JP2013042113A - Thermoelectric transducer and thermoelectric conversion power generator - Google Patents

Thermoelectric transducer and thermoelectric conversion power generator Download PDF

Info

Publication number
JP2013042113A
JP2013042113A JP2012130940A JP2012130940A JP2013042113A JP 2013042113 A JP2013042113 A JP 2013042113A JP 2012130940 A JP2012130940 A JP 2012130940A JP 2012130940 A JP2012130940 A JP 2012130940A JP 2013042113 A JP2013042113 A JP 2013042113A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
layer
heat insulating
type
type thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012130940A
Other languages
Japanese (ja)
Other versions
JP2013042113A5 (en
Inventor
Hiroaki Nakaya
浩明 中弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012130940A priority Critical patent/JP2013042113A/en
Priority to PCT/JP2012/068465 priority patent/WO2013012065A1/en
Priority to CN201410665971.8A priority patent/CN104465977B/en
Priority to US14/233,480 priority patent/US10790430B2/en
Priority to AU2012284833A priority patent/AU2012284833C1/en
Priority to CN201280035636.9A priority patent/CN103688379A/en
Priority to CA2840059A priority patent/CA2840059C/en
Publication of JP2013042113A publication Critical patent/JP2013042113A/en
Publication of JP2013042113A5 publication Critical patent/JP2013042113A5/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric transducer with high thermoelectric conversion efficiency.SOLUTION: The thermoelectric transducer includes: a first electrode; a p-type and an n-type thermoelectric conversion sections that are separately formed each other so as to sandwich an insulator on the first electrode; and a second and a third electrodes formed on the thermoelectric conversion sections. Each of the p-type and the n-type thermoelectric conversion sections has a heat insulation layer formed of at least heat insulation material.

Description

本発明は、熱電変換素子及び熱電変換発電装置に関し、特にゼーベック効果を利用した発電用素子又はペルチェ効果を利用した冷却・加熱用素子、又は熱電変換発電装置に関する。   The present invention relates to a thermoelectric conversion element and a thermoelectric conversion power generation apparatus, and more particularly to a power generation element using the Seebeck effect, a cooling / heating element using the Peltier effect, or a thermoelectric conversion power generation apparatus.

熱電変換素子は、石油やオゾンを使用しないクリーンなエネルギー変換素子として知られ、近年、高効率化や大面積化・薄型化が望まれている。例えば、ゼーベック効果を利用した発電用素子(熱電発電素子)やペルチェ効果を利用した冷却・加熱用素子(ペルチェ素子)の開発が進められている。   Thermoelectric conversion elements are known as clean energy conversion elements that do not use petroleum or ozone. In recent years, high efficiency, large area, and thinning are desired. For example, development of a power generation element (thermoelectric power generation element) using the Seebeck effect and a cooling / heating element (Peltier element) using the Peltier effect is in progress.

このような熱電変換素子について、その構成及び原理を説明する。図16は、従来の熱電変換素子の構成を説明するための概念図である。
図16に示すように、従来の熱電変換素子100は、対向する複数の電極(金属電極)120,121,180と、電極間に配置されたN型熱電変換半導体からなるブロック体130及びP型熱電変換半導体からなるブロック体131とで構成されている。ブロック体130、131は、その一端(接合端)で電極180によって互いに電気的に接続され、N型熱電変換半導体のブロック体とP型熱電変換半導体のブロック体とが直列に接続されている。また、ブロック体130、131は、もう一方の端で電極120,121に接続されている。
このとき、電極180を高温部とし、反対側の電極120,121を低温部として両者の間に温度差を設けると、ゼーベック効果により熱エネルギーが電気エネルギーに変換される。また例えば、電極180と電極120,121との間に直流電圧を印加し、電極120から電極180を介して電極121の方向に電流を流すことにより、電極180が吸熱面、電極120,121が発熱面として働き、ペルチェ効果により電気エネルギーが熱エネルギーに変換される。
The configuration and principle of such a thermoelectric conversion element will be described. FIG. 16 is a conceptual diagram for explaining the configuration of a conventional thermoelectric conversion element.
As shown in FIG. 16, a conventional thermoelectric conversion element 100 includes a plurality of opposed electrodes (metal electrodes) 120, 121, and 180, a block body 130 made of an N-type thermoelectric conversion semiconductor disposed between the electrodes, and a P-type. It is comprised with the block body 131 which consists of a thermoelectric conversion semiconductor. The block bodies 130 and 131 are electrically connected to each other by an electrode 180 at one end (joint end) thereof, and an N-type thermoelectric conversion semiconductor block body and a P-type thermoelectric conversion semiconductor block body are connected in series. The block bodies 130 and 131 are connected to the electrodes 120 and 121 at the other end.
At this time, if the electrode 180 is a high temperature part and the opposite electrodes 120 and 121 are low temperature parts and a temperature difference is provided between them, the heat energy is converted into electric energy by the Seebeck effect. Further, for example, by applying a direct current voltage between the electrode 180 and the electrodes 120 and 121 and causing a current to flow from the electrode 120 to the electrode 121 through the electrode 180, the electrode 180 has an endothermic surface, and the electrodes 120 and 121 have a It works as a heat generating surface, and electrical energy is converted into heat energy by the Peltier effect.

ここで、上記従来の熱電変換素子がペルチェ素子として利用されるとき、その吸熱エネルギーについて考える。QPをペルチェ吸熱量、QRをジュール熱量、QKを熱伝導による熱量としたとき(図16参照)、電極180の上部側における吸熱エネルギーQは、次の(1)式であらわされる。
Q=QP−QR−QK・・・(1)式
また、すなわちブロック体の高さ(電極180と電極120,121との間隔)をL、ブロック体の断面積(前記高さ方向に垂直な面の断面積)をSとしたとき、QRはブロック体の高さLに比例し断面積Sに反比例する。さらに、QKはブロック体の断面積Sに比例し高さLに反比例する。熱電素子の形状について考えると、例えば、ブロック体の高さLが決まっている場合、断面積Sを広くするほどQRは小さくなるが、QKは大きくなってしまう。すなわち、材料の特性が決まれば、理想的な熱電変換効率を引き出す素子形状として断面積Sと高さLの関係は一義的に決まってしまう。
Here, when the conventional thermoelectric conversion element is used as a Peltier element, the endothermic energy is considered. Q P Peltier endotherm, endothermic energy Q at the upper side of the Q R Joule heat, when the Q K and heat by thermal conduction (see FIG. 16), the electrode 180 is represented by the following equation (1).
Q = Q P −Q R −Q K (1) In other words, the height of the block body (interval between the electrode 180 and the electrodes 120 and 121) is L, and the cross-sectional area of the block body (the height direction) ( R is the cross-sectional area of the surface perpendicular to), S is proportional to the height L of the block body and inversely proportional to the cross-sectional area S. Further, Q K is proportional to the cross-sectional area S of the block body and inversely proportional to the height L. Considering the shape of the thermoelectric elements, for example, if the determined height L of the block body, but Q R becomes smaller as to increase the cross-sectional area S, Q K becomes large. That is, if the material characteristics are determined, the relationship between the cross-sectional area S and the height L is uniquely determined as an element shape that draws out ideal thermoelectric conversion efficiency.

例えば、熱電変換材料にBi-Te系材料を使用する場合、Bi-Te系材料のブロック体(直方体や円柱形状等)の断面積S(m2)、高さL(m)とすると、S(m2)=(0.6〜6)×10-3×L(m)の関係を満たしているときに、熱電変換素子として効率良く熱電変換することができるが、例えば、10cm×10cm角の液晶表示パネルをN型とP型の熱電変換半導体からなるブロック体2つを用いて冷却することを想定すると、熱電変換素子のブロック体の高さLは80cm以上である必要があり、実用性に欠ける熱電変換素子となってしまう。このため、断面積Sが0.01cm2〜3cm2程度のブロック体が多数直列接続されてモジュール化され、モジュール化によって吸熱面積(冷却面積)を拡大させた熱電変換素子(ペルチェ素子)が実用化されている。 For example, when a Bi-Te material is used as the thermoelectric conversion material, the cross-sectional area S (m 2 ) and the height L (m) of a block body (a rectangular parallelepiped, a cylindrical shape, etc.) of the Bi-Te material When the relationship of (m 2 ) = (0.6 to 6) × 10 −3 × L (m) is satisfied, thermoelectric conversion can be efficiently performed as a thermoelectric conversion element. For example, 10 cm × 10 cm square Assuming that the liquid crystal display panel is cooled by using two block bodies made of N-type and P-type thermoelectric conversion semiconductors, the height L of the block body of the thermoelectric conversion element needs to be 80 cm or more. It becomes a thermoelectric conversion element lacking in properties. Therefore, the cross-sectional area S is 0.01cm 2 ~3cm 2 about the block body are a number series is modular, endothermic area was (cooling area) is larger thermoelectric conversion element (Peltier element) is practically the modularization It has become.

しかしながら、熱電変換素子の放熱面が高温となりその部材が膨張する一方、吸熱面は低温となり収縮するので、例えば、ブロック体と電極をはんだ等で固着させた熱電変換素子の場合、固着箇所が応力によって疲労亀裂を起こすことがある。熱電変換素子が大面積化するほどこの傾向を示すので、商業化されているペルチェモジュールの冷却面積は5cm×5cm程度である。   However, since the heat dissipation surface of the thermoelectric conversion element becomes high temperature and the member expands, while the heat absorption surface becomes low temperature and shrinks, for example, in the case of a thermoelectric conversion element in which the block body and the electrode are fixed with solder or the like, the fixing location is stress. May cause fatigue cracks. Since this tendency is shown as the area of the thermoelectric conversion element increases, the cooling area of the commercial Peltier module is about 5 cm × 5 cm.

このような背景から、固着箇所で亀裂が発生するのを抑制する技術が報告されている。例えば、対向して配置されたカーボン基板の間に、複数のN型半導体と複数のP型半導体とを平面的に配列した熱電素子モジュールを設置する構造において、前記カーボン基板が高熱伝導性カーボン複合材で構成されている熱電素子モジュールが開発されている(例えば、特許文献1参照)。この熱電素子モジュールは、一般炭素材を用いた基板に比べて熱伝導性に優れ、基板での熱損失が抑制でき、基板と半導体の接合面で亀裂の発生を防止できるとされている。しかしながら、この発明は多数の熱電素子をモジュール化して大面積化する従来の構造のものであり、大面積化が十分に図れるものではない。   From such a background, a technique for suppressing the occurrence of cracks at a fixed portion has been reported. For example, in a structure in which a thermoelectric element module in which a plurality of N-type semiconductors and a plurality of P-type semiconductors are arranged in a plane is installed between opposed carbon substrates, the carbon substrate has a high thermal conductivity carbon composite. Thermoelectric element modules made of materials have been developed (see, for example, Patent Document 1). This thermoelectric element module is said to be superior in thermal conductivity as compared with a substrate using a general carbon material, can suppress heat loss in the substrate, and can prevent the occurrence of cracks at the interface between the substrate and the semiconductor. However, the present invention has a conventional structure in which a large number of thermoelectric elements are modularized to increase the area, and the area cannot be increased sufficiently.

また、熱電素子の高効率化を図るため、吸熱面と放熱面間の熱伝導を抑制する種種の技術が報告されている。例えば、P型熱電材料とN型熱電材料を直線状に配置した多数の熱電素子対を備えた熱電変換モジュールにおいて、P型熱電材料とN型熱電材料の境界部に高温熱源に接触させるとともに境界部と反対側の低温部を高温熱源から熱的に遮断するために、熱電変換素子の側面に電気絶縁性断熱材を配置する熱電変換モジュールが開発されている(特許文献2参照)。しかしこの構造では、P型熱電材料とN型熱電材料は直線状に繋がって配置されており熱電変換材料内の熱伝導が抑制されておらず十分な特性が得られない。また、従来のモジュール構造であるため大面積化はできない。   In order to increase the efficiency of thermoelectric elements, various techniques for suppressing heat conduction between the heat absorption surface and the heat dissipation surface have been reported. For example, in a thermoelectric conversion module including a large number of thermoelectric element pairs in which a P-type thermoelectric material and an N-type thermoelectric material are arranged in a straight line, the boundary between the P-type thermoelectric material and the N-type thermoelectric material is brought into contact with a high-temperature heat source. A thermoelectric conversion module has been developed in which an electrically insulating heat insulating material is disposed on a side surface of a thermoelectric conversion element in order to thermally shield a low temperature portion opposite to the high temperature heat source (see Patent Document 2). However, in this structure, the P-type thermoelectric material and the N-type thermoelectric material are arranged in a straight line, and heat conduction in the thermoelectric conversion material is not suppressed, so that sufficient characteristics cannot be obtained. Moreover, since it is a conventional module structure, the area cannot be increased.

また、カーボンナノチューブやフラーレン等の炭素材料を利用して熱伝導率を低下させた熱電変換材料を使用することで熱電変換効率の高い熱電変換素子が製造できることが報告されている(特許文献3,4参照)。しかしながら、これらの熱電変換素子においても、熱電変換材料の高性能化が幾分図れるものの、多数の熱電素子をモジュール化する構造であることには変わりはなく大面積化が困難である。   In addition, it has been reported that a thermoelectric conversion element having high thermoelectric conversion efficiency can be produced by using a thermoelectric conversion material having a reduced thermal conductivity using a carbon material such as carbon nanotube or fullerene (Patent Document 3, 4). However, even in these thermoelectric conversion elements, although the performance of the thermoelectric conversion material can be somewhat improved, the structure of a large number of thermoelectric elements is unchanged, and it is difficult to increase the area.

この問題点に鑑み、我々は、少なくとも熱電変換材料層と異方性導電材料層が積層された熱電変換部を備える熱電変換素子の開発検討を進めている。異方性導電材料の異方性を利用することで、従来のように、高温(発熱)作用部と低温(吸熱)作用部が、上下に重なるような配置をとる必要がなく、熱電変換素子の高温(発熱)作用部と低温(吸熱)作用部が立体配置的にある程度の距離をもって隔たたせることが可能となる。その立体配置により熱伝導による熱量:QKを低減でき熱電変換効率が改善され、従来のように(1)式のQKの低減化を図るために為されてきたモジュール構造を有さないで、一つの素子でもある程度の広い面積を冷却することができる熱電変換素子を実現できることがわかってきた。 In view of this problem, we are advancing development studies of a thermoelectric conversion element including a thermoelectric conversion portion in which at least a thermoelectric conversion material layer and an anisotropic conductive material layer are laminated. By utilizing the anisotropy of the anisotropic conductive material, it is not necessary to arrange the high temperature (heat generation) action part and the low temperature (heat absorption) action part to overlap each other as in the past, and the thermoelectric conversion element The high temperature (exothermic) action part and the low temperature (endothermic) action part can be separated from each other with a certain distance in terms of steric arrangement. The three-dimensional arrangement can reduce the amount of heat by heat conduction: Q K and improve the thermoelectric conversion efficiency, without having the module structure that has been made to reduce the Q K in the formula (1) as before. It has been found that a thermoelectric conversion element capable of cooling a certain large area can be realized with a single element.

また、熱電変換発電素子とペルチェ素子の組み合わせてなる熱電変換発電装置において、熱電変換材料層と異方性導電材料が積層された熱電変換部を備える熱電変換素子をペルチェ素子として利用することにより、熱電変換発電素子の低温作用部を吸熱しつつ、熱電変換発電素子の高温作用部に放熱することができ、熱電変換発電素子に対して安定した温度差を確保することができるようになる。すなわち、ペルチェ素子により、低温作用部に熱伝導してきた熱エネルギーを再び高温作用部に戻してやることができるので、常温の空間において小さな温度差でも確実に利用して発電することが可能となる。また、同様の理由で、熱電変換発電素子の素子構造において、高温作用部から低温作用部への熱伝導による熱量:QKを考慮する必要がなくなる。そのため、これまで熱量:QKの制約のためできなかった熱電変換素子の大面積化が可能となり、大面積化を図った熱電変換素子を発電素子として利用することができるようになることがわかってきた。 Moreover, in the thermoelectric conversion power generation device formed by combining a thermoelectric conversion power generation element and a Peltier element, by using a thermoelectric conversion element including a thermoelectric conversion part in which a thermoelectric conversion material layer and an anisotropic conductive material are laminated as a Peltier element, While absorbing the low temperature action part of the thermoelectric conversion power generation element, heat can be radiated to the high temperature action part of the thermoelectric conversion power generation element, and a stable temperature difference can be secured with respect to the thermoelectric conversion power generation element. In other words, since the Peltier element can return the heat energy conducted to the low-temperature acting part to the high-temperature acting part again, it is possible to reliably generate power using even a small temperature difference in a room temperature room temperature. For the same reason, in the device structure of the thermoelectric conversion power generation element, the amount of heat due to heat conduction from the high temperature working portion to the cold working unit: it is not necessary to consider the Q K. Therefore, it is possible to increase the area of the thermoelectric conversion element that has not been possible due to the restriction of the amount of heat: Q K until now, and it becomes possible to use the thermoelectric conversion element with the increased area as a power generation element. I came.

特開2009−141079号公報JP 2009-141079 A 特開平8−335722号公報JP-A-8-335722 特開2010−192780号公報JP 2010-192780 A 特開2010−147379号公報JP 2010-147379 A

一般に、熱電変換素子はその動作中に高温作用部(或いは発熱作用部)と低温作用部(或いは吸熱作用部)の温度差:ΔTによって熱電変換素子として働く、或いは熱電変換素子として働いてΔTを生じる。しかし、熱量:QKが高温作用部(或いは発熱作用部)から低温作用部(或いは吸熱作用部)へ熱伝導してくるため、ΔTが小さくなり、熱電変換素子の熱電変換効率が低下するという問題がある。
高温作用部から低温作用部へ熱伝導する熱量:QKを低減するため、熱電変換材料層の断面積を小さくする対処法があるが、熱電変換材料層の断面積が小さい熱電変換素子では、大面積化を図るため多数の熱電変換素子をモジュール化して使用しなければならない。しかしながら、モジュール化した熱電変換モジュールの大きさは5cm×5cm程度で、大面積に対応できないという問題がある。
我々は、熱電変換材料層とグラファイトシート等からなる異方性導電材料層を積層した熱電変換部を有する熱電変換素子において、異方性導電材料層の導電性の異方性を利用して高温作用部と低温作用部を立体配置的に離間させて、高温作用部から低温作用部へ熱伝導する熱量:QKを低減できる熱電変換素子を開発した。また、我々が開発した熱電変換素子をペルチェ素子と熱電発電素子として組み合わせて用いることで、従来にない大面積化を図った熱電変換発電装置が作製できることを見出した。
しかし、熱電変換材料層を大面積化すると、電気及び熱の伝導性が高まる。そのため、大面積化を図った熱電変換素子に使用される熱電変換材料は、電気伝導率が低くても特に問題ないが、熱伝導率が高いと高温作用部から低温作用部へ熱がより伝導しやすくなりロスが大きくなるという問題がある。よって、高温作用部から低温作用部へ熱伝導する熱量:QKをより低減することが必要不可欠である。一般には熱電変換材料そのものの熱伝導率を低下させることと、熱電変換材料層を厚くし断面積を小さくすることで熱伝導率を抑制することが為されてきたが、それらの手法では大面積化を図った熱電変換素子において十分に熱電変換効率を改善することは困難である。
また、熱電変換材料は、特に室温で良好な特性を示す熱電変換材料は、Bi、Te、Se、Sb等の元素からなる材料であり、いずれも産出量は少なく希少金属に属する。これらの元素からなる熱電変換材料層を大面積化しかつ層を厚くした場合、コストが非常に高くなるだけでなく、需要に合せて供給することも困難になるという問題がある。
In general, a thermoelectric conversion element works as a thermoelectric conversion element by a temperature difference: ΔT between a high temperature action part (or heat generation action part) and a low temperature action part (or heat absorption action part) during its operation, or acts as a thermoelectric conversion element to obtain ΔT. Arise. However, since the heat quantity: Q K conducts heat from the high temperature action part (or heat generation action part) to the low temperature action part (or heat absorption action part), ΔT is reduced and the thermoelectric conversion efficiency of the thermoelectric conversion element is reduced. There's a problem.
In order to reduce the amount of heat conducted from the high-temperature acting part to the low-temperature acting part: Q K , there is a countermeasure to reduce the cross-sectional area of the thermoelectric conversion material layer, but in the thermoelectric conversion element having a small cross-sectional area of the thermoelectric conversion material layer, In order to increase the area, many thermoelectric conversion elements must be modularized and used. However, the size of the modularized thermoelectric conversion module is about 5 cm × 5 cm, and there is a problem that it cannot cope with a large area.
In a thermoelectric conversion element having a thermoelectric conversion part in which an anisotropic conductive material layer composed of a thermoelectric conversion material layer and a graphite sheet or the like is laminated, a high temperature is obtained by utilizing the conductivity anisotropy of the anisotropic conductive material layer. and conformationally moved away the working portion and the low temperature working portion, the amount of heat to heat conduction to the cold working portion from the high temperature working unit has been developed a thermoelectric conversion element can be reduced Q K. In addition, it has been found that by using the thermoelectric conversion element we have developed in combination as a Peltier element and a thermoelectric power generation element, a thermoelectric conversion power generation device with an unprecedented large area can be produced.
However, increasing the area of the thermoelectric conversion material layer increases the electrical and thermal conductivity. Therefore, the thermoelectric conversion material used for the thermoelectric conversion element with a large area has no particular problem even if the electrical conductivity is low. However, if the thermal conductivity is high, the heat is more conducted from the high temperature action part to the low temperature action part. There is a problem that it becomes easy to do and loss increases. Therefore, the amount of heat to heat conduction to the cold working portion from the high temperature working part: it is essential to further reduce the Q K. In general, it has been attempted to reduce the thermal conductivity of the thermoelectric conversion material itself and to suppress the thermal conductivity by increasing the thickness of the thermoelectric conversion material layer and reducing the cross-sectional area. Therefore, it is difficult to sufficiently improve the thermoelectric conversion efficiency in the thermoelectric conversion element that has been improved.
Moreover, the thermoelectric conversion material is a material composed of elements such as Bi, Te, Se, and Sb, and the like, which has good characteristics particularly at room temperature. When the thermoelectric conversion material layer composed of these elements is enlarged and the layer is thickened, there is a problem that not only the cost becomes very high, but also it becomes difficult to supply in accordance with demand.

本発明はこのような事情に鑑みてなされたものであり、大面積化を図った熱電変換素子において、断熱材を使用する素子構造を採用することで高温作用部(或いは発熱作用部)から低温作用部(或いは吸熱作用部)へ熱伝導する熱量:QKを低減し、更にグラファイト層を併用することで高い熱電変換効率を実現できる熱電変換素子を提供するものである。
また、本発明の熱電変換素子をペルチェ素子と熱電発電素子として組み合わせて用いることで、従来にない大面積化を図った熱電変換発電装置を提供する。
The present invention has been made in view of such circumstances, and in a thermoelectric conversion element with a large area, by adopting an element structure that uses a heat insulating material, the high temperature action part (or heat generation action part) is changed to a low temperature. An object of the present invention is to provide a thermoelectric conversion element capable of realizing high thermoelectric conversion efficiency by reducing the amount of heat conducted to the action part (or endothermic action part): Q K and further using a graphite layer.
Moreover, the thermoelectric conversion electric power generating apparatus which aimed at the unprecedented area enlargement is provided by combining and using the thermoelectric conversion element of this invention as a Peltier element and a thermoelectric power generation element.

本発明によれば、第1電極と、前記第1電極上に絶縁体を挟んで互いに離れて形成されたP型及びN型熱電変換部と、各熱電変換部上にそれぞれ形成された第2及び第3電極とを備え、前記P型及びN型熱電変換部が少なくとも断熱材料よりなる断熱層を有することを特徴とする熱電変換素子が提供される。
また、本発明によれば、前記P型及びN型熱電変換部が、少なくとも熱電変換材料層及び断熱材料よりなる断熱層とを有し、2層以上に積層された層を有することを特徴とする熱電変換素子が提供される。
また、本発明によれば、前記P型及びN型熱電変換部が、熱電変換材料層、断熱層、熱電変換材料層の順で積層されていることを特徴とする熱電変換素子が提供される。
また、本発明によれば、前記断熱層は断熱材料よりなる層であり、該断熱材料よりなる層は貫通孔を有し、貫通孔には熱電変換材料が充填されていることを特徴とする熱電変換素子が提供される。
また、本発明によれば、前記断熱層は断熱材料からなる多孔質材よりなり、該多孔質材の孔には熱電変換材料が充填されていることを特徴とする熱電変換素子が提供される。
また、本発明によれば、前記断熱層の多孔質材は、断熱材微粒子及び断熱材料を粉砕して微粒子化した粉末のうち少なくとも1つと、樹脂粒子とを混合し、有機溶媒及び樹脂のうち少なくとも1つを加えて混練することにより作製したペーストを印刷後、焼成して前記樹脂粒子を燃焼消失させることによって形成された多孔質材であることを特徴とする熱電変換素子が提供される。
また、本発明によれば、前記断熱層を形成する断熱材料が、シリカ、多孔質シリカ、ガラス、ガラスウール、ロックウール、けいそう土、フェノール樹脂、メラミン樹脂、シリコン樹脂、或いは中空粒子形状の無機粒子の群より選択されることを特徴とする熱電変換素子が提供される。
また、本発明によれば、前記各熱電変換部は、さらにグラファイト層を有することを特徴とする熱電変換素子が提供される。
また、本発明によれば、前記各熱電変換部は、熱電変換材料層、下部グラファイト層、断熱層、上部グラファイト層、熱電変換材料層の順で積層された構造を有し、下部グラファイト層及び上部グラファイト層は断熱層の側面で繋がる一枚のシートからなることを特徴とする熱電変換素子が提供される。
また、本発明によれば、前記断熱層は空洞部分を有する筒状の中空構造であることを特徴とする熱電変換素子が提供される。
また、本発明によれば、前記各熱電変換部は、熱電変換材料層、断熱層、熱電変換材料層、グラファイト層の順で積層された構造を有することを特徴とする熱電変換素子が提供される。
また、本発明によれば、前記P型及びN型熱電変換部は、少なくとも断熱層とグラファイト層を有し、前記グラファイトが積層構造からはみ出してなる延在部を有し、前記延在部上に電極を有することを特徴とする熱電変換素子が提供される。
また、本発明によれば、熱電変換発電素子とペルチェ素子を組み合わせてなる熱電変換発電装置であり、前記熱電変換発電素子は前記熱電変換素子であり、及び前記ペルチェ素子は、前記熱電変換素子であり、前記ペルチェ素子により前記熱電変換発電素子の低温部を吸熱し、且つ該熱電変換発電素子の高温部あるいは高温部に接触する熱だめとなる対象物に放熱し、該熱電変換発電素子で発電することを特徴とする熱電変換発電装置が提供される。
According to the present invention, the first electrode, the P-type and N-type thermoelectric conversion portions formed on the first electrode with an insulator interposed therebetween, and the second formed on each thermoelectric conversion portion, respectively. And a third electrode, wherein the P-type and N-type thermoelectric conversion portions have a heat insulating layer made of at least a heat insulating material.
Further, according to the present invention, the P-type and N-type thermoelectric conversion parts have at least a thermoelectric conversion material layer and a heat insulating layer made of a heat insulating material, and have a layer laminated in two or more layers. A thermoelectric conversion element is provided.
Moreover, according to this invention, the said P-type and N type thermoelectric conversion part are laminated | stacked in order of the thermoelectric conversion material layer, the heat insulation layer, and the thermoelectric conversion material layer, The thermoelectric conversion element characterized by the above-mentioned is provided. .
According to the invention, the heat insulating layer is a layer made of a heat insulating material, the layer made of the heat insulating material has a through hole, and the through hole is filled with a thermoelectric conversion material. A thermoelectric conversion element is provided.
According to the present invention, there is provided a thermoelectric conversion element characterized in that the heat insulating layer is made of a porous material made of a heat insulating material, and pores of the porous material are filled with a thermoelectric conversion material. .
Further, according to the present invention, the porous material of the heat insulating layer is a mixture of at least one of the heat insulating material fine particles and the powder obtained by pulverizing the heat insulating material and the resin particles, and an organic solvent and a resin. There is provided a thermoelectric conversion element which is a porous material formed by printing a paste prepared by adding at least one and kneading and then firing to burn and eliminate the resin particles.
Further, according to the present invention, the heat insulating material forming the heat insulating layer is silica, porous silica, glass, glass wool, rock wool, diatomaceous earth, phenol resin, melamine resin, silicon resin, or hollow particle shape. There is provided a thermoelectric conversion element selected from the group of inorganic particles.
Moreover, according to this invention, each said thermoelectric conversion part has a graphite layer further, The thermoelectric conversion element characterized by the above-mentioned is provided.
According to the present invention, each of the thermoelectric conversion parts has a structure in which a thermoelectric conversion material layer, a lower graphite layer, a heat insulating layer, an upper graphite layer, and a thermoelectric conversion material layer are laminated in this order, and the lower graphite layer and There is provided a thermoelectric conversion element characterized in that the upper graphite layer is composed of a single sheet connected by the side surface of the heat insulating layer.
Moreover, according to this invention, the said heat insulation layer is a cylindrical hollow structure which has a cavity part, The thermoelectric conversion element characterized by the above-mentioned is provided.
Further, according to the present invention, there is provided a thermoelectric conversion element characterized in that each thermoelectric conversion part has a structure in which a thermoelectric conversion material layer, a heat insulating layer, a thermoelectric conversion material layer, and a graphite layer are laminated in this order. The
Further, according to the present invention, the P-type and N-type thermoelectric conversion parts have at least a heat insulating layer and a graphite layer, and have an extension part in which the graphite protrudes from a laminated structure, and on the extension part The thermoelectric conversion element characterized by having an electrode in this is provided.
Further, according to the present invention, there is provided a thermoelectric conversion power generation device in which a thermoelectric conversion power generation element and a Peltier element are combined, the thermoelectric conversion power generation element is the thermoelectric conversion element, and the Peltier element is the thermoelectric conversion element. The Peltier element absorbs heat at the low temperature part of the thermoelectric conversion power generation element, and dissipates heat to the high temperature part of the thermoelectric conversion power generation element or a heat sink that contacts the high temperature part, and the thermoelectric conversion power generation element generates power. A thermoelectric conversion power generation device is provided.

