Hidekazu Tsuzuki
秀和 都築
阿部 英樹
Hideki Abe
英樹 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
National Institute for Materials Science
Original Assignee
Furukawa Electric Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, National Institute for Materials Science filed Critical Furukawa Electric Co Ltd
Priority to JP2019201188A priority Critical patent/JP7359384B2/en
Publication of JP2021077469A publication Critical patent/JP2021077469A/en
Application granted granted Critical
Publication of JP7359384B2 publication Critical patent/JP7359384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide: a novel electrode catalyst material for fuel cells, having high catalytic activity in an oxygen reduction reaction without using platinum as a catalyst component, the catalytic activity being comparable to catalytic activity in an electrode catalyst material with platinum fine particles supported on surfaces of carbon particles; and an electrode catalyst layer in which the electrode catalyst material for fuel cells is used.SOLUTION: An electrode catalyst material for fuel cells according to the present invention includes a metal oxide and a flaky conductive material. The metal oxide is a linked aggregate in which flaky nanocrystal pieces are linked to each other, the flaky nanocrystal pieces each having main surfaces where a specific crystal plane is exposed and an end surface. The plurality of the nanocrystal pieces has a gap arranged while opening to an outside of the linked aggregate, between the main surfaces. The conductive material has a planar site in contact with at least a part of the nanocrystal pieces, and conductivity of the planar site in a planar direction is greater than conductivity in a direction orthogonal to the planar direction.SELECTED DRAWING: Figure 1

Description

本発明は、電極触媒材料に関し、特に、燃料電池の空気極触媒材料として高い触媒活性を有する電極触媒材料料及びこれを用いた電極触媒層に関するものである。 The present invention relates to an electrode catalyst material, and more particularly to an electrode catalyst material having high catalytic activity as an air electrode catalyst material for a fuel cell, and an electrode catalyst layer using the same.

近年、省エネルギー化の観点から、発電装置や電池性能の改善要求がさらに高まっている。また、発電装置や電池に搭載する電極について、環境負荷や生産コストの低減の観点から、従来の性能を維持、向上しつつ、新たな材料を開発することが要求されている。また、排ガスや温室効果ガスの削減の観点から、燃料電池等の発電装置を用いて自動車等の輸送機器を駆動させることも提案されている。 In recent years, from the viewpoint of energy saving, there is an increasing demand for improvement of power generation equipment and battery performance. Further, from the viewpoint of reducing environmental load and production cost, it is required to develop new materials for electrodes mounted on power generation devices and batteries while maintaining and improving the conventional performance. From the viewpoint of reducing exhaust gas and greenhouse gases, it has also been proposed to drive transportation equipment such as automobiles by using a power generation device such as a fuel cell.

燃料電池に用いられる空気極触媒材料として、従来、炭素粒子表面に白金(Pt)の微粒子を担持させた触媒材料が使用されている。白金は酸素還元反応(以下、「ORR」ということがある。)の触媒として優れ、炭素粒子は導電性に優れていることから、炭素粒子表面に白金微粒子を担持させた触媒材料が、燃料電池の空気極触媒材料として、一般的に使用されている。しかし、白金は、埋蔵量の少ない希少金属であり、高価でもあることから、炭素粒子表面に白金微粒子を担持させた触媒材料に代わる、新たな触媒材料が必要である。 As an air electrode catalyst material used in a fuel cell, a catalyst material in which fine particles of platinum (Pt) are supported on the surface of carbon particles has been conventionally used. Platinum is excellent as a catalyst for oxygen reduction reaction (hereinafter sometimes referred to as "ORR"), and carbon particles are excellent in conductivity. Therefore, a catalyst material in which platinum fine particles are supported on the surface of carbon particles is a fuel cell. It is generally used as an air electrode catalyst material of. However, since platinum is a rare metal having a small reserve and is also expensive, a new catalyst material is required in place of the catalyst material in which platinum fine particles are supported on the surface of carbon particles.

また、一般に、白金系触媒は酸素還元反応においてほぼ4電子反応であるのに対して、炭素系触媒の表面においては2電子反応であることが知られている。この場合、正極での酸素還元反応が4電子反応であれば酸素は水に還元されるが、2電子反応の場合、中間体である過酸化水素が生成する。過酸化水素の生成により正極で分極が生じ、酸素還元反応の効率が低下するだけでなく、過酸化水素は電解質である固体高分子膜を損傷させる。このように、過酸化水素は酸素還元反応に使用される触媒の触媒活性を妨げ、電解質を劣化させる要因でもある。そのため、燃料電池の正極用触媒には、過酸化水素の生成を抑制できるように4電子反応を促し、酸素還元反応において触媒活性が高いことも要求される。 Further, it is generally known that a platinum-based catalyst has a substantially 4-electron reaction in an oxygen reduction reaction, whereas a carbon-based catalyst has a 2-electron reaction on the surface of a carbon-based catalyst. In this case, if the oxygen reduction reaction at the positive electrode is a 4-electron reaction, oxygen is reduced to water, but in the case of a 2-electron reaction, hydrogen peroxide, which is an intermediate, is produced. The production of hydrogen peroxide causes polarization at the positive electrode, which not only reduces the efficiency of the oxygen reduction reaction, but also damages the polymer membrane, which is an electrolyte. As described above, hydrogen peroxide is also a factor that hinders the catalytic activity of the catalyst used in the oxygen reduction reaction and deteriorates the electrolyte. Therefore, the positive electrode catalyst of the fuel cell is also required to promote a 4-electron reaction so as to suppress the production of hydrogen peroxide, and to have high catalytic activity in the oxygen reduction reaction.

特許文献1には、カソード電極の触媒として高価な白金を用いず、窒素含有カーボン触媒を備えた燃料電池用の電極触媒が開示されている。しかしながら、触媒成分は炭素系触媒であるため、2電子反応により過酸化水素が生成し、白金に匹敵する酸素還元反応活性を得ることは困難である。 Patent Document 1 discloses an electrode catalyst for a fuel cell provided with a nitrogen-containing carbon catalyst without using expensive platinum as a catalyst for the cathode electrode. However, since the catalyst component is a carbon-based catalyst, hydrogen peroxide is generated by a two-electron reaction, and it is difficult to obtain an oxygen reduction reaction activity comparable to that of platinum.

特許文献2には、燃料電池のカソード用触媒として、担体粒子に担持される白金又は白金合金を含む触媒粒子の少なくとも一部が、酸化セリウムを含む被覆層で被覆された電極触媒について開示されており、被覆層に含まれる酸化セリウムが、正極の電極反応で生成する過酸化水素を分解する役割を果たすことが示唆されている。しかしながら、金属触媒粒子として、従来と同じく、白金を含む触媒粒子が使用されているため、白金微粒子を担持させた触媒材料に代わる、新たな触媒材料は提案されていない。 Patent Document 2 discloses an electrode catalyst in which at least a part of catalyst particles containing platinum or a platinum alloy supported on carrier particles is coated with a coating layer containing cerium oxide as a catalyst for a cathode of a fuel cell. It is suggested that the cerium oxide contained in the coating layer plays a role of decomposing hydrogen peroxide generated by the electrode reaction of the positive electrode. However, since the catalyst particles containing platinum are used as the metal catalyst particles as in the conventional case, no new catalyst material has been proposed as an alternative to the catalyst material supporting platinum fine particles.

国際公開第2014/128949号International Publication No. 2014/128949 特開2017−174562号公報JP-A-2017-174562

本発明は、触媒成分として白金を用いずに、酸素還元反応において、炭素粒子表面に白金微粒子を担持させた電極触媒材料に匹敵する高い触媒活性を有する新たな燃料電池用の電極触媒材料及びこれを用いた電極触媒層を提供することを目的とする。 The present invention is a new electrode catalyst material for a fuel cell having high catalytic activity comparable to an electrode catalyst material in which platinum fine particles are supported on the surface of carbon particles in an oxygen reduction reaction without using platinum as a catalyst component. It is an object of the present invention to provide an electrode catalyst layer using the above.

本発明者らは、上記問題に対して鋭意検討を行った結果、触媒成分として、特定の結晶面が表出している主表面および端面をもつ薄片状のナノ結晶片が相互に連結された連結集合体である触媒活性を有する金属酸化物と、導電性付与成分としての導電性材料と、を備え、前記ナノ結晶片の少なくとも一部と、前記導電性材料が有する所定の導電特性を示す面とが二次元的に接触している触媒材料を、燃料電池用の電極触媒材料として使用することによって、高価な白金を用いなくとも、酸素還元反応において、炭素粒子表面に白金微粒子を担持させた電極触媒材料に匹敵する高い触媒活性が得られることを見出した。 As a result of diligent studies on the above problems, the present inventors have conducted a connection in which flaky nanocrystal pieces having a main surface and an end face on which a specific crystal surface is exposed are interconnected as a catalyst component. A surface that comprises a catalytically active metal oxide that is an aggregate and a conductive material as a conductivity-imparting component, and exhibits at least a part of the nanocrystal pieces and a predetermined conductive property of the conductive material. By using a catalyst material that is in two-dimensional contact with the fuel cell as an electrode catalyst material for a fuel cell, platinum fine particles are supported on the surface of carbon particles in an oxygen reduction reaction without using expensive platinum. It has been found that high catalytic activity comparable to that of electrode catalyst materials can be obtained.

すなわち、本発明の要旨構成は、以下のとおりである。
[1] 金属酸化物と、薄片状の導電性材料と、を有する燃料電池用の電極触媒材料であって、
前記金属酸化物が、特定の結晶面が表出している主表面および端面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体であり、
複数の前記ナノ結晶片が、前記主表面間に、前記連結集合体の外側に開口して配置された間隙を有し、
前記導電性材料が、前記ナノ結晶片の少なくとも一部と接触する面状部位を有し、該面状部位の面方向の導電性が該面方向に対して直交方向の導電性よりも大きい電極触媒材料。
[2] 前記ナノ結晶片の平均厚さが、10nm未満である[1]に記載の電極触媒材料。
[3] 前記金属酸化物が、酸化銅である[1]または[2]に記載の電極触媒材料。
[4] 前記特定の結晶面が、(001)結晶面である[3]に記載の電極触媒材料。
[5] 前記面状部位の前記面方向に対して直交方向の平均寸法が、10nm未満である[1]乃至[4]のいずれか1つに記載の電極触媒材料。
[6] 前記導電性材料が、グラフェンである[1]乃至[5]のいずれか1つに記載の電極触媒材料。
[7] 電極上に形成した前記電極触媒材料の電気伝導度が、該電極上に前記導電性材料により形成した層の電気伝導度に対して4.0%以上である[1]乃至[6]のいずれか1つに記載の電極触媒材料。
[8] 前記導電性材料の前記面状部位の面方向の平均寸法が、前記ナノ結晶片の前記主表面の最小寸法より小さい[1]乃至[7]のいずれか1つに記載の電極触媒材料。
[9] [1]乃至[8]のいずれか1つに記載の電極触媒材料と、高分子電解質と、を含む燃料電池用の電極触媒層。
That is, the gist structure of the present invention is as follows.
[1] An electrode catalyst material for a fuel cell having a metal oxide and a flaky conductive material.
The metal oxide is a linked aggregate in which flaky nanocrystal pieces having a main surface and an end face on which a specific crystal face is exposed are connected to each other.
The plurality of nanocrystal pieces have a gap between the main surfaces, which is arranged so as to be open to the outside of the connecting assembly.
An electrode in which the conductive material has a planar portion in contact with at least a part of the nanocrystal piece, and the conductivity of the planar portion in the plane direction is larger than that in the direction orthogonal to the plane direction. Catalytic material.
[2] The electrode catalyst material according to [1], wherein the average thickness of the nanocrystal pieces is less than 10 nm.
[3] The electrode catalyst material according to [1] or [2], wherein the metal oxide is copper oxide.
[4] The electrode catalyst material according to [3], wherein the specific crystal plane is a (001) crystal plane.
[5] The electrode catalyst material according to any one of [1] to [4], wherein the average dimension of the planar portion in the direction orthogonal to the plane direction is less than 10 nm.
[6] The electrode catalyst material according to any one of [1] to [5], wherein the conductive material is graphene.
[7] The electrical conductivity of the electrode catalyst material formed on the electrode is 4.0% or more with respect to the electrical conductivity of the layer formed on the electrode by the conductive material [1] to [6]. ]. The electrode catalyst material according to any one of.
[8] The electrode catalyst according to any one of [1] to [7], wherein the average dimension of the planar portion of the conductive material in the plane direction is smaller than the minimum dimension of the main surface of the nanocrystal piece. material.
[9] An electrode catalyst layer for a fuel cell containing the electrode catalyst material according to any one of [1] to [8] and a polymer electrolyte.

本発明の態様によれば、電極触媒材料が、触媒活性を有する金属酸化物の、特定の結晶面が表出している主表面および端面をもつ薄片状のナノ結晶片と、薄片状の導電性材料の、ナノ結晶片の少なくとも一部と接触する面方向の導電性に優れる面状部位と、が接触している複合材料であることにより、触媒成分として高価な白金を用いなくとも、酸素還元反応において4電子反応を促し、炭素粒子表面に白金微粒子を担持させた電極触媒材料に匹敵する高い触媒活性を示す新たな燃料電池用の電極触媒材及びこれを用いた電極触媒層を提供することができる。 According to the aspect of the present invention, the electrode catalyst material is a flaky nanocrystal piece of a metal oxide having catalytic activity, which has a main surface and an end face where a specific crystal surface is exposed, and a flaky conductivity. Since the material is a composite material in which a planar portion having excellent conductivity in the plane direction in contact with at least a part of the nanocrystal pieces is in contact with the material, oxygen reduction is performed without using expensive platinum as a catalyst component. To provide a new electrode catalyst material for a fuel cell and an electrode catalyst layer using the same, which promotes a 4-electron reaction in the reaction and exhibits high catalytic activity comparable to an electrode catalyst material in which platinum fine particles are supported on the surface of carbon particles. Can be done.

本発明の態様によれば、金属酸化物が酸化銅、特定の結晶面が(001)結晶面である触媒材料により、酸素還元反応において、炭素粒子表面に白金微粒子を担持させた電極触媒材料に匹敵する高い触媒活性をより確実に得ることができる。 According to the aspect of the present invention, the catalyst material in which the metal oxide is copper oxide and the specific crystal plane is the (001) crystal plane is used as an electrode catalyst material in which platinum fine particles are supported on the surface of carbon particles in an oxygen reduction reaction. High catalytic activity comparable to that can be obtained more reliably.

図1は、本発明に従う電極触媒材料の実施態様を説明する概略図である。FIG. 1 is a schematic view illustrating an embodiment of an electrode catalyst material according to the present invention. 図2は、実施例1で作製された電極触媒材料を、倍率30,000倍で観察した際のSEM画像である。FIG. 2 is an SEM image of the electrode catalyst material produced in Example 1 when observed at a magnification of 30,000. 図3は、図2に示されるSEM画像の同視野における反射電子像を示す。FIG. 3 shows a reflected electron image in the same field of view of the SEM image shown in FIG. 図4は、比較例1で作製された電極触媒材料を、倍率30,000倍で観察した際のSEM画像である。FIG. 4 is an SEM image of the electrode catalyst material produced in Comparative Example 1 when observed at a magnification of 30,000. 図5は、図4に示されるSEM画像の同視野における反射電子像を示す。FIG. 5 shows a reflected electron image in the same field of view of the SEM image shown in FIG. 図6は、実施例1で作製された電極触媒材料について、金属酸化物と薄片状の導電性材料との接触を示すTEM画像である。FIG. 6 is a TEM image showing the contact between the metal oxide and the flaky conductive material with respect to the electrode catalyst material produced in Example 1.

以下、図面を用いながら、本発明の実施形態である電極触媒材料及び電極触媒層について説明する。図1は、本発明の電極触媒材料の実施態様を説明する概略図である。 Hereinafter, the electrode catalyst material and the electrode catalyst layer according to the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view illustrating an embodiment of the electrode catalyst material of the present invention.

<電極触媒材料>
図1に示すように、本発明の実施形態の電極触媒材料1は、触媒活性を有する金属酸化物と、導電性を付与する薄片状の導電性材料30と、を有し、金属酸化物は、特定の結晶面が表出している主表面22および端面23をもつ薄片状である複数のナノ結晶片21が相互に連結された連結集合体20である。連結集合体20は、特定の結晶面が表出している主表面22をもつ薄片状のナノ結晶片21から構成されていることで、優れた触媒活性を発揮する。また、連結集合体20は、複数のナノ結晶片21の主表面22間に、連結集合体20の外側に開口して配置された間隙Gを有している。
<Electrode catalyst material>
As shown in FIG. 1, the electrode catalyst material 1 of the embodiment of the present invention has a metal oxide having catalytic activity and a flaky conductive material 30 that imparts conductivity, and the metal oxide is a metal oxide. , A connected aggregate 20 in which a plurality of flaky nanocrystal pieces 21 having a main surface 22 and an end surface 23 on which a specific crystal plane is exposed are connected to each other. The linked aggregate 20 exhibits excellent catalytic activity because it is composed of flaky nanocrystal pieces 21 having a main surface 22 on which a specific crystal plane is exposed. Further, the connected aggregate 20 has a gap G arranged between the main surfaces 22 of the plurality of nanocrystal pieces 21 so as to be open to the outside of the connected aggregate 20.

導電性材料30は、ナノ結晶片21、好ましくは主表面22の少なくとも一部と接触する面状部位31を有している。複数の導電性材料30が互いに重なっている場合、その中の一部の導電性材料30が有する面状部位31が、ナノ結晶片21の少なくとも一部と接触していればよい。例えば、電極触媒材料1が燃料電池の正極に搭載されると、燃料電池の負極触媒材料におけるH→2H+2eの水素酸化反応において生成した電子が、ナノ結晶片21に接触している導電性材料30の面状部位31を通して輸送される。導電性材料30の面状部位31は、ナノ結晶片21の少なくとも一部と接触しているため、導電性材料30の面状部位31と、ナノ結晶片21との面接触が達成される。また、面状部位31の面方向の導電性は、面方向に対して直交方向の導電性よりも大きい特性を有している。導電性材料30における導電性が大きい面状部位31と、ナノ結晶片21の少なくとも一部とが互いに面接触していることにより、金属酸化物である連結集合体20と導電性材料30との間の電子授受が達成される。そのため、電極触媒材料1を酸素還元反応に用いた場合、4電子反応が促され、電極触媒材料1は、炭素粒子表面に白金微粒子を担持させた電極触媒材料に匹敵する高い触媒活性を示す。 The conductive material 30 has a planar portion 31 that comes into contact with the nanocrystal pieces 21, preferably at least a portion of the main surface 22. When a plurality of conductive materials 30 overlap each other, the planar portion 31 of some of the conductive materials 30 may be in contact with at least a part of the nanocrystal pieces 21. For example, when the electrode catalyst material 1 is mounted on the positive electrode of the fuel cell, the electrons generated in the hydrogen oxidation reaction of H 2 → 2H + + 2e − in the negative electrode catalyst material of the fuel cell are in contact with the nanocrystal pieces 21. It is transported through the planar portion 31 of the conductive material 30. Since the planar portion 31 of the conductive material 30 is in contact with at least a part of the nanocrystal piece 21, surface contact between the planar portion 31 of the conductive material 30 and the nanocrystal piece 21 is achieved. Further, the conductivity of the planar portion 31 in the plane direction has a characteristic larger than the conductivity in the direction orthogonal to the plane direction. Since the planar portion 31 having high conductivity in the conductive material 30 and at least a part of the nanocrystal pieces 21 are in surface contact with each other, the connecting aggregate 20 which is a metal oxide and the conductive material 30 are brought into contact with each other. Electronic transfer between is achieved. Therefore, when the electrode catalyst material 1 is used in the oxygen reduction reaction, a 4-electron reaction is promoted, and the electrode catalyst material 1 exhibits high catalytic activity comparable to that of the electrode catalyst material in which platinum fine particles are supported on the surface of carbon particles.

一方、導電性材料30の面状部位31がナノ結晶片21の全面、特に主表面22の全面を覆うと、触媒活性面である主表面22が露出されず、正極での反応物質を触媒活性面に供給できなくなり、酸素還元反応が阻害される。ナノ結晶片21の少なくとも一部、特に主表面22の少なくとも一部と導電性材料30の面状部位31とが接触している電極触媒材料1では、導電性材料30の面状部位31との良好な接触と触媒活性の向上が実現される。また、導電性材料30の面状部位31が、ナノ結晶片21の主表面22の少なくとも一部と接触していることにより、導電性材料30が表出している主表面22に担持される。そのため、例えば、外部等から衝撃があっても、導電性材料30の面状部位31とナノ結晶片21との接触を良好に維持することができる。一方、導電性材料30の面状部位31が、ナノ結晶片21の端面23の少なくとも一部で電気的に接触している場合、触媒活性面を阻害せずに導電性能を向上できる。そのため、電極触媒材料1では、連結集合体20を担体として導電性材料30を保持する形態、導電性材料30の面状部位31を担体としてナノ結晶片21を保持する形態の両方が可能である。 On the other hand, when the planar portion 31 of the conductive material 30 covers the entire surface of the nanocrystal piece 21, particularly the entire surface of the main surface 22, the main surface 22 which is the catalytically active surface is not exposed, and the reactant at the positive electrode is catalytically active. It cannot be supplied to the surface, and the oxygen reduction reaction is inhibited. In the electrode catalyst material 1 in which at least a part of the nanocrystal piece 21, particularly at least a part of the main surface 22, and the planar portion 31 of the conductive material 30 are in contact with each other, the planar portion 31 of the conductive material 30 is used. Good contact and improved catalytic activity are achieved. Further, the planar portion 31 of the conductive material 30 is in contact with at least a part of the main surface 22 of the nanocrystal piece 21, so that the conductive material 30 is supported on the exposed main surface 22. Therefore, for example, even if there is an impact from the outside or the like, good contact between the planar portion 31 of the conductive material 30 and the nanocrystal piece 21 can be maintained. On the other hand, when the planar portion 31 of the conductive material 30 is in electrical contact with at least a part of the end face 23 of the nanocrystal piece 21, the conductive performance can be improved without inhibiting the catalytically active surface. Therefore, in the electrode catalyst material 1, both a form of holding the conductive material 30 using the connecting aggregate 20 as a carrier and a form of holding the nanocrystal piece 21 using the planar portion 31 of the conductive material 30 as a carrier are possible. ..

導電性材料30の面状部位31は、ナノ結晶片21の主表面22の少なくとも一部と電気的に接触していることが好ましい。これにより、連結集合体20と導電性材料30の面状部位31との間の電子授受が円滑化され、触媒活性がより向上する。導電性材料30の面状部位31と、ナノ結晶片21の主表面22の少なくとも一部とが良好に電気的に接触している場合、電極上に形成した電極触媒材料1の電気伝導度は、該電極上に導電性材料30により成した層の電気伝導度に対して4.0%以上であることが好ましい。 It is preferable that the planar portion 31 of the conductive material 30 is in electrical contact with at least a part of the main surface 22 of the nanocrystal piece 21. As a result, electron transfer between the connecting assembly 20 and the planar portion 31 of the conductive material 30 is facilitated, and the catalytic activity is further improved. When the planar portion 31 of the conductive material 30 and at least a part of the main surface 22 of the nanocrystal piece 21 are in good electrical contact, the electrical conductivity of the electrode catalyst material 1 formed on the electrode is high. , It is preferable that it is 4.0% or more with respect to the electric conductivity of the layer formed of the conductive material 30 on the electrode.