本発明の熱電変換素子は、断熱層を有することを特徴とする熱電変換素子である。特に大面積化を図った熱電変換素子において、本発明は、大面積化を図ることで導電率の低下を防ぎ、断熱層を有することで熱伝導率を抑制するという素子構造である。特に、グラファイトと断熱層を使用して高温作用部と低温作用部の立体的離間、あるいは熱伝導部分と電気伝導部分の立体的離間を行うことで高い電気伝導性と低い熱伝導性を確保でき高い熱電変換効率が実現でき、大面積化によって大きな熱電変換量を得るというものである。断熱層を用いることで、熱電変換材料の使用量を低減することができ、特に熱電変換材料に希少金属を使用する場合、十分に供給できなくなるという問題も回避することができる。
また、本発明の熱電変換素子をペルチェ素子と熱電発電素子として組み合わせて用いることで、従来にない大面積化を図った熱電変換発電装置を実現できる。
The thermoelectric conversion element of this invention is a thermoelectric conversion element characterized by having a heat insulation layer. In particular, in a thermoelectric conversion element having an increased area, the present invention has an element structure in which a decrease in conductivity is prevented by increasing the area and a thermal conductivity is suppressed by having a heat insulating layer. In particular, high electrical conductivity and low thermal conductivity can be ensured by using a graphite and a heat insulation layer to provide a three-dimensional separation between the high-temperature action part and the low-temperature action part, or a three-dimensional separation between the heat conduction part and the electric conduction part. High thermoelectric conversion efficiency can be realized, and a large amount of thermoelectric conversion can be obtained by increasing the area. By using the heat insulating layer, the amount of the thermoelectric conversion material used can be reduced. In particular, when a rare metal is used for the thermoelectric conversion material, it is possible to avoid the problem of insufficient supply.
In addition, by using the thermoelectric conversion element of the present invention in combination as a Peltier element and a thermoelectric power generation element, a thermoelectric power generation apparatus with an unprecedented increase in area can be realized.

本発明の実施形態1に係る熱電変換素子の上面図、断面図及び下面図である。It is the top view, sectional drawing, and bottom view of the thermoelectric conversion element which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る熱電変換素子の上面図、断面図及び下面図である。It is the upper side figure, sectional drawing, and bottom view of the thermoelectric conversion element which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る熱電変換素子の上面図、断面図及び下面図である。It is the upper side figure, sectional drawing, and bottom view of the thermoelectric conversion element which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る熱電変換素子の上面図、断面図及び下面図である。It is the upper side figure, sectional drawing, and bottom view of the thermoelectric conversion element which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る熱電変換素子の上面図、断面図及び下面図である。It is the upper side figure, sectional drawing, and bottom view of the thermoelectric conversion element which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係る熱電変換素子の上面図、断面図及び下面図である。It is the upper side figure, sectional drawing, and bottom view of the thermoelectric conversion element which concerns on Embodiment 6 of this invention. 本発明の実施形態7に係る熱電変換素子の上面図、断面図及び下面図である。It is the upper side figure, sectional drawing, and bottom view of the thermoelectric conversion element which concerns on Embodiment 7 of this invention. 本発明の実施形態8に係る熱電変換発電装置(複数の熱電変換素子を備える装置)の断面図である。It is sectional drawing of the thermoelectric conversion electric power generating apparatus (apparatus provided with a some thermoelectric conversion element) which concerns on Embodiment 8 of this invention. 本発明の実施形態9に係る熱電変換発電装置(複数の熱電変換素子を備える装置)の断面図である。It is sectional drawing of the thermoelectric conversion electric power generating apparatus (apparatus provided with a some thermoelectric conversion element) which concerns on Embodiment 9 of this invention. 本発明の実施形態10に係る熱電変換発電装置(複数の熱電変換素子を備える装置)の断面図である。It is sectional drawing of the thermoelectric conversion electric power generating apparatus (apparatus provided with a some thermoelectric conversion element) which concerns on Embodiment 10 of this invention. 熱電変換発電装置に適用した熱電変換素子(ペルチェ素子)の構造を説明するための斜視図である。It is a perspective view for demonstrating the structure of the thermoelectric conversion element (Peltier element) applied to the thermoelectric conversion electric power generating apparatus. 比較形態1に係る従来の熱電変換素子の上面図、断面図及び下面図である。It is the top view, sectional drawing, and bottom view of the conventional thermoelectric conversion element which concerns on the comparison form 1. FIG. 比較形態2に係る熱電変換素子の上面図、断面図及び下面図である。It is the upper side figure, sectional drawing, and bottom view of the thermoelectric conversion element which concerns on the comparison form 2. FIG. 比較形態3に係る熱電変換発電装置(複数の熱電変換素子を備える装置)の断面図である。It is sectional drawing of the thermoelectric conversion electric power generating apparatus (apparatus provided with a some thermoelectric conversion element) which concerns on the comparison form 3. FIG. 実施例に係る熱電変換素子の断熱層の構造を説明するための斜視図、及び熱電変換部材の構造を説明するための断面図である。It is the perspective view for demonstrating the structure of the heat insulation layer of the thermoelectric conversion element which concerns on an Example, and sectional drawing for demonstrating the structure of a thermoelectric conversion member. 従来の熱電変換素子の構成を説明するための概念図である。It is a conceptual diagram for demonstrating the structure of the conventional thermoelectric conversion element.

熱電変換素子は、一般に熱電変換材料の上部と下部に電極を有する構造であり、電極間に直流電圧が印加され電流が熱電変換材料を流れると、一方の電極で吸熱が生じ、他方の電極で発熱が生じる。例えば上部電極で吸熱が生じた場合、下部電極では発熱が生じる。電流の向きが逆になれば吸熱と発熱も逆になる。ここで、本明細書において、その作用から前者を吸熱作用部、後者を発熱作用部と呼ぶ。また、例えば発電素子として使用する場合、例えば上部電極を低温に、下部電極を高温にすると、この熱電変換素子は、その温度差を利用して熱エネルギーを電気エネルギーに変換して発電するので、この作用から前者を低温作用部、後者を高温作用部とも呼ぶ。   A thermoelectric conversion element generally has a structure having electrodes on the upper and lower portions of a thermoelectric conversion material. When a DC voltage is applied between the electrodes and a current flows through the thermoelectric conversion material, heat is generated at one electrode, and at the other electrode. An exotherm occurs. For example, when heat is generated at the upper electrode, heat is generated at the lower electrode. If the direction of current is reversed, heat absorption and heat generation are also reversed. Here, in the present specification, the former is referred to as an endothermic action part and the latter is referred to as an exothermic action part. Further, for example, when used as a power generation element, for example, when the upper electrode is set to a low temperature and the lower electrode is set to a high temperature, this thermoelectric conversion element uses the temperature difference to convert heat energy into electric energy to generate power. Because of this action, the former is also called a low temperature action part, and the latter is also called a high temperature action part.

本発明の熱電変換素子は、第1電極と、前記第1電極上に絶縁体を挟んで互いに離れて形成されたP型及びN型熱電変換部と、各熱電変換部上にそれぞれ形成された第2及び第3電極とを備え、前記P型及びN型熱電変換部が少なくとも断熱材料よりなる断熱層を有することを特徴とする。
また、本発明の熱電変換素子において、前記P型及びN型熱電変換部が、少なくとも熱電変換材料層及び断熱材料よりなる断熱層とを有し、2層以上に積層された層を有することを特徴とするものであってもよい。
また、本発明の熱電変換素子において、前記P型及びN型熱電変換部が、熱電変換材料層、断熱層、熱電変換材料層の順で積層されていることを特徴とするものであってもよい。
本発明の熱電変換素子は、断熱層により高温作用部から低温作用部へ熱伝導する熱量:QKを低減できるため高い熱電変換効率が得られる。
The thermoelectric conversion element of the present invention is formed on the first electrode, the P-type and N-type thermoelectric conversion parts formed on the first electrode with an insulator interposed therebetween, and the thermoelectric conversion parts, respectively. The P-type and N-type thermoelectric converters have a heat insulating layer made of at least a heat insulating material.
Moreover, in the thermoelectric conversion element of the present invention, the P-type and N-type thermoelectric conversion portions have at least a thermoelectric conversion material layer and a heat insulating layer made of a heat insulating material, and have a layer laminated in two or more layers. It may be a feature.
In the thermoelectric conversion element of the present invention, the P-type and N-type thermoelectric conversion portions may be laminated in the order of a thermoelectric conversion material layer, a heat insulating layer, and a thermoelectric conversion material layer. Good.
The thermoelectric conversion element of the present invention, the amount of heat to heat conduction to the cold working portion from the high temperature working portion by the heat insulating layer: a high thermoelectric conversion efficiency since it is possible to reduce the Q K are obtained.

ここで、熱電変換材料は、周知の熱電変換材料であればよく、特に材質を限定するものではない。例えばBi-Te系材料、Bi-Se系材料、Sb-Te系材料、Pb-Te系材料、Ge-Te系材料、Bi-Sb系材料、Zn-Sb系材料、Co-Sb系材料、Ag-Sb-Ge-Te系材料、Si-Ge系材料、Fe-Si系材料、Mg-Si系材料、Mn-Si系材料、Fe-O系材料、Zn-O系材料、Cu-O系材料、Na-Co-O系材料、Ti-Sr-O系材料、Bi-Sr-Co-O系材料等、一般的に知られる熱電変換材料をいう。   Here, the thermoelectric conversion material may be a known thermoelectric conversion material, and the material is not particularly limited. For example, Bi-Te materials, Bi-Se materials, Sb-Te materials, Pb-Te materials, Ge-Te materials, Bi-Sb materials, Zn-Sb materials, Co-Sb materials, Ag -Sb-Ge-Te materials, Si-Ge materials, Fe-Si materials, Mg-Si materials, Mn-Si materials, Fe-O materials, Zn-O materials, Cu-O materials It refers to a generally known thermoelectric conversion material such as a Na—Co—O based material, a Ti—Sr—O based material, or a Bi—Sr—Co—O based material.

なお、これらの熱電変換材料よりなる熱電変換材料層は、所定の原料を溶融して製造した焼結体を切り出した板状の熱電変換材料であっても良いし、多周知の蒸着法、スパッタリング法、CVD法で形成された層であっても良い。また、後述するが、断熱材をBi-Te系材料を溶融した浴槽にディップすることにより断熱層の表面と離面に熱電変換材料層を形成しても良い(溶融ディップ法)。あるいは、熱電変換材料をペースト化し、ペーストを印刷法により塗布印刷し加熱することにより熱電変換材料層を形成してもよい。熱電変換材料層の厚みは0.5〜10mm程度である。印刷法で形成する場合は、所望の厚みのマスク(枠)を準備しペーストを塗布印刷し150℃程度の温度で乾燥後、マスク(枠)を外し高温で加熱焼成を行うことにより層形成する。   The thermoelectric conversion material layer made of these thermoelectric conversion materials may be a plate-like thermoelectric conversion material obtained by cutting a sintered body produced by melting a predetermined raw material, or a well-known vapor deposition method or sputtering. Or a layer formed by a CVD method. As will be described later, a thermoelectric conversion material layer may be formed on the surface and the separation surface of the heat insulating layer by dipping the heat insulating material in a bath in which a Bi-Te-based material is melted (melting dip method). Alternatively, the thermoelectric conversion material layer may be formed by pasting the thermoelectric conversion material, coating and printing the paste by a printing method, and heating. The thickness of the thermoelectric conversion material layer is about 0.5 to 10 mm. In the case of forming by printing, a mask (frame) having a desired thickness is prepared, a paste is applied and printed, dried at a temperature of about 150 ° C., the mask (frame) is removed, and the layer is formed by heating and baking at a high temperature. .

断熱層としては、熱伝導率が0.5W/(m・K)以下、好ましくは0.3W/(m・K)以下の断熱材料を使用することが好ましい。また、製造上の制約により発火点550℃以上の耐熱性を有することが好ましい。具体的な断熱材料としては、シリカ、多孔質シリカ、ガラス、ガラスウール、ロックウール、けいそう土、フェノール樹脂、メラミン樹脂、シリコン樹脂、或いは中空粒子形状の無機粒子等があげられる。また、断熱層として、市販されているガラスウールやロックウールをフェノール樹脂やメラミン樹脂で固めた断熱材基板をそのまま使用しても良い。   As the heat insulating layer, it is preferable to use a heat insulating material having a thermal conductivity of 0.5 W / (m · K) or less, preferably 0.3 W / (m · K) or less. Moreover, it is preferable to have heat resistance of an ignition point of 550 ° C. or higher due to manufacturing restrictions. Specific examples of the heat insulating material include silica, porous silica, glass, glass wool, rock wool, diatomaceous earth, phenol resin, melamine resin, silicon resin, and hollow particle-shaped inorganic particles. Further, as the heat insulating layer, a commercially available heat insulating substrate obtained by hardening glass wool or rock wool with phenol resin or melamine resin may be used as it is.

また、本発明の熱電変換素子において、前記断熱層は断熱材料よりなる層であり、該断熱材料よりなる層は貫通孔を有し、貫通孔には熱電変換材料が充填されていることを特徴とするものであってもよい。
上記の断熱材基板に貫通孔を形成して、貫通孔に熱電変換材料を充填する工程を経て、断熱材層と熱電変換材料層を積層した熱電変換素子を作製する。貫通孔に熱電変換材料を充填することで、熱電変換素子としての電気的接触が確保される。貫通孔の形成は機械的にドリル等で貫通孔を設けても良いし、レーザー光の照射で貫通孔を形成してもよい。
このように貫通孔内に熱電変換材料を充填することで、断熱層と熱電変換材料層を経て両電極間の電気的接触が得られ、かつ熱電変換材料を微細な貫通孔を用いて断熱材料で覆ってしまうので、熱電変換材料が元来有する格子振動による熱伝導を抑制する効果が生じる。また、断熱材により熱伝導する熱量:QKを低減できるので高効率な熱電変換素子として駆動することができる。
In the thermoelectric conversion element of the present invention, the heat insulating layer is a layer made of a heat insulating material, the layer made of the heat insulating material has a through hole, and the through hole is filled with a thermoelectric conversion material. It may be.
A thermoelectric conversion element in which a heat insulating material layer and a thermoelectric conversion material layer are laminated is manufactured through a process of forming a through hole in the heat insulating material substrate and filling the through hole with a thermoelectric conversion material. By filling the through hole with a thermoelectric conversion material, electrical contact as a thermoelectric conversion element is ensured. The through hole may be formed mechanically by a drill or the like, or may be formed by laser light irradiation.
By filling the thermoelectric conversion material in the through hole in this way, electrical contact between the two electrodes can be obtained through the heat insulating layer and the thermoelectric conversion material layer, and the thermoelectric conversion material can be used as a heat insulating material using fine through holes. Therefore, there is an effect of suppressing heat conduction due to lattice vibration inherent in the thermoelectric conversion material. Further, the amount of heat to heat conduction by the heat insulating material: can be driven can be reduced to Q K as a highly efficient thermoelectric conversion element.

また、本発明の熱電変換素子において、前記断熱層は断熱材料よりなる層であり、該断熱材料よりなる層は貫通孔を有し、貫通孔には熱電変換材料が充填されていることを特徴とするものであってもよい。
このように孔内(多孔質材)に熱電変換材料を充填することで、断熱層と熱電変換材料層を経て両電極間の電気的接触が得られ、かつ熱電変換材料を微細な孔(多孔質材)を用いて断熱材料で覆ってしまうので、熱電変換材料が元来有する格子振動による熱伝導を抑制する効果が生じる。また、断熱材により熱伝導する熱量:QKを低減できるので高効率な熱電変換素子として駆動することができる。
In the thermoelectric conversion element of the present invention, the heat insulating layer is a layer made of a heat insulating material, the layer made of the heat insulating material has a through hole, and the through hole is filled with a thermoelectric conversion material. It may be.
Thus, by filling the pores (porous material) with the thermoelectric conversion material, electrical contact is obtained between both electrodes through the heat insulating layer and the thermoelectric conversion material layer, and the thermoelectric conversion material is made into fine pores (porous). Since the material is covered with a heat insulating material, an effect of suppressing heat conduction due to lattice vibration inherent in the thermoelectric conversion material is produced. Further, the amount of heat to heat conduction by the heat insulating material: can be driven can be reduced to Q K as a highly efficient thermoelectric conversion element.

また、本発明の熱電変換素子において、前記断熱層の多孔質材は、断熱材微粒子及び断熱材料を粉砕して微粒子化した粉末のうち少なくとも1つと、樹脂粒子とを混合し、有機溶媒及び樹脂のうち少なくとも1つを加えて混練することにより作製したペーストを印刷後、焼成して前記樹脂粒子を燃焼消失させることによって形成された多孔質材であることを特徴とするものであってもよい。この製造方法により簡易に断熱性を有する多孔質材を形成することができ熱電変換素子に使用することができる。   In the thermoelectric conversion element of the present invention, the porous material of the heat insulating layer is prepared by mixing resin particles with at least one of fine particles of heat insulating material and powder obtained by pulverizing the heat insulating material, and an organic solvent and a resin. It may be characterized in that it is a porous material formed by printing a paste prepared by adding and kneading at least one of them and then firing to burn off the resin particles. . By this manufacturing method, a porous material having heat insulating properties can be easily formed and used for a thermoelectric conversion element.

また、本発明の熱電変換素子において、前記断熱層を形成する断熱材料が、シリカ、多孔質シリカ、ガラス、ガラスウール、ロックウール、けいそう土、フェノール樹脂、メラミン樹脂、シリコン樹脂、或いは中空粒子形状の無機粒子の群より選択されることを特徴とするものであってもよい。
詳細な多孔質材の形成方法としては、上記の断熱材基板やガラス等をボールミル等の粉砕機で粉砕して製造した断熱材粉末、或いは多孔質シリカ粒子、けいそう土、中空粒子形状の無機粒子等の断熱材微粒子に、樹脂粒子と、熱電変換材料粉末を混合後、有機溶媒やバインダーを加えて混練することによりペースト化し、このペーストを断熱材層の形成位置に塗布印刷し、加熱することによりペーストに添加されている樹脂粒子を燃焼消失させることで多孔質な断熱層を形成しても良い。樹脂粒子としては、ポリスチレン、ポリメチルメタクリレート、ポリエチレン等の粒子を使用することができるが、350℃で略完全に消失するポリメチルメタクリレートが好ましい。また、中空粒子形状の無機粒子としては、中空シリカ粒子、中空アルミナ粒子や中空チタニア粒子等が知られている。
Further, in the thermoelectric conversion element of the present invention, the heat insulating material forming the heat insulating layer is silica, porous silica, glass, glass wool, rock wool, diatomaceous earth, phenol resin, melamine resin, silicon resin, or hollow particles. It may be characterized by being selected from a group of shaped inorganic particles.
As a detailed method for forming a porous material, a heat insulating material powder produced by pulverizing the above-mentioned heat insulating material substrate or glass with a pulverizer such as a ball mill, or a porous silica particle, diatomaceous earth, or a hollow particle-shaped inorganic material After mixing resin particles and thermoelectric conversion material powder into heat insulating fine particles such as particles, paste by adding an organic solvent and binder and kneading, and apply and print this paste on the formation position of the heat insulating material layer, and heat Thus, the porous heat insulating layer may be formed by burning and eliminating the resin particles added to the paste. As the resin particles, particles such as polystyrene, polymethyl methacrylate, and polyethylene can be used, but polymethyl methacrylate that disappears almost completely at 350 ° C. is preferable. Further, hollow silica particles, hollow alumina particles, hollow titania particles, and the like are known as hollow particle-shaped inorganic particles.

本発明では貫通孔や孔(多孔質材)に熱電変換材料を充填しているが、貫通孔や孔(多孔質材)に充填する材料としては、半導体の性質を有する導電材料であればよい。金属のような価電子帯と伝導帯が近接している材料を使用した場合、熱電変換材料層との接触部分で発熱が生じ熱電変換効率を低下させてしまう。熱電変換材料の伝導帯はエネルギー的に高い位置に存在するので、熱電変換材料から金属へキャリアが移動する際、エネルギー的に高い伝導帯から低い伝導帯にキャリアが移動することとなり発熱が生じるためである。貫通孔や孔(多孔質材)に充填する材料としては、半導体の性質を有する電荷輸送材料であれば使用することができる。電荷輸送材料を使用する場合、n型熱電変換部には電子輸送材料を、p型熱電変換部には正孔輸送材料を使用することが好ましい。
このような断熱材料からなる微細な孔に熱電変換材料や導電材料を充填する方法は、熱電変換材料や導電材料が元来有する格子振動による熱伝導を抑制する働きが生じるため効果的に熱伝導率を減少させることが可能となる。
また、このような断熱材料からなる微細な孔に熱電変換材料や導電材料を充填する方法は、特に大面積化を図った素子において有効である。ここで大面積化を図った素子とは一つの熱電変換部の断面積が約25cm2以上である熱電変換部を有する熱電変換素子を意味する。この程度の面積を有する場合、熱電変換部に断熱材料を使用した上記の断熱層を形成しても電気伝導性を低下させすぎることなく、熱伝導率の減少を効果的に引き出すことが可能となり熱電変換効率の改善が図れる。
In the present invention, the through hole or hole (porous material) is filled with the thermoelectric conversion material, but the material filled in the through hole or hole (porous material) may be any conductive material having semiconductor properties. . When a material such as a metal in which the valence band and the conduction band are close to each other is used, heat is generated at the contact portion with the thermoelectric conversion material layer, and the thermoelectric conversion efficiency is lowered. Since the conduction band of the thermoelectric conversion material exists in a high energy position, when carriers move from the thermoelectric conversion material to the metal, the carriers move from a high conduction band to a low conduction band, and heat is generated. It is. As a material for filling the through holes and the holes (porous material), any charge transport material having semiconductor properties can be used. When a charge transport material is used, it is preferable to use an electron transport material for the n-type thermoelectric conversion part and a hole transport material for the p-type thermoelectric conversion part.
The method of filling such fine holes made of a heat insulating material with a thermoelectric conversion material or conductive material effectively suppresses heat conduction due to lattice vibration inherent in the thermoelectric conversion material or conductive material, so that heat conduction is effective. The rate can be reduced.
In addition, a method of filling such fine holes made of a heat insulating material with a thermoelectric conversion material or a conductive material is particularly effective in an element with a large area. Here, the element having a large area means a thermoelectric conversion element having a thermoelectric conversion part in which the cross-sectional area of one thermoelectric conversion part is about 25 cm 2 or more. When it has an area of this level, it is possible to effectively draw out a decrease in thermal conductivity without reducing the electrical conductivity excessively even if the above heat insulating layer using a heat insulating material is formed in the thermoelectric conversion part. The thermoelectric conversion efficiency can be improved.

また、本発明の熱電変換素子において、前記各熱電変換部は、さらにグラファイト層を有することを特徴とするものであってもよい。
このグラファイト層の導電異方性を利用することにより、熱電変換素子の高温作用部(発熱作用部)と低温作用部(吸熱作用部)を立体配置的に離間させること、及び熱伝導部分と電気伝導部分を立体配置的に離間させることが可能となる。その立体配置により、高温作用部と低温作用部間を熱伝導する熱量:QKを抑制することができ熱電変換効率が改善され、大面積化を図った素子で構成される熱電変換素子を実現できる。
Moreover, the thermoelectric conversion element of this invention WHEREIN: Each said thermoelectric conversion part may have a graphite layer further, It may be characterized by the above-mentioned.
By utilizing the conductivity anisotropy of the graphite layer, the high temperature action part (heat generation action part) and the low temperature action part (heat absorption action part) of the thermoelectric conversion element are separated in three-dimensional arrangement, and the heat conduction part and the electricity It is possible to separate the conductive portions in a three-dimensional configuration. Due to the three-dimensional arrangement, the amount of heat conducted between the high-temperature action part and the low-temperature action part: Q K can be suppressed, thermoelectric conversion efficiency is improved, and a thermoelectric conversion element composed of elements with a large area is realized. it can.

異方性導電材料層としては、グラファイトが一般的であるが、低導電性材料層の表面に高導電性材料のコート層を形成した異方性導電材料層でもよい。
グラファイトはab面内で高い導電率を示し、c軸方向で低い導電率を示す特性を有する。同様に、低導電性材料層の表面に高導電性材料のコート層を形成した異方性導電材料層もまた、層面上で高い導電率を示し、厚み方向で低い導電率を示す特性を有する。
グラファイトを使用する場合は、一般的に市販されているグラファイトシートを用いて形成してもよい。グラファイトシートには、天然黒鉛から製造したシートと、ポリイミド等の高分子シートをグラファイト化させたシートがあるが、どちらも市販されており特性的にも大きな違いはないので、いずれを用いてもよい。
As the anisotropic conductive material layer, graphite is generally used, but an anisotropic conductive material layer in which a coat layer of a high conductive material is formed on the surface of the low conductive material layer may be used.
Graphite has a property of exhibiting high conductivity in the ab plane and low conductivity in the c-axis direction. Similarly, an anisotropic conductive material layer in which a coating layer of a high conductivity material is formed on the surface of a low conductivity material layer also has a characteristic of exhibiting high conductivity on the layer surface and low conductivity in the thickness direction. .
When using graphite, you may form using the graphite sheet generally marketed. Graphite sheets include sheets made from natural graphite and sheets obtained by graphitizing a polymer sheet such as polyimide, but both are commercially available and there is no significant difference in characteristics. Good.