4電子反応又は2電子反応のいずれの反応であるかは、回転ディスク電極法により検証することができる。回転ディスク電極法は、ディスク電極を回転させることで生じる電解質溶液の対流−拡散を利用する方法である。ディスク電極を電解質溶液の中で回転させると、物質移動は回転数によって規制され、良好な電流−電位曲線が得られる。そして回転数を変化させながらディスク電極を回転させ、電流値を測定する。回転数と電流値との関係を規定するKoutecky−Levich プロットにより反応次数が求められ、その反応次数に基づき、4電子反応又は2電子反応のいずれであるかを見出すことができる。具体的には、以下の式(1)に示されるような、測定電流iと電極回転数ωの間のKoutecky−Levich プロット関係式から、反応次数nを求める。下記式(1)から算出される反応次数nが4に近い値を示す場合、測定対象とした反応は4電子反応であると認定できる。 Whether it is a 4-electron reaction or a 2-electron reaction can be verified by a rotating disc electrode method. The rotating disc electrode method is a method that utilizes the convection-diffusion of the electrolyte solution generated by rotating the disc electrode. When the disc electrode is rotated in the electrolyte solution, mass transfer is regulated by the number of revolutions and a good current-potential curve is obtained. Then, the disk electrode is rotated while changing the rotation speed, and the current value is measured. The reaction order is determined by the Koutecky-Levic plot that defines the relationship between the rotation speed and the current value, and based on the reaction order, it can be found whether it is a 4-electron reaction or a 2-electron reaction. Specifically, the reaction order n is obtained from the Koutecky-Levic plot relational expression between the measurement current i and the electrode rotation speed ω as shown in the following equation (1). When the reaction order n calculated from the following formula (1) shows a value close to 4, it can be determined that the reaction to be measured is a 4-electron reaction.

−1/i=−1/ik’+1/0.620nFAD2/3cν−1/6ω1/2・・・(1)
i:測定電流(mA)
k’:拡散の影響がないときの電荷移動電流(mA)
n:反応電子数
F:ファラデー定数(96485C・mol−1
A:白金薄膜面積
D:酸素拡散係数
c:電解質溶液の濃度、
ν:動粘性係数
ω:角速度(rad・s−1
-1 / i = -1 / i k '+ 1 / 0.620nFAD 2/3-1/6 ω 1/2 ... (1)
i: Measured current (mA)
i k ': Charge transfer current (mA) when there is no effect of diffusion
n: Number of reaction electrons F: Faraday constant (96485C · mol -1 )
A: Platinum thin film area D: Oxygen diffusion coefficient c: Electrolyte solution concentration,
ν: Dynamic viscosity coefficient ω: Angular velocity (rad · s -1 )

<金属酸化物>
図1に示すように、金属酸化物は、主表面22と端面23をもつ複数のナノ結晶片21が相互に連結された連結集合体20であり、花のような形状を示す。複数のナノ結晶片21の連結状態は、特に限定されず、複数のナノ結晶片21が連結して集合体を形成していればよい。
<Metal oxide>
As shown in FIG. 1, the metal oxide is a connected aggregate 20 in which a plurality of nanocrystal pieces 21 having a main surface 22 and an end surface 23 are connected to each other, and exhibits a flower-like shape. The connection state of the plurality of nanocrystal pieces 21 is not particularly limited, and it is sufficient that the plurality of nanocrystal pieces 21 are connected to form an aggregate.

ナノ結晶片21の形状は、主表面22の大きさに対し、端面23の厚さが薄い、薄片状である。連結集合体20の外面において、隣接する複数のナノ結晶片21の主表面22の間には間隙Gが形成されており、この間隙Gは、連結集合体20の外側に開口して配置されている。連結集合体20が間隙Gを有することにより、後述する電解質が間隙Gに充填され、酸素還元反応における反応物質が効果的に触媒活性面である主表面に到達できる。そのため、反応生成物である水(水分)の効果的な移動が促進される。 The shape of the nanocrystal piece 21 is a flaky shape in which the thickness of the end face 23 is thin with respect to the size of the main surface 22. On the outer surface of the articulated aggregate 20, a gap G is formed between the main surfaces 22 of the plurality of adjacent nanocrystal pieces 21, and the gap G is arranged so as to open to the outside of the articulated aggregate 20. There is. When the linkage assembly 20 has the gap G, the electrolyte described later is filled in the gap G, and the reactant in the oxygen reduction reaction can effectively reach the main surface which is the catalytically active surface. Therefore, the effective movement of water (moisture), which is a reaction product, is promoted.

ナノ結晶片21の主表面22とは、薄片状のナノ結晶片21を構成する外面のうち、表面積が広い面のことであって、表面積が狭い端面23の上下端縁を区画形成する両表面を意味する。酸素還元反応に使用される電極触媒材料1では、主表面22に特定の結晶面が表出している。特定の結晶面が表出している主表面22が、高い触媒活性を示す触媒活性面となるため、主表面22の表面積が大きいほど、酸素還元反応をより効率的に行うことができる。 The main surface 22 of the nanocrystal piece 21 is a surface having a large surface area among the outer surfaces constituting the flaky nanocrystal piece 21, and both surfaces forming the upper and lower end edges of the end surface 23 having a small surface area. Means. In the electrode catalyst material 1 used for the oxygen reduction reaction, a specific crystal plane is exposed on the main surface 22. Since the main surface 22 on which the specific crystal plane is exposed becomes the catalytically active surface exhibiting high catalytic activity, the larger the surface area of the main surface 22, the more efficiently the oxygen reduction reaction can be carried out.

ナノ結晶片21の主表面22の最小寸法は、特に限定はされないが、10nm以上1.0μm未満であることが好ましい。また、ナノ結晶片21の平均厚さtは、特に限定はされないが、主表面22の最小寸法の1/10以下であることが好ましい。これにより、ナノ結晶片21の主表面22の面積が端面23の面積に比べて約10倍以上広くなり、連結集合体20の単位量当たりの触媒活性が、ナノ粒子の単位量当たりの触媒活性と比べて向上する。ナノ結晶片の平均厚さは10nm未満であることが好ましい。主表面22の最小寸法が1.0μm以上であると、ナノ結晶片21を高密度で連結させることが困難となる傾向にあり、最小寸法が10nm未満であると、隣接する複数のナノ結晶片21の主表面22の間で十分な間隙Gを形成することができなくなる傾向にある。また、ナノ結晶片21の厚さ方向の剛性の低下を抑制するため、ナノ結晶片21の平均厚さtは1.0nm以上であることが好ましい。なお、ナノ結晶片21の主表面22の寸法は、ナノ結晶片21の形状を損なわないように連結集合体20から分離したナノ結晶片21を、個別のナノ結晶片として測定することにより求めることができる。測定法の具体例としては、ナノ結晶片21の主表面22に対し、外接する最小面積の長方形を描き、長方形の短辺および長辺を、ナノ結晶片21の最小寸法および最大寸法として、それぞれ測定する。 The minimum size of the main surface 22 of the nanocrystal piece 21 is not particularly limited, but is preferably 10 nm or more and less than 1.0 μm. The average thickness t of the nanocrystal pieces 21 is not particularly limited, but is preferably 1/10 or less of the minimum dimension of the main surface 22. As a result, the area of the main surface 22 of the nanocrystal piece 21 becomes about 10 times or more larger than the area of the end face 23, and the catalytic activity per unit amount of the linked aggregate 20 becomes the catalytic activity per unit amount of the nanoparticles. Improves compared to. The average thickness of the nanocrystal pieces is preferably less than 10 nm. When the minimum size of the main surface 22 is 1.0 μm or more, it tends to be difficult to connect the nanocrystal pieces 21 at high density, and when the minimum size is less than 10 nm, a plurality of adjacent nanocrystal pieces tend to be connected. There is a tendency that a sufficient gap G cannot be formed between the main surfaces 22 of 21. Further, in order to suppress a decrease in rigidity of the nanocrystal piece 21 in the thickness direction, the average thickness t of the nanocrystal piece 21 is preferably 1.0 nm or more. The dimensions of the main surface 22 of the nanocrystal pieces 21 are determined by measuring the nanocrystal pieces 21 separated from the connecting aggregate 20 as individual nanocrystal pieces so as not to impair the shape of the nanocrystal pieces 21. Can be done. As a specific example of the measurement method, a rectangle having the minimum area circumscribing is drawn with respect to the main surface 22 of the nanocrystal piece 21, and the short and long sides of the rectangle are set as the minimum and maximum dimensions of the nanocrystal piece 21, respectively. Measure.

連結集合体20を構成するナノ結晶片21は、金属酸化物で構成されている。金属酸化物としては、例えば、貴金属の酸化物、遷移金属の酸化物、それらの合金の酸化物、複合酸化物等が挙げられる。貴金属及びその合金としては、例えば、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、銀(Ag)及び金(Au)の群から選択される1種の成分からなる金属、又はこれらの群から選択される1種以上の成分を含む合金が挙げられる。また、遷移金属及びその合金としては、例えば、銅(Cu)、ニッケル(Ni)、コバルト(Co)及び亜鉛(Zn)の群から選択される1種の成分からなる金属、又はこれらの群から選択される1種以上の成分を含む合金が挙げられる。 The nanocrystal pieces 21 constituting the linked aggregate 20 are made of a metal oxide. Examples of metal oxides include oxides of noble metals, oxides of transition metals, oxides of their alloys, composite oxides, and the like. The noble metal and its alloy include, for example, a metal composed of one component selected from the group of palladium (Pd), rhodium (Rh), ruthenium (Ru), silver (Ag) and gold (Au), or a metal thereof. Alloys containing one or more components selected from the group can be mentioned. The transition metal and its alloy include, for example, a metal composed of one component selected from the group of copper (Cu), nickel (Ni), cobalt (Co) and zinc (Zn), or a metal thereof. Alloys containing one or more selected components can be mentioned.

これらの金属酸化物のうち、遷移金属の群から選択される1種または2種以上の金属を含む金属酸化物が好ましい。遷移金属の金属酸化物は、金属資源として地球上に豊富に存在しており、貴金属に比べて安価であるため、生産コストを低減することができる。遷移金属のうち、Cu、Ni、Co及びZnの群から選択される1種または2種以上の金属を含む金属酸化物であることがより好ましく、このような金属酸化物は少なくとも銅を含むことがさらに好ましい。また、銅を含む金属酸化物としては、例えば、酸化銅、Ni−Cu酸化物、Cu−Pd酸化物等が挙げられ、酸化銅(CuO)が特に好ましい。 Among these metal oxides, metal oxides containing one or more metals selected from the group of transition metals are preferable. Metal oxides of transition metals are abundant on the earth as metal resources and are cheaper than precious metals, so that production costs can be reduced. Among the transition metals, it is more preferable that the metal oxide contains one or more metals selected from the group of Cu, Ni, Co and Zn, and such a metal oxide contains at least copper. Is even more preferable. Examples of the metal oxide containing copper include copper oxide, Ni-Cu oxide, Cu-Pd oxide and the like, and copper oxide (CuO) is particularly preferable.

<主表面の結晶方位>
本発明の電極触媒材料1が燃料電池用の電極に搭載される場合、ナノ結晶片21において特定の結晶面が表出している主表面22が触媒活性面となるために、主表面22が特定の結晶方位を有するように構成される。
<Crystal orientation of main surface>
When the electrode catalyst material 1 of the present invention is mounted on an electrode for a fuel cell, the main surface 22 is specified because the main surface 22 on which the specific crystal plane is exposed in the nanocrystal piece 21 is the catalytically active surface. It is configured to have the crystal orientation of.

ナノ結晶片21の主表面22が還元性の触媒活性面となるように構成するには、ナノ結晶片21を構成する金属酸化物において、触媒活性を発揮する金属原子の面を、主表面22に位置するように配向させて、主表面22を金属原子面で構成すればよい。具体的には、主表面22に存在する金属酸化物を構成する、金属原子及び酸素原子に占める金属原子の個数割合を80%以上とすることが好ましい。 In order to configure the main surface 22 of the nanocrystal piece 21 to be a reducing catalytically active surface, the surface of the metal atom exhibiting catalytic activity in the metal oxide constituting the nanocrystal piece 21 is formed on the main surface 22. The main surface 22 may be composed of a metal atomic surface by orienting the surface so as to be located at. Specifically, it is preferable that the number ratio of the number of metal atoms to the metal atoms and oxygen atoms constituting the metal oxide existing on the main surface 22 is 80% or more.

一方、ナノ結晶片21の主表面22が酸化性の触媒活性面となるように構成するには、ナノ結晶片21を構成する金属酸化物において、触媒活性を発揮する酸素原子の面を、主表面22に位置するように配向させて、主表面22を酸素原子面で構成すればよい。具体的には、主表面22に存在する金属酸化物を構成する、金属原子及び酸素原子に占める酸素原子の個数割合を80%以上とすることが好ましい。 On the other hand, in order to configure the main surface 22 of the nanocrystal piece 21 to be an oxidizing catalytically active surface, the surface of the oxygen atom exhibiting catalytic activity in the metal oxide constituting the nanocrystal piece 21 is mainly used. The main surface 22 may be composed of oxygen atom planes by orienting the surface 22 so as to be located on the surface 22. Specifically, it is preferable that the number ratio of oxygen atoms to the metal atoms and oxygen atoms constituting the metal oxide existing on the main surface 22 is 80% or more.

触媒活性面の役割に応じて、ナノ結晶片21の主表面22に存在する金属酸化物を構成する、金属原子及び酸素原子に占める金属原子又は酸素原子の個数割合を調整することにより、主表面22の触媒活性機能を高めることができる。このようなナノ結晶片21を有する電極触媒材料1は、十分な触媒活性を発揮できる。 By adjusting the number ratio of metal atoms or oxygen atoms to the metal atoms and oxygen atoms constituting the metal oxide existing on the main surface 22 of the nanocrystal piece 21, depending on the role of the catalytically active surface, the main surface The catalytically active function of 22 can be enhanced. The electrode catalyst material 1 having such nanocrystal pieces 21 can exhibit sufficient catalytic activity.

また、ナノ結晶片21の主表面22が特定の結晶方位を有するとしたのは、ナノ結晶片21を構成する金属酸化物の種類に応じて、主表面22に多く存在する結晶方位が異なるためである。そのため、主表面22の結晶方位は具体的には記載はしないが、例えば、金属酸化物が酸化銅(CuO)の場合には、主表面22を構成する単結晶の主な結晶方位、すなわち、触媒活性面としての特定の結晶面は、(001)結晶面であることが好ましい。 Further, the reason why the main surface 22 of the nanocrystal piece 21 has a specific crystal orientation is that the crystal orientations abundantly present on the main surface 22 differ depending on the type of metal oxide constituting the nanocrystal piece 21. Is. Therefore, the crystal orientation of the main surface 22 is not specifically described, but for example, when the metal oxide is copper oxide (CuO), the main crystal orientation of the single crystal constituting the main surface 22, that is, that is, The specific crystal plane as the catalytically active plane is preferably the (001) crystal plane.

主表面22を金属原子面とする構成としては、金属原子面と酸素原子面が規則的に交互に積層され、原子の並び方に規則性を有する規則構造として、主表面22に金属原子面が位置するように、金属酸化物の結晶構造を構成することが好ましい。具体的には、主表面22が、同じ配向をもつ単結晶の集合体で構成された構造の場合だけではなく、異なる結晶構造や異なる配向をもつ単結晶の集合体、結晶粒界や多結晶を含んだ集合体で構成された構造であっても、主表面22に金属原子面が存在する場合が含まれる。 As a configuration in which the main surface 22 is a metal atomic surface, the metal atomic surface and the oxygen atomic surface are regularly and alternately laminated, and the metal atomic surface is located on the main surface 22 as a regular structure having regular arrangement of atoms. As such, it is preferable to construct a crystal structure of the metal oxide. Specifically, not only when the main surface 22 is composed of aggregates of single crystals having the same orientation, but also aggregates of single crystals having different crystal structures and different orientations, grain boundaries and polycrystals. Even if the structure is composed of an aggregate containing the above, the case where the metal atomic surface is present on the main surface 22 is included.

<導電性材料>
図1に示すように、本発明の実施形態の電極触媒材料1は、金属酸化物である連結集合体20と薄片状の導電性材料30とを有している。また、複数の導電性材料30は、相互に接触しながらナノ結晶片21の主表面22の少なくとも一部に担持されていてもよい。導電性材料30は薄片状の形状であるため、ナノ結晶片21の主表面22と面接触が可能な面状部位31を有する。導電性材料30の面状部位31は、ナノ結晶片21の主表面22の主表面22の少なくとも一部だけでなく、主表面22及び端面23の両方の少なくとも一部で面接触していてもよい。導電性材料30の面状部位31が、ナノ結晶片21の主表面22の一部が露出した状態で担持されることにより、触媒活性面の露出を維持しつつ、ナノ結晶片21と接触し得る範囲を増大させることができる。
<Conductive material>
As shown in FIG. 1, the electrode catalyst material 1 of the embodiment of the present invention has a connecting aggregate 20 which is a metal oxide and a flaky conductive material 30. Further, the plurality of conductive materials 30 may be supported on at least a part of the main surface 22 of the nanocrystal piece 21 while being in contact with each other. Since the conductive material 30 has a flaky shape, it has a planar portion 31 capable of surface contact with the main surface 22 of the nanocrystal piece 21. Even if the planar portion 31 of the conductive material 30 is in surface contact not only with at least a part of the main surface 22 of the main surface 22 of the nanocrystal piece 21 but also with at least a part of both the main surface 22 and the end surface 23. Good. The planar portion 31 of the conductive material 30 is supported in a state where a part of the main surface 22 of the nanocrystal piece 21 is exposed, so that the planar portion 31 comes into contact with the nanocrystal piece 21 while maintaining the exposure of the catalytically active surface. The range obtained can be increased.

導電性材料30の面状部位31の面方向に対して直交方向(すなわち、導電性材料30の厚さ)の平均寸法は、導電性材料30がナノ結晶片21の少なくとも一部と接触可能であり、かつナノ結晶片21の厚さ方向の剛性の低下を抑制できる程度であればよく、10nm未満であることが好ましい。特に、導電性材料30は、ナノ結晶片の平均厚さよりも薄いことが好ましい。さらに、導電性材料30の面状部位31の面方向の平均寸法は、ナノ結晶片の平均厚さよりも小さいことが好ましい。これにより、ナノ結晶片21の端面に導電性材料30の面状部位31が接続することも可能となり、ナノ結晶片21の端面から主表面への電子の輸送により、反応活性面はナノ結晶片21の主表面、電子の受け取りはナノ結晶片21の端面との役割分担ができる。また、導電性材料30とナノ結晶片21との接触面積は、金属酸化物である連結集合体20の触媒活性が阻害されるのを防止する点から、ナノ結晶片21の主表面22の面積よりも小さければよく、ナノ結晶片21の主表面22の面積の50%以下であることが好ましい。これにより、触媒活性面である特定の結晶面が表出しているナノ結晶片21の主表面22が、導電性材料30の面状部位31で完全に被覆されることが防止され、その結果、主表面22が優れた触媒機能を発揮できる。また、導電性材料30の面状部位31の面方向の平均寸法は、ナノ結晶片21の主表面の最小寸法より小さいことが好ましい。これにより、導電性材料30の面状部位31がナノ結晶片21の主表面22との接触を保ちつつ、ナノ結晶片21の湾曲した主表面22に追従することができる。 The average dimension of the conductive material 30 in the direction orthogonal to the plane direction of the planar portion 31 (that is, the thickness of the conductive material 30) is such that the conductive material 30 can contact at least a part of the nanocrystal piece 21. It is sufficient as long as it can suppress a decrease in rigidity of the nanocrystal piece 21 in the thickness direction, and is preferably less than 10 nm. In particular, the conductive material 30 is preferably thinner than the average thickness of the nanocrystal pieces. Further, the average dimension of the planar portion 31 of the conductive material 30 in the plane direction is preferably smaller than the average thickness of the nanocrystal pieces. As a result, the planar portion 31 of the conductive material 30 can be connected to the end face of the nanocrystal piece 21, and the reactive surface becomes the nanocrystal piece due to the transport of electrons from the end face of the nanocrystal piece 21 to the main surface. The main surface of 21 and the reception of electrons can be shared with the end face of the nanocrystal piece 21. Further, the contact area between the conductive material 30 and the nanocrystal piece 21 is the area of the main surface 22 of the nanocrystal piece 21 from the viewpoint of preventing the catalytic activity of the linked aggregate 20 which is a metal oxide from being hindered. It may be smaller than 50% of the area of the main surface 22 of the nanocrystal piece 21. This prevents the main surface 22 of the nanocrystal piece 21 from which the specific crystal plane, which is the catalytically active surface, is exposed, from being completely covered with the planar portion 31 of the conductive material 30, and as a result, The main surface 22 can exhibit an excellent catalytic function. Further, it is preferable that the average dimension of the planar portion 31 of the conductive material 30 in the plane direction is smaller than the minimum dimension of the main surface of the nanocrystal piece 21. As a result, the planar portion 31 of the conductive material 30 can follow the curved main surface 22 of the nanocrystal piece 21 while maintaining contact with the main surface 22 of the nanocrystal piece 21.

導電性材料30は、面状部位31を有する薄片状の形態を有していればよい。このような材料として、例えば、二硫化ハフニウム、二硫化モリブデン、多孔性還元型酸化グラフェン等の二次元結晶材料が挙げられ、特に、グラフェンが好ましい。 The conductive material 30 may have a flaky form having a planar portion 31. Examples of such a material include two-dimensional crystal materials such as hafnium disulfide, molybdenum disulfide, and porous reduced graphene oxide, and graphene is particularly preferable.

グラフェンは、非常に優れた電気伝導性、熱伝導性を有しており、ハニカム状に炭素原子が結合して平面的に広がる2次元結晶構造を有する。結晶構造が2次元系であるため、結晶面内方向に高い導電性を有する。このことから、導電性材料30の面状部位31の面方向の導電性は、面方向に対して直交方向(厚さ方向)の導電性よりも大きい特性を有している。グラフェンは、面方向の導電性に優れているため、例えば、電極触媒材料1が燃料電池の正極に搭載されると、水素酸化反応にて生成した電子が、導電性材料30の結晶面に相当する面状部位31へ伝達される。導電性材料30の面状部位31は、グラフェン(導電性材料30)がナノ結晶片21、特に主表面22の少なくとも一部と接触しているため、導電性材料30を構成するグラフェンは、グラフェンの結晶面にてナノ結晶片21と面接触している。よって、グラフェンの面状部位31からナノ結晶片21への電子授受が円滑化される。燃料電池の正極での酸素還元反応において、触媒材料である電極触媒材料1の金属酸化物が、グラフェンの面状部位31から円滑に電子を授受することで、酸素還元反応の効率が向上する。 Graphene has excellent electrical and thermal conductivity, and has a two-dimensional crystal structure in which carbon atoms are bonded in a honeycomb shape and spread out in a plane. Since the crystal structure is a two-dimensional system, it has high conductivity in the in-plane direction of the crystal. From this, the conductivity in the plane direction of the planar portion 31 of the conductive material 30 has a characteristic larger than the conductivity in the direction orthogonal to the plane direction (thickness direction). Since graphene is excellent in surface conductivity, for example, when the electrode catalyst material 1 is mounted on the positive electrode of a fuel cell, the electrons generated by the hydrogen oxidation reaction correspond to the crystal plane of the conductive material 30. It is transmitted to the planar portion 31 to be formed. In the planar portion 31 of the conductive material 30, graphene (conductive material 30) is in contact with at least a part of the nanocrystal pieces 21, particularly the main surface 22, so that the graphene constituting the conductive material 30 is graphene. Is in surface contact with the nanocrystal piece 21 on the crystal plane of. Therefore, electron transfer from the planar portion 31 of graphene to the nanocrystal piece 21 is facilitated. In the oxygen reduction reaction at the positive electrode of the fuel cell, the metal oxide of the electrode catalyst material 1 which is the catalyst material smoothly transfers electrons from the planar portion 31 of the graphene, so that the efficiency of the oxygen reduction reaction is improved.

<電極触媒材料の用途>
本発明の実施形態である電極触媒材料1は、燃料電池用の空気極触媒材料として使用することができる。
<Use of electrode catalyst material>
The electrode catalyst material 1 according to the embodiment of the present invention can be used as an air electrode catalyst material for a fuel cell.

<電極触媒材料の製造方法>
次に、本発明の電極触媒材料の製造方法例について説明する。電極触媒材料の製造方法例としては、薄片状であるナノ結晶片が相互に連結された連結集合体である金属酸化物を調製する金属酸化物調製工程Saと、調製された金属酸化物に導電性材料を担持させる導電性材料担持工程Sbと、を有する。
<Manufacturing method of electrode catalyst material>
Next, an example of a method for producing the electrode catalyst material of the present invention will be described. Examples of a method for producing an electrode catalyst material include a metal oxide preparation step Sa for preparing a metal oxide which is a connected aggregate in which flaky nanocrystal pieces are interconnected, and conductivity to the prepared metal oxide. It has a conductive material supporting step Sb for supporting a sex material.