また、本発明の熱電変換素子において、前記各熱電変換部は、熱電変換材料層、下部グラファイト層、断熱層、上部グラファイト層、熱電変換材料層の順で積層された構造を有し、下部グラファイト層及び上部グラファイト層は断熱層の側面で繋がる一枚のシートからなることを特徴とするものであってもよい。
断熱層とグラファイト層の導電異方性を併用することにより、熱電変換素子の熱伝導部分と電気伝導部分を立体配置的に離間させることが可能となり、高温作用部(発熱作用部)と低温作用部(吸熱作用部)間の熱伝導性を抑制することができる。
In the thermoelectric conversion element of the present invention, each thermoelectric conversion part has a structure in which a thermoelectric conversion material layer, a lower graphite layer, a heat insulating layer, an upper graphite layer, and a thermoelectric conversion material layer are laminated in this order, and the lower graphite The layer and the upper graphite layer may be characterized by comprising a single sheet connected by the side surface of the heat insulating layer.
By using the conductive anisotropy of the heat insulation layer and the graphite layer together, it is possible to separate the heat conduction part and the electric conduction part of the thermoelectric conversion element in a three-dimensional arrangement, and the high temperature action part (heat generation action part) and the low temperature action The thermal conductivity between the parts (endothermic action part) can be suppressed.

また、本発明の熱電変換素子において、前記断熱層は空洞部分を有する筒状の中空構造であることを特徴とするものであってもよい。
空気の熱伝導率はグラスウール等の一般的な断熱材料の熱伝導率よりも低く、中空構造の断熱材料を使用することは熱伝導性の抑制に非常に有効である。
また、空洞部分の内部が真空または断熱性の気体を有するものであってもよい。
Moreover, the thermoelectric conversion element of this invention WHEREIN: The said heat insulation layer may be a cylindrical hollow structure which has a cavity part, It may be characterized by the above-mentioned.
The thermal conductivity of air is lower than that of a general heat insulating material such as glass wool, and the use of a heat insulating material having a hollow structure is very effective for suppressing the heat conductivity.
Moreover, the inside of a cavity part may have a vacuum or heat insulation gas.

また、本発明の熱電変換素子において、前記各熱電変換部は、熱電変換材料層、断熱層、熱電変換材料層、グラファイト層の順で積層された構造を有することを特徴とするものであってもよい。
グラファイト層の上部に小さな面積の電極を形成することで、高温作用部(発熱作用部)と低温作用部(吸熱作用部)を立体配置的に離間させることが可能となり熱伝導性を抑制することができる。
In the thermoelectric conversion element of the present invention, each thermoelectric conversion part has a structure in which a thermoelectric conversion material layer, a heat insulating layer, a thermoelectric conversion material layer, and a graphite layer are laminated in this order. Also good.
By forming an electrode with a small area on the upper part of the graphite layer, it is possible to separate the high temperature action part (heat generation action part) and the low temperature action part (endothermic action part) in a three-dimensional configuration, thereby suppressing thermal conductivity. Can do.

また、本発明の熱電変換素子において、前記P型及びN型熱電変換部は、少なくとも断熱層及びグラファイト層を有し、前記グラファイトが積層構造からはみ出してなる延在部を有し、前記延在部上に電極を有することを特徴とするものであってもよい。
グラファイト層の延在部に電極を形成することで、高温作用部(発熱作用部)と低温作用部(吸熱作用部)を立体配置的に離間させることが可能となり、より熱伝導性を抑制することができる。
Further, in the thermoelectric conversion element of the present invention, the P-type and N-type thermoelectric conversion parts have at least a heat insulating layer and a graphite layer, and have an extension part in which the graphite protrudes from a laminated structure, and the extension It may be characterized by having an electrode on the part.
By forming an electrode in the extended part of the graphite layer, it is possible to separate the high temperature action part (heat generation action part) and the low temperature action part (heat absorption action part) in a three-dimensional arrangement, thereby further suppressing thermal conductivity. be able to.

また、本発明は、熱電変換発電素子とペルチェ素子を組み合わせてなる熱電変換発電装置であり、前記熱電変換発電素子は前記熱電変換素子であり、及び前記ペルチェ素子は、前記熱電変換素子であり、前記ペルチェ素子により前記熱電変換発電素子の低温部を吸熱し、且つ該熱電変換発電素子の高温部あるいは高温部に接触する熱だめとなる対象物に放熱し、該熱電変換発電素子で発電することを特徴とする熱電変換発電装置であってもよい。
本発明の熱電変換発電装置は、本発明のペルチェ素子を使用することにより、熱電変換発電素子の低温作用部から吸熱しつつ、熱電変換発電素子の高温作用部に放熱することが容易にでき、熱電変換発電素子の高温作用部と低温作用部との間に安定した温度差を確保することができるようになる。従来、常温の空間において、温度差が大きくないため高温作用部から低温作用部に熱伝導してきた熱エネルギーは、低温作用部に蓄積されすぐに高温作用部と低温作用部の温度差がなくなってしまう。そのため、常温の空間において温度差を利用する熱電変換発電を行うことは困難であった。しかし、本発明の熱電変換発電装置においては本発明のペルチェ素子を使用することにより、低温作用部に熱伝導してきた熱エネルギーを再び高温作用部に戻してやることができるので、常温の空間において小さな温度差でも確実に温度差を利用して発電することが可能となる。
Further, the present invention is a thermoelectric conversion power generation device formed by combining a thermoelectric conversion power generation element and a Peltier element, the thermoelectric conversion power generation element is the thermoelectric conversion element, and the Peltier element is the thermoelectric conversion element, The Peltier element absorbs heat at the low temperature part of the thermoelectric conversion power generation element and dissipates heat to the high temperature part of the thermoelectric conversion power generation element or an object serving as a heat reservoir in contact with the high temperature part, and the thermoelectric conversion power generation element generates power. The thermoelectric conversion power generator characterized by these may be used.
The thermoelectric conversion power generation apparatus of the present invention can easily dissipate heat to the high temperature action part of the thermoelectric conversion power generation element while absorbing heat from the low temperature action part of the thermoelectric conversion power generation element by using the Peltier element of the present invention, A stable temperature difference can be ensured between the high temperature action part and the low temperature action part of the thermoelectric conversion power generation element. Conventionally, in a space at room temperature, the temperature difference is not large, so the heat energy conducted from the high-temperature action part to the low-temperature action part is accumulated in the low-temperature action part, and the temperature difference between the high-temperature action part and the low-temperature action part disappears immediately. End up. Therefore, it has been difficult to perform thermoelectric conversion power generation using a temperature difference in a room temperature. However, in the thermoelectric conversion power generation device of the present invention, by using the Peltier element of the present invention, the heat energy that has been thermally conducted to the low temperature action portion can be returned to the high temperature action portion, so that it is small in a room temperature room. Even with a temperature difference, it is possible to reliably generate power using the temperature difference.

次に、図面を用いて、実施形態に係る熱電変換素子について説明する。   Next, the thermoelectric conversion element according to the embodiment will be described with reference to the drawings.

〔実施形態1〕
図1は本発明の実施形態1に係る熱電変換素子の上面図、断面図及び下面図である。図1において、(1)が上面図、(2)が上面図におけるA−A線断面図、(3)が下面図である。
Embodiment 1
FIG. 1 is a top view, a cross-sectional view, and a bottom view of a thermoelectric conversion element according to Embodiment 1 of the present invention. In FIG. 1, (1) is a top view, (2) is a cross-sectional view along line AA in the top view, and (3) is a bottom view.

図1に示すように、実施形態1に係る熱電変換素子1Aは、導電性基板2(第1電極)と、導電性基板2上に形成されたN型熱電変換部及びP型熱電変換部と、N型熱電変換部上に形成された電極8A及びP型熱電変換部上に形成された電極8B(第2及び第3電極)とで構成されている。N型熱電変換部は、N型熱電変換材料層3N、断熱層4A、N型熱電変換材料層6Nの順で、P型熱電変換部は、P型熱電変換材料層3P、断熱層4B、P型熱電変換材料層6Pの各層の順で、それぞれ導電性基板2上に積層されている。断熱層4Aには貫通孔7Aが、断熱層4Bには貫通孔7Bが形成されている。また、N型熱電変換部とP型熱電変換部は、絶縁層9(絶縁体)を挟み、互いに離れて配置されている。   As shown in FIG. 1, the thermoelectric conversion element 1 </ b> A according to Embodiment 1 includes a conductive substrate 2 (first electrode), an N-type thermoelectric conversion unit and a P-type thermoelectric conversion unit formed on the conductive substrate 2. The electrode 8A is formed on the N-type thermoelectric conversion part, and the electrode 8B (second and third electrodes) is formed on the P-type thermoelectric conversion part. The N-type thermoelectric conversion part is in the order of the N-type thermoelectric conversion material layer 3N, the heat insulation layer 4A, and the N-type thermoelectric conversion material layer 6N. The P-type thermoelectric conversion part is the P-type thermoelectric conversion material layer 3P, the heat insulation layers 4B, P The layers are stacked on the conductive substrate 2 in the order of the layers of the thermoelectric conversion material layer 6P. A through hole 7A is formed in the heat insulating layer 4A, and a through hole 7B is formed in the heat insulating layer 4B. Further, the N-type thermoelectric conversion part and the P-type thermoelectric conversion part are arranged apart from each other with the insulating layer 9 (insulator) interposed therebetween.

N型熱電変換材料層3N,6N及びP型熱電変換材料層3P,6Pは、周知の熱電変換材料であれば特にその材質は制限されないが、500K以下の環境ではBi-Te系材料が好ましい。Bi-Te系材料には、N型半導体の材料として、Bi2Te3やBiとTeにSeを加えたBi2Te3-XSeX等があり、P型半導体の材料として、Bi2Te3やBiとTeにSbを加えたBi2-XSbXTe3等があるので、好ましくは、これらの材料でN型熱電変換材料層3N,6N及びP型熱電変換材料層3P,6Pを形成することが好ましい。実施形態1の熱電変換素子1Aでは、Bi-Te系材料が用いられ、具体的には、N型熱電変換材料層3N,6NがBi2Te2.7Se0.3の材料で形成され、P型熱電変換材料層3P,6PがBi0.5Sb1.5Te3の材料で形成されている。 The N-type thermoelectric conversion material layers 3N and 6N and the P-type thermoelectric conversion material layers 3P and 6P are not particularly limited as long as they are known thermoelectric conversion materials, but Bi-Te based materials are preferable in an environment of 500K or less. The Bi-Te-based material, as the material of N-type semiconductor, there is Bi 2 Te 3 and Bi 2 Te plus Se in Bi and Te 3-X Se X etc., as the material of the P-type semiconductor, Bi 2 Te 3 or Bi 2 -X Sb X Te 3 in which Sb is added to Bi and Te, and preferably, the N-type thermoelectric conversion material layers 3N and 6N and the P-type thermoelectric conversion material layers 3P and 6P are made of these materials. It is preferable to form. In the thermoelectric conversion element 1A according to the first embodiment, a Bi-Te-based material is used. Specifically, the N-type thermoelectric conversion material layers 3N and 6N are formed of a Bi 2 Te 2.7 Se 0.3 material, and a P-type thermoelectric conversion is performed. The material layers 3P and 6P are formed of Bi 0.5 Sb 1.5 Te 3 material.

断熱層4A,4Bに使用される具体的な材料としては、シリカ、多孔質シリカ、ガラス、ガラスウール、ロックウール、けいそう土、フェノール樹脂、メラミン樹脂、シリコン樹脂、或いは中空粒子形状を有する無機粒子等があげられる。   Specific materials used for the heat insulating layers 4A and 4B include silica, porous silica, glass, glass wool, rock wool, diatomaceous earth, phenol resin, melamine resin, silicon resin, or inorganic having a hollow particle shape. Particles and the like.

市販されているガラスウールやロックウールをフェノール樹脂やメラミン樹脂で固めた断熱基板を使用しても良い。断熱基板を使用する場合、断熱基板上に熱電変換材料層を蒸着法や印刷法、あるいは溶融ディップ法で形成する。断熱基板の厚みは1〜20mm程度である。   You may use the heat insulation board | substrate which hardened the glass wool and rock wool marketed with phenol resin or melamine resin. When using a heat insulating substrate, a thermoelectric conversion material layer is formed on the heat insulating substrate by a vapor deposition method, a printing method, or a melt dipping method. The thickness of the heat insulating substrate is about 1 to 20 mm.

また、上記の断熱材基板やガラス等をボールミル等の粉砕機で粉砕して断熱材粉末にし、有機溶媒やバインダーを加えてペースト化し、ペーストを印刷法により熱電変換材料層3N,3P上に塗布印刷し加熱することで断熱層4A,4Bを形成してもよい。   In addition, the above heat insulating material substrate and glass are pulverized with a pulverizer such as a ball mill to form a heat insulating material powder, added with an organic solvent and a binder to form a paste, and the paste is applied onto the thermoelectric conversion material layers 3N and 3P by a printing method. The heat insulating layers 4A and 4B may be formed by printing and heating.

また、多孔質シリカ粒子やけいそう土或いは中空粒子形状を有する無機粒子等の断熱材粒子に有機溶媒やバインダーを加えてペースト化し、ペーストを印刷法により熱電変換材料層3N,3P上に塗布印刷し加熱することで断熱層4A,4Bを形成してもよい。中空粒子形状を有する無機粒子としては、中空シリカ粒子、中空アルミナ粒子や中空チタニア粒子等が知られている。   Moreover, an organic solvent or a binder is added to heat insulating material particles such as porous silica particles, diatomaceous earth, or inorganic particles having a hollow particle shape to form a paste, and the paste is applied and printed on the thermoelectric conversion material layers 3N and 3P by a printing method. Then, the heat insulating layers 4A and 4B may be formed by heating. As inorganic particles having a hollow particle shape, hollow silica particles, hollow alumina particles, hollow titania particles, and the like are known.

また、断熱層4A,4Bには、これらの層を貫通する貫通孔7A,7Bが形成されている。この貫通孔7A,7Bは、断熱層4A,4B全体にわたって一様に形成され(各層で複数形成され)、貫通孔の形成は機械的にドリル等で貫通孔を設けても良いし、レーザー光の照射で貫通孔を形成してもよい。貫通孔の内側は、上記で説明した熱電変換材料で埋められている。N型熱電変換材料層3N上の断熱層4Aに形成された貫通孔7Aは、上記のBi2Te2.7Se0.3の材料が充填され、P型熱電変換材料層3P上の断熱層4Bに形成された貫通孔7Bは、上記のBi0.5Sb1.5Te3の材料が充填されている。図15(1)に断熱層に形成された貫通孔の様子を示す。図1に示すように、断熱層4A,4Bに貫通孔7A,7Bを設け、貫通孔内に熱電変換材料を充填することにより、断熱層4A,4Bを挟むように積層されているN型半導体層3N,6N及びP型半導体層3P,6Pにおいて、上下層の電気的接触をとることができる。図15(2)に貫通孔7が形成された断熱層4と半導体層3,6が積層された断面の様子を示す。貫通孔7A,7Bの大きさは、例えば、厚さ5mmの断熱層4A,4Bに対して直径0.3mmの円筒形状の大きさであり、その平面的な分布は、約0.25mm2の面積に対して1個の割合である。その形状は、例えば円筒状、あるいは角形状であっても良い。熱電変換材料の貫通孔への充填は、蒸着法、溶融ディップ法或いは熱電変換材料ペーストの印刷法等で行うことができる。 The heat insulating layers 4A and 4B are formed with through holes 7A and 7B penetrating these layers. The through holes 7A and 7B are uniformly formed over the entire heat insulating layers 4A and 4B (a plurality of layers are formed in each layer), and the through holes may be formed mechanically with a drill or the like, or laser light Through holes may be formed by irradiation. The inside of the through hole is filled with the thermoelectric conversion material described above. The through hole 7A formed in the heat insulating layer 4A on the N-type thermoelectric conversion material layer 3N is filled with the Bi 2 Te 2.7 Se 0.3 material and formed in the heat insulating layer 4B on the P-type thermoelectric conversion material layer 3P. The through hole 7B is filled with the above Bi 0.5 Sb 1.5 Te 3 material. FIG. 15A shows the state of the through holes formed in the heat insulating layer. As shown in FIG. 1, N-type semiconductors stacked so as to sandwich the heat insulating layers 4A and 4B by providing the heat insulating layers 4A and 4B with through holes 7A and 7B and filling the through holes with a thermoelectric conversion material. In the layers 3N and 6N and the P-type semiconductor layers 3P and 6P, the upper and lower layers can be in electrical contact. FIG. 15B shows a cross-sectional state in which the heat insulating layer 4 in which the through holes 7 are formed and the semiconductor layers 3 and 6 are laminated. The size of the through holes 7A and 7B is, for example, a cylindrical shape having a diameter of 0.3 mm with respect to the heat insulating layers 4A and 4B having a thickness of 5 mm, and the planar distribution thereof is about 0.25 mm 2 . The ratio is one for the area. The shape may be, for example, a cylindrical shape or a square shape. Filling the through holes with the thermoelectric conversion material can be performed by a vapor deposition method, a melt dipping method, a thermoelectric conversion material paste printing method, or the like.

本実施形態1では、まず、機械的にドリル等で貫通孔が形成されたグラスウール板を用意し、その表面及び裏面にBi-Te系材料を蒸着する。次いで、このグラスウール板を、Bi-Te系材料(N型又はP型熱電変換材料)が溶融した浴槽に浸漬し、浸漬後これを引き上げる。Bi-Te系材料を先に蒸着することで、溶融したBi-Te系材料の濡れ性が良くなり貫通孔がBi-Te系材料で充填される。その後、550℃程度の温度でアニールする。この工程により、貫通孔をBi-Te系材料で埋めるとともに、グラスウール板の表面及び裏面にBi-Te系材料の層を形成する。   In the first embodiment, first, a glass wool plate in which a through-hole is mechanically formed by a drill or the like is prepared, and a Bi-Te-based material is vapor-deposited on the front and back surfaces. Next, this glass wool plate is immersed in a bath in which a Bi-Te-based material (N-type or P-type thermoelectric conversion material) is melted, and then pulled up. By first depositing the Bi-Te material, the wettability of the melted Bi-Te material is improved, and the through-hole is filled with the Bi-Te material. Thereafter, annealing is performed at a temperature of about 550 ° C. Through this step, the through-hole is filled with the Bi-Te material, and a layer of Bi-Te material is formed on the front and back surfaces of the glass wool plate.

このように、実施形態1の熱電変換素子1Aは、貫通孔7A,7Bが断熱層4A,4Bに一様に形成されて電気的接触をとっているので、熱電変換に十分な電気的特性が与えられる。また、断熱材に形成されている貫通孔は、熱効率の高い形状であり、熱効率の高い形状の熱電変換材料が断熱材で覆われる構成となっている。この断熱層により、熱電変換素子1Aの高温作用部から低温作用部へ熱伝導する熱量:QKを低減できるため、熱電変換素子の高温作用部と低温作用部間の温度差を十分に確保して高い熱電変換効率が得られる。 Thus, since the thermoelectric conversion element 1A of Embodiment 1 has the through holes 7A and 7B uniformly formed in the heat insulating layers 4A and 4B and is in electrical contact, the electrical characteristics sufficient for thermoelectric conversion are obtained. Given. Moreover, the through-hole currently formed in the heat insulating material is a shape with high heat efficiency, and becomes a structure by which the thermoelectric conversion material of a shape with high heat efficiency is covered with a heat insulating material. The heat insulating layer, heat to heat conduction to the cold working portion from the high temperature effects of the thermoelectric conversion element 1A: it is possible to reduce the Q K, ensuring a sufficient temperature difference between the hot working portion and the low-temperature effect of the thermoelectric conversion element High thermoelectric conversion efficiency.

導電性基板2及び電極8A,8Bは、Al基板で構成されている。これらは、電極として機能するように十分な導電性を有する材料で形成されればよく、Alのほか、例えば、銅、銀、白金等で形成される。また、導電性基板2及び電極8A,8Bは、熱電変換素子で吸熱作用部、放熱作用部として機能するので、熱伝導率に優れる材料で形成する。Al基板と熱電変換材料層の接着は、導電性接着剤を使用しても良い。また、熱電変換材料層の電極形成部分に銀ペーストを印刷して加熱後、銀ペースト上に半田をのせAl基板を半田付けする方法でもよい。また、Al基板を熱電変換材料層に熱圧着する方法や、Al蒸着を利用することも可能である。   The conductive substrate 2 and the electrodes 8A and 8B are composed of an Al substrate. These may be formed of a material having sufficient conductivity so as to function as an electrode, and are formed of, for example, copper, silver, platinum or the like in addition to Al. Further, since the conductive substrate 2 and the electrodes 8A and 8B function as a heat absorption part and a heat radiation part in the thermoelectric conversion element, they are formed of a material having excellent thermal conductivity. For the adhesion between the Al substrate and the thermoelectric conversion material layer, a conductive adhesive may be used. Alternatively, a method may be used in which a silver paste is printed on the electrode forming portion of the thermoelectric conversion material layer, heated, and then soldered on the silver paste to solder the Al substrate. It is also possible to use a method in which an Al substrate is thermocompression bonded to a thermoelectric conversion material layer or Al vapor deposition.

なお、絶縁層9は、アクリル樹脂で形成され、本実施形態ではアクリル板が用いられている。この絶縁層は、N型熱電変換部とP型熱電変換部とを電気的に絶縁するための層であるので、必要な絶縁性を考慮して適宜周知の絶縁材料で形成すればよい。   The insulating layer 9 is made of an acrylic resin, and an acrylic plate is used in this embodiment. Since this insulating layer is a layer for electrically insulating the N-type thermoelectric conversion portion and the P-type thermoelectric conversion portion, it may be appropriately formed of a known insulating material in consideration of necessary insulation.

〔実施形態2〕
次に、実施形態2に係る熱電変換素子について説明する。図2は、本発明の実施形態2に係る熱電変換素子の上面図、断面図及び下面図である。図2において、(1)が上面図、(2)が上面図におけるA−A線断面図、(3)が下面図である。
[Embodiment 2]
Next, the thermoelectric conversion element according to the second embodiment will be described. FIG. 2 is a top view, a cross-sectional view, and a bottom view of a thermoelectric conversion element according to Embodiment 2 of the present invention. 2, (1) is a top view, (2) is a cross-sectional view along line AA in the top view, and (3) is a bottom view.

図2に示すように、本実施形態に係る熱電変換素子1Bは、実施形態1の熱電変換素子1Aとほぼ同様の構成であるが、熱電変換素子1Aの断熱層4A,4Bが、熱電変換素子1Bでは多孔質の断熱材料で形成された断熱層4C,4Dになっており、断熱層4C、4Dには貫通孔7A,7Bが形成されていない点が異なる。   As shown in FIG. 2, the thermoelectric conversion element 1 </ b> B according to the present embodiment has almost the same configuration as the thermoelectric conversion element 1 </ b> A of the first embodiment, but the heat insulating layers 4 </ b> A and 4 </ b> B of the thermoelectric conversion element 1 </ b> A are thermoelectric conversion elements. In 1B, it becomes the heat insulation layers 4C and 4D formed with the porous heat insulation material, and the point by which the through-holes 7A and 7B are not formed in the heat insulation layers 4C and 4D is different.

多孔質材からなる断熱層4C,4Dは、断熱材料と樹脂粒子を混合したペーストを作製し、印刷後、加熱することで樹脂粒子を燃焼消失させることで形成される。断熱材の具体的な材料としては、シリカ、多孔質シリカ、ガラス、ガラスウール、ロックウール、けいそう土、フェノール樹脂、メラミン樹脂、シリコン樹脂、或いは中空粒子形状を有する無機粒子等があげられる。ペーストに使用する断熱材料としては、ガラスウールやロックウールをフェノール樹脂やメラミン樹脂或はシリコン樹脂等で固めた断熱材基板、ガラス等を、ボールミル等の粉砕機で粉砕した断熱材粉末、或いは、多孔質シリカ粒子、けいそう土、或いは中空粒子形状の無機粒子等の断熱材粒子を使用する。上記の断熱材粉末或いは断熱材粒子と、樹脂粒子と、熱電変換材料粉末を混合して、有機溶媒やバインダーを加えて混練することによりペースト化し、このペーストを所定の位置に塗布印刷後、加熱することにより樹脂粒子を燃焼消失させて多孔質な断熱層を形成する。樹脂粒子としては、ポリスチレン、ポリメチルメタクリレート、ポリエチレン等の粒子を使用することができるが、350℃で略完全に消失するポリメチルメタクリレートが好ましい。中空粒子形状を有する無機粒子としては、中空シリカ粒子、中空アルミナ粒子や中空チタニア粒子等が知られている。   The heat insulating layers 4C and 4D made of a porous material are formed by producing a paste in which a heat insulating material and resin particles are mixed, and heating the resin particles after printing to burn off the resin particles. Specific examples of the heat insulating material include silica, porous silica, glass, glass wool, rock wool, diatomaceous earth, phenol resin, melamine resin, silicon resin, and inorganic particles having a hollow particle shape. As the heat insulating material used for the paste, heat insulating material powder obtained by crushing glass wool or rock wool with phenol resin, melamine resin, or silicon resin, glass, etc. with a pulverizer such as a ball mill, or Heat insulating material particles such as porous silica particles, diatomaceous earth, or hollow particle-shaped inorganic particles are used. Mix the above heat insulating material powder or heat insulating material particles, resin particles, and thermoelectric conversion material powder, knead by adding an organic solvent and binder, paste this paste at a predetermined position, print and heat By doing so, the resin particles are burned off and a porous heat insulating layer is formed. As the resin particles, particles such as polystyrene, polymethyl methacrylate, and polyethylene can be used, but polymethyl methacrylate that disappears almost completely at 350 ° C. is preferable. As inorganic particles having a hollow particle shape, hollow silica particles, hollow alumina particles, hollow titania particles, and the like are known.

多孔質の断熱層4D,4Dの孔部分に熱電変換材料を充填する。熱電変換材料の充填は、熱電変換材料の蒸着或いは熱電変換材料ペーストの印刷等で行うことができる。   The hole portions of the porous heat insulating layers 4D and 4D are filled with a thermoelectric conversion material. The filling of the thermoelectric conversion material can be performed by vapor deposition of a thermoelectric conversion material or printing of a thermoelectric conversion material paste.

本実施形態2では、まず、N型熱電変換材料としてBi2Te2.7Se0.3の組成で調整した原料を、P型熱電変換材料としてBi0.5Sb1.5Te3の組成で調整した原料をそれぞれ使用して、Bi-Te系熱電変換材料の基板を作製し、熱電変換材料層3N、3Pとする。次に、上記グラスウール基板を粉砕した断熱材粉末とポリメチルメタクリレート粒子を混合してペースト化し、熱電変換材料層3N、3P上に印刷し、400℃で加熱してポリメチルメタクリレート粒子を消失させ多孔質の断熱層を形成する。続いて、Bi-Te系材料のペーストを断熱層の表面に印刷するが、このとき断熱層の孔にペーストを充填しかつ断熱層の表面がBi-Te系材料をペーストで覆われるように塗布印刷する。そして580℃で加熱し熱電変換材料層6N、6Pを形成する。 In the second embodiment, first, a raw material adjusted with a composition of Bi 2 Te 2.7 Se 0.3 is used as an N-type thermoelectric conversion material, and a raw material adjusted with a composition of Bi 0.5 Sb 1.5 Te 3 is used as a P-type thermoelectric conversion material. Then, a substrate of Bi-Te based thermoelectric conversion material is produced and used as thermoelectric conversion material layers 3N and 3P. Next, the heat insulating material powder obtained by pulverizing the glass wool substrate and the polymethyl methacrylate particles are mixed to form a paste, printed on the thermoelectric conversion material layers 3N and 3P, and heated at 400 ° C. so that the polymethyl methacrylate particles disappear and become porous. Form a quality insulation layer. Subsequently, the Bi-Te-based material paste is printed on the surface of the heat insulating layer. At this time, the paste is filled in the holes of the heat insulating layer and the surface of the heat insulating layer is coated with the Bi-Te-based material covered with the paste. Print. And it heats at 580 degreeC and forms the thermoelectric conversion material layers 6N and 6P.