金属酸化物調製工程Saは、混合工程Sa1と、温度と圧力を印加する水熱合成工程Sa2と、を有する。 The metal oxide preparation step Sa includes a mixing step Sa1 and a hydrothermal synthesis step Sa2 for applying temperature and pressure.

(混合工程Sa1)
混合工程は、金属酸化物の原料となる、貴金属、遷移金属またはそれらの合金を含む化合物の水和物、特に金属ハロゲン化物の水和物と、金属酸化物の前駆体である金属錯体の配位子を構成する炭酸ジアミド骨格を有する有機化合物とを、エチレングリコール、1,4−ブタンジオール、ポリエチレングリコール等の有機溶媒、水、又はその両方を含む溶媒に溶かす工程である。金属ハロゲン化物の水和物として、例えば、塩化銅(II)二水和物、炭酸ジアミド骨格を有する有機化合物として、例えば、尿素が挙げられる。
(Mixing step Sa1)
In the mixing step, a hydrate of a compound containing a noble metal, a transition metal or an alloy thereof, which is a raw material of a metal oxide, particularly a hydrate of a metal halide, and a metal complex which is a precursor of the metal oxide are arranged. This is a step of dissolving an organic compound having a carbonate diamide skeleton constituting a position in an organic solvent such as ethylene glycol, 1,4-butanediol, or polyethylene glycol, water, or a solvent containing both of them. Examples of the hydrate of the metal halide include copper (II) chloride dihydrate, and examples of the organic compound having a carbonic acid diamide skeleton include urea.

(水熱合成工程Sa2)
水熱合成工程は、混合工程Sa1で得られた混合溶液に所定の熱、圧力を加えて、所定時間、放置する工程である。混合溶液は、100℃以上300℃以下で加熱することが好ましい。加熱温度が100℃未満では、金属酸化物が生成できず、300℃超では、耐熱容器を構成する気密保持のためのパッキンの耐熱温度を超え、気密が維持できず外部に揮発気体が漏れるので好ましくない。加熱時間は、10時間以上であることが好ましい。加熱時間が10時間未満では、未反応の材料が残留する場合がある。所定の圧力は、100℃における水の蒸気圧(1気圧)以上の圧力であることが好ましい。所定の熱・圧力を加えるため、例えば、耐圧容器、密閉容器を用いて加熱、加圧する方法が挙げられる。混合溶液を加熱、加圧した後、室温に冷却して一定時間保持した後、生成した沈殿物を回収する。回収した沈殿物を、メタノール、純水等で洗浄し、所定時間乾燥させる。これにより、所望とする金属酸化物が作製される。
(Hydrothermal synthesis step Sa2)
The hydrothermal synthesis step is a step of applying predetermined heat and pressure to the mixed solution obtained in the mixing step Sa1 and leaving it to stand for a predetermined time. The mixed solution is preferably heated at 100 ° C. or higher and 300 ° C. or lower. If the heating temperature is less than 100 ° C, metal oxides cannot be generated, and if it exceeds 300 ° C, the heat-resistant temperature of the packing for maintaining airtightness that constitutes the heat-resistant container is exceeded, airtightness cannot be maintained, and volatile gas leaks to the outside. Not preferable. The heating time is preferably 10 hours or more. If the heating time is less than 10 hours, unreacted material may remain. The predetermined pressure is preferably a pressure equal to or higher than the vapor pressure of water (1 atm) at 100 ° C. In order to apply a predetermined heat and pressure, for example, a method of heating and pressurizing using a pressure-resistant container and a closed container can be mentioned. After heating and pressurizing the mixed solution, it is cooled to room temperature and held for a certain period of time, and then the produced precipitate is recovered. The recovered precipitate is washed with methanol, pure water, etc. and dried for a predetermined time. As a result, the desired metal oxide is produced.

金属酸化物調製工程Saの後に、導電性材料担持工程Sbを実施する。導電性材料担持工程Sbは、(A)調製した金属酸化物の分散液を作製する金属酸化物分散工程Sb1、導電性材料の分散液を作製する導電性材料分散工程Sb2、又はその両方の分散液を作製する工程と、(B)金属酸化物の分散液に導電性材料を添加して混合するか、導電性材料の分散液に調製した金属酸化物を添加して混合するか、又は金属酸化物の分散液と導電性材料の分散液とを混合する分散処理工程Sb3と、を有する。 After the metal oxide preparation step Sa, the conductive material supporting step Sb is carried out. The conductive material supporting step Sb includes (A) a metal oxide dispersion step Sb1 for producing a prepared metal oxide dispersion, a conductive material dispersion step Sb2 for preparing a conductive material dispersion, or both. The step of preparing the liquid and (B) adding the conductive material to the dispersion liquid of the metal oxide and mixing, adding the prepared metal oxide to the dispersion liquid of the conductive material and mixing, or metal It has a dispersion treatment step Sb3 in which a dispersion liquid of an oxide and a dispersion liquid of a conductive material are mixed.

(金属酸化物分散工程Sb1)
金属酸化物分散工程は、分散媒(例えば、水)に有機溶媒を添加、混合した混合液に、金属酸化物調製工程Saで調製した金属酸化物を添加後、超音波分散機等で分散処理をして金属酸化物の分散液を作製する工程である。有機溶媒としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール等のモノアルコールが挙げられる。金属酸化物の分散液に含まれる金属酸化物の含有量は、金属酸化物の分散性と製造効率のバランスの点から、0.05質量%以上5.0質量%以下が好ましく、0.1質量%以上1.0質量%以下が特に好ましい。なお、必要に応じて、金属酸化物の分散液に燃料電池に使用される電解質をさらに添加、分散させてもよい。電解質としては、例えば、Nafion(登録商標)等の高分子電解質が挙げられる。
(Metal oxide dispersion step Sb1)
In the metal oxide dispersion step, an organic solvent is added to a dispersion medium (for example, water), the metal oxide prepared in the metal oxide preparation step Sa is added to the mixed liquid, and then the metal oxide is dispersed by an ultrasonic disperser or the like. This is a step of preparing a dispersion liquid of a metal oxide. Examples of the organic solvent include monoalcohols such as methanol, ethanol, n-propanol and isopropanol. The content of the metal oxide contained in the dispersion liquid of the metal oxide is preferably 0.05% by mass or more and 5.0% by mass or less from the viewpoint of the balance between the dispersibility of the metal oxide and the production efficiency, and is 0.1. Particularly preferably, it is mass% or more and 1.0 mass% or less. If necessary, the electrolyte used in the fuel cell may be further added and dispersed in the metal oxide dispersion liquid. Examples of the electrolyte include polymer electrolytes such as Nafion (registered trademark).

(導電性材料分散工程Sb2)
導電性材料分散工程は、分散媒(例えば、水)に有機溶媒を添加、混合した混合液に、導電性材料を添加後、超音波分散機等で分散処理をして導電性材料の分散液を作製する工程である。有機溶媒としては、例えば、エタノール、イソプロピルアルコール等のモノアルコールが挙げられる。導電性材料の分散液に含まれる導電性材料の含有量は、導電性材料の分散性と製造効率のバランスの点から、0.05質量%以上5.0質量%以下が好ましく、0.1質量%以上1.0質量%以下が特に好ましい。なお、必要に応じて、導電性材料の分散液に燃料電池に使用される電解質をさらに添加、分散させてもよい。電解質としては、例えば、Nafion(登録商標)等の高分子電解質が挙げられる。
(Conductive material dispersion step Sb2)
In the conductive material dispersion step, an organic solvent is added to a dispersion medium (for example, water), the conductive material is added to the mixed solution, and then the dispersion treatment is performed with an ultrasonic disperser or the like to disperse the conductive material. Is the process of producing. Examples of the organic solvent include monoalcohols such as ethanol and isopropyl alcohol. The content of the conductive material contained in the dispersion liquid of the conductive material is preferably 0.05% by mass or more and 5.0% by mass or less from the viewpoint of the balance between the dispersibility of the conductive material and the production efficiency, and is 0.1. Particularly preferably, it is mass% or more and 1.0 mass% or less. If necessary, the electrolyte used in the fuel cell may be further added and dispersed in the dispersion liquid of the conductive material. Examples of the electrolyte include polymer electrolytes such as Nafion (registered trademark).

(分散処理工程Sb3)
分散処理工程は、金属酸化物分散工程Sb1で作製した金属酸化物の分散液に導電性材料を添加するか、導電性材料分散工程Sb2で作製した導電性材料の分散液に金属酸化物調製工程Saで調製した金属酸化物を添加するか、又は金属酸化物分散工程Sb1で作製した金属酸化物の分散液と導電性材料分散工程Sb2で作製した導電性材料の分散液とを混合して、超音波分散機等で分散処理を行う工程である。分散処理工程では、電極触媒材料の導電性と触媒活性のバランスの点から、電極触媒材料の構成において金属酸化物の触媒活性面を導電性材料が被覆する面積が50%以下であることが好ましいため、金属酸化物と導電性材料の含有量を調整する。金属酸化物として酸化銅のナノ結晶片、導電材料としてグラフェンの場合、金属酸化物と導電性材料とを等質量で含有することにより、好ましい被覆面積が得られる。このような工程を経て、電極触媒材料1が作製される。
(Dispersion processing step Sb3)
In the dispersion treatment step, a conductive material is added to the dispersion liquid of the metal oxide prepared in the metal oxide dispersion step Sb1, or a metal oxide preparation step is added to the dispersion liquid of the conductive material prepared in the conductive material dispersion step Sb2. The metal oxide prepared in Sa is added, or the dispersion liquid of the metal oxide prepared in the metal oxide dispersion step Sb1 and the dispersion liquid of the conductive material prepared in the conductive material dispersion step Sb2 are mixed. This is a step of performing dispersion processing with an ultrasonic disperser or the like. In the dispersion treatment step, from the viewpoint of the balance between the conductivity and the catalytic activity of the electrode catalyst material, it is preferable that the area of the conductive material covering the catalytically active surface of the metal oxide in the composition of the electrode catalyst material is 50% or less. Therefore, the contents of the metal oxide and the conductive material are adjusted. In the case of nanocrystal pieces of copper oxide as the metal oxide and graphene as the conductive material, a preferable covering area can be obtained by containing the metal oxide and the conductive material in equal masses. Through such a step, the electrode catalyst material 1 is produced.

<電極触媒層>
本発明の実施形態である電極触媒層は、上述した電極触媒材料1と、高分子電解質と、を含む。電極触媒層は、電極触媒材料1と高分子電解質が適度に混ざり合ったマトリクスであり、電極触媒材料1と高分子電解質の界面で電極反応が行われる。金属酸化物は、主表面22と端面23をもつナノ結晶片21の形態を有している。
<Electrode catalyst layer>
The electrode catalyst layer according to the embodiment of the present invention includes the above-mentioned electrode catalyst material 1 and a polymer electrolyte. The electrode catalyst layer is a matrix in which the electrode catalyst material 1 and the polymer electrolyte are appropriately mixed, and the electrode reaction is performed at the interface between the electrode catalyst material 1 and the polymer electrolyte. The metal oxide has the form of a nanocrystal piece 21 having a main surface 22 and an end face 23.

電極触媒層は、水素酸化反応が必要となる燃料電池の負極(燃料極)、又は酸素還元反応が必要となる燃料電池の正極(空気極)上に形成される。電極触媒層が燃料電池の正極上に形成される場合、酸素は4電子反応により還元されてH2O(水分)が生成される。 The electrode catalyst layer is formed on the negative electrode (fuel electrode) of a fuel cell that requires a hydrogen oxidation reaction or the positive electrode (air electrode) of a fuel cell that requires an oxygen reduction reaction. When the electrode catalyst layer is formed on the positive electrode of the fuel cell, oxygen is reduced by a 4-electron reaction to produce H 2 O (moisture).