以上のように、実施形態2の熱電変換素子1Bは、多孔質の断熱層4C,4Dが形成されており、断熱層4C,4Dの孔部分に熱電変換材料が充填されて電気的接触をとっている。孔部分の熱電変換材料は断熱材で覆われる構造となるため、高温作用部から低温作用部へ熱伝導する熱量:QKを低減することができ、熱電変換素子の高温作用部と低温作用部間の温度差を十分に確保して高い熱電変換効率が得られる。 As described above, the thermoelectric conversion element 1B of Embodiment 2 has the porous heat insulating layers 4C and 4D formed therein, and the hole portions of the heat insulating layers 4C and 4D are filled with the thermoelectric conversion material to make electrical contact. ing. Since the thermoelectric conversion material in the hole part is covered with a heat insulating material, the amount of heat conducted from the high temperature action part to the low temperature action part: Q K can be reduced, and the high temperature action part and the low temperature action part of the thermoelectric conversion element. A sufficient thermoelectric conversion efficiency can be obtained by ensuring a sufficient temperature difference between the two.

〔実施形態3〕
次に、実施形態3に係る熱電変換素子について説明する。図3は、本発明の実施形態3に係る熱電変換素子の上面図、断面図及び下面図である。図3において、(1)が上面図、(2)が上面図におけるB−B線断面図、(3)が下面図である。
[Embodiment 3]
Next, a thermoelectric conversion element according to Embodiment 3 will be described. FIG. 3 is a top view, a cross-sectional view, and a bottom view of a thermoelectric conversion element according to Embodiment 3 of the present invention. 3, (1) is a top view, (2) is a cross-sectional view taken along line BB in the top view, and (3) is a bottom view.

図3に示すように、本実施形態に係る熱電変換素子1Cは、実施形態1の熱電変換素子1Aとほぼ同様の構成であるが、N型熱電変換部及びP型熱電変換部の構成においてその積層構造が異なっている。すなわち、実施形態4の熱電変換素子1CにおけるN型熱電変換部は、下層からN型熱電変換材料層3N、断熱層4A、N型熱電変換材料層6N、異方性導電材料(グラファイト)層5Aの順で積層され、P型熱電変換部は、下層からP型熱電変換材料層3P、断熱層4B、P型熱電変換材料層6P、異方性導電材料(グラファイト)層5Bの各層の順で積層されている。   As shown in FIG. 3, the thermoelectric conversion element 1 </ b> C according to the present embodiment has substantially the same configuration as the thermoelectric conversion element 1 </ b> A of the first embodiment, but in the configuration of the N-type thermoelectric conversion unit and the P-type thermoelectric conversion unit, The laminated structure is different. That is, the N-type thermoelectric conversion part in the thermoelectric conversion element 1C of Embodiment 4 includes the N-type thermoelectric conversion material layer 3N, the heat insulating layer 4A, the N-type thermoelectric conversion material layer 6N, and the anisotropic conductive material (graphite) layer 5A from the lower layer. In this order, the P-type thermoelectric conversion part is arranged in the order of the P-type thermoelectric conversion material layer 3P, the heat insulating layer 4B, the P-type thermoelectric conversion material layer 6P, and the anisotropic conductive material (graphite) layer 5B from the lower layer. Are stacked.

本実施形態3では実施形態1と同様に、貫通孔が形成されたグラスウール板を溶融ディップ法で熱電変換材料層3N,3Pと断熱層4A,4Bと熱電変換材料層6N,6Pの積層構造を形成し、熱電変換材料層6N,6P上に異方性導電材料層を積層してN型熱電変換部とP型熱電変換部とを作製する。
異方性導電材料層5A,5Bは、グラファイトシートを使用する。グラファイトシートは市販されているグラファイトシートを使用し、Bi-Te系材料よりなる熱電変換材料層6N,6Pにグラファイトシートを接着する。接着方法は、グラファイトシートの接着面に、熱電変換材料層6N,6Pと同じ組成のBi-Te系材料を蒸着しBi-Te系材料の層を形成する。次いで熱電変換材料層6N,6Pに、グラファイトシートのBi-Te系材料の層が形成された面を密着させて熱圧着する。以上の工程により、熱電変換材料層3N,3Pと、断熱層4A,4Bと、熱電変換材料層6N,6Pと、グラファイトよりなる異方性導電材料層5A,5Bが積層されたN型熱電変換部とP型熱電変換部とを作製する。
In the third embodiment, as in the first embodiment, a laminated structure of the thermoelectric conversion material layers 3N and 3P, the heat insulating layers 4A and 4B, and the thermoelectric conversion material layers 6N and 6P is formed on the glass wool plate in which the through holes are formed by the melt dipping method. Then, an anisotropic conductive material layer is laminated on the thermoelectric conversion material layers 6N and 6P to produce an N-type thermoelectric conversion portion and a P-type thermoelectric conversion portion.
The anisotropic conductive material layers 5A and 5B use graphite sheets. As the graphite sheet, a commercially available graphite sheet is used, and the graphite sheet is bonded to the thermoelectric conversion material layers 6N and 6P made of Bi-Te material. In the bonding method, a Bi-Te-based material having the same composition as the thermoelectric conversion material layers 6N and 6P is deposited on the bonding surface of the graphite sheet to form a Bi-Te-based material layer. Next, the surface of the graphite sheet on which the Bi-Te-based material layer is formed is brought into close contact with the thermoelectric conversion material layers 6N and 6P and thermocompression bonded. N-type thermoelectric conversion in which the thermoelectric conversion material layers 3N and 3P, the heat insulating layers 4A and 4B, the thermoelectric conversion material layers 6N and 6P, and the anisotropic conductive material layers 5A and 5B made of graphite are laminated by the above-described steps. Part and a P-type thermoelectric conversion part.

本実施形態3の熱電変換素子1Cでは、グラファイトよりなる異方性導電材料層が有する電気伝導率の異方性を利用して、電極8A,8Bを異方性導電材料(グラファイト)層の一部に配置する。導電性基板2及び電極8A,8Bは、配置、大きさが異なり、図3に示すように、電極8A,8Bの面積を小さくし、かつ導電性基板2と電極8A,8Bとが平面的に重畳しない部分を形成して配置されている。このため、発熱作用部(電極8A,8Bの領域)から吸熱作用部(導電性基板2の領域)への熱伝導が立体配置的に抑制されることになる。また、断熱層4A、4Bが形成されており、この断熱層によっても、発熱作用部から吸熱作用部へ熱伝導する熱量:QKを低減できる。従って、本実施形態においても、高温作用部と低温作用部間の温度差を十分に確保して高い熱電変換効率が実現できる。 In the thermoelectric conversion element 1 </ b> C of the third embodiment, the electrodes 8 </ b> A and 8 </ b> B are made one of the anisotropic conductive material (graphite) layers by utilizing the anisotropy of electrical conductivity of the anisotropic conductive material layer made of graphite. Placed in the section. The conductive substrate 2 and the electrodes 8A and 8B are different in arrangement and size. As shown in FIG. 3, the area of the electrodes 8A and 8B is reduced, and the conductive substrate 2 and the electrodes 8A and 8B are planar. The portions that do not overlap are formed and arranged. For this reason, the heat conduction from the heat generating action part (area of the electrodes 8A and 8B) to the heat absorbing action part (area of the conductive substrate 2) is suppressed in a three-dimensional configuration. Further, the heat insulating layer 4A, and 4B are formed, by the heat insulating layer, heat thermally conducted to the heat absorbing action unit from the heat acting portion: can be reduced Q K. Therefore, also in this embodiment, it is possible to achieve a high thermoelectric conversion efficiency by sufficiently securing a temperature difference between the high temperature action part and the low temperature action part.

〔実施形態4〕
次に、実施形態4に係る熱電変換素子について説明する。図4は、本発明の実施形態4に係る熱電変換素子の上面図、断面図及び下面図である。図4において、(1)が上面図、(2)が上面図におけるC−C線断面図、(3)が下面図である。
[Embodiment 4]
Next, a thermoelectric conversion element according to Embodiment 4 will be described. FIG. 4 is a top view, a cross-sectional view, and a bottom view of a thermoelectric conversion element according to Embodiment 4 of the present invention. 4, (1) is a top view, (2) is a cross-sectional view taken along the line CC in the top view, and (3) is a bottom view.

図4に示すように、電極の配置の例として挙げる熱電変換素子1Dは、実施形態3,図3の熱電変換素子1Cと同様のN型熱電変換部及びP型熱電変換部を備えているが、導電性基板2及び電極8A,8Bの配置、大きさが異なり、導電性基板2と電極8A,8Bとが平面的に分離されて配置されている。   As shown in FIG. 4, the thermoelectric conversion element 1 </ b> D given as an example of electrode arrangement includes the same N-type thermoelectric conversion unit and P-type thermoelectric conversion unit as the thermoelectric conversion element 1 </ b> C of Embodiment 3 and FIG. 3. The arrangement and size of the conductive substrate 2 and the electrodes 8A and 8B are different, and the conductive substrate 2 and the electrodes 8A and 8B are arranged separately in a plane.

本実施形態では、異方性導電材料(グラファイト)層5A,5Bとして、熱電変換材料層6N,6Pよりも長く積層構造からはみ出した延在部を有する形状のグラファイトシートを使用する。N型熱電変換部及びP型熱電変換部に、延在部を有する異方性導電材料(グラファイト)5A,5Bが設けられ、異方性導電材料層の延在部に電極8A,8Bが配置される。   In the present embodiment, as the anisotropic conductive material (graphite) layers 5A and 5B, graphite sheets having shapes extending from the laminated structure longer than the thermoelectric conversion material layers 6N and 6P are used. The N-type thermoelectric conversion part and the P-type thermoelectric conversion part are provided with anisotropic conductive materials (graphite) 5A and 5B having an extension part, and electrodes 8A and 8B are arranged in the extension part of the anisotropic conductive material layer. Is done.

ここで延在部について説明する。図4(2)に示したように、異方性導電材料層5Aは、N型熱電変換材料層3N側の第1主要面とそれに対面する側の第2主要面とを有している。N型熱電変換材料層3Nは、第1主要面の一部の上に設けられており、第1主要面には、その上にN型熱電変換材料層が設けられていない表面がある。この表面を有する第1異方性導電材料層5Aの部分を延在部という。熱電変換素子1Eでは、第2主要面のうち延在部の表面上に第2電極8Aが設けられる。   Here, the extension portion will be described. As shown in FIG. 4B, the anisotropic conductive material layer 5A has a first main surface on the N-type thermoelectric conversion material layer 3N side and a second main surface on the side facing it. The N-type thermoelectric conversion material layer 3N is provided on a part of the first main surface, and the first main surface has a surface on which the N-type thermoelectric conversion material layer is not provided. The portion of the first anisotropic conductive material layer 5A having this surface is called an extending portion. In the thermoelectric conversion element 1E, the second electrode 8A is provided on the surface of the extending portion of the second main surface.

また、図4(2)に示したように、異方性導電材料層5Bは、P型熱電変換材料層3P側の第3主要面とそれに対面する側の第4主要面とを有している。P型熱電変換材料層3Pは、第3主要面の一部の上に設けられており、第3主要面には、その上にP型熱電変換材料層が設けられていない表面がある。この表面を有する第2異方性導電材料層5Bの部分を延在部という。熱電変換素子1Eでは、第4主要面のうち延在部の表面上に第3電極8Bが設けられる。   Further, as shown in FIG. 4B, the anisotropic conductive material layer 5B has a third main surface on the P-type thermoelectric conversion material layer 3P side and a fourth main surface on the side facing it. Yes. The P-type thermoelectric conversion material layer 3P is provided on a part of the third main surface, and the third main surface has a surface on which the P-type thermoelectric conversion material layer is not provided. The portion of the second anisotropic conductive material layer 5B having this surface is called an extending portion. In the thermoelectric conversion element 1E, the third electrode 8B is provided on the surface of the extending portion of the fourth main surface.

異方性導電材料(グラファイト)層は、層(ab面)内で高い電気伝導率を示し、厚み(c軸)方向で低い電気伝導率を示す特性を有するので、異方性導電材料(グラファイト)層5A,5Bの延在部上に第2又は第3電極8A、8Bを形成することが可能となる。その結果本実施形態5の熱電変換素子1Eでは、電極8A,8Bの面積を小さくし、かつ導電性基板2と電極8A,8Bが上面からみた配置において互いに重ならないように形成することができ、発熱作用部(電極8A,8Bの領域)から吸熱作用部(導電性基板2の領域)への熱伝導が立体配置によって抑制されることになる。また、断熱層4A、4Bが形成されており、この断熱層によっても、発熱作用部から吸熱作用部へ熱伝導する熱量:QKを低減できる。従って、本実施形態においても、高温作用部と低温作用部間の温度差を十分に確保して高い熱電変換効率が実現できる。 The anisotropic conductive material (graphite) layer has a characteristic of exhibiting high electrical conductivity in the layer (ab plane) and low electrical conductivity in the thickness (c-axis) direction. Therefore, the anisotropic conductive material (graphite) ) The second or third electrode 8A, 8B can be formed on the extended portion of the layers 5A, 5B. As a result, in the thermoelectric conversion element 1E of the fifth embodiment, the area of the electrodes 8A and 8B can be reduced, and the conductive substrate 2 and the electrodes 8A and 8B can be formed so as not to overlap each other when viewed from above. The heat conduction from the heat generating portion (the region of the electrodes 8A and 8B) to the heat absorbing portion (the region of the conductive substrate 2) is suppressed by the three-dimensional arrangement. Further, the heat insulating layer 4A, and 4B are formed, by the heat insulating layer, heat thermally conducted to the heat absorbing action unit from the heat acting portion: can be reduced Q K. Therefore, also in this embodiment, it is possible to achieve a high thermoelectric conversion efficiency by sufficiently securing a temperature difference between the high temperature action part and the low temperature action part.

〔実施形態5〕
次に、実施形態5に係る熱電変換素子について説明する。図5は、本発明の実施形態5に係る熱電変換素子の上面図、断面図及び下面図である。図5において、(1)が上面図、(2)が上面図におけるC−C線断面図、(3)が下面図である。
[Embodiment 5]
Next, a thermoelectric conversion element according to Embodiment 5 will be described. FIG. 5 is a top view, a cross-sectional view, and a bottom view of a thermoelectric conversion element according to Embodiment 5 of the present invention. In FIG. 5, (1) is a top view, (2) is a cross-sectional view taken along line CC in the top view, and (3) is a bottom view.

図5に示すように、本実施形態に係る熱電変換素子1Eは、実施形態4の熱電変換素子1Dとほぼ同様の構成であり,熱電変換素子1Eにおいても、異方性導電材料(グラファイト)層5A,5Bが、熱電変換材料層6N,6Pよりも長く積層構造からはみ出した延在部を有する形状の素子構造である。相違点は、熱電変換素子1Dの断熱層4A,4Bが、熱電変換素子1Eでは多孔質の断熱材料で形成された断熱層4C,4Dになっており、断熱層4C、4Dには貫通孔7A,7Bが形成されていない点である。   As shown in FIG. 5, the thermoelectric conversion element 1E according to the present embodiment has substantially the same configuration as the thermoelectric conversion element 1D according to the fourth embodiment, and an anisotropic conductive material (graphite) layer also in the thermoelectric conversion element 1E. 5A, 5B is an element structure having a shape having an extended portion that is longer than the thermoelectric conversion material layers 6N, 6P and protrudes from the laminated structure. The difference is that the heat insulating layers 4A and 4B of the thermoelectric conversion element 1D are heat insulating layers 4C and 4D formed of a porous heat insulating material in the thermoelectric conversion element 1E, and the heat insulating layers 4C and 4D have through holes 7A. 7B is not formed.

本実施形態5の熱電変換素子1Eにおいても、電極8A,8Bの面積を小さくし、かつ導電性基板2と電極8A,8Bが上面からみた配置において互いに重ならないように形成することができ、発熱作用部(電極8A,8Bの領域)から吸熱作用部(導電性基板2の領域)への熱伝導が立体配置によって抑制されることになる。また、断熱層4C、4Dが形成されており、この断熱層によっても、発熱作用部から吸熱作用部へ熱伝導する熱量:QKを低減できる。従って、本実施形態においても、高温作用部と低温作用部間の温度差を十分に確保して高い熱電変換効率が実現できる。 Also in the thermoelectric conversion element 1E according to the fifth embodiment, the area of the electrodes 8A and 8B can be reduced, and the conductive substrate 2 and the electrodes 8A and 8B can be formed so as not to overlap each other when viewed from above. The heat conduction from the action portion (the region of the electrodes 8A and 8B) to the endothermic action portion (the region of the conductive substrate 2) is suppressed by the three-dimensional arrangement. Further, the heat insulating layer 4C, 4D are formation, even by the heat insulating layer, heat thermally conducted to the heat absorbing action unit from the heat acting portion: can be reduced Q K. Therefore, also in this embodiment, it is possible to achieve a high thermoelectric conversion efficiency by sufficiently securing a temperature difference between the high temperature action part and the low temperature action part.

〔実施形態6〕
次に、実施形態6に係る熱電変換素子について説明する。図6は、本発明の実施形態6に係る熱電変換素子の上面図、断面図及び下面図である。図6において、(1)が上面図、(2)が上面図におけるA−A線断面図、(3)が下面図である。
[Embodiment 6]
Next, a thermoelectric conversion element according to Embodiment 6 will be described. FIG. 6 is a top view, a cross-sectional view, and a bottom view of a thermoelectric conversion element according to Embodiment 6 of the present invention. 6, (1) is a top view, (2) is a cross-sectional view taken along the line AA in the top view, and (3) is a bottom view.

図6に示すように、本実施形態に係る熱電変換素子1Fは、導電性基板2(第1電極)と、導電性基板2上に形成されたN型熱電変換部及びP型熱電変換部と、N型熱電変換部上に形成された電極8A及びP型熱電変換部上に形成された電極8B(第2及び第3電極)とで構成されている。N型熱電変換部は、N型熱電変換材料層3N、グラファイト層5A、断熱層4E、グラファイト層5A、N型熱電変換材料層6Nの順で導電性基板2上に積層されており、グラファイト層5Aは断熱層4Eの側面で繋がっており電気的接触が取れるように配置されている。P型熱電変換部は、P型熱電変換材料層3P、グラファイト層5B、断熱層4F、グラファイト層5B、P型熱電変換材料層6Pの順で導電性基板2上に積層されており、グラファイト層5Bは断熱層4Fの側面で繋がっており電気的接触が取れるように配置されている。また、N型熱電変換部とP型熱電変換部は、絶縁層9(絶縁体)を挟み、互いに離れて配置されている。   As shown in FIG. 6, the thermoelectric conversion element 1 </ b> F according to this embodiment includes a conductive substrate 2 (first electrode), an N-type thermoelectric conversion unit and a P-type thermoelectric conversion unit formed on the conductive substrate 2. The electrode 8A is formed on the N-type thermoelectric conversion part, and the electrode 8B (second and third electrodes) is formed on the P-type thermoelectric conversion part. The N-type thermoelectric conversion part is laminated on the conductive substrate 2 in the order of the N-type thermoelectric conversion material layer 3N, the graphite layer 5A, the heat insulating layer 4E, the graphite layer 5A, and the N-type thermoelectric conversion material layer 6N. 5A is connected by the side surface of the heat insulation layer 4E, and is arrange | positioned so that an electrical contact can be taken. The P-type thermoelectric conversion part is laminated on the conductive substrate 2 in the order of the P-type thermoelectric conversion material layer 3P, the graphite layer 5B, the heat insulating layer 4F, the graphite layer 5B, and the P-type thermoelectric conversion material layer 6P. 5B is connected by the side surface of the heat insulation layer 4F, and is arrange | positioned so that an electrical contact can be taken. Further, the N-type thermoelectric conversion part and the P-type thermoelectric conversion part are arranged apart from each other with the insulating layer 9 (insulator) interposed therebetween.

本実施形態6の熱電変換素子1Fにおいては、断熱層4E,4Fは断熱材で形成されており熱伝導が抑制される構造であり、断熱層4E,4Fの側面に配置されたグラファイト5A,5Bにより十分な電気伝導性を確保している。この熱電変換素子においても、グラファイトを使用して熱伝導部分と電気伝導部分を立体的に隔離することで高い電気伝導性と低い熱伝導性を確保でき高い熱電変換効率が実現できる。
〔実施形態7〕
次に、実施形態7に係る熱電変換素子について説明する。図7は、本発明の実施形態7に係る熱電変換素子の上面図、断面図及び下面図である。図7において、(1)が上面図、(2)が上面図におけるA−A線断面図、(3)が下面図である。
In the thermoelectric conversion element 1F of the sixth embodiment, the heat insulating layers 4E and 4F are formed of a heat insulating material and have a structure in which heat conduction is suppressed, and the graphites 5A and 5B disposed on the side surfaces of the heat insulating layers 4E and 4F. As a result, sufficient electrical conductivity is secured. Also in this thermoelectric conversion element, high heat conductivity and low heat conductivity can be ensured by using graphite to separate the heat conduction portion and the electric conduction portion in three dimensions, and high thermoelectric conversion efficiency can be realized.
[Embodiment 7]
Next, a thermoelectric conversion element according to Embodiment 7 will be described. FIG. 7 is a top view, a cross-sectional view, and a bottom view of a thermoelectric conversion element according to Embodiment 7 of the present invention. 7, (1) is a top view, (2) is a cross-sectional view taken along the line AA in the top view, and (3) is a bottom view.

図7に示すように、本実施形態に係る熱電変換素子1Gは、実施形態6の熱電変換素子1Fとほぼ同様の構成であるが,熱電変換素子1Fの断熱層4E、4Fに対して熱電変換素子1Gの断熱層4G、4Hは内部が空洞になっている点が異なる。断熱層4G、4Hは一般の断熱材で形成されているが、内部が空洞である筒状の中空構造となっている。   As shown in FIG. 7, the thermoelectric conversion element 1G according to the present embodiment has substantially the same configuration as the thermoelectric conversion element 1F according to the sixth embodiment, but the thermoelectric conversion is performed on the heat insulating layers 4E and 4F of the thermoelectric conversion element 1F. The heat insulating layers 4G and 4H of the element 1G are different in that the inside is hollow. The heat insulating layers 4G and 4H are formed of a general heat insulating material, but have a cylindrical hollow structure having a hollow inside.

本実施形態7の熱電変換素子1Gにおいても、断熱層4G,4Hは断熱材と空気層で形成されており熱伝導が抑制される構造であり、断熱層4G,4Hの側面に配置されたグラファイト5A,5Bにより十分な電気伝導性を確保している。この熱電変換素子においても、グラファイトを使用して熱伝導部分と電気伝導部分を立体的に隔離することで高い電気伝導性と低い熱伝導性を確保でき高い熱電変換効率が実現できる。   Also in the thermoelectric conversion element 1G according to the seventh embodiment, the heat insulating layers 4G and 4H are formed of a heat insulating material and an air layer and have a structure in which heat conduction is suppressed, and graphite disposed on the side surfaces of the heat insulating layers 4G and 4H. Sufficient electrical conductivity is ensured by 5A and 5B. Also in this thermoelectric conversion element, high heat conductivity and low heat conductivity can be ensured by using graphite to separate the heat conduction portion and the electric conduction portion in three dimensions, and high thermoelectric conversion efficiency can be realized.

〔比較形態1〕
図12は比較形態1に係る従来の熱電変換素子の上面図、断面図及び下面図である。図4において、(1)が上面図、(2)が上面図におけるA−A線断面図、(3)が下面図である。
[Comparison 1]
FIG. 12 is a top view, a cross-sectional view, and a bottom view of a conventional thermoelectric conversion element according to Comparative Embodiment 1. 4, (1) is a top view, (2) is a cross-sectional view taken along line AA in the top view, and (3) is a bottom view.

図12に示すように、比較形態1に係る熱電変換素子1Kは、導電性基板2(第1電極)と、導電性基板2上に形成されたN型熱電変換材料層3NよりなるN型熱電変換部、及びP型熱電変換材料層3PよりなるP型熱電変換部と、N型熱電変換部上に形成された電極8A及びP型熱電変換部上に形成された電極8B(第2及び第3電極)とで構成されている。また、N型熱電変換部とP型熱電変換部は、絶縁層9(絶縁体)を挟み、互いに離れて配置されている。熱電変換素子1Kは、従来の素子構造の熱電変換素子であり、断熱層は有さない。   As shown in FIG. 12, the thermoelectric conversion element 1K according to Comparative Example 1 includes an N-type thermoelectric element composed of a conductive substrate 2 (first electrode) and an N-type thermoelectric conversion material layer 3N formed on the conductive substrate 2. A conversion part, a P-type thermoelectric conversion part composed of a P-type thermoelectric conversion material layer 3P, an electrode 8A formed on the N-type thermoelectric conversion part, and an electrode 8B (second and second electrodes) formed on the P-type thermoelectric conversion part 3 electrodes). Further, the N-type thermoelectric conversion part and the P-type thermoelectric conversion part are arranged apart from each other with the insulating layer 9 (insulator) interposed therebetween. The thermoelectric conversion element 1K is a thermoelectric conversion element having a conventional element structure, and does not have a heat insulating layer.

〔比較形態2〕
次に、比較形態2に係る熱電変換素子について説明する。図13は、比較形態2に係る熱電変換素子の上面図、断面図及び下面図である。図2において、(1)が上面図、(2)が上面図におけるC−C線断面図、(3)が下面図である。
[Comparison 2]
Next, the thermoelectric conversion element according to Comparative Example 2 will be described. FIG. 13 is a top view, a cross-sectional view, and a bottom view of the thermoelectric conversion element according to Comparative Example 2. 2, (1) is a top view, (2) is a cross-sectional view taken along line CC in the top view, and (3) is a bottom view.

図13に示すように、熱電変換素子1Lは、導電性基板2(第1電極)上にN型熱電変換部とP型熱電変換部が配置されている。N型熱電変換部は、下からN型熱電変換材料層3N、異方性導電材料(グラファイト)層5Aの順で積層され、P型熱電変換部は、下からP型熱電変換材料層3P、異方性導電材料(グラファイト)層5Bの順で積層されており、異方性導電材料(グラファイト)層5A,5Bは熱電変換材料層3N,3Pよりも長く積層構造からはみ出した延在部を有する構造である。その延在部上に電極8A,8Bが配置される。本実施形態の熱電変換素子1Lは、断熱層は有していない。   As shown in FIG. 13, in the thermoelectric conversion element 1L, an N-type thermoelectric conversion unit and a P-type thermoelectric conversion unit are arranged on a conductive substrate 2 (first electrode). The N-type thermoelectric conversion part is laminated in the order of the N-type thermoelectric conversion material layer 3N and the anisotropic conductive material (graphite) layer 5A from the bottom, and the P-type thermoelectric conversion part is laminated from the bottom to the P-type thermoelectric conversion material layer 3P, The anisotropic conductive material (graphite) layers 5B are laminated in this order, and the anisotropic conductive material (graphite) layers 5A and 5B are longer than the thermoelectric conversion material layers 3N and 3P and extend from the laminated structure. It is the structure which has. Electrodes 8A and 8B are disposed on the extended portion. The thermoelectric conversion element 1L of the present embodiment does not have a heat insulating layer.