電極触媒層は、例えば、電極触媒材料1と高分子電解質と溶媒とを含む組成物(電極触媒層用組成物)をインク又はペーストにして、電極上に塗布し、次いで乾燥することによって形成できる。高分子電解質としては、例えば、パーフルオロカーボン材料等の固体高分子電解質が挙げられ、実績、導電率の点でNafion(登録商標)が好ましい。尚、高分子とは、質量平均分子量(Mw)が10000以上である分子を意味する。また、溶媒としては、例えば、水;メタノール、エタノール、n−プロパノール、イソプロパノールなどのモノアルコール;n−ペンタン、n−ヘキサン、シクロヘキサン、メチルシクロヘキサンなどの飽和炭化水素系溶媒;トルエン、キシレンなどの芳香族系溶媒;クロロホルム、ジクロロメタンなどのハロゲン系溶媒;アセトン、ジエチルエーテル、アセトニトリル、テトラヒドロフラン、N,N−ジメチルホルムアミドなどのヘテロ元素含有溶媒などが挙げられる。これらの中でも、乾燥が容易な点で水、メタノール、エタノール、n−プロパノール、イソプロパノール等のモノアルコールが好ましい。溶媒は、これらのいずれか1種であっても、2種以上を含む混合物であってもよい。 The electrode catalyst layer can be formed, for example, by making a composition (composition for an electrode catalyst layer) containing an electrode catalyst material 1, a polymer electrolyte, and a solvent into an ink or a paste, applying it on an electrode, and then drying it. .. Examples of the polymer electrolyte include solid polymer electrolytes such as perfluorocarbon materials, and Nafion (registered trademark) is preferable in terms of actual results and conductivity. The polymer means a molecule having a mass average molecular weight (Mw) of 10,000 or more. Examples of the solvent include water; monoalcohols such as methanol, ethanol, n-propanol and isopropanol; saturated hydrocarbon solvents such as n-pentane, n-hexane, cyclohexane and methylcyclohexane; aromatics such as toluene and xylene. Group solvents; halogen-based solvents such as chloroform and dichloromethane; heteroelement-containing solvents such as acetone, diethyl ether, acetonitrile, tetrahydrofuran, N, N-dimethylformamide and the like can be mentioned. Among these, monoalcohols such as water, methanol, ethanol, n-propanol, and isopropanol are preferable because they are easy to dry. The solvent may be any one of these or a mixture containing two or more of them.

電極触媒層を燃料電池の正極に用いる場合、電極触媒層用の組成物、又は該組成物に溶媒を加えて分散させたインク又はペーストを塗布し、次いで乾燥させて、電極触媒層を形成してもよい。また電極と電極触媒層用の組成物とをプレス成形してもよい。 When the electrode catalyst layer is used for the positive electrode of a fuel cell, a composition for the electrode catalyst layer or an ink or paste in which a solvent is added and dispersed is applied to the composition, and then dried to form an electrode catalyst layer. You may. Further, the electrode and the composition for the electrode catalyst layer may be press-molded.

電極触媒層を燃料電池の正極に用いる場合、電極触媒層は、ガス拡散層と積層されて正極を構成してもよい。また、電極触媒材料1をガス拡散層に担持したものを、燃料電池の正極としてもよい。ガス拡散層は、電極触媒材料1への電子授受を行うとともにガスを供給する役割を有しており、導電性のある多孔質材料が用いられる。ガス拡散層としては、酸素還元反応における触媒性能を良好に維持する観点から、カーボンペーパー、カーボンクロスなどの炭素材料から構成されるシートが好ましい。電極触媒層とガス拡散層とを積層する場合、ガス拡散層の表面、特に電極触媒層側表面は、必要に応じて、炭素材が緻密化した撥水層になっていてもよい。 When the electrode catalyst layer is used as the positive electrode of the fuel cell, the electrode catalyst layer may be laminated with the gas diffusion layer to form the positive electrode. Further, the electrode catalyst material 1 supported on the gas diffusion layer may be used as the positive electrode of the fuel cell. The gas diffusion layer has a role of transferring electrons to the electrode catalyst material 1 and supplying gas, and a conductive porous material is used. As the gas diffusion layer, a sheet made of a carbon material such as carbon paper or carbon cloth is preferable from the viewpoint of maintaining good catalytic performance in the oxygen reduction reaction. When the electrode catalyst layer and the gas diffusion layer are laminated, the surface of the gas diffusion layer, particularly the surface on the electrode catalyst layer side, may be a water-repellent layer in which the carbon material is densified, if necessary.

電極触媒層をガス拡散層に積層する場合、ガス拡散層に電極触媒層用の組成物、又は該組成物に溶媒を加えて分散させたインク又はペーストを塗布し、次いで乾燥させて、電極触媒層を形成してもよい。インク又はペーストを塗布する場合は、溶媒を蒸発させて乾固するために熱処理を加えてもよい。 When the electrode catalyst layer is laminated on the gas diffusion layer, the composition for the electrode catalyst layer or the ink or paste obtained by adding a solvent to the composition is applied to the gas diffusion layer, and then dried to dry the electrode catalyst. Layers may be formed. When applying the ink or paste, heat treatment may be applied to evaporate the solvent and allow it to dry.

電極触媒層を含む正極、特にガス拡散層及及び電極触媒層を含む正極と、電極触媒層を含む負極、特に別のガス拡散層及び電極触媒層を含む負極と、を積層し、かつ各電極の両外側にセパレーターを配置することによって燃料電池を作製できる。 A positive electrode including an electrode catalyst layer, particularly a positive electrode including a gas diffusion layer and an electrode catalyst layer, and a negative electrode including an electrode catalyst layer, particularly a negative electrode including another gas diffusion layer and an electrode catalyst layer are laminated, and each electrode is laminated. A fuel cell can be manufactured by arranging separators on both outer sides of the above.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, but includes all aspects included in the concept of the present invention and claims, and varies within the scope of the present invention. Can be modified to.

次に、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。 Next, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
<金属酸化物の作製>
金属酸化物として、酸化銅の(001)結晶面が表出している主表面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体を作製した。具体的には、2.0gの塩化銅(II)二水和物(純正化学株式会社製)と、1.6gの尿素(純正化学株式会社製)とを混合した後、180mlのエチレングリコール(純正化学株式会社製)と120mlの水を添加してさらに混合した。得られた塩化銅と尿素の混合溶液を、内容積500mlの耐圧硝子容器に注入し、該容器内の密閉雰囲気下で180℃、24時間の熱処理を行った。その後、混合溶液を、室温に冷却して1日保持した。その後、密閉した容器から生成した薄膜形状の沈殿物を回収した。次いで、この沈殿物を、メタノールおよび純水で洗浄して、真空下、70℃で10時間真空乾燥させ、酸化銅のナノ結晶片が相互に連結された連結集合体を得た。
(Example 1)
<Making metal oxides>
As a metal oxide, a linked aggregate was prepared in which flaky nanocrystal pieces having a main surface in which the (001) crystal plane of copper oxide was exposed were connected to each other. Specifically, after mixing 2.0 g of copper (II) chloride dihydrate (manufactured by Junsei Chemical Co., Ltd.) and 1.6 g of urea (manufactured by Junsei Chemical Co., Ltd.), 180 ml of ethylene glycol (manufactured by Junsei Chemical Co., Ltd.) (Manufactured by Junsei Chemical Co., Ltd.) and 120 ml of water were added and further mixed. The obtained mixed solution of copper chloride and urea was injected into a pressure-resistant glass container having an internal volume of 500 ml, and heat treatment was performed at 180 ° C. for 24 hours in a closed atmosphere inside the container. Then, the mixed solution was cooled to room temperature and kept for 1 day. Then, the thin-film-shaped precipitate formed from the closed container was recovered. Next, the precipitate was washed with methanol and pure water and vacuum dried at 70 ° C. for 10 hours under vacuum to obtain a linked aggregate in which nanocrystal pieces of copper oxide were interconnected.

<金属酸化物の分散液の作製>
上記のようにして得られた酸化銅の連結集合体4mgを精製水1700μLとイソプロパノール800μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を15μL添加した。得られた混合液を超音波分散機で20〜40℃にて1時間分散させ、酸化銅の連結集合体の分散液を作製した。
<Preparation of metal oxide dispersion>
4 mg of the copper oxide linked aggregate obtained as described above was added to a mixed solution of 1700 μL of purified water and 800 μL of isopropanol, and 15 μL of a 5% by mass solution of Nafion® as a polymer electrolyte was added. The obtained mixed liquid was dispersed at 20 to 40 ° C. for 1 hour with an ultrasonic disperser to prepare a dispersion liquid of a connected aggregate of copper oxide.

<電極触媒材料の作製>
上記のようにして得られた酸化銅の連結集合体の分散液に、シグマ−アルドリッチ社製グラフェン900412(XG Sciences社 xGnP M−5)4mgを添加して、超音波分散機で20〜40℃にて10分の分散処理を行い、酸化銅の連結集合体にグラフェンが担持された電極触媒材料を作製した。
<Preparation of electrode catalyst material>
To the dispersion of the copper oxide linked aggregate obtained as described above, 4 mg of graphene 900412 (XG Sciences xGnP M-5) manufactured by Sigma-Aldrich was added, and the temperature was 20 to 40 ° C. using an ultrasonic disperser. After 10 minutes of dispersion treatment, an electrode catalyst material in which graphene was supported on a connected aggregate of copper oxide was prepared.

(実施例2)
<導電性材料の分散液の作製>
実施例1で使用したグラフェンに代えて、シグマ−アルドリッチ社製グラフェン900420(XG Sciences社 xGnP M−15)4mgを、精製水1700μLとイソプロパノール800μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を15μL添加した。得られた混合液を超音波分散機で20〜40℃にて1時間分散させ、導電性材料の分散液を作製した。
(Example 2)
<Preparation of dispersion liquid of conductive material>
Instead of the graphene used in Example 1, 4 mg of graphene 900420 (XG Sciences xGnP M-15) manufactured by Sigma-Aldrich was added to a mixed solution of 1700 μL of purified water and 800 μL of isopropanol, and Nafion (Nafion) was added as a polymer electrolyte. 15 μL of a 5% by mass solution (registered trademark) was added. The obtained mixed liquid was dispersed at 20 to 40 ° C. for 1 hour with an ultrasonic disperser to prepare a dispersion liquid of a conductive material.

<電極触媒材料の作製>
上記のようにして得られた導電性材料の分散液に、実施例1で得られた酸化銅の連結集合体4mgを添加して、超音波分散機で20〜40℃にて10分の分散処理を行い、酸化銅の連結集合体にグラフェンが担持された電極触媒材料を作製した。
<Preparation of electrode catalyst material>
To the dispersion liquid of the conductive material obtained as described above, 4 mg of the linked aggregate of copper oxide obtained in Example 1 was added, and the mixture was dispersed at 20 to 40 ° C. for 10 minutes with an ultrasonic disperser. The treatment was carried out to prepare an electrode catalyst material in which graphene was supported on a connected aggregate of copper oxide.

(実施例3)
<導電性材料の分散液の作製>
実施例1で使用したグラフェンに代えて、シグマ−アルドリッチ社製グラフェン900696分散液(分散媒:水、グラフェン濃度0.5〜1.0mg/ml)1700μLとイソプロパノール800μLの混合液に、高分子電解質としてNafion(登録商標)5質量%溶液を15μL添加した。得られた混合液を超音波分散機で20〜40℃にて1時間分散させ、導電性材料の分散液を作製した。
(Example 3)
<Preparation of dispersion liquid of conductive material>
Instead of the graphene used in Example 1, a mixture of 1700 μL of Sigma-Aldrich graphene 900006 dispersion (dispersion medium: water, graphene concentration 0.5 to 1.0 mg / ml) and 800 μL of isopropanol was used as a polymer electrolyte. As a result, 15 μL of a 5% by mass solution of Nafion (registered trademark) was added. The obtained mixed liquid was dispersed at 20 to 40 ° C. for 1 hour with an ultrasonic disperser to prepare a dispersion liquid of a conductive material.

<電極触媒材料の作製>
上記のようにして得られた導電性材料の分散液に、実施例1で得られた酸化銅の連結集合体4mgを添加して、超音波分散機で20〜40℃にて10分の分散処理を行い、酸化銅の連結集合体にグラフェンが担持された電極触媒材料を作製した。
<Preparation of electrode catalyst material>
To the dispersion liquid of the conductive material obtained as described above, 4 mg of the linked aggregate of copper oxide obtained in Example 1 was added, and the mixture was dispersed at 20 to 40 ° C. for 10 minutes with an ultrasonic disperser. The treatment was carried out to prepare an electrode catalyst material in which graphene was supported on a connected aggregate of copper oxide.

(実施例4)
<導電性材料の分散液の作製>
実施例1で使用したグラフェンに代えて、アイテック社製iGurafenのグラフェン分散液(分散媒:水、グラフェン濃度10質量%)40mgを、精製水850μLとイソプロパノール400μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を8μL添加した。得られた混合液を超音波分散機で20〜40℃にて1時間分散させ、導電性材料の分散液を作製した。
(Example 4)
<Preparation of dispersion liquid of conductive material>
Instead of the graphene used in Example 1, 40 mg of graphene dispersion of iGurafen manufactured by Aitec (dispersion medium: water, graphene concentration 10% by mass) was added to a mixed solution of 850 μL of purified water and 400 μL of isopropanol, and further polymerized. 8 μL of Nafion® 5% by mass solution was added as an electrolyte. The obtained mixed liquid was dispersed at 20 to 40 ° C. for 1 hour with an ultrasonic disperser to prepare a dispersion liquid of a conductive material.

<金属酸化物の分散液の作製>
実施例1で得られた酸化銅の連結集合体4mgを精製水850μLとイソプロパノール400μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を7μL添加した。得られた混合液を超音波分散機で20〜40℃にて1時間分散させ、酸化銅の連結集合体の分散液を作製した。
<Preparation of metal oxide dispersion>
4 mg of the copper oxide linked aggregate obtained in Example 1 was added to a mixed solution of 850 μL of purified water and 400 μL of isopropanol, and 7 μL of a 5% by mass solution of Nafion® as a polymer electrolyte was added. The obtained mixed liquid was dispersed at 20 to 40 ° C. for 1 hour with an ultrasonic disperser to prepare a dispersion liquid of a connected aggregate of copper oxide.

<電極触媒材料の作製>
上記のようにして得られた導電性材料の分散液と酸化銅の連結集合体の分散液を混合して、超音波分散機で20〜40℃にて10分の分散処理を行い、酸化銅の連結集合体にグラフェンが担持された電極触媒材料を作製した。
<Preparation of electrode catalyst material>
The dispersion liquid of the conductive material obtained as described above and the dispersion liquid of the connected aggregate of copper oxide are mixed and subjected to a dispersion treatment at 20 to 40 ° C. for 10 minutes with an ultrasonic disperser to obtain copper oxide. An electrode catalyst material in which graphene was supported on the connecting aggregate of the above was prepared.

(実施例5)
<電極触媒材料の作製>
実施例1で作製した酸化銅の連結集合体4mgと、シグマ−アルドリッチ社製グラフェン900412(XG Sciences社 xGnP M−5)4mgを秤量した粉末を乳鉢で混合し、精製水1700μLとイソプロパノール800μLの混合液に添加し、さらに高分子電解質としてNafion(登録商標)5質量%溶液を15μL添加した。得られた混合液を超音波分散機で20〜40℃にて1時間分散させ、電極触媒材料を作製した。
(Example 5)
<Preparation of electrode catalyst material>
A powder prepared by weighing 4 mg of the copper oxide linked aggregate prepared in Example 1 and 4 mg of graphene 900412 (XG Sciences xGnP M-5) manufactured by Sigma-Aldrich was mixed in a dairy pot, and 1700 μL of purified water and 800 μL of isopropanol were mixed. It was added to the solution, and 15 μL of Nafion (registered trademark) 5% by mass solution was further added as a polymer electrolyte. The obtained mixed solution was dispersed at 20 to 40 ° C. for 1 hour with an ultrasonic disperser to prepare an electrode catalyst material.

(比較例1)
実施例1で使用したグラフェンに代えて、キャボット社製カーボンブラック(Vulcan Carbon XC−7)を使用したこと以外は、実施例1と同様にして電極触媒材料を作製した。
(Comparative Example 1)
An electrode catalyst material was prepared in the same manner as in Example 1 except that carbon black (Vulcan Carbon XC-7) manufactured by Cabot Corporation was used instead of the graphene used in Example 1.

(比較例2)
実施例1で作製した酸化銅の連結集合体に代えて、市販の酸化銅ナノ粒子(シグマ−アルドリッチ社製 544868)を使用したこと以外は、実施例1と同様にして電極触媒材料を製造した。
(Comparative Example 2)
An electrode catalyst material was produced in the same manner as in Example 1 except that commercially available copper oxide nanoparticles (544868 manufactured by Sigma-Aldrich) were used in place of the copper oxide linked aggregate produced in Example 1. ..

(比較例3)
実施例1で使用したグラフェンに代えて、キャボット社製カーボンブラック(Vulcan Carbon XC−7)を使用し、且つ、実施例1で作製した酸化銅の連結集合体に代えて、市販の酸化銅ナノ粒子(シグマ−アルドリッチ社製 544868)を使用したこと以外は、実施例1と同様にして電極触媒材料を作製した。
(Comparative Example 3)
A commercially available copper oxide nano was used instead of the graphene used in Example 1 and carbon black (Vulcan Carbon XC-7) manufactured by Cabot Corporation was used, and instead of the connected aggregate of copper oxide prepared in Example 1. An electrode catalyst material was prepared in the same manner as in Example 1 except that particles (544868 manufactured by Sigma-Aldrich Co., Ltd.) were used.

<電極の作製>
上記のようにして得られた各実施例・比較例の電極触媒材料15μLをマイクロピペットで採取し、回転電極の5mmΦのグラッシーカーボンの上に滴下し、60℃の恒温槽内で30分加熱して乾燥させた。この滴下作業を3回繰り返した後、回転電極の表面を実体顕微鏡で観察し、グラッシーカーボン上に均質に電極触媒材料の触媒層(電極触媒層)が形成されているのを確認した。
<Preparation of electrodes>
15 μL of the electrode catalyst material of each Example / Comparative Example obtained as described above was collected with a micropipette, dropped onto 5 mmΦ glassy carbon of the rotating electrode, and heated in a constant temperature bath at 60 ° C. for 30 minutes. And dried. After repeating this dropping operation three times, the surface of the rotating electrode was observed with a stereomicroscope, and it was confirmed that the catalyst layer (electrode catalyst layer) of the electrode catalyst material was uniformly formed on the glassy carbon.

<酸化還元反応における触媒活性の評価>
その後、各電極触媒材料についてORR活性評価を行った。具体的には、対流ボルタンメトリー法により、ORR活性評価を行った。PINE INSTRUMENT社製の回転リングディスク電極装置、ポテンショスタット(HSV−110)、電解液として0.1MのKOH水溶液を使用し、サイクリックボルタンメトリー(CV)測定で安定性を確認した。その後、リニアスイープボルタンメトリ―(LSV)で反応次数を求めた。作用電極(WE)として5mmφのグラッシーカーボン電極、対電極(CE)としてコイル状白金電極、参照電極(RE)として銀・塩化銀比較電極を用いた。回転数を400、800、1600、2400、320rpmに順次変化させて、電極回転数ωに対する測定電流iからKoutecky−Levich プロットに基づき,反応次数nを算出した。反応次数が3.80以上であれば、酸素還元反応において4電子反応が促されていると評価した。
<Evaluation of catalytic activity in redox reaction>
Then, the ORR activity was evaluated for each electrode catalyst material. Specifically, the ORR activity was evaluated by the convection voltammetry method. Stability was confirmed by cyclic voltammetry (CV) measurement using a rotating ring disk electrode device manufactured by PINE INSTRUMENT, a potentiostat (HSV-110), and a 0.1 M KOH aqueous solution as an electrolytic solution. Then, the reaction order was determined by linear sweep voltammetry (LSV). A glassy carbon electrode having a diameter of 5 mm was used as the working electrode (WE), a coiled platinum electrode was used as the counter electrode (CE), and a silver / silver chloride comparison electrode was used as the reference electrode (RE). The rotation speed was sequentially changed to 400, 800, 1600, 2400, and 320 rpm, and the reaction order n was calculated from the measured current i with respect to the electrode rotation speed ω based on the Koutecky-Levic plot. When the reaction order was 3.80 or more, it was evaluated that the 4-electron reaction was promoted in the oxygen reduction reaction.

<電気伝導度の評価>
グラッシーカーボン上に形成された電極触媒材料の電気伝導度をHIOKI社製抵抗計RM3545の4探針プローブで測定した。なお、電極触媒材料の電気伝導度は次のように作製した基準電極の電気伝導度(100%とする)に対する割合で評価した。
<Evaluation of electrical conductivity>
The electrical conductivity of the electrode catalyst material formed on the glassy carbon was measured with a 4-probe probe of a resistance meter RM3545 manufactured by HIOKI. The electrical conductivity of the electrode catalyst material was evaluated as a ratio to the electrical conductivity (assumed to be 100%) of the reference electrode prepared as follows.

実施例2で作製した導電性材料の分散液15μLをマイクロピペットで採取し、回転電極の5mmΦのグラッシーカーボンの上に滴下し、60℃の恒温槽内で30分加熱して乾燥させた。この滴下作業を3回繰り返し、電気伝導度に対する基準電極とした。 15 μL of the dispersion liquid of the conductive material prepared in Example 2 was collected with a micropipette, dropped onto 5 mmΦ glassy carbon of a rotating electrode, heated in a constant temperature bath at 60 ° C. for 30 minutes, and dried. This dropping operation was repeated three times to serve as a reference electrode for electrical conductivity.

実施例1〜5、比較例1〜3の評価結果を下記表1に示す。 The evaluation results of Examples 1 to 5 and Comparative Examples 1 to 3 are shown in Table 1 below.

Figure 2021077469
Figure 2021077469

表1から、酸化銅の連結集合体と薄片状の導電性材料であるグラフェンを有する実施例1〜5では、いずれも反応次数が3.80を超えており、炭素粒子表面に白金微粒子を担持させた場合の反応次数4.00に近い値を示した。そのため、実施例1〜5の電極触媒材では、触媒成分として高価な白金を用いなくとも、酸素還元反応において4電子反応が促され、炭素粒子表面に白金微粒子を担持させた電極触媒材料に匹敵する高い触媒活性を発揮した。また、実施例1〜5での中でも、実施例1〜4の電極触媒材料での電気伝導度は、基準電極(実施例2で作製した導電性材料を含む分散液をグラッシーカーボン上に作製した薄膜)の電気伝導度に対して、4.0%より高く電気的接触に優れた電極触媒材料が得られた。 From Table 1, in Examples 1 to 5 having a linked aggregate of copper oxide and graphene which is a flaky conductive material, the reaction order exceeds 3.80 in each case, and platinum fine particles are supported on the surface of carbon particles. The reaction order was close to 4.00. Therefore, in the electrode catalyst materials of Examples 1 to 5, a 4-electron reaction is promoted in the oxygen reduction reaction without using expensive platinum as a catalyst component, which is comparable to the electrode catalyst material in which platinum fine particles are supported on the surface of carbon particles. Demonstrated high catalytic activity. Further, among Examples 1 to 5, the electrical conductivity of the electrode catalyst material of Examples 1 to 4 was determined by preparing a reference electrode (a dispersion liquid containing the conductive material prepared in Example 2) on glassy carbon. An electrode catalyst material having an electrical conductivity of more than 4.0% and excellent electrical contact was obtained.