比較形態2の熱電変換素子1Lにおいても、電極8A,8Bの面積を小さくし、かつ導電性基板2と電極8A,8Bが上面からみた配置において互いに重ならないように形成することができ、発熱作用部(電極8A,8Bの領域)から吸熱作用部(導電性基板2の領域)への熱伝導が立体配置によって抑制されることになる。しかし、断熱層が形成されておらず、断熱層によって発熱作用部から吸熱作用部へ熱伝導する熱量:QKを低減する作用を有さない。 Also in the thermoelectric conversion element 1L of the comparative form 2, the area of the electrodes 8A and 8B can be reduced, and the conductive substrate 2 and the electrodes 8A and 8B can be formed so as not to overlap each other when viewed from the upper surface. The heat conduction from the portion (the region of the electrodes 8A and 8B) to the endothermic action portion (the region of the conductive substrate 2) is suppressed by the three-dimensional arrangement. However, no heat insulating layer is formed, heat thermally conducted to the heat absorbing action unit from the heating action portion by the heat insulating layer: no effect of reducing the Q K.

上記で説明した実施形態1〜7の熱電変換素子は、単独で使用されるだけでなく、複数で使用されてもよい。例えば、複数の熱電変換素子が組みあわさって、熱電変換発電装置を構成してもよい。   The thermoelectric conversion elements of Embodiments 1 to 7 described above are not only used alone, but may be used in a plurality. For example, a thermoelectric conversion power generation apparatus may be configured by combining a plurality of thermoelectric conversion elements.

〔実施形態8〕
次に、実施形態8に係る熱電変換発電装置について説明する。図8は、本発明の実施形態8に係る熱電変換発電装置(複数の熱電変換素子を備える装置)の断面図である。図8に示すように、本実施形態に係る熱電変換発電装置1Hは、図1に示す熱電変換素子1A(実施形態1の熱電変換素子)と、さらに別の熱電変換素子10A,10Bとで構成されている。ここで、熱電変換素子1Aは発電に寄与する熱電変換発電素子であり、熱電変換素子10A,10Bは熱電変換素子1Aを効率よく発電させるためのペルチェ素子である。
[Embodiment 8]
Next, a thermoelectric conversion power generator according to Embodiment 8 will be described. FIG. 8 is a cross-sectional view of a thermoelectric conversion power generation apparatus (an apparatus including a plurality of thermoelectric conversion elements) according to Embodiment 8 of the present invention. As shown in FIG. 8, the thermoelectric conversion power generation apparatus 1H according to the present embodiment includes the thermoelectric conversion element 1A shown in FIG. 1 (thermoelectric conversion element of the first embodiment) and further thermoelectric conversion elements 10A and 10B. Has been. Here, the thermoelectric conversion element 1A is a thermoelectric conversion power generation element that contributes to power generation, and the thermoelectric conversion elements 10A and 10B are Peltier elements for efficiently generating the thermoelectric conversion element 1A.

ここで熱電変換素子1Aは、第1の電極である導電性基板2の下部に、絶縁層9を挟んでN型熱電変換材料層3N、断熱層4A、N型熱電変換材料層6NよりなるN型熱電変換部と、P型熱電変換材料層3P、断熱層4B、P型熱電変換材料層6PよりなるP型熱電変換部が形成されており、熱電変換材料層6N,6Pの下部に第2,第3の電極8A,8Bが形成されている素子構造の熱電変換発電素子である。熱電変換素子1Aは、第1の電極の導電性基板2が高温作用部として働き、第2、第3の電極8A,8Bが低温作用部として働き、高温作用部と低温作用部の温度差を利用して発電を行う。熱電変換素子1Aは、断熱層4A,4Bを有しており、高温作用部から低温作用部へ熱伝導する熱量:QKを低減できるため、熱電変換素子の高温作用部と低温作用部間の温度差を十分に確保して高い熱電変換効率が得られる。 Here, the thermoelectric conversion element 1A includes an N-type thermoelectric conversion material layer 3N, a heat insulating layer 4A, and an N-type thermoelectric conversion material layer 6N sandwiching an insulating layer 9 below a conductive substrate 2 that is a first electrode. A P-type thermoelectric conversion part, and a P-type thermoelectric conversion part composed of a P-type thermoelectric conversion material layer 3P, a heat insulating layer 4B, and a P-type thermoelectric conversion material layer 6P are formed, and the second is formed below the thermoelectric conversion material layers 6N and 6P. , A thermoelectric conversion power generation element having an element structure in which the third electrodes 8A and 8B are formed. In the thermoelectric conversion element 1A, the conductive substrate 2 of the first electrode functions as a high temperature action part, and the second and third electrodes 8A and 8B function as a low temperature action part, and the temperature difference between the high temperature action part and the low temperature action part is obtained. Use it to generate electricity. The thermoelectric conversion device 1A, the heat insulating layer 4A, has 4B, heat to heat conduction to the cold working portion from the high temperature working part: it is possible to reduce the Q K, the high-temperature effects of the thermoelectric conversion element and the low-temperature action between portions of the High thermoelectric conversion efficiency can be obtained by securing a sufficient temperature difference.

熱電変換発電装置1Hは、第2、第3の熱電変換素子10A,10Bが、熱電変換発電素子1Aに接して配置された構成である。ここで、第2、第3の熱電変換素子10A,10Bは、実施形態4の熱電変換素子1D(図4)と同じ構造の熱電変換素子である。なお、図11に、第2の熱電変換素子10Aの斜視図を示す。図4の熱電変換素子1Dの導電性基板2に相当するのが、図8の電極10AL、10BLであり、熱電変換発電素子1Aの電極8A,8Bに接して配置されている。そして、図8の熱電変換素子10A,10Bは、電極10AL、10BLの下部に順に熱電変換材料層、断熱層、熱電変換材料層、異方性導電材料(グラファイト)層が積層されている。その異方性導電材料(グラファイト)層は熱電変換材料層とは接触せず積層構造からはみ出した延在部10AG,10BGを有し、延在部10AG,10BGは、異方性導電材料(グラファイト)層の積層面から、熱電変換発電素子1Aの断熱層4A、4Bの側方に沿って延び、さらに、導電性基板2上方まで延びている。そして電極10AH,10BH(図4の熱電変換素子1Dの電極8A,8Bに対応)は、熱電変換発電素子1Aの導電性基板2に接触する構成で、その延在部の端部上方に配置されている。   The thermoelectric conversion power generation apparatus 1H has a configuration in which the second and third thermoelectric conversion elements 10A and 10B are arranged in contact with the thermoelectric conversion power generation element 1A. Here, the second and third thermoelectric conversion elements 10A and 10B are thermoelectric conversion elements having the same structure as the thermoelectric conversion element 1D (FIG. 4) of the fourth embodiment. In addition, in FIG. 11, the perspective view of 10 A of 2nd thermoelectric conversion elements is shown. The electrodes 10AL and 10BL in FIG. 8 correspond to the conductive substrate 2 of the thermoelectric conversion element 1D in FIG. 4, and are disposed in contact with the electrodes 8A and 8B of the thermoelectric conversion power generation element 1A. In the thermoelectric conversion elements 10A and 10B in FIG. 8, a thermoelectric conversion material layer, a heat insulating layer, a thermoelectric conversion material layer, and an anisotropic conductive material (graphite) layer are sequentially stacked below the electrodes 10AL and 10BL. The anisotropic conductive material (graphite) layer has extended portions 10AG and 10BG that do not contact the thermoelectric conversion material layer and protrude from the laminated structure, and the extended portions 10AG and 10BG include the anisotropic conductive material (graphite). ) Extends along the sides of the heat insulating layers 4A and 4B of the thermoelectric conversion power generation element 1A, and further extends to the upper side of the conductive substrate 2. The electrodes 10AH and 10BH (corresponding to the electrodes 8A and 8B of the thermoelectric conversion element 1D in FIG. 4) are in contact with the conductive substrate 2 of the thermoelectric conversion power generation element 1A, and are arranged above the end of the extending portion. ing.

なお、熱電変換素子10A,10Bは、それぞれ電極を有するが、これらの電極の表面は絶縁物でカバーされており、接触する他の素子や電極、あるいは接触する対象物との電気的接触はない。ペルチェ素子として熱の出入りが生じるだけである。   The thermoelectric conversion elements 10A and 10B each have electrodes, but the surfaces of these electrodes are covered with an insulator, and there is no electrical contact with other elements or electrodes that come into contact with the objects or objects that come into contact. . Only the heat enters and exits as a Peltier element.

ペルチェ素子である第2、第3の熱電変換素子10A,10Bにおいて、電極10AL,10BLは吸熱作用部として働き、電極10AH,10BHは発熱作用部として働く。吸熱作用部である電極10AL,10BLが、熱電変換発電素子1Aの低温作用部である電極8A,8Bに接して配置されているため、熱電変換発電素子1Aの高温作用部から低温作用部へ熱伝導してきた熱量は低温作用部に蓄積されることなく電極10AL,10BLに吸熱される。よって、低温作用部を低温に保持することが可能となる。一方、発熱作用部である電極10AH,10BHは、熱電変換発電素子1Aの高温作用部である導電性基板2に接して配置されているため、電極10AL,10BLで吸熱された熱量が、電極10AH,10BHを通して熱電変換発電素子1Aの高温作用部に放熱される。よって、高温作用部から低温作用部へ熱伝導することで失われた熱量を取り戻すことができ、高温作用部を高温に保持することが可能となる。これらの作用により熱電変換発電素子1Aの高温作用部と低温作用部の温度差が保持されるため、熱電変換発電素子1Aは効率の高い発電を持続的に行うことができる。   In the second and third thermoelectric conversion elements 10A and 10B, which are Peltier elements, the electrodes 10AL and 10BL function as a heat absorption action part, and the electrodes 10AH and 10BH work as a heat generation action part. Since the electrodes 10AL and 10BL which are heat absorption action parts are arranged in contact with the electrodes 8A and 8B which are low temperature action parts of the thermoelectric conversion power generation element 1A, heat is transferred from the high temperature action part of the thermoelectric conversion power generation element 1A to the low temperature action part. The amount of heat that has been conducted is absorbed by the electrodes 10AL and 10BL without being accumulated in the low-temperature acting part. Therefore, it is possible to keep the low temperature action part at a low temperature. On the other hand, since the electrodes 10AH and 10BH as the heat generating action portions are arranged in contact with the conductive substrate 2 as the high temperature action portion of the thermoelectric conversion power generation element 1A, the amount of heat absorbed by the electrodes 10AL and 10BL is reduced to the electrode 10AH. , 10BH to dissipate heat to the high temperature acting part of the thermoelectric conversion power generation element 1A. Therefore, the amount of heat lost by conducting heat from the high temperature action part to the low temperature action part can be recovered, and the high temperature action part can be kept at a high temperature. Because of these actions, the temperature difference between the high temperature action portion and the low temperature action portion of the thermoelectric conversion power generation element 1A is maintained, so that the thermoelectric conversion power generation element 1A can continuously perform highly efficient power generation.

また、実施形態8の熱電変換発電装置1Hにおいて、熱電変換発電素子1Aの高温作用部から低温作用部へ熱伝導する熱量:Qkは、ペルチェ素子10A,10Bによって熱電発電素子1Aに対しほぼ完結した循環を成しているので、熱電変換発電素子1Aは熱量:Qkを考慮して面積の小さい素子構造である必要がなく大面積化が図れる。大面積化を図ることで、より発電量の大きい熱電変換発電を行うことができる。 Further, in the thermoelectric conversion power generation device 1H of Embodiment 8, heat thermally conducted to the low temperature working portion from the high temperature effects of the thermoelectric conversion power generating element 1A: Q k is substantially complete with respect to the thermoelectric power generating device 1A Peltier element 10A, the 10B Therefore, the thermoelectric conversion power generation element 1A does not need to have an element structure with a small area in consideration of the amount of heat: Qk , and the area can be increased. By increasing the area, thermoelectric power generation with a larger power generation amount can be performed.

本実施形態8の熱電変換発電装置1Hは、高温作用部と低温作用部にΔTの温度差がある場合、熱電変換発電素子1Aはその温度差に比例して熱起電力を発生し、出力:Poutが得られるが、同様に、温度差に比例して高温作用部から低温作用部へ熱伝導する熱量:Qkが生じ、このQkを低温作用部から高温作用部に戻すために第2、第3の熱電変換素子(ペルチェ素子)10A,10Bを駆動する入力:Pinが必要となる。熱量:Qkは熱電変換材料の熱伝導率や熱電変換発電素子の素子構造に依存するが、熱電変換材料にBi-Te系材料を使用し、従来の素子構造の熱電変換発電素子1K(図12:比較形態1を参照)を使用した熱電変換発電装置1L(図13:比較形態2を参照)は、出力:Poutを100%として、入力:Pinは60%程度で駆動する温度差:ΔTにおいて、本実施形態8の熱電変換発電装置1Hは、出力:Poutを100%として、入力:Pinは40%程度まで低減できる。熱電変換発電素子1Aは断熱層4A,4Bを有し、高温作用部から低温作用部へ熱伝導する熱量:QKを低減できるので、ペルチェ素子10A,10Bを動作させるために入力される電力量を低減することができる。 In the thermoelectric conversion power generator 1H of the eighth embodiment, when there is a temperature difference of ΔT between the high temperature action part and the low temperature action part, the thermoelectric conversion power generation element 1A generates a thermoelectromotive force in proportion to the temperature difference, and the output: Pout is obtained, similarly, the amount of heat to heat conduction to the cold working portion from the high temperature working part in proportion to the temperature difference: Q k occurs, a second to return the Q k from the low temperature working portion to the hot working portion The input: Pin for driving the third thermoelectric conversion elements (Peltier elements) 10A, 10B is required. Heat: Q k is dependent on the element structure of the thermal conductivity and the thermoelectric conversion power generation element of a thermoelectric conversion material, by using the Bi-Te-based material to the thermoelectric conversion material, a thermoelectric conversion power generation element 1K (FIG conventional element structure 12: Refer to comparative form 1), and thermoelectric conversion power generator 1L (see FIG. 13: comparative form 2) is driven with input: Pin being about 60% with output: Pout being 100%, temperature difference: ΔT In the thermoelectric conversion power generator 1H of the eighth embodiment, the output: Pout can be reduced to about 40% with the output: Pout being set to 100%. Thermoelectric power generating device 1A has heat insulating layer 4A, a 4B, heat to heat conduction to the cold working portion from the high temperature working part: it is possible to reduce the Q K, the amount of power input for operating the Peltier element 10A, and 10B Can be reduced.

熱電変換発電装置1Hにおいて、熱電変換発電素子1Aは断熱層4A,4Bを有するので、高温作用部と低温作用部の温度差:ΔTを大きく保つことができ、かつ熱電変換発電装置1Hは、ペルチェ素子10A,10Bの動作により、熱電変換発電素子1Aの高温作用部と低温作用部の温度差:ΔTを持続して保持できる。また、熱電変換発電素子1Aは断熱層4A,4Bを有し、高温作用部から低温作用部へ熱伝導する熱量:QKを低減できるので、ペルチェ素子10A,10Bを動作させるために入力される電力量を低減することができる。また、熱電変換発電素子1Aは広い面積で温度差を利用することができる。 In the thermoelectric conversion power generation apparatus 1H, the thermoelectric conversion power generation element 1A has the heat insulating layers 4A and 4B. Therefore, the temperature difference between the high temperature action part and the low temperature action part: ΔT can be kept large, and the thermoelectric conversion power generation apparatus 1H By the operation of the elements 10A and 10B, the temperature difference: ΔT between the high temperature action part and the low temperature action part of the thermoelectric conversion power generation element 1A can be continuously maintained. Further, the thermoelectric conversion power generation element 1A has the heat insulating layers 4A and 4B, and can reduce the amount of heat QQ K that conducts heat from the high-temperature action part to the low-temperature action part, so that it is input to operate the Peltier elements 10A and 10B. The amount of power can be reduced. Further, the thermoelectric conversion power generation element 1A can use a temperature difference over a wide area.

結果として、より大きな温度差を広い面積で持続して利用することが可能となり大きい出力が得られる。   As a result, a larger temperature difference can be used continuously over a wide area, and a large output can be obtained.

〔実施形態9〕
次に、実施形態9に係る熱電変換発電装置について説明する。図9は、本発明の実施形態9に係る熱電変換発電装置の断面図である。
[Embodiment 9]
Next, a thermoelectric conversion power generator according to Embodiment 9 will be described. FIG. 9 is a cross-sectional view of a thermoelectric conversion power generator according to Embodiment 9 of the present invention.

図9に示すように、本実施形態に係る熱電変換発電装置1Iは、その構成が実施形態8の熱電変換発電装置1Hとほぼ同じである。熱電変換発電装置1Hでは、熱電変換発電素子1A(実施形態1の熱電変換素子)と、ペルチェ素子として使用される熱電変換素子10A,10B(実施形態4の熱電変換素子1D)とで構成されていたが、本実施形態の熱電変換発電装置1Iは、本発明の熱電変換発電素子1B(実施形態2の熱電変換素子)と、ペルチェ素子として使用される本発明の熱電変換素子20A,20B(実施形態5の熱電変換素子1E)とで構成される。   As shown in FIG. 9, the thermoelectric conversion power generator 1I according to the present embodiment has substantially the same configuration as the thermoelectric conversion power generator 1H of the eighth embodiment. The thermoelectric conversion power generation apparatus 1H includes a thermoelectric conversion power generation element 1A (the thermoelectric conversion element according to the first embodiment) and thermoelectric conversion elements 10A and 10B (thermoelectric conversion element 1D according to the fourth embodiment) used as Peltier elements. However, the thermoelectric conversion power generation device 1I according to the present embodiment includes the thermoelectric conversion power generation element 1B according to the present invention (the thermoelectric conversion element according to the second embodiment) and the thermoelectric conversion elements 20A and 20B according to the present invention used as Peltier elements. It is comprised with the thermoelectric conversion element 1E) of the form 5.

ここで熱電変換素子1Bは、第1の電極である導電性基板2の下部に、絶縁層9を挟んでN型熱電変換材料層3N、断熱層4C、N型熱電変換材料層6NよりなるN型熱電変換部と、P型熱電変換材料層3P、断熱層4D、P型熱電変換材料層6PよりなるP型熱電変換部が形成されており、熱電変換材料層6N,6Pの下部に第2,第3の電極8A,8Bが形成されている素子構造の熱電変換発電素子である。熱電変換素子1Bは、第1の電極の導電性基板2が高温作用部として働き、第2、第3の電極8A,8Bが低温作用部として働き、高温作用部と低温作用部の温度差を利用して発電を行う。熱電変換素子1Bは、断熱層4C,4Dを有しており、高温作用部から低温作用部へ熱伝導する熱量:QKを低減できるため、熱電変換素子の高温作用部と低温作用部間の温度差を十分に確保して高い熱電変換効率が得られる。 Here, the thermoelectric conversion element 1B includes an N-type thermoelectric conversion material layer 3N, a heat insulating layer 4C, and an N-type thermoelectric conversion material layer 6N sandwiched between the insulating layer 9 below the conductive substrate 2 that is the first electrode. A P-type thermoelectric conversion part, which is composed of a P-type thermoelectric conversion part, a P-type thermoelectric conversion material layer 3P, a heat insulating layer 4D, and a P-type thermoelectric conversion material layer 6P, is formed below the thermoelectric conversion material layers 6N and 6P. , A thermoelectric conversion power generation element having an element structure in which the third electrodes 8A and 8B are formed. In the thermoelectric conversion element 1B, the conductive substrate 2 of the first electrode functions as a high temperature action part, and the second and third electrodes 8A and 8B function as a low temperature action part, and the temperature difference between the high temperature action part and the low temperature action part is obtained. Use it to generate electricity. Thermoelectric conversion element 1B is heat insulating layer 4C, has a 4D, heat to heat conduction to the cold working portion from the high temperature working part: it is possible to reduce the Q K, the high-temperature effects of the thermoelectric conversion element and the low-temperature action between portions of the High thermoelectric conversion efficiency can be obtained by securing a sufficient temperature difference.

熱電変換発電装置1Iは、第2、第3の熱電変換素子20A,20Bが、熱電変換発電素子1Bに接して配置された構成である。ここで、第2、第3の熱電変換素子20A,20Bは、実施形態5の熱電変換素子1E(図5)と同じ構造の熱電変換素子である。図5の熱電変換素子1Eの導電性基板2に相当するのが、図9の電極20AL、20BLであり、熱電変換発電素子1Bの電極8A,8Bに接して配置されている。そして、図9の熱電変換素子20A,20Bは、電極20AL、20BLの下部に順に熱電変換材料層、断熱層、熱電変換材料層、異方性導電材料(グラファイト)層が積層されている。その異方性導電材料(グラファイト)層は熱電変換材料層とは接触せず積層構造からはみ出した延在部20AG,20BGを有し、延在部20AG,20BGは、異方性導電材料(グラファイト)層の積層面から、熱電変換発電素子1Bの断熱層4C、4Dの側方に沿って延び、さらに、導電性基板2上方まで延びている。そして電極20AH,20BH(図5の熱電変換素子1Eの電極8A,8Bに対応)は、熱電変換発電素子1Bの導電性基板2に接触する構成で、その延在部の端部上方に配置されている(図9参照)。   The thermoelectric conversion power generation apparatus 1I has a configuration in which the second and third thermoelectric conversion elements 20A and 20B are arranged in contact with the thermoelectric conversion power generation element 1B. Here, the second and third thermoelectric conversion elements 20A and 20B are thermoelectric conversion elements having the same structure as the thermoelectric conversion element 1E (FIG. 5) of the fifth embodiment. The electrodes 20AL and 20BL in FIG. 9 correspond to the conductive substrate 2 of the thermoelectric conversion element 1E in FIG. 5, and are disposed in contact with the electrodes 8A and 8B of the thermoelectric conversion power generation element 1B. In the thermoelectric conversion elements 20A and 20B of FIG. 9, a thermoelectric conversion material layer, a heat insulating layer, a thermoelectric conversion material layer, and an anisotropic conductive material (graphite) layer are sequentially stacked below the electrodes 20AL and 20BL. The anisotropic conductive material (graphite) layer does not contact the thermoelectric conversion material layer and has extended portions 20AG and 20BG that protrude from the laminated structure, and the extended portions 20AG and 20BG include the anisotropic conductive material (graphite). ) Extends along the sides of the heat insulating layers 4C and 4D of the thermoelectric conversion power generation element 1B, and further extends above the conductive substrate 2. The electrodes 20AH and 20BH (corresponding to the electrodes 8A and 8B of the thermoelectric conversion element 1E in FIG. 5) are in contact with the conductive substrate 2 of the thermoelectric conversion power generation element 1B, and are disposed above the end of the extending portion. (See FIG. 9).

なお、熱電変換素子20A,20Bは、それぞれ電極を有するが、これらの電極の表面は絶縁物でカバーされており、接触する他の素子や電極、あるいは接触する対象物との電気的接触はない。ペルチェ素子として熱の出入りが生じるだけである。   The thermoelectric conversion elements 20A and 20B each have an electrode, but the surface of these electrodes is covered with an insulator, and there is no electrical contact with other elements or electrodes that come into contact with the object or objects that come into contact. . Only the heat enters and exits as a Peltier element.

実施形態9の熱電変換発電装置1Iにおいても実施形態8の熱電変換発電装置1Hと同様に、熱電変換発電素子1Bは断熱層4C,4Dを有するので、高温作用部と低温作用部の温度差:ΔTを大きく保つことができ、かつ熱電変換発電装置1Iは、ペルチェ素子20A,20Bの動作により、熱電変換発電素子1Bの高温作用部と低温作用部の温度差:ΔTを持続して保持できる。また、熱電変換発電素子1Bは断熱層4C,4Dを有し、高温作用部から低温作用部へ熱伝導する熱量:QKを低減できるので、ペルチェ素子20A,20Bを動作させるために入力される電力量を低減することができる。また、熱電変換発電素子1Bは広い面積で温度差を利用することができる。 Also in the thermoelectric conversion power generation apparatus 1I of the ninth embodiment, the thermoelectric conversion power generation element 1B includes the heat insulating layers 4C and 4D, as in the thermoelectric conversion power generation apparatus 1H of the eighth embodiment. Therefore, the temperature difference between the high temperature action portion and the low temperature action portion: ΔT can be kept large, and the thermoelectric conversion power generation apparatus 1I can continuously maintain the temperature difference: ΔT between the high temperature action portion and the low temperature action portion of the thermoelectric conversion power generation element 1B by the operation of the Peltier elements 20A and 20B. Also, the thermoelectric conversion power generation element 1B has heat insulating layer 4C, the 4D, heat to heat conduction to the cold working portion from the high temperature working part: it is possible to reduce the Q K, is input in order to operate the Peltier element 20A, and 20B The amount of power can be reduced. Moreover, the thermoelectric conversion electric power generation element 1B can utilize a temperature difference in a wide area.

結果として、より大きな温度差を広い面積で持続して利用することが可能となり大きい出力が得られる。   As a result, a larger temperature difference can be used continuously over a wide area, and a large output can be obtained.

〔実施形態10〕
次に、実施形態10に係る熱電変換発電装置について説明する。図10は、本発明の実施形態10に係る熱電変換発電装置の断面図である。
[Embodiment 10]
Next, a thermoelectric conversion power generator according to Embodiment 10 will be described. FIG. 10 is a cross-sectional view of a thermoelectric conversion power generator according to Embodiment 10 of the present invention.

図10に示すように、本実施形態に係る熱電変換発電装置1Jは、その構成が実施形態8の熱電変換発電装置1Hとほぼ同じである。熱電変換発電装置1Hでは、熱電変換発電素子1A(実施形態1の熱電変換素子)と、ペルチェ素子として使用される熱電変換素子10A,10B(実施形態4の熱電変換素子1D)とで構成されていたが、本実施形態の熱電変換発電装置1Jは、本発明の熱電変換発電素子1F(実施形態6の熱電変換素子)と、ペルチェ素子として使用される本発明の熱電変換素子20A,20B(実施形態5の熱電変換素子1E)とで構成される。   As shown in FIG. 10, the thermoelectric conversion power generator 1 </ b> J according to the present embodiment has substantially the same configuration as the thermoelectric conversion power generator 1 </ b> H of the eighth embodiment. The thermoelectric conversion power generation apparatus 1H includes a thermoelectric conversion power generation element 1A (the thermoelectric conversion element according to the first embodiment) and thermoelectric conversion elements 10A and 10B (thermoelectric conversion element 1D according to the fourth embodiment) used as Peltier elements. However, the thermoelectric conversion power generation apparatus 1J according to the present embodiment includes the thermoelectric conversion power generation element 1F according to the present invention (the thermoelectric conversion element according to the sixth embodiment) and the thermoelectric conversion elements 20A and 20B according to the present invention used as Peltier elements. It is comprised with the thermoelectric conversion element 1E) of the form 5.

N型熱電変換部は、N型熱電変換材料層3N、グラファイト層5A、断熱層4E、グラファイト層5A、N型熱電変換材料層6Nの順で導電性基板2上に積層されており、グラファイト層5Aは断熱層4Eの側面で繋がっており電気的接触が取れるように配置されている。P型熱電変換部は、P型熱電変換材料層3P、グラファイト層5B、断熱層4F、グラファイト層5B、P型熱電変換材料層6Pの順で導電性基板2上に積層されており、グラファイト層5Bは断熱層4Fの側面で繋がっており電気的接触が取れるように配置されている。
ここで熱電変換素子1Fは、第1の電極である導電性基板2の下部に、絶縁層9を挟んでN型熱電変換材料層3N、グラファイト層5A、断熱層4E、グラファイト層5A、N型熱電変換材料層6Nの順でなり、グラファイト層5Aは断熱層4Eの側面で繋がっており電気的接触が取れるように配置されているN型熱電変換部と、P型熱電変換材料層3P、グラファイト層5B、断熱層4F、グラファイト層5B、P型熱電変換材料層6Pの順でなり、グラファイト層5Bは断熱層4Fの側面で繋がっており電気的接触が取れるように配置されているP型熱電変換部が形成されている。そして熱電変換材料層6N,6Pの下部に第2,第3の電極8A,8Bが形成されている素子構造の熱電変換発電素子である。熱電変換素子1Fは、第1の電極の導電性基板2が高温作用部として働き、第2、第3の電極8A,8Bが低温作用部として働き、高温作用部と低温作用部の温度差を利用して発電を行う。熱電変換素子1Fは、断熱層4E,4Fを有しており、高温作用部から低温作用部へ熱伝導する熱量:QKを低減できるため、熱電変換素子の高温作用部と低温作用部間の温度差を十分に確保して高い熱電変換効率が得られる。
The N-type thermoelectric conversion part is laminated on the conductive substrate 2 in the order of the N-type thermoelectric conversion material layer 3N, the graphite layer 5A, the heat insulating layer 4E, the graphite layer 5A, and the N-type thermoelectric conversion material layer 6N. 5A is connected by the side surface of the heat insulation layer 4E, and is arrange | positioned so that an electrical contact can be taken. The P-type thermoelectric conversion part is laminated on the conductive substrate 2 in the order of the P-type thermoelectric conversion material layer 3P, the graphite layer 5B, the heat insulating layer 4F, the graphite layer 5B, and the P-type thermoelectric conversion material layer 6P. 5B is connected by the side surface of the heat insulation layer 4F, and is arrange | positioned so that an electrical contact can be taken.
Here, the thermoelectric conversion element 1F includes an N-type thermoelectric conversion material layer 3N, a graphite layer 5A, a heat insulating layer 4E, a graphite layer 5A, and an N-type sandwiching an insulating layer 9 below a conductive substrate 2 that is a first electrode. The thermoelectric conversion material layer 6N is in this order, and the graphite layer 5A is connected to the side surface of the heat insulating layer 4E and is arranged so as to be in electrical contact, the P-type thermoelectric conversion material layer 3P, and graphite. The layer 5B, the heat insulating layer 4F, the graphite layer 5B, and the P-type thermoelectric conversion material layer 6P are arranged in this order, and the graphite layer 5B is connected to the side surface of the heat-insulating layer 4F and arranged so as to be in electrical contact. A conversion unit is formed. The thermoelectric conversion power generation element has an element structure in which the second and third electrodes 8A and 8B are formed below the thermoelectric conversion material layers 6N and 6P. In the thermoelectric conversion element 1F, the conductive substrate 2 of the first electrode functions as a high temperature action part, and the second and third electrodes 8A and 8B function as a low temperature action part, and the temperature difference between the high temperature action part and the low temperature action part is obtained. Use it to generate electricity. Thermoelectric conversion element 1F is heat insulating layer 4E, has a 4F, heat to heat conduction to the cold working portion from the high temperature working part: it is possible to reduce the Q K, the high-temperature effects of the thermoelectric conversion element and the low-temperature action between portions of the High thermoelectric conversion efficiency can be obtained by securing a sufficient temperature difference.

熱電変換発電装置1Jは、第2、第3の熱電変換素子20A,20Bが、熱電変換発電素子1Fに接して配置された構成である。ここで、第2、第3の熱電変換素子20A,20Bは、実施形態5の熱電変換素子1E(図5)と同じ構造の熱電変換素子である。図5の熱電変換素子1Eの導電性基板2に相当するのが、図10の電極20AL、20BLであり、熱電変換発電素子1Cの電極8A,8Bに接して配置されている。そして、図10の熱電変換素子20A,20Bは、電極20AL、20BLの下部に順に熱電変換材料層、断熱層、熱電変換材料層、異方性導電材料(グラファイト)層が積層されている。その異方性導電材料(グラファイト)層は熱電変換材料層とは接触せず積層構造からはみ出した延在部20AG,20BGを有し、延在部20AG,20BGは、異方性導電材料(グラファイト)層の積層面から、熱電変換発電素子1Fの断熱層4E、4Fの側方に沿って延び、さらに、導電性基板2上方まで延びている。そして電極20AH,20BH(図5の熱電変換素子1Eの電極8A,8Bに対応)は、熱電変換発電素子1Fの導電性基板2に接触する構成で、その延在部の端部上方に配置されている(図10参照)。   The thermoelectric conversion power generation apparatus 1J has a configuration in which the second and third thermoelectric conversion elements 20A and 20B are arranged in contact with the thermoelectric conversion power generation element 1F. Here, the second and third thermoelectric conversion elements 20A and 20B are thermoelectric conversion elements having the same structure as the thermoelectric conversion element 1E (FIG. 5) of the fifth embodiment. The electrodes 20AL and 20BL in FIG. 10 correspond to the conductive substrate 2 of the thermoelectric conversion element 1E in FIG. 5, and are disposed in contact with the electrodes 8A and 8B of the thermoelectric conversion power generation element 1C. In the thermoelectric conversion elements 20A and 20B in FIG. 10, a thermoelectric conversion material layer, a heat insulating layer, a thermoelectric conversion material layer, and an anisotropic conductive material (graphite) layer are sequentially stacked below the electrodes 20AL and 20BL. The anisotropic conductive material (graphite) layer does not contact the thermoelectric conversion material layer and has extended portions 20AG and 20BG that protrude from the laminated structure, and the extended portions 20AG and 20BG include the anisotropic conductive material (graphite). ) Extends along the sides of the heat insulating layers 4E and 4F of the thermoelectric conversion power generation element 1F, and further extends above the conductive substrate 2. The electrodes 20AH and 20BH (corresponding to the electrodes 8A and 8B of the thermoelectric conversion element 1E in FIG. 5) are in contact with the conductive substrate 2 of the thermoelectric conversion power generation element 1F, and are disposed above the end of the extending portion. (See FIG. 10).

なお、熱電変換素子20A,20Bは、それぞれ電極を有するが、これらの電極の表面は絶縁物でカバーされており、接触する他の素子や電極、あるいは接触する対象物との電気的接触はない。ペルチェ素子として熱の出入りが生じるだけである。   The thermoelectric conversion elements 20A and 20B each have an electrode, but the surface of these electrodes is covered with an insulator, and there is no electrical contact with other elements or electrodes that come into contact with the object or objects that come into contact. . Only the heat enters and exits as a Peltier element.

実施形態10の熱電変換発電装置1Jにおいても実施形態8の熱電変換発電装置1Hと同様に、熱電変換発電素子1Fは断熱層4E,4Fを有するので、高温作用部と低温作用部の温度差:ΔTを大きく保つことができ、かつ熱電変換発電装置1Jは、ペルチェ素子20A,20Bの動作により、熱電変換発電素子1Fの高温作用部と低温作用部の温度差:ΔTを持続して保持できる。また、熱電変換発電素子1Fは断熱層4E,4Fを有し、高温作用部から低温作用部へ熱伝導する熱量:QKを低減できるので、ペルチェ素子20A,20Bを動作させるために入力される電力量を低減することができる。また、熱電変換発電素子1Fは広い面積で温度差を利用することができる。
結果として、より大きな温度差を広い面積で持続して利用することが可能となり大きい出力が得られる。
Also in the thermoelectric conversion power generation apparatus 1J of the tenth embodiment, the thermoelectric conversion power generation element 1F includes the heat insulating layers 4E and 4F, as in the thermoelectric conversion power generation apparatus 1H of the eighth embodiment. Therefore, the temperature difference between the high temperature action portion and the low temperature action portion: ΔT can be kept large, and the thermoelectric conversion power generation apparatus 1J can continuously maintain the temperature difference: ΔT between the high temperature action portion and the low temperature action portion of the thermoelectric conversion power generation element 1F by the operation of the Peltier elements 20A and 20B. Also, the thermoelectric conversion power generation element 1F has heat insulating layer 4E, the 4F, heat to heat conduction to the cold working portion from the high temperature working part: it is possible to reduce the Q K, is input in order to operate the Peltier element 20A, and 20B The amount of power can be reduced. Further, the thermoelectric conversion power generation element 1F can use a temperature difference over a wide area.
As a result, a larger temperature difference can be used continuously over a wide area, and a large output can be obtained.

〔比較形態3〕
次に、比較形態3に係る熱電変換発電装置について説明する。図14は、本発明の比較形態3に係る熱電変換発電装置の断面図である。
[Comparison 3]
Next, a thermoelectric conversion power generation device according to comparative form 3 will be described. FIG. 14 is a cross-sectional view of the thermoelectric conversion power generator according to Comparative Embodiment 3 of the present invention.

図14に示すように、熱電変換発電装置1Mは、その構成が実施形態8の熱電変換発電装置1Hとほぼ同じである。熱電変換発電装置1Hでは、熱電変換発電素子1A(実施形態1の熱電変換素子)と、ペルチェ素子として使用される熱電変換素子10A,10B(実施形態4の熱電変換素子)とで構成されていたが、比較形態の熱電変換発電装置1Mは、従来の熱電変換発電素子1K(図12、比較形態1の熱電変換素子)と、ペルチェ素子として使用される40A,40B(図13、比較形態2の熱電変換素子)とで構成される。   As shown in FIG. 14, the thermoelectric conversion power generation device 1 </ b> M has substantially the same configuration as the thermoelectric conversion power generation device 1 </ b> H of the eighth embodiment. The thermoelectric conversion power generation apparatus 1H was composed of a thermoelectric conversion power generation element 1A (thermoelectric conversion element of Embodiment 1) and thermoelectric conversion elements 10A and 10B (thermoelectric conversion elements of Embodiment 4) used as Peltier elements. However, the thermoelectric conversion power generation device 1M of the comparative form includes a conventional thermoelectric conversion power generation element 1K (FIG. 12, thermoelectric conversion element of comparative form 1) and 40A and 40B (FIG. 13, comparative form 2 of the comparative form 2) used as Peltier elements. Thermoelectric conversion element).

比較形態3の熱電変換発電装置1Mにおいて、熱電変換発電素子1Kは断熱層を有していないので、高温作用部と低温作用部の温度差を大きく保つことは困難である。しかし、熱電変換発電装置1Mは、ペルチェ素子40A,40Bの動作により、熱電変換発電素子1Kの高温作用部と低温作用部の温度差:ΔTを持続して保持できる。また、熱電変換発電素子1Kは広い面積で温度差を利用することができる。しかし、熱電変換発電素子1K及びペルチェ素子40A,40Bは断熱層を有しておらず、高温作用部から低温作用部へ熱伝導する熱量:QKを低減できないので、ペルチェ素子40A,40Bを動作させるために入力される電力量を低減することは困難である。 In the thermoelectric conversion power generation device 1M of the comparative form 3, since the thermoelectric conversion power generation element 1K does not have a heat insulating layer, it is difficult to keep a large temperature difference between the high temperature action part and the low temperature action part. However, the thermoelectric conversion power generation apparatus 1M can continuously maintain the temperature difference: ΔT between the high temperature action portion and the low temperature action portion of the thermoelectric conversion power generation element 1K by the operation of the Peltier elements 40A and 40B. Moreover, the thermoelectric conversion electric power generation element 1K can utilize a temperature difference in a wide area. However, the thermoelectric conversion power generation element 1K and the Peltier elements 40A and 40B do not have a heat insulating layer, and the amount of heat conducted from the high temperature action part to the low temperature action part: Q K cannot be reduced, so that the Peltier elements 40A and 40B operate. Therefore, it is difficult to reduce the amount of electric power that is input in order to achieve this.

〔熱電変換部の作製と評価〕
まず、熱電変換素子として評価する前に、N型熱電変換部、P型熱電変換部の性能(熱電特性)の評価を行った。
[Production and evaluation of thermoelectric conversion part]
First, before evaluating as a thermoelectric conversion element, the performance (thermoelectric property) of the N type thermoelectric conversion part and the P type thermoelectric conversion part was evaluated.

性能評価用の試料は、Bi-Te系材料の基板を使用して製造したN型,P型熱電変換部を、必要な寸法に切り出して研磨し評価用試料を作製した。N型,P型熱電変換部の評価用試料のサイズは、熱電特性評価用試料:角20mm×20mm,厚さ7mm〜8mm程度、熱伝導率測定用試料:角50mm×50mm,厚さ7mm〜8mm程度とした。   As a sample for performance evaluation, an N-type and P-type thermoelectric conversion part manufactured using a Bi-Te-based material substrate was cut into necessary dimensions and polished to prepare an evaluation sample. Samples for evaluation of the N-type and P-type thermoelectric conversion parts are as follows: Thermoelectric property evaluation sample: square 20 mm × 20 mm, thickness 7 mm to 8 mm, thermal conductivity measurement sample: square 50 mm × 50 mm, thickness 7 mm It was about 8 mm.

〔第1評価用熱電変換部の作製〕
まず、実施形態1(図1参照)のN型熱電変換部とP型熱電変換部を以下の工程で作製した。
[Production of thermoelectric conversion part for first evaluation]
First, the N-type thermoelectric conversion part and the P-type thermoelectric conversion part of Embodiment 1 (see FIG. 1) were produced by the following steps.

グラスウール板は、グラスウールを圧縮しメラミン樹脂で固めてシート状(板状)に成型したもので、角100mm×250mm,厚さ5mmの板状のグラスウール板を用意し、グラスウール板の全面に、φ0.3mmの貫通孔を0.5mmピッチでドリルにより形成した。
まず、Bi,Te,その他の添加物等の所定の粉末原料を混合して溶融し、溶融後できた母材を粉砕して、粉末状のN型若くはP型熱電変換材料の原料を得た。N型熱電変換材料としてBi2Te2.7Se0.3の組成で調整したBi-Te系材料を、P型熱電変換材料としてBi0.5Sb1.5Te3の組成で調整したBi-Te系材料を、それぞれ使用した。
The glass wool plate is formed by compressing glass wool, hardening it with melamine resin and molding it into a sheet (plate shape). A plate-like glass wool plate having a square size of 100 mm × 250 mm and a thickness of 5 mm is prepared, and φ0 on the entire surface of the glass wool plate .Through holes of 3 mm were formed by a drill at a pitch of 0.5 mm.
First, predetermined powder raw materials such as Bi, Te, and other additives are mixed and melted, and the base material formed after melting is pulverized to obtain a raw material for powdered N-type or P-type thermoelectric conversion material. It was. Bi-Te materials adjusted with Bi 2 Te 2.7 Se 0.3 composition are used as N-type thermoelectric materials, and Bi-Te materials adjusted with Bi 0.5 Sb 1.5 Te 3 compositions are used as P-type thermoelectric materials. did.

貫通孔を形成した、グラスウール板の表・裏面にN型或いはP型のBi-Te系材料を蒸着した。その後、蒸着したBi-Te系材料と同じBi-Te系材料の原料を浴槽に入れて溶融温度570℃〜620℃程度で再溶融し、原料が溶融している浴槽に、上記のBi-Te系材料を蒸着したグラスウール板をディップし、グラスウール板に形成した貫通孔をBi-Te系材料で埋めてしまうと共に、グラスウール板の表・裏面にそれぞれ厚さ約1mmのBi-Te系材料層を形成した。   An N-type or P-type Bi-Te material was vapor-deposited on the front and back surfaces of the glass wool plate in which the through holes were formed. Then, the raw material of the same Bi-Te material as the deposited Bi-Te material is put in a bath, remelted at a melting temperature of about 570 ° C. to 620 ° C., and the above Bi-Te is added to the bath in which the raw material is melted. The glass wool plate on which the glass-based material is vapor-deposited is dipped, and the through-hole formed in the glass-wool plate is filled with the Bi-Te-based material, and a Bi-Te-based material layer with a thickness of about 1 mm is formed on the front and back surfaces of the glass-wool plate. Formed.

このようにして作製された熱電変換材料層、断熱層、熱電変換材料層の3層構造のN型とP型の熱電変換部を、熱電特性評価用試料:角20mm×20mm、熱伝導率測定用試料:角50mm×50mmの評価用試料のサイズに切り出して切削面を研磨し第1評価用熱電変換部を作製した。作製したそれぞれの評価用熱電変換部の上部と下部に厚さ0.2mmのAl電極を半田で取り付け評価用試料とした。   The N-type and P-type thermoelectric conversion parts having the three-layer structure of the thermoelectric conversion material layer, the heat insulating layer, and the thermoelectric conversion material layer thus manufactured are used as samples for thermoelectric property evaluation: angle 20 mm × 20 mm, thermal conductivity measurement. Sample: Cut into a size of an evaluation sample having a size of 50 mm × 50 mm, and the cut surface was polished to produce a first evaluation thermoelectric conversion section. An Al electrode having a thickness of 0.2 mm was attached to the upper and lower portions of each of the produced thermoelectric conversion portions for evaluation with solder to obtain an evaluation sample.

〔第2評価用熱電変換部の作製〕
次に、上記のように作製した第1評価用熱電変換部の熱電変換材料層6N,6P上に、角100mm×250mm,厚さ50μmのグラファイトシート(大塚商会社製)を積層し実施形態3(図3参照)の熱電変換部を作製した。グラファイトシートの接着面に、熱電変換材料層6N,6Pと同じ組成のBi-Te系材料を抵抗加熱蒸着して100nm程度のBi-Te系材料層を形成し、熱電変換材料層6N,6Pとグラファイトシートを密着させて熱圧着することにより積層し、熱電変換材料層、断熱層、熱電変換材料層、グラファイト層の4層構造の熱電変換部を作製した。
[Production of thermoelectric conversion part for second evaluation]
Next, a graphite sheet (manufactured by Otsuka Trading Co., Ltd.) having a corner of 100 mm × 250 mm and a thickness of 50 μm is laminated on the thermoelectric conversion material layers 6N, 6P of the first evaluation thermoelectric conversion section manufactured as described above. The thermoelectric conversion part (refer FIG. 3) was produced. Bi-Te based material having the same composition as the thermoelectric conversion material layers 6N and 6P is formed on the adhesion surface of the graphite sheet by resistance heating vapor deposition to form a Bi-Te based material layer of about 100 nm, and the thermoelectric conversion material layers 6N and 6P A graphite sheet was adhered and laminated by thermocompression bonding to produce a thermoelectric conversion part having a four-layer structure of a thermoelectric conversion material layer, a heat insulating layer, a thermoelectric conversion material layer, and a graphite layer.

このようにして作製されたN型とP型の熱電変換部を、上記の評価用試料のサイズに切り出して切削面を研磨し第2評価用熱電変換部を作製し、それぞれの評価用熱電変換部の下部に、角20mm×20mm,厚さ0.2mmと、角50m×50m,厚さ0.2mmのAl電極を、それぞれの評価用熱電変換部の上部端に角5mm×5mm,厚さ0.2mmと、角5mm×5mm,厚さ0.2mmのAl電極を半田で取り付け評価用試料とした。   The N-type and P-type thermoelectric conversion parts thus manufactured are cut into the above-described evaluation sample sizes, and the cut surfaces are polished to produce second evaluation thermoelectric conversion parts. In the lower part of the section, an Al electrode having a square of 20 mm × 20 mm, a thickness of 0.2 mm, a square of 50 m × 50 m, and a thickness of 0.2 mm, and a corner of 5 mm × 5 mm and a thickness of the upper end of each thermoelectric conversion unit for evaluation. An Al electrode having a size of 0.2 mm, a square of 5 mm × 5 mm, and a thickness of 0.2 mm was attached with solder to obtain a sample for evaluation.

〔第3評価用熱電変換部の作製〕
実施形態2(図2参照)のN型熱電変換部とP型熱電変換部を以下の工程で作製した。
[Production of Thermoelectric Conversion Section for Third Evaluation]
The N-type thermoelectric conversion part and P-type thermoelectric conversion part of Embodiment 2 (see FIG. 2) were produced by the following steps.

まず、N型熱電変換材料としてBi2Te2.7Se0.3の組成で調整した原料を、P型熱電変換材料としてBi0.5Sb1.5Te3の組成で調整した原料をそれぞれ使用し、Bi-Te系熱電変換材料の基板を作製した。Bi,Te,その他の添加物の粉末原料を混合して溶融し、溶融後できた母材を粉砕して、粉末状のN型若くはP型熱電変換材料の原料を得た。そして、得られた粉末を300mm×300mm×50mmの整形部材に加圧して詰め、ゾーンメルト法を用いて溶融温度570℃〜620℃程度で再溶融したあと、350〜450℃で5時間焼鈍し焼結体を製造した。製造した焼結体をワイヤソーで切り出して、角100mm×250mm,厚さ1.5mmのBi-Te系熱電変換材料の基板を製造した。 First, a raw material adjusted with a composition of Bi 2 Te 2.7 Se 0.3 is used as an N-type thermoelectric conversion material, and a raw material adjusted with a composition of Bi 0.5 Sb 1.5 Te 3 is used as a P-type thermoelectric conversion material. A substrate of conversion material was prepared. Powder materials of Bi, Te, and other additives were mixed and melted, and the base material formed after melting was pulverized to obtain a powdery N-type or P-type thermoelectric conversion material. The obtained powder is pressed and packed into a 300 mm × 300 mm × 50 mm shaping member, remelted at a melting temperature of about 570 ° C. to 620 ° C. using a zone melt method, and then annealed at 350 to 450 ° C. for 5 hours. A sintered body was produced. The produced sintered body was cut out with a wire saw to produce a Bi-Te-based thermoelectric conversion material substrate having a size of 100 mm × 250 mm and a thickness of 1.5 mm.

次に、上記グラスウール基板を粉砕した断熱材粉末(平均粒径:約10μm)とポリメチルメタクリレート(平均粒径:約10μm、東洋紡社製)を混合後、有機溶媒を加えて混練して断熱層形成用ペースト1を作製した。下記に断熱層形成用ペースト1の配合を示す。熱電変換材料層3N、3PとなるBi-Te系熱電変換材料の基板上に断熱層形成用ペースト1を塗布印刷し、400℃で加熱してポリメチルメタクリレート粒子を燃焼消失させて多孔質の断熱層4C,4Dを形成する。多孔質の断熱層4C,4Dの厚みは5mm程度になるように形成した。   Next, the heat insulating material powder (average particle size: about 10 μm) obtained by pulverizing the glass wool substrate and polymethyl methacrylate (average particle size: about 10 μm, manufactured by Toyobo Co., Ltd.) are mixed, and then an organic solvent is added and kneaded to mix the heat insulating layer. A forming paste 1 was prepared. The composition of the heat insulation layer forming paste 1 is shown below. Heat insulation layer forming paste 1 is applied and printed on the substrate of Bi-Te thermoelectric conversion material to become thermoelectric conversion material layers 3N, 3P, and heated at 400 ° C. to burn off polymethylmethacrylate particles to make porous heat insulation. Layers 4C and 4D are formed. The porous heat insulating layers 4C and 4D were formed to have a thickness of about 5 mm.

〔断熱層形成用ペースト1の配合(重量部)〕
・グラスウール基板の断熱材粉末:100部
・ポリメチルメタクリレート:40部
・テレピネオール:11部
・エチルセルロース:3部
[Composition of heat insulation layer forming paste 1 (parts by weight)]
・ Insulation powder of glass wool substrate: 100 parts ・ Polymethyl methacrylate: 40 parts ・ Terpineol: 11 parts ・ Ethylcellulose: 3 parts

続いて、Bi-Te系材料のペーストを断熱層の表面に印刷する。上記Bi-Te系材料の母材を粉砕したBi-Te系材料粉末(平均粒径:約5μm)を使用してペースト化したものであり、n型熱電変換材料としてBi2Te2.7Se0.3の組成で調整したBi-Te系熱電変換材料粉末を、p型熱電変換材料としてBi0.5Sb1.5Te3の組成で調整したBi-Te系熱電変換材料粉末をそれぞれ使用した。下記にBi-Te系材料のペーストの配合を示す。このとき断熱層の孔にペーストを充填しかつ断熱層の表面がBi-Te系材料をペーストで覆われるように塗布印刷する。そして580℃で加熱し熱電変換材料層6N、6Pを形成する。熱電変換材料層6N、6Pの厚みは0.5mm程度になるように形成した。 Subsequently, a paste of Bi-Te material is printed on the surface of the heat insulating layer. The Bi-Te-based material powder (average particle size: about 5 μm) obtained by pulverizing the Bi-Te-based material is pasted, and Bi 2 Te 2.7 Se 0.3 is used as an n-type thermoelectric conversion material. Bi-Te thermoelectric conversion material powders adjusted with the composition and Bi-Te thermoelectric conversion material powders adjusted with the composition of Bi 0.5 Sb 1.5 Te 3 were used as p-type thermoelectric conversion materials, respectively. The formulation of the Bi-Te material paste is shown below. At this time, the holes of the heat insulating layer are filled with the paste, and the surface of the heat insulating layer is coated and printed so that the Bi-Te material is covered with the paste. And it heats at 580 degreeC and forms the thermoelectric conversion material layers 6N and 6P. The thermoelectric conversion material layers 6N and 6P were formed to have a thickness of about 0.5 mm.

〔Bi-Te系材料層形成用ペーストの配合(重量部)〕
・Bi-Te系材料粉末:100部
・テレピネオール:8部
・エチルセルロース:2部
[Bi-Te based material layer forming paste formulation (parts by weight)]
-Bi-Te based material powder: 100 parts-Terpineol: 8 parts-Ethylcellulose: 2 parts

このようにして作製された熱電変換材料層、断熱層、熱電変換材料層の3層構造のN型とP型の熱電変換部を、上記の評価用試料のサイズに切り出して切削面を研磨し、N型とP型の第3評価用熱電変換部を作製した。それぞれの評価用熱電変換部の上部と下部に厚さ約0.2mmのAl電極を半田で取り付け評価用試料とした。   The N-type and P-type thermoelectric conversion parts having the three-layer structure of the thermoelectric conversion material layer, the heat insulating layer, and the thermoelectric conversion material layer thus manufactured are cut into the size of the sample for evaluation and the cutting surface is polished. N-type and P-type third thermoelectric conversion parts for evaluation were produced. An Al electrode having a thickness of about 0.2 mm was attached to the upper and lower portions of each evaluation thermoelectric conversion portion by soldering to obtain an evaluation sample.

〔第4評価用熱電変換部の作製〕
実施形態6(図6参照)のN型熱電変換部とP型熱電変換部を以下の工程で作製した。
まず、角20mm×20mm,厚さ0.4mmのAl基板と、角50m×50m,厚さ0.3mmのAl基板を用意し、上記のBi-Te系材料のペーストをそれぞれのAl基板上に塗布印刷後、580℃で焼成することにより断熱材を含む熱電変換材料層3N,3Pをそれぞれ形成した。熱電変換材料層3N,3Pの厚みは1mm程度になるように形成した。
次に、熱電変換材料層3N,3P上に、角20mm×45mm,厚さ50μmのグラファイトシート(パナソニック社製)と、角50mm×105mmさ50μmのグラファイトシート(パナソニック社製)をそれぞれ積層する。グラファイトシートの接着面に、熱電変換材料層3N,3Pと同じ組成の上記のBi-Te系材料のペーストを0.1mm程度の厚みになるように塗布印刷し、グラファイトの酸化を防ぐために減圧化で580℃程度の熱をかけて、熱電変換材料層3N,3Pとグラファイトシートを接着した。
続いて角20mm×20mm,厚さ5mmの板状のグラスウール板と、角50mm×50mm,厚さ5mmの板状のグラスウール板を用意し、図6のようにグラスウール板の下面・側面・上面に前記グラファイトシートを接着する。接着には上記のBi-Te系材料のペーストを使用し、同ペーストを0.1mm程度の厚みになるように塗布印刷し、グラファイトの酸化を防ぐために減圧化で580℃程度の熱をかけて接着した。
続いてグラファイト層5A,5Bの上面に、上記のBi-Te系材料のペーストを1mm程度の厚みになるように塗布印刷し、グラファイトの酸化を防ぐために減圧化で580℃程度の熱をかけて、熱電変換材料層6N,6Pをそれぞれ形成した。熱電変換材料層6N,6Pの上部に厚さ0.2mmのAl基板を半田で取り付けた。このようにして作製された熱電変換材料層、グラファイト層、断熱層、グラファイト層、熱電変換材料層の5層構造のN型とP型の熱電変換部を評価用試料とした。
[Fabrication of Thermoelectric Conversion Section for Fourth Evaluation]
The N-type thermoelectric conversion part and P-type thermoelectric conversion part of Embodiment 6 (see FIG. 6) were produced by the following steps.
First, an Al substrate having a square of 20 mm × 20 mm and a thickness of 0.4 mm and an Al substrate having a square of 50 m × 50 m and a thickness of 0.3 mm are prepared, and the above Bi-Te-based material paste is applied to each Al substrate. After coating and printing, the thermoelectric conversion material layers 3N and 3P including a heat insulating material were formed by baking at 580 ° C., respectively. The thermoelectric conversion material layers 3N and 3P were formed to have a thickness of about 1 mm.
Next, a graphite sheet (manufactured by Panasonic) with a square of 20 mm × 45 mm and a thickness of 50 μm and a graphite sheet (manufactured by Panasonic) with a square of 50 mm × 105 mm and 50 μm are laminated on the thermoelectric conversion material layers 3N and 3P. The above-mentioned Bi-Te-based material paste having the same composition as the thermoelectric conversion material layers 3N and 3P is applied and printed on the adhesive surface of the graphite sheet to a thickness of about 0.1 mm, and the pressure is reduced to prevent oxidation of the graphite. The thermoelectric conversion material layers 3N and 3P and the graphite sheet were bonded by applying heat of about 580 ° C.
Next, prepare a plate-like glass wool plate with a corner of 20 mm × 20 mm and a thickness of 5 mm and a plate-like glass wool plate with a corner of 50 mm × 50 mm and a thickness of 5 mm, as shown in FIG. The graphite sheet is bonded. The above-mentioned paste of Bi-Te material is used for adhesion, the paste is applied and printed to a thickness of about 0.1 mm, and heat of about 580 ° C. is applied under reduced pressure to prevent oxidation of graphite. Glued.
Subsequently, the above-mentioned Bi-Te material paste is applied and printed on the upper surface of the graphite layers 5A and 5B so as to have a thickness of about 1 mm, and heat is applied at about 580 ° C. under reduced pressure to prevent oxidation of the graphite. The thermoelectric conversion material layers 6N and 6P were formed. An Al substrate having a thickness of 0.2 mm was attached to the upper portions of the thermoelectric conversion material layers 6N and 6P with solder. The N-type and P-type thermoelectric conversion parts having the five-layer structure of the thermoelectric conversion material layer, the graphite layer, the heat insulating layer, the graphite layer, and the thermoelectric conversion material layer thus prepared were used as samples for evaluation.

〔第5評価用熱電変換部の作製〕
実施形態7(図7参照)のN型熱電変換部とP型熱電変換部を以下の工程で作製した。
第5評価用熱電変換部の作製方法は上記の第4評価用熱電変換部の作製方法とほぼ同じであるが、用いる断熱材の形状が異なる。ここで使用する断熱材は、厚さ1mmの板状のグラスウール板で四方を囲んだ角20mm×20mm,厚さ5mmの形状で中が角20mm×18mm,厚さ3mmの空洞となっているものと、厚さ1mmの板状のグラスウール板で四方を囲んだ角50mm×50mm,厚さ5mmの形状で中が角50mm×48mm,厚さ3mmの空洞となっている筒状の中空体をそれぞれ使用した。それ以外は第4評価用熱電変換部の作製方法と同様にして第5評価用熱電変換部を作製し、熱電変換材料層、グラファイト層、断熱層、グラファイト層、熱電変換材料層の5層構造のN型とP型の熱電変換部を評価用試料とした。
[Fabrication of Thermoelectric Conversion Section for Fifth Evaluation]
An N-type thermoelectric conversion part and a P-type thermoelectric conversion part of Embodiment 7 (see FIG. 7) were produced by the following steps.
The method for producing the fifth evaluation thermoelectric conversion part is substantially the same as the method for producing the fourth evaluation thermoelectric conversion part, but the shape of the heat insulating material used is different. The heat insulating material used here is a hollow 20 mm x 18 mm square with a square shape of 20 mm x 20 mm and a thickness of 5 mm surrounded by a 1 mm thick plate-like glass wool board. And cylindrical hollow bodies each having a square shape of 50 mm × 50 mm and a thickness of 5 mm, which is surrounded by a plate-like glass wool plate having a thickness of 1 mm, and a hollow of 50 mm × 48 mm and a thickness of 3 mm inside. used. Other than that, the fifth evaluation thermoelectric conversion part was prepared in the same manner as the fourth evaluation thermoelectric conversion part, and a five-layer structure of a thermoelectric conversion material layer, a graphite layer, a heat insulating layer, a graphite layer, and a thermoelectric conversion material layer. N-type and P-type thermoelectric conversion parts were used as samples for evaluation.

〔比較用熱電変換部の作製〕
まず、比較形態1(図12参照)のN型熱電変換部とP型熱電変換部を以下の工程で作製した。
[Production of comparative thermoelectric converter]
First, an N-type thermoelectric conversion part and a P-type thermoelectric conversion part of Comparative Example 1 (see FIG. 12) were produced by the following steps.

まず、N型熱電変換材料としてBi2Te2.7Se0.3の組成で調整した原料を、P型熱電変換材料としてBi0.5Sb1.5Te3の組成で調整した原料をそれぞれ使用し、Bi-Te系熱電変換材料の基板を作製した。Bi,Te,その他の添加物の粉末原料を混合して溶融し、溶融後できた母材を粉砕して、粉末状のN型若くはP型熱電変換材料の原料を得た。そして、得られた粉末を300mm×300mm×50mmの整形部材に加圧して詰め、ゾーンメルト法を用いて溶融温度570℃〜620℃程度で再溶融したあと、350〜450℃で5時間焼鈍し焼結体を製造した。製造した焼結体をワイヤソーで切り出して、角100mm×250mm,厚さ7mmのBi-Te系熱電変換材料の基板を製造した。 First, a raw material adjusted with a composition of Bi 2 Te 2.7 Se 0.3 is used as an N-type thermoelectric conversion material, and a raw material adjusted with a composition of Bi 0.5 Sb 1.5 Te 3 is used as a P-type thermoelectric conversion material. A substrate of conversion material was prepared. Powder materials of Bi, Te, and other additives were mixed and melted, and the base material formed after melting was pulverized to obtain a powdery N-type or P-type thermoelectric conversion material. The obtained powder is pressed and packed into a 300 mm × 300 mm × 50 mm shaping member, remelted at a melting temperature of about 570 ° C. to 620 ° C. using a zone melt method, and then annealed at 350 to 450 ° C. for 5 hours. A sintered body was produced. The produced sintered body was cut out with a wire saw to produce a Bi-Te thermoelectric conversion material substrate having a corner of 100 mm × 250 mm and a thickness of 7 mm.

このようにして作製されたN型とP型の熱電変換部を、熱電特性評価用試料:角20mm×20mm、熱伝導率測定用試料:角50mm×50mmの評価用試料のサイズに切り出して切削面を研磨し比較用熱電変換部を作製した。作製したそれぞれの比較用熱電変換部の上部と下部に厚さ0.2mmのAl電極を半田で取り付け比較用試料とした。   The N-type and P-type thermoelectric conversion parts thus fabricated were cut into a size for evaluation of a sample for thermoelectric property evaluation: sample for square 20 mm × 20 mm, sample for thermal conductivity measurement: 50 mm × 50 mm for cut. The surface was polished to produce a comparative thermoelectric converter. An Al electrode having a thickness of 0.2 mm was attached to the upper and lower portions of each of the produced comparative thermoelectric conversion parts with solder to obtain a comparative sample.

[評価方法]
熱電変換部の性能の評価方法は、以下のようにして行った。
1)電気伝導率:アルバック理工社製の熱電特性評価装置ZEM−3を使用して測定した。円柱状に処理した熱電変換材料に白金線を装着し、直流四端子法により室温で電気伝導率を測定した。
2)ゼーベック係数:アルバック理工社製の熱電特性評価装置ZEM−3を使用して測定した。測定条件は、電気伝導率評価と同様の測定条件とした。
3)熱伝導率:アルバック理工社製の定常法熱伝導率測定装置GH−1を使用して測定した。
[Evaluation method]
The evaluation method of the performance of the thermoelectric conversion part was performed as follows.
1) Electrical conductivity: Measured using a thermoelectric property evaluation apparatus ZEM-3 manufactured by ULVAC-RIKO. A platinum wire was attached to the cylindrical thermoelectric conversion material, and the electrical conductivity was measured at room temperature by the DC four-terminal method.
2) Seebeck coefficient: measured using a thermoelectric property evaluation apparatus ZEME-3 manufactured by ULVAC-RIKO. The measurement conditions were the same as in the electrical conductivity evaluation.
3) Thermal conductivity: It measured using the stationary method thermal conductivity measuring apparatus GH-1 by ULVAC-RIKO.

上記のように作製した第1〜第5評価用熱電変換部と比較用熱電変換部の評価結果を表1に示す。表1の結果より、本発明の断熱層を有する熱電変換部は全て熱伝導率が低下する。それに対して電気伝導率も低下するが電気伝導率の低下の程度以上に熱伝導率の改善ができており、本発明の断熱層を有する熱電変換部の性能指数は、比較用熱電変換部の性能指数に比べて高い値を示す。これは断熱材で熱電変換材料を微細に包括することや、グラファイトを使用して熱伝導部分と電気伝導部分を立体的に隔離することによる効果であり、熱電変換部全体として格子振動による熱伝導性を低下させることができたためである。
Table 1 shows the evaluation results of the first to fifth evaluation thermoelectric conversion parts and the comparative thermoelectric conversion part produced as described above. From the results of Table 1, the thermal conductivity of all thermoelectric conversion parts having the heat insulating layer of the present invention is lowered. On the other hand, the electrical conductivity also decreases, but the thermal conductivity has been improved more than the degree of decrease in electrical conductivity, and the figure of merit of the thermoelectric conversion part having the heat insulating layer of the present invention is that of the comparative thermoelectric conversion part. High value compared to the figure of merit. This is the effect of finely encapsulating the thermoelectric conversion material with a heat insulating material and the three-dimensional separation of the heat conduction part and the electric conduction part using graphite, and the heat conduction by lattice vibration as the whole thermoelectric conversion part. This is because the sex could be lowered.

〔実施例1〕
以下の(1−1)〜(1−4)のように、実施形態1(図1)の態様の熱電変換素子1Aを作製した。基本的な作製方法は、上記の第1評価用熱電変換部の作製方法と同じである(第1評価用熱電変換部の作製を参照)。
[Example 1]
As in the following (1-1) to (1-4), a thermoelectric conversion element 1A according to the embodiment 1 (FIG. 1) was produced. The basic production method is the same as the production method of the first evaluation thermoelectric conversion part (see production of the first evaluation thermoelectric conversion part).

(1−1)φ0.3mmの貫通孔を0.5mmピッチで全面に有する角100mm×250mm,厚さ5mmの板状のグラスウール板に、N型熱電変換材料(Bi2Te2.7Se0.3)を貫通孔に充填すると共に、N型熱電変換材料(Bi2Te2.7Se0.3)よりなる約1.0mmの層をグラスウール板の表裏面に形成してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、断熱層4A及びN型熱電変換材料層6Nの3層構造である。 (1-1) An N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is applied to a plate-like glass wool plate having a diameter of 100 mm × 250 mm and a thickness of 5 mm having through-holes of φ0.3 mm on the entire surface at a pitch of 0.5 mm. While filling the through-hole, an N-type thermoelectric conversion part was produced by forming layers of about 1.0 mm made of an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) on the front and back surfaces of the glass wool plate. The N-type thermoelectric conversion part has a three-layer structure of an N-type thermoelectric conversion material layer 3N, a heat insulating layer 4A, and an N-type thermoelectric conversion material layer 6N.

(1−2)φ0.3mmの貫通孔を0.5mmピッチで全面に有する角100mm×250mm,厚さ5mmの板状のグラスウール板に、P型熱電変換材料(Bi0.5Sb1.5Te3)を貫通孔に充填すると共に、P型熱電変換材料(Bi0.5Sb1.5Te3)よりなる約1.0mmの層をグラスウール板の表裏面に形成してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、断熱層4B及びP型熱電変換材料層6Pの3層構造である。 (1-2) A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is applied to a plate-like glass wool plate having 100 mm × 250 mm and a thickness of 5 mm having through-holes of φ0.3 mm on the entire surface at a pitch of 0.5 mm. While filling the through-holes, a P-type thermoelectric conversion part was produced by forming a layer of about 1.0 mm made of a P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) on the front and back surfaces of the glass wool plate. The P-type thermoelectric conversion part has a three-layer structure of a P-type thermoelectric conversion material layer 3P, a heat insulating layer 4B, and a P-type thermoelectric conversion material layer 6P.

(1−3)角100mm×505mm、厚さ0.2mmのAl基板よりなる導電性基板2の中央に、角100×5mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んで、N型熱電変換部とP型熱電変換部とを対向するように導電性基板2上に配置した。なお、N型及びP型熱電変換部とAl基板との接着には半田を使用した。 (1-3) Insulating layer 9 made of an acrylic plate having a corner of 100 × 5 mm and a height of 7.5 mm is formed in the center of conductive substrate 2 made of an Al substrate having a corner of 100 mm × 505 mm and a thickness of 0.2 mm, The N-type thermoelectric conversion part and the P-type thermoelectric conversion part were arranged on the conductive substrate 2 with the insulating layer 9 interposed therebetween. Note that solder was used to bond the N-type and P-type thermoelectric converters to the Al substrate.

(1−4)100mm×250mm、厚さ0.2mmのAl基板よりなる電極8A及び電極8Bを、N型熱電変換材料層6N及びP型熱電変換材料層6Pの上部にそれぞれ配置した(以上、図1参照)。 (1-4) An electrode 8A and an electrode 8B made of an Al substrate having a size of 100 mm × 250 mm and a thickness of 0.2 mm were respectively disposed on the N-type thermoelectric conversion material layer 6N and the P-type thermoelectric conversion material layer 6P. (See FIG. 1).

以上の工程で作製された熱電変換素子1Aに電圧・電流を流し、そのときの温度変化を調べて素子の評価を行った。熱電対を図1に示す温度測定点にセットし、室温25℃、湿度50%RHの環境で、電極8Aと電極8Bとの間に8V・8Aの電圧・電流を流した。そのときの温度測定点の温度変化は、ΔT:−19Kであった。   A voltage / current was passed through the thermoelectric conversion element 1A manufactured in the above process, and the temperature change at that time was examined to evaluate the element. A thermocouple was set at the temperature measurement point shown in FIG. 1, and a voltage / current of 8V · 8A was passed between the electrode 8A and the electrode 8B in an environment of room temperature 25 ° C. and humidity 50% RH. The temperature change at the temperature measurement point at that time was ΔT: −19K.

〔実施例2〕
以下の(2−1)〜(2−4)のように、実施形態2(図2)の態様の熱電変換素子1Bを作製した。基本的な作製方法は、上記の第3評価用熱電変換部の作製方法と同じである(第3評価用熱電変換部の作製を参照)。
[Example 2]
As in the following (2-1) to (2-4), a thermoelectric conversion element 1B of the mode of Embodiment 2 (FIG. 2) was produced. The basic production method is the same as the production method of the third evaluation thermoelectric conversion part (see production of the third evaluation thermoelectric conversion part).

(2−1)角100mm×250mm,厚さ1.5mmのN型熱電変換材料(Bi2Te2.7Se0.3)の基板上に、約5.0mmの厚みのグラスウール基板を粉砕した断熱材粉末よりなる多孔質断熱層を形成し、その上からN型熱電変換材料(Bi2Te2.7Se0.3)を断熱層の孔部分に埋め込むように印刷して、断熱層の上に約0.5mmの厚みのN型熱電変換材料(Bi2Te2.7Se0.3)層を形成してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、断熱層4C及びN型熱電変換材料層6Nの3層構造である。 (2-1) From a heat insulating material powder obtained by pulverizing a glass wool substrate having a thickness of about 5.0 mm on a substrate of an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) having a square of 100 mm × 250 mm and a thickness of 1.5 mm. A porous heat insulating layer is formed, and an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is printed on the heat insulating layer so as to be embedded in the hole, and a thickness of about 0.5 mm is formed on the heat insulating layer. N type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) layer was formed to produce an N type thermoelectric conversion part. The N-type thermoelectric conversion part has a three-layer structure of an N-type thermoelectric conversion material layer 3N, a heat insulating layer 4C, and an N-type thermoelectric conversion material layer 6N.

(2−2)角100mm×250mm,厚さ1.5mmのP型熱電変換材料(Bi0.5Sb1.5Te3)の基板上に、約5.0mmの厚みのグラスウール基板を粉砕した断熱材粉末よりなる多孔質断熱層を形成し、その上からP型熱電変換材料(Bi0.5Sb1.5Te3)を断熱層の孔部分に埋め込むように印刷して、断熱層の上に約0.5mmの厚みのP型熱電変換材料(Bi0.5Sb1.5Te3)層を形成してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、断熱層4D及びP型熱電変換材料層6Pの3層構造である。 (2-2) From a heat insulating material powder obtained by pulverizing a glass wool substrate having a thickness of about 5.0 mm on a substrate of a P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) having a square of 100 mm × 250 mm and a thickness of 1.5 mm. A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is printed so as to be embedded in the hole portion of the heat insulation layer, and a thickness of about 0.5 mm is formed on the heat insulation layer. A P-type thermoelectric conversion part was formed by forming a P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) layer. The P-type thermoelectric conversion part has a three-layer structure of a P-type thermoelectric conversion material layer 3P, a heat insulating layer 4D, and a P-type thermoelectric conversion material layer 6P.

(2−3)角100mm×505mm、厚さ0.2mmのAl基板よりなる導電性基板2の中央に、角100×5mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んで、N型熱電変換部とP型熱電変換部とを対向するように導電性基板2上に配置した。なお、N型及びP型熱電変換部とAl基板との接着には半田を使用した。 (2-3) Forming an insulating layer 9 made of an acrylic plate having a corner of 100 × 5 mm and a height of 7.5 mm in the center of the conductive substrate 2 made of an Al substrate having a corner of 100 mm × 505 mm and a thickness of 0.2 mm, The N-type thermoelectric conversion part and the P-type thermoelectric conversion part were arranged on the conductive substrate 2 with the insulating layer 9 interposed therebetween. Note that solder was used to bond the N-type and P-type thermoelectric converters to the Al substrate.

(2−4)角100mm×250mm、厚さ0.2mmのAl基板よりなる電極8A及び電極8Bを、N型熱電変換材料層6N及びP型熱電変換材料層6Pの上部にそれぞれ配置した(以上、図2参照)。 (2-4) An electrode 8A and an electrode 8B made of an Al substrate having a square size of 100 mm × 250 mm and a thickness of 0.2 mm were respectively disposed on the N-type thermoelectric conversion material layer 6N and the P-type thermoelectric conversion material layer 6P. FIG. 2).

以上の工程で作製された熱電変換素子1Bに電圧・電流を流し、そのときの温度変化を調べて素子の評価を行った。熱電対を図1に示す温度測定点にセットし、室温25℃、湿度50%RHの環境で、電極8Aと電極8Bとの間に8V・8Aの電圧・電流を流した。そのときの温度測定点の温度変化は、ΔT:−21Kであった。   A voltage / current was passed through the thermoelectric conversion element 1B produced through the above steps, and the temperature change at that time was examined to evaluate the element. A thermocouple was set at the temperature measurement point shown in FIG. 1, and a voltage / current of 8V · 8A was passed between the electrode 8A and the electrode 8B in an environment of room temperature 25 ° C. and humidity 50% RH. The temperature change at the temperature measurement point at that time was ΔT: -21K.

〔実施例3〕
以下の(3−1)〜(3−4)のように、実施形態3(図3)の態様の熱電変換素子1Cを作製した。基本的な作製方法は、上記の第2評価用熱電変換部の作製方法と同じである(第2評価用熱電変換部の作製を参照)。
Example 3
As in the following (3-1) to (3-4), a thermoelectric conversion element 1C according to the embodiment 3 (FIG. 3) was produced. The basic production method is the same as the production method of the second evaluation thermoelectric conversion part (see production of the second evaluation thermoelectric conversion part).

(3−1)φ0.3mmの貫通孔を0.5mmピッチで全面に有する角100mm×250mm,厚さ5mmの板状のグラスウール板に、N型熱電変換材料(Bi2Te2.7Se0.3)を貫通孔に充填すると共に、N型熱電変換材料(Bi2Te2.7Se0.3)よりなる約1.0mmの層をグラスウール板の表裏面に形成し、その片面に角100mm×250mm,厚さ50μmのグラファイトシートを積層してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、断熱層4A、N型熱電変換材料層6N、グラファイト層5Aの4層構造とした。 (3-1) An N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is applied to a plate-like glass wool plate having a diameter of 100 mm × 250 mm and a thickness of 5 mm having through-holes with a diameter of 0.3 mm at a pitch of 0.5 mm. While filling the through-holes, a layer of about 1.0 mm made of N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is formed on the front and back surfaces of the glass wool plate, and each side has an angle of 100 mm × 250 mm and a thickness of 50 μm. A graphite sheet was laminated to produce an N-type thermoelectric conversion part. The N-type thermoelectric conversion part has a four-layer structure of an N-type thermoelectric conversion material layer 3N, a heat insulating layer 4A, an N-type thermoelectric conversion material layer 6N, and a graphite layer 5A.

(3−2)φ0.3mmの貫通孔を0.5mmピッチで全面に有する角100mm×250mm,厚さ5mmの板状のグラスウール板に、P型熱電変換材料(Bi0.5Sb1.5Te3)を貫通孔に充填すると共に、P型熱電変換材料(Bi0.5Sb1.5Te3)よりなる約1.0mmの層をグラスウール板の表裏面に形成し、その片面に角100mm×250mm,厚さ50μmのグラファイトシートを積層してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、断熱層4B、P型熱電変換材料層6P、グラファイト層5Bの4層構造とした。 (3-2) A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is applied to a plate-like glass wool plate having 100 mm × 250 mm and a thickness of 5 mm having through-holes of φ0.3 mm on the entire surface at a pitch of 0.5 mm. While filling the through-holes, a layer of about 1.0 mm made of P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is formed on the front and back surfaces of the glass wool plate, and each side has an angle of 100 mm × 250 mm and a thickness of 50 μm. A P-type thermoelectric conversion part was produced by laminating graphite sheets. The P-type thermoelectric conversion part has a four-layer structure of a P-type thermoelectric conversion material layer 3P, a heat insulating layer 4B, a P-type thermoelectric conversion material layer 6P, and a graphite layer 5B.

(3−3)角100mm×505mm、厚さ1.0mmのAl基板よりなる導電性基板2の中央に、角100×5mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んで、N型熱電変換部とP型熱電変換部とを対向するように導電性基板2上に配置した。なお、N型及びP型熱電変換部とAl基板との接着には半田を使用した。 (3-3) Insulating layer 9 made of an acrylic plate having a corner of 100 × 5 mm and a height of 7.5 mm is formed at the center of conductive substrate 2 made of an Al substrate having a corner of 100 mm × 505 mm and a thickness of 1.0 mm, The N-type thermoelectric conversion part and the P-type thermoelectric conversion part were arranged on the conductive substrate 2 with the insulating layer 9 interposed therebetween. Note that solder was used to bond the N-type and P-type thermoelectric converters to the Al substrate.

(3−4)角50mm×50mm、厚さ0.3mmのAl基板よりなる電極8A及び電極8Bを、グラファイト層5A及びグラファイト層5Bの上部にそれぞれ配置した(以上、図3参照)。 (3-4) An electrode 8A and an electrode 8B made of an Al substrate each having a square size of 50 mm × 50 mm and a thickness of 0.3 mm were disposed on the graphite layer 5A and the graphite layer 5B, respectively (see FIG. 3 above).

以上の工程で作製された熱電変換素子1Cに電圧・電流を流し、そのときの温度変化を調べて素子の評価を行った。熱電対を図2に示す温度測定点にセットし、室温25℃、湿度50%RHの環境で、電極8Aと電極8Bとの間に8V・8Aの電圧・電流を流した。そのときの温度測定点の温度変化は、ΔT:−21Kであった。
A voltage / current was passed through the thermoelectric conversion element 1 </ b> C manufactured in the above process, and the temperature change at that time was examined to evaluate the element. A thermocouple was set at the temperature measurement point shown in FIG. 2, and a voltage / current of 8V · 8A was passed between the electrode 8A and the electrode 8B in an environment of room temperature 25 ° C. and humidity 50% RH. The temperature change at the temperature measurement point at that time was ΔT: -21K.

〔実施例4〕
以下の(4−1)〜(4−4)のように、実施形態4(図4)の態様の熱電変換素子1Dを作製した。基本的な作製方法は、上記の第2評価用熱電変換部の作製方法と同じである(第2評価用熱電変換部の作製を参照)。
Example 4
As in the following (4-1) to (4-4), a thermoelectric conversion element 1D according to the embodiment 4 (FIG. 4) was produced. The basic production method is the same as the production method of the second evaluation thermoelectric conversion part (see production of the second evaluation thermoelectric conversion part).

(4−1)φ0.3mmの貫通孔を0.5mmピッチで全面に有する角100mm×200mm,厚さ5mmの板状のグラスウール板に、N型熱電変換材料(Bi2Te2.7Se0.3)を貫通孔に充填すると共に、N型熱電変換材料(Bi2Te2.7Se0.3)よりなる約1.0mmの層をグラスウール板の表裏面に形成し、その片面に角100mm×250mm,厚さ50μmのグラファイトシートを積層してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、断熱層4A、N型熱電変換材料層6N、グラファイト層5Aの4層構造とした。この構造の場合、グラファイト層は断熱層やN型熱電変換材料層よりも幅が長いので、グラファイト層5Aには、積層よりはみ出た延在部分が存在する。 (4-1) An N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is applied to a plate-like glass wool plate having a diameter of 100 mm × 200 mm and a thickness of 5 mm having through-holes with a diameter of 0.3 mm at a pitch of 0.5 mm. While filling the through-holes, a layer of about 1.0 mm made of N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is formed on the front and back surfaces of the glass wool plate, and each side has an angle of 100 mm × 250 mm and a thickness of 50 μm. A graphite sheet was laminated to produce an N-type thermoelectric conversion part. The N-type thermoelectric conversion part has a four-layer structure of an N-type thermoelectric conversion material layer 3N, a heat insulating layer 4A, an N-type thermoelectric conversion material layer 6N, and a graphite layer 5A. In the case of this structure, since the graphite layer is longer than the heat insulating layer and the N-type thermoelectric conversion material layer, the graphite layer 5A has an extended portion that protrudes from the stack.

(4−2)φ0.3mmの貫通孔を0.5mmピッチで全面に有する角100mm×200mm,厚さ5mmの板状のグラスウール板に、P型熱電変換材料(Bi0.5Sb1.5Te3)を貫通孔に充填すると共に、P型熱電変換材料(Bi0.5Sb1.5Te3)よりなる約1.0mmの層をグラスウール板の表裏面に形成し、その片面に角100mm×250mm,厚さ50μmのグラファイトシートを積層してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、断熱層4B、P型熱電変換材料層6P、グラファイト層5Bの4層構造とした。この構造の場合、グラファイト層は断熱層やP型熱電変換材料層よりも幅が長いので、グラファイト層5Bには、積層よりはみ出た延在部分が存在する。 (4-2) P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is applied to a plate-like glass wool plate having 100 mm × 200 mm square and 5 mm thickness with through holes of φ0.3 mm on the entire surface at a pitch of 0.5 mm. While filling the through-holes, a layer of about 1.0 mm made of P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is formed on the front and back surfaces of the glass wool plate, and each side has an angle of 100 mm × 250 mm and a thickness of 50 μm. A P-type thermoelectric conversion part was produced by laminating graphite sheets. The P-type thermoelectric conversion part has a four-layer structure of a P-type thermoelectric conversion material layer 3P, a heat insulating layer 4B, a P-type thermoelectric conversion material layer 6P, and a graphite layer 5B. In the case of this structure, since the graphite layer is longer than the heat insulating layer and the P-type thermoelectric conversion material layer, the graphite layer 5B has an extended portion that protrudes from the stack.

(4−3)角100mm×405mm、厚さ0.2mmのAl基板よりなる導電性基板2の中央に、角100×5mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んで、N型熱電変換部材とP型熱電変換部材とを対向するように導電性基板2上に配置した。なお、N型及びP型熱電変換部とAl基板との接着には半田を使用した。 (4-3) Insulating layer 9 made of an acrylic plate having a corner of 100 × 5 mm and a height of 7.5 mm is formed in the center of conductive substrate 2 made of an Al substrate having a corner of 100 mm × 405 mm and a thickness of 0.2 mm, The N-type thermoelectric conversion member and the P-type thermoelectric conversion member were arranged on the conductive substrate 2 with the insulating layer 9 interposed therebetween. Note that solder was used to bond the N-type and P-type thermoelectric converters to the Al substrate.

(4−4)角50mm×50mm、厚さ0.2mmのAl基板よりなる電極8A及び電極8Bを、グラファイト層5A及びグラファイト層5Bの延在部分にそれぞれ配置した(以上、図4参照)。 (4-4) An electrode 8A and an electrode 8B made of an Al substrate each having a square size of 50 mm × 50 mm and a thickness of 0.2 mm were arranged in the extending portions of the graphite layer 5A and the graphite layer 5B (see FIG. 4 above).

以上の工程で作製された熱電変換素子1Dに電圧・電流を流し、そのときの温度変化を調べて素子の評価を行った。熱電対を図3に示す温度測定点にセットし、室温25℃、湿度50%RHの環境で、電極8Aと電極8Bとの間に8V・8Aの電圧・電流を流した。そのときの温度測定点の温度変化は、ΔT:−25Kであった。   A voltage / current was passed through the thermoelectric conversion element 1D produced through the above steps, and the temperature change at that time was examined to evaluate the element. A thermocouple was set at the temperature measurement point shown in FIG. 3, and a voltage / current of 8V · 8A was passed between the electrode 8A and the electrode 8B in an environment of room temperature 25 ° C. and humidity 50% RH. The temperature change at the temperature measurement point at that time was ΔT: −25K.

〔実施例5〕
以下の(5−1)〜(5−4)のように、実施形態5(図5)の態様の熱電変換素子1Eを作製した。基本的な作製方法は、上記の第3評価用熱電変換部の作製方法と同じである(第3評価用熱電変換部の作製を参照)。
Example 5
As in the following (5-1) to (5-4), a thermoelectric conversion element 1E according to the embodiment 5 (FIG. 5) was produced. The basic production method is the same as the production method of the third evaluation thermoelectric conversion part (see production of the third evaluation thermoelectric conversion part).

(5−1)角100mm×200mm,厚さ1.5mmのN型熱電変換材料(Bi2Te2.7Se0.3)の基板上に、約5.0mmの厚みのグラスウール基板を粉砕した断熱材粉末よりなる多孔質断熱層を形成し、その上からN型熱電変換材料(Bi2Te2.7Se0.3)を断熱層の孔部分に埋め込むように印刷して、断熱層の上に約0.5mmの厚みのN型熱電変換材料(Bi2Te2.7Se0.3)層を形成し、その上に角100mm×250mm,厚さ50μmのグラファイトシートを積層してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、断熱層4C、N型熱電変換材料層6N、グラファイト層5Aの4層構造とした。この構造の場合、グラファイト層は断熱層やN型熱電変換材料層よりも幅が長いので、グラファイト層5Aには、積層よりはみ出た延在部分が存在する。 (5-1) From a heat insulating material powder obtained by pulverizing a glass wool substrate having a thickness of about 5.0 mm on a substrate of an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) having a square of 100 mm × 200 mm and a thickness of 1.5 mm. A porous heat insulating layer is formed, and an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is printed on the heat insulating layer so as to be embedded in the hole, and a thickness of about 0.5 mm is formed on the heat insulating layer. N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) layer was formed, and a graphite sheet having a corner of 100 mm × 250 mm and a thickness of 50 μm was laminated thereon to produce an N-type thermoelectric conversion part. The N-type thermoelectric conversion part has a four-layer structure of an N-type thermoelectric conversion material layer 3N, a heat insulating layer 4C, an N-type thermoelectric conversion material layer 6N, and a graphite layer 5A. In the case of this structure, since the graphite layer is longer than the heat insulating layer and the N-type thermoelectric conversion material layer, the graphite layer 5A has an extended portion that protrudes from the stack.

(5−2)角100mm×200mm,厚さ1.5mmのP型熱電変換材料(Bi0.5Sb1.5Te3)の基板上に、約5.0mmの厚みのグラスウール基板を粉砕した断熱材粉末よりなる多孔質断熱層を形成し、その上からP型熱電変換材料(Bi0.5Sb1.5Te3)を断熱層の孔部分に埋め込むように印刷して、断熱層の上に約0.5mmの厚みのP型熱電変換材料(Bi0.5Sb1.5Te3)層を形成し、その上に角100mm×250mm,厚さ50μmのグラファイトシートを積層してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、断熱層4D、P型熱電変換材料層6P、グラファイト層5Bの4層構造とした。この構造の場合、グラファイト層は断熱層やP型熱電変換材料層よりも幅が長いので、グラファイト層5Bには、積層よりはみ出た延在部分が存在する。 (5-2) From a heat insulating material powder obtained by pulverizing a glass wool substrate having a thickness of about 5.0 mm on a substrate of a P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) having a square of 100 mm × 200 mm and a thickness of 1.5 mm. A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is printed so as to be embedded in the hole portion of the heat insulation layer, and a thickness of about 0.5 mm is formed on the heat insulation layer. P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) layer was formed, and a graphite sheet having a corner of 100 mm × 250 mm and a thickness of 50 μm was laminated thereon to produce a P-type thermoelectric conversion part. The P-type thermoelectric conversion part has a four-layer structure of a P-type thermoelectric conversion material layer 3P, a heat insulating layer 4D, a P-type thermoelectric conversion material layer 6P, and a graphite layer 5B. In the case of this structure, since the graphite layer is longer than the heat insulating layer and the P-type thermoelectric conversion material layer, the graphite layer 5B has an extended portion that protrudes from the stack.

(5−3)角100mm×405mm、厚さ0.2mmのAl基板よりなる導電性基板2の中央に、角100×5mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んで、N型熱電変換部材とP型熱電変換部材とを対向するように導電性基板2上に配置した。なお、N型及びP型熱電変換部とAl基板との接着には半田を使用した。 (5-3) Insulating layer 9 made of an acrylic plate having a corner of 100 × 5 mm and a height of 7.5 mm is formed at the center of conductive substrate 2 made of an Al substrate having a corner of 100 mm × 405 mm and a thickness of 0.2 mm, The N-type thermoelectric conversion member and the P-type thermoelectric conversion member were arranged on the conductive substrate 2 with the insulating layer 9 interposed therebetween. Note that solder was used to bond the N-type and P-type thermoelectric converters to the Al substrate.

(5−4)角50mm×50mm、厚さ0.2mmのAl基板よりなる電極8A及び電極8Bを、グラファイト層5A及びグラファイト層5Bの延在部分にそれぞれ配置した(以上、図5参照)。 (5-4) An electrode 8A and an electrode 8B made of an Al substrate each having a square size of 50 mm × 50 mm and a thickness of 0.2 mm were arranged in the extending portions of the graphite layer 5A and the graphite layer 5B, respectively (see FIG. 5 above).

以上の工程で作製された熱電変換素子1Eに電圧・電流を流し、そのときの温度変化を調べて素子の評価を行った。熱電対を図3に示す温度測定点にセットし、室温25℃、湿度50%RHの環境で、電極8Aと電極8Bとの間に8V・8Aの電圧・電流を流した。そのときの温度測定点の温度変化は、ΔT:−26Kであった。   A voltage / current was passed through the thermoelectric conversion element 1E produced through the above steps, and the temperature change at that time was examined to evaluate the element. A thermocouple was set at the temperature measurement point shown in FIG. 3, and a voltage / current of 8V · 8A was passed between the electrode 8A and the electrode 8B in an environment of room temperature 25 ° C. and humidity 50% RH. The temperature change at the temperature measurement point at that time was ΔT: −26K.

〔実施例6〕
以下の(6−1)〜(6−4)のように、実施形態6(図6)の態様の熱電変換素子1Fを作製した。基本的な作製方法は、上記の第4評価用熱電変換部の作製方法と同じである(第4評価用熱電変換部の作製を参照)。
Example 6
As in the following (6-1) to (6-4), a thermoelectric conversion element 1F according to the embodiment 6 (FIG. 6) was produced. The basic production method is the same as the production method of the fourth evaluation thermoelectric conversion part (see production of the fourth evaluation thermoelectric conversion part).

(6−1)角100mm×505mm、厚さ0.4mmのAl基板よりなる導電性基板2の中央に、角100×5mm,高さ7.5mmのグラスウール板よりなる絶縁層9を形成した。グラスウール板とAl基板の接着にはAlペーストを使用し600℃で焼成することで接着した。 (6-1) An insulating layer 9 made of a glass wool plate having a corner of 100 × 5 mm and a height of 7.5 mm was formed in the center of the conductive substrate 2 made of an Al substrate having a corner of 100 mm × 505 mm and a thickness of 0.4 mm. The glass wool plate and the Al substrate were bonded by using an Al paste and firing at 600 ° C.

(6−2)上記グラスウール板で隔てられたAl基板上の一方の角100mm×250mmの部分に、約1mmの厚みのN型熱電変換材料(Bi2Te2.7Se0.3)層を形成し、その上に角100mm×505mm,厚さ50μmのグラファイトシートを積層し、続いて角100mm×250mm,厚さ5mmの板状のグラスウール板の下面・側面・上面に前記グラファイトシートを接着し、最上部のグラファイト層の上面に、約1mmの厚みのN型熱電変換材料(Bi2Te2.7Se0.3)層を形成してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、グラフィト層5A、断熱層4E、グラファイト層5A、N型熱電変換材料層6Nの5層構造とした。 (6-2) An N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) layer having a thickness of about 1 mm is formed on one corner 100 mm × 250 mm on the Al substrate separated by the glass wool plate, A graphite sheet having a corner of 100 mm × 505 mm and a thickness of 50 μm is laminated thereon, and then the graphite sheet is adhered to the lower surface, the side surface, and the upper surface of a plate-like glass wool plate having a corner of 100 mm × 250 mm and a thickness of 5 mm. An N-type thermoelectric conversion part (Bi 2 Te 2.7 Se 0.3 ) layer having a thickness of about 1 mm was formed on the upper surface of the graphite layer to produce an N-type thermoelectric conversion part. The N-type thermoelectric conversion part has a five-layer structure of an N-type thermoelectric conversion material layer 3N, a graffit layer 5A, a heat insulating layer 4E, a graphite layer 5A, and an N-type thermoelectric conversion material layer 6N.

(6−3)上記グラスウール板で隔てられたAl基板上の他方の角100mm×250mmの部分に、約1mmの厚みのP型熱電変換材料(Bi0.5Sb1.5Te3)層を形成し、その上に角100mm×505mm,厚さ50μmのグラファイトシートを積層し、続いて角100mm×250mm,厚さ5mmの板状のグラスウール板の下面・側面・上面に前記グラファイトシートを接着し、最上部のグラファイト層の上面に、約1mmの厚みのP型熱電変換材料(Bi0.5Sb1.5Te3)層を形成してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、グラフィト層5B、断熱層4F、グラファイト層5B、N型熱電変換材料層6Pの5層構造とした。 (6-3) A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) layer having a thickness of about 1 mm is formed on the other corner 100 mm × 250 mm on the Al substrate separated by the glass wool plate, A graphite sheet having a corner of 100 mm × 505 mm and a thickness of 50 μm is laminated thereon, and then the graphite sheet is adhered to the lower surface, the side surface, and the upper surface of a plate-like glass wool plate having a corner of 100 mm × 250 mm and a thickness of 5 mm. A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) layer having a thickness of about 1 mm was formed on the upper surface of the graphite layer to produce a P-type thermoelectric conversion portion. The P-type thermoelectric conversion part has a five-layer structure of a P-type thermoelectric conversion material layer 3P, a graffit layer 5B, a heat insulating layer 4F, a graphite layer 5B, and an N-type thermoelectric conversion material layer 6P.

(6−4)角100mm×250mm、厚さ0.2mmのAl基板よりなる電極8A及び電極8Bを、N型熱電変換材料層6N及びP型熱電変換材料層6Pの上部にそれぞれ配置した(以上、図6参照)。 (6-4) An electrode 8A and an electrode 8B made of an Al substrate having a square size of 100 mm × 250 mm and a thickness of 0.2 mm are respectively disposed on the N-type thermoelectric conversion material layer 6N and the P-type thermoelectric conversion material layer 6P (see above) FIG. 6).

以上の工程で作製された熱電変換素子1Fに電圧・電流を流し、そのときの温度変化を調べて素子の評価を行った。熱電対を図3に示す温度測定点にセットし、室温25℃、湿度50%RHの環境で、電極8Aと電極8Bとの間に8V・8Aの電圧・電流を流した。そのときの温度測定点の温度変化は、ΔT:−29Kであった。   A voltage / current was passed through the thermoelectric conversion element 1F manufactured through the above steps, and the temperature change at that time was examined to evaluate the element. A thermocouple was set at the temperature measurement point shown in FIG. 3, and a voltage / current of 8V · 8A was passed between the electrode 8A and the electrode 8B in an environment of room temperature 25 ° C. and humidity 50% RH. The temperature change at the temperature measurement point at that time was ΔT: -29K.

〔実施例7〕
以下の(7−1)〜(7−4)のように、実施形態7(図7)の態様の熱電変換素子1Gを作製した。基本的な作製方法は、上記の第5評価用熱電変換部の作製方法と同じである(第5評価用熱電変換部の作製を参照)。
Example 7
As in the following (7-1) to (7-4), a thermoelectric conversion element 1G having the aspect of Embodiment 7 (FIG. 7) was produced. The basic manufacturing method is the same as the above-described method for manufacturing the fifth evaluation thermoelectric conversion part (see the preparation of the fifth evaluation thermoelectric conversion part).

(7−1)角100mm×505mm、厚さ0.4mmのAl基板よりなる導電性基板2の中央に、角100×5mm,高さ7.5mmのグラスウール板よりなる絶縁層9を形成した。グラスウール板とAl基板の接着にはAlペーストを使用し600℃で焼成することで接着した。 (7-1) An insulating layer 9 made of a glass wool plate having a corner of 100 × 5 mm and a height of 7.5 mm was formed in the center of the conductive substrate 2 made of an Al substrate having a corner of 100 mm × 505 mm and a thickness of 0.4 mm. The glass wool plate and the Al substrate were bonded by using an Al paste and firing at 600 ° C.

(7−2)上記グラスウール板で隔てられたAl基板上の一方の角100mm×250mmの部分に、約1mmの厚みのN型熱電変換材料(Bi2Te2.7Se0.3)層を形成し、その上に角100mm×505mm,厚さ50μmのグラファイトシートを積層し、続いて厚さ1mmの板状のグラスウール板で四方を囲んだ角100mm×250mm,厚さ5mmの形状で中が角100mm×248mm,厚さ3mmの空洞となっている筒状のグラスウール板の下面・側面・上面に前記グラファイトシートを接着し、最上部のグラファイト層の上面に、N型熱電変換材料(Bi2Te2.7Se0.3)層を形成してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、グラフィト層5A、断熱層4G、グラファイト層5A、N型熱電変換材料層6Nの5層構造とした。 (7-2) An N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) layer having a thickness of about 1 mm is formed on one corner 100 mm × 250 mm on the Al substrate separated by the glass wool plate, A graphite sheet with a corner of 100 mm x 505 mm and a thickness of 50 μm is laminated on top, and then the square is 100 mm x 248 mm with a corner of 100 mm x 250 mm and a thickness of 5 mm. The graphite sheet is bonded to the lower, side and upper surfaces of a cylindrical glass wool plate having a thickness of 3 mm, and an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 is formed on the upper surface of the uppermost graphite layer. ) Layer to form an N-type thermoelectric converter. The N-type thermoelectric conversion part has a five-layer structure of an N-type thermoelectric conversion material layer 3N, a graffit layer 5A, a heat insulating layer 4G, a graphite layer 5A, and an N-type thermoelectric conversion material layer 6N.

(7−3)上記グラスウール板で隔てられたAl基板上の他方の角100mm×250mmの部分に、約1mmの厚みのP型熱電変換材料(Bi0.5Sb1.5Te3)層を形成し、その上に角100mm×505mm,厚さ50μmのグラファイトシートを積層し、続いて厚さ1mmの板状のグラスウール板で四方を囲んだ角100mm×250mm,厚さ5mmの形状で中が角100mm×248mm,厚さ3mmの空洞となっている筒状のグラスウール板の下面・側面・上面に前記グラファイトシートを接着し、最上部のグラファイト層の上面に、P型熱電変換材料(Bi0.5Sb1.5Te3)層を形成してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、グラフィト層5B、断熱層4H、グラファイト層5B、N型熱電変換材料層6Pの5層構造とした。 (7-3) A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) layer having a thickness of about 1 mm is formed on the other corner 100 mm × 250 mm on the Al substrate separated by the glass wool plate, A graphite sheet with a corner of 100 mm x 505 mm and a thickness of 50 μm is laminated on top, and then the square is 100 mm x 248 mm with a corner of 100 mm x 250 mm and a thickness of 5 mm. , The graphite sheet is bonded to the lower, side and upper surfaces of a cylindrical glass wool plate having a thickness of 3 mm, and a P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 is formed on the upper surface of the uppermost graphite layer. ) Layer was formed to produce a P-type thermoelectric converter. The P-type thermoelectric conversion part has a five-layer structure of a P-type thermoelectric conversion material layer 3P, a graffit layer 5B, a heat insulating layer 4H, a graphite layer 5B, and an N-type thermoelectric conversion material layer 6P.

(7−4)角100mm×250mm、厚さ0.2mmのAl基板よりなる電極8A及び電極8Bを、N型熱電変換材料層6N及びP型熱電変換材料層6Pの上部にそれぞれ配置した(以上、図7参照)。 (7-4) An electrode 8A and an electrode 8B made of an Al substrate having a square size of 100 mm × 250 mm and a thickness of 0.2 mm were respectively disposed on the N-type thermoelectric conversion material layer 6N and the P-type thermoelectric conversion material layer 6P (see above) FIG. 7).

以上の工程で作製された熱電変換素子1Gに電圧・電流を流し、そのときの温度変化を調べて素子の評価を行った。熱電対を図7に示す温度測定点にセットし、室温25℃、湿度50%RHの環境で、電極8Aと電極8Bとの間に8V・8Aの電圧・電流を流した。そのときの温度測定点の温度変化は、ΔT:−30Kであった。   A voltage / current was passed through the thermoelectric conversion element 1G manufactured in the above steps, and the temperature change at that time was examined to evaluate the element. A thermocouple was set at the temperature measurement point shown in FIG. 7, and a voltage / current of 8V · 8A was passed between the electrode 8A and the electrode 8B in an environment of room temperature 25 ° C. and humidity 50% RH. The temperature change at the temperature measurement point at that time was ΔT: −30K.

〔比較例1〕
以下のように、比較形態1(図12)の態様の熱電変換素子1Kを作製した。基本的な作製方法は、上記の比較用熱電変換部の作製方法と同じである(比較用熱電変換部の作製を参照)。
[Comparative Example 1]
As described below, a thermoelectric conversion element 1K according to the aspect of comparative form 1 (FIG. 12) was produced. The basic manufacturing method is the same as the manufacturing method of the above-described comparative thermoelectric conversion unit (see the manufacturing of the comparative thermoelectric conversion unit).

N型熱電変換部として、角100mm×250mm,厚さ7mmのN型熱電変換材料(Bi2Te2.7Se0.3)の基板を用意し、P型熱電変換部として、角100mm×250mm,厚さ7mmのP型熱電変換材料(Bi0.5Sb1.5Te3)の基板を用意し、角100mm×505mm、厚さ0.2mmのAl基板よりなる導電性基板2の中央に、角100×5mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んで、N型熱電変換部とP型熱電変換部とを対向するように導電性基板2上に配置し、N型熱電変換部とP型熱電変換部の上部に、角100mm×250mm、厚さ0.2mmのAl基板よりなる電極8A及び電極8Bを配置した(以上、図12参照)。 A substrate of N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) having a corner of 100 mm × 250 mm and a thickness of 7 mm is prepared as an N-type thermoelectric converter, and a corner of 100 mm × 250 mm and a thickness of 7 mm is prepared as a P-type thermoelectric converter. A substrate of P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is prepared, and the corner is 100 × 5 mm in height at the center of the conductive substrate 2 made of an Al substrate having a corner of 100 mm × 505 mm and a thickness of 0.2 mm. An insulating layer 9 made of an acrylic plate of 7.5 mm is formed, and the N-type thermoelectric conversion part and the P-type thermoelectric conversion part are arranged on the conductive substrate 2 so as to face each other with the insulating layer 9 interposed therebetween. An electrode 8A and an electrode 8B made of an Al substrate having a corner of 100 mm × 250 mm and a thickness of 0.2 mm were disposed on the thermoelectric converter and the P-type thermoelectric converter (see FIG. 12 above).

以上の工程で作製された熱電変換素子1Kに電圧・電流を流し、そのときの温度変化を調べて素子の評価を行った。熱電対を図1に示す温度測定点にセットし、室温25℃、湿度50%RHの環境で、電極8Aと電極8Bとの間に8V・8Aの電圧・電流を流した。そのときの温度測定点の温度変化は、ΔT:−15Kであった。   A voltage / current was passed through the thermoelectric conversion element 1K manufactured in the above steps, and the temperature change at that time was examined to evaluate the element. A thermocouple was set at the temperature measurement point shown in FIG. 1, and a voltage / current of 8V · 8A was passed between the electrode 8A and the electrode 8B in an environment of room temperature 25 ° C. and humidity 50% RH. The temperature change at the temperature measurement point at that time was ΔT: −15K.

〔比較例2〕
以下のように、比較形態2(図13)の態様の熱電変換素子1Lを作製した。
[Comparative Example 2]
As described below, a thermoelectric conversion element 1 </ b> L according to the mode of comparative form 2 (FIG. 13) was produced.

100mm×200mm,厚さ7mmのN型熱電変換材料(Bi2Te2.7Se0.3)の基板に、角100mm×250mm,厚さ50μmのグラファイトシートを積層してN型熱電変換部を作製した。角100mm×200mm,厚さ7mmのP型熱電変換材料(Bi0.5Sb1.5Te3)の基板に、角100mm×250mm,厚さ50μmのグラファイトシートを積層してP型熱電変換部を作製した。 An N-type thermoelectric conversion part was fabricated by laminating a graphite sheet of 100 mm × 250 mm and 50 μm thickness on a substrate of N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) of 100 mm × 200 mm and 7 mm thickness. A P-type thermoelectric conversion part was fabricated by laminating a graphite sheet of 100 mm × 250 mm and 50 μm thickness on a substrate of P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) having a size of 100 mm × 200 mm and a thickness of 7 mm.

角100mm×405mm、厚さ0.2mmのAl基板よりなる導電性基板2の中央に、角100×5mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んで、N型熱電変換部とP型熱電変換部とを対向するように導電性基板2上に配置し、N型熱電変換部とP型熱電変換部の延在部分に、角50mm×50mm、厚さ0.2mmのAl基板よりなる電極8A及び電極8Bを配置した(以上、図13参照)。   An insulating layer 9 made of an acrylic plate having a corner of 100 × 5 mm and a height of 7.5 mm is formed in the center of the conductive substrate 2 made of an Al substrate having a corner of 100 mm × 405 mm and a thickness of 0.2 mm, and the insulating layer 9 is sandwiched between them. Then, the N-type thermoelectric conversion part and the P-type thermoelectric conversion part are arranged on the conductive substrate 2 so as to face each other, and the extension part of the N-type thermoelectric conversion part and the P-type thermoelectric conversion part has an angle of 50 mm × 50 mm, An electrode 8A and an electrode 8B made of an Al substrate having a thickness of 0.2 mm were disposed (see FIG. 13 above).

以上の工程で作製された熱電変換素子1Lに電圧・電流を流し、そのときの温度変化を調べて素子の評価を行った。熱電対を図3に示す温度測定点にセットし、室温25℃、湿度50%RHの環境で、電極8Aと電極8Bとの間に8V・8Aの電圧・電流を流した。そのときの温度測定点の温度変化は、ΔT:−19Kであった。   A voltage / current was passed through the thermoelectric conversion element 1L manufactured through the above steps, and the temperature change at that time was examined to evaluate the element. A thermocouple was set at the temperature measurement point shown in FIG. 3, and a voltage / current of 8V · 8A was passed between the electrode 8A and the electrode 8B in an environment of room temperature 25 ° C. and humidity 50% RH. The temperature change at the temperature measurement point at that time was ΔT: −19K.

〔実施例8〕
実施形態8(図8)の態様の熱電変換発電装置1Hを作製し熱電発電の評価を行った。
Example 8
A thermoelectric conversion power generator 1H according to the mode of Embodiment 8 (FIG. 8) was produced and evaluated for thermoelectric power generation.

熱電変換発電装置1Hは、実施形態8で述べたように、発電に寄与する第1の熱電変換素子1Aと、第1の熱電変換素子に安定した温度差を与えるためにペルチェ素子として使用する第2、第3の熱電変換素子10A,10Bを組み合わせたものである。   As described in the eighth embodiment, the thermoelectric conversion power generation apparatus 1H is used as a Peltier element to give a stable temperature difference between the first thermoelectric conversion element 1A contributing to power generation and the first thermoelectric conversion element. 2. A combination of the third thermoelectric conversion elements 10A and 10B.

第1の熱電変換素子1Aは、実施例1(実施形態1,図1)の態様の素子であり、以下の(8−1)〜(8−4)のように作製した。図8及び図1を参照しながら説明する。   1 A of 1st thermoelectric conversion elements are elements of the aspect of Example 1 (Embodiment 1, FIG. 1), and were produced like the following (8-1)-(8-4). This will be described with reference to FIGS.

(8−1)φ0.3mmの貫通孔を0.5mmピッチで全面に有する角105mm×250mm,厚さ5mmの板状のグラスウール板に、N型熱電変換材料(Bi2Te