また、電極触媒材料の結晶構造について、走査型電子顕微鏡(SEM、日本電子社製SU8020)を用いて観察した。図2は、代表して実施例1で作製された電極触媒材料を、倍率30,000倍で観察した際のSEM画像であり、図3は、図2に示されるSEM画像の同視野における反射電子像であり、白色部が酸化銅を示す。図2及び図3より、実施例1で作製された電極触媒材料では、酸化銅が分散して配置されており、酸化銅の連結集合体が凝集せずにORRにおいて触媒活性を示す結晶面が確保できていることが確認できた。また、金属酸化物である酸化銅の連結集合体と薄片状の導電性材料であるグラフェンとの接触について、透過電子顕微鏡(TEM、日本電子社製JEM−2100Plus)を用いて観察した。図6は、実施例1で作製された電極触媒材料を観察した際のTEM画像である。図6に示されるように、酸化銅の連結集合体とグラフェンは、二次元的に接触していることが観察された。 Moreover, the crystal structure of the electrode catalyst material was observed using a scanning electron microscope (SEM, SU8020 manufactured by JEOL Ltd.). FIG. 2 is an SEM image when the electrode catalyst material produced in Example 1 is observed at a magnification of 30,000 times, and FIG. 3 is a reflection of the SEM image shown in FIG. 2 in the same field of view. It is an electron image, and the white part indicates copper oxide. From FIGS. 2 and 3, in the electrode catalyst material produced in Example 1, copper oxide is dispersed and arranged, and a crystal plane exhibiting catalytic activity in ORR without agglomeration of the connected aggregate of copper oxide is formed. It was confirmed that it was secured. In addition, the contact between the linked aggregate of copper oxide, which is a metal oxide, and graphene, which is a flaky conductive material, was observed using a transmission electron microscope (TEM, JEM-2100Plus manufactured by JEOL Ltd.). FIG. 6 is a TEM image when observing the electrode catalyst material produced in Example 1. As shown in FIG. 6, it was observed that the copper oxide linked aggregate and graphene were in two-dimensional contact.

一方、薄片状の導電性材料に代えて粒子状の導電性材料が使用された比較例1、酸化銅の連結集合体に代えて酸化銅ナノ粒子が使用された比較例2、薄片状の導電性材料に代えて粒子状の導電性材料が使用され、且つ酸化銅の連結集合体に代えて酸化銅ナノ粒子が使用された比較例3では、いずれも反応次数が3.80未満であり、所望とする反応次数を達成できなかった。 On the other hand, Comparative Example 1 in which a particulate conductive material was used instead of the flaky conductive material, Comparative Example 2 in which copper oxide nanoparticles were used instead of the connected aggregate of copper oxide, and flaky conductivity. In Comparative Example 3 in which a particulate conductive material was used instead of the sex material and copper oxide nanoparticles were used instead of the connected aggregate of copper oxide, the reaction order was less than 3.80. The desired reaction order could not be achieved.

比較例1についても、実施例1と同様、電極触媒材料の結晶構造について、走査型電子顕微鏡(SEM、日本電子社製SU8020)を用いて観察した。図4は、比較例1で作製された電極触媒材料を、倍率30,000倍で観察した際のSEM画像であり、図5は、図4に示されるSEM画像の同視野における反射電子像を示す。図4及び図5より、比較例1で作製された電極触媒材料では、カーボンの細かな粒同士の連結構造は観察されるものの、酸化銅との接続が点もしくは線であることが多く、実施例と比較すると導電性材料同士の連続性が劣っている。そのため、比較例1の電極触媒材料では、電子の授受がしにくく、4電子反応が促されにくいことがわかる。 In Comparative Example 1, the crystal structure of the electrode catalyst material was observed using a scanning electron microscope (SEM, SU8020 manufactured by JEOL Ltd.) as in Example 1. FIG. 4 is an SEM image when the electrode catalyst material produced in Comparative Example 1 is observed at a magnification of 30,000 times, and FIG. 5 shows a reflected electron image in the same field of view of the SEM image shown in FIG. Shown. From FIGS. 4 and 5, in the electrode catalyst material produced in Comparative Example 1, although the connection structure between fine carbon particles was observed, the connection with copper oxide was often a point or a line. Compared with the example, the continuity between the conductive materials is inferior. Therefore, it can be seen that the electrode catalyst material of Comparative Example 1 is difficult to transfer electrons and is difficult to promote a 4-electron reaction.

1 電極触媒材料
20 連結集合体
21 ナノ結晶片
22 主表面
23 端面
30 導電性材料
31 面状部位
1 Electrode catalyst material 20 Connecting aggregate 21 Nanocrystal pieces 22 Main surface 23 End face 30 Conductive material 31 Planar part

Claims (9)

金属酸化物と、薄片状の導電性材料と、を有する燃料電池用の電極触媒材料であって、
前記金属酸化物が、特定の結晶面が表出している主表面および端面をもつ薄片状であるナノ結晶片が相互に連結された連結集合体であり、
複数の前記ナノ結晶片が、前記主表面間に、前記連結集合体の外側に開口して配置された間隙を有し、
前記導電性材料が、前記ナノ結晶片の少なくとも一部と接触する面状部位を有し、該面状部位の面方向の導電性が該面方向に対して直交方向の導電性よりも大きい電極触媒材料。
An electrode catalyst material for a fuel cell having a metal oxide and a flaky conductive material.
The metal oxide is a linked aggregate in which flaky nanocrystal pieces having a main surface and an end face on which a specific crystal face is exposed are connected to each other.
The plurality of nanocrystal pieces have a gap between the main surfaces, which is arranged so as to be open to the outside of the connecting assembly.
An electrode in which the conductive material has a planar portion in contact with at least a part of the nanocrystal piece, and the conductivity of the planar portion in the plane direction is larger than that in the direction orthogonal to the plane direction. Catalytic material.
前記ナノ結晶片の平均厚さが、10nm未満である請求項1に記載の電極触媒材料。 The electrode catalyst material according to claim 1, wherein the average thickness of the nanocrystal pieces is less than 10 nm. 前記金属酸化物が、酸化銅である請求項1または2に記載の電極触媒材料。 The electrode catalyst material according to claim 1 or 2, wherein the metal oxide is copper oxide. 前記特定の結晶面が、(001)結晶面である請求項3に記載の電極触媒材料。 The electrode catalyst material according to claim 3, wherein the specific crystal plane is a (001) crystal plane. 前記面状部位の前記面方向に対して直交方向の平均寸法が、10nm未満である請求項1乃至4のいずれか1項に記載の電極触媒材料。 The electrode catalyst material according to any one of claims 1 to 4, wherein the average dimension of the planar portion in the direction orthogonal to the plane direction is less than 10 nm. 前記導電性材料が、グラフェンである請求項1乃至5のいずれか1項に記載の電極触媒材料。 The electrode catalyst material according to any one of claims 1 to 5, wherein the conductive material is graphene. 電極上に形成した前記電極触媒材料の電気伝導度が、該電極上に前記導電性材料により形成した層の電気伝導度に対して4.0%以上である請求項1乃至6のいずれか1項に記載の電極触媒材料。 Any one of claims 1 to 6 in which the electrical conductivity of the electrode catalyst material formed on the electrode is 4.0% or more with respect to the electrical conductivity of the layer formed on the electrode by the conductive material. The electrode catalyst material according to the section. 前記導電性材料の前記面状部位の面方向の平均寸法が、前記ナノ結晶片の前記主表面の最小寸法より小さい請求項1乃至7のいずれか1項に記載の電極触媒材料。 The electrode catalyst material according to any one of claims 1 to 7, wherein the average dimension of the planar portion of the conductive material in the plane direction is smaller than the minimum dimension of the main surface of the nanocrystal piece. 請求項1乃至8のいずれか1項に記載の電極触媒材料と、高分子電解質と、を含む燃料電池用の電極触媒層。
An electrode catalyst layer for a fuel cell, which comprises the electrode catalyst material according to any one of claims 1 to 8 and a polymer electrolyte.
JP2019201188A 2019-11-06 2019-11-06 Electrocatalyst material for fuel cells and electrode catalyst layer for fuel cells Active JP7359384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019201188A JP7359384B2 (en) 2019-11-06 2019-11-06 Electrocatalyst material for fuel cells and electrode catalyst layer for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019201188A JP7359384B2 (en) 2019-11-06 2019-11-06 Electrocatalyst material for fuel cells and electrode catalyst layer for fuel cells

Publications (2)

Publication Number Publication Date
JP2021077469A true JP2021077469A (en) 2021-05-20
JP7359384B2 JP7359384B2 (en) 2023-10-11

Family

ID=75898352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019201188A Active JP7359384B2 (en) 2019-11-06 2019-11-06 Electrocatalyst material for fuel cells and electrode catalyst layer for fuel cells

Country Status (1)

Country Link
JP (1) JP7359384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075614A1 (en) * 2022-10-06 2024-04-11 株式会社インキュベーション・アライアンス Carbon structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5792567B2 (en) 2011-09-09 2015-10-14 国立大学法人信州大学 Electrocatalyst with oxygen reduction ability
JP2016066612A (en) 2014-09-17 2016-04-28 国立研究開発法人理化学研究所 Metal-air battery, and air positive electrode for metal-air battery
WO2017168126A1 (en) 2016-03-31 2017-10-05 University Of Sunderland Electrodes
JP2019155233A (en) 2018-03-08 2019-09-19 国立大学法人信州大学 Nickel platinum core shell nanosheet structure-type catalyst and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075614A1 (en) * 2022-10-06 2024-04-11 株式会社インキュベーション・アライアンス Carbon structure

Also Published As

Publication number Publication date
JP7359384B2 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
Bian et al. Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc–air batteries
Guo et al. Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction
Lee et al. Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries
Zhang et al. Recent progress in nanostructured electrocatalysts for PEM fuel cells
Tian et al. 3D porous Ni-Co-P nanosheets on carbon fiber cloth for efficient hydrogen evolution reaction
JP5730751B2 (en) Platinum / titanium oxide / titanium carbide composite catalyst for fuel cell, production method thereof, and membrane / electrode assembly for fuel cell using the composite catalyst
US20210234177A1 (en) Electrocatalyst
Kim et al. Crumpled rGO-supported Pt-Ir bifunctional catalyst prepared by spray pyrolysis for unitized regenerative fuel cells
Wu et al. A novel octahedral MnO/RGO composite prepared by thermal decomposition as a noble-metal free electrocatalyst for ORR
Cen et al. Enhanced electrocatalytic overall water splitting over novel one-pot synthesized Ru–MoO3-x and Fe3O4–NiFe layered double hydroxide on Ni foam
Feng et al. Novel three-dimensional flower-like porous Al2O3 nanosheets anchoring NiS2 nanoparticles for high-efficiency hydrogen evolution
Chou et al. Effects of reduction temperature and pH value of polyol process on reduced graphene oxide supported Pt electrocatalysts for oxygen reduction reaction
Liu et al. NiMoFe nanoparticles@ MoO 2 nano-pillar arrays as bifunctional electrodes for ultra-low-voltage overall water splitting
Luo et al. Highly-porous hierarchically microstructure of graphene-decorated nickel foam supported two-dimensional quadrilateral shapes of cobalt sulfide nanosheets as efficient electrode for methanol oxidation
Sravani et al. Bimetallic PtCu-decorated reduced graphene oxide (RGO)-TiO2 nanocomposite for efficient oxygen reduction reaction
Chen et al. Multicomponent platinum-free nanoporous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction
Ehsani et al. Electrocatalytic oxidation of ethanol on the surface of graphene based nanocomposites: an introduction and review to it in recent studies
Li et al. Mxene coupled over nitrogen-doped graphene anchoring palladium nanocrystals as an advanced electrocatalyst for the ethanol electrooxidation
Li et al. Bimetal-MOF and bacterial cellulose-derived three-dimensional N-doped carbon sheets loaded Co/CoFe nanoparticles wrapped graphite carbon supported on porous carbon nanofibers: An efficient multifunctional electrocatalyst for Zn-air batteries and overall water splitting
Sundararaj et al. Electrocatalyst for oxygen evolution reaction and methanol oxidation using surface-oriented stable NiSnO3 nanospheres anchored g-C3N4 nanosheets
JP2004207228A (en) Catalyst material, electrode, and fuel cell using this
JP7359384B2 (en) Electrocatalyst material for fuel cells and electrode catalyst layer for fuel cells
JP2016091878A (en) Method for manufacturing electrode material, membrane-electrode assembly and fuel cell stack
Taei et al. Electrocatalytic oxidation of ethanol on a glassy carbon electrode modified with a gold nanoparticle-coated hydrolyzed CaFe–Cl layered double hydroxide in alkaline medium
Li et al. 2D Ti3C2Tx MXene-Supported Graphitic Carbon-Nitride-Decorated Co3O4 Nanoparticles as Efficient Catalysts for Oxygen Evolution Reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230920

R151 Written notification of patent or utility model registration

Ref document number: 7359384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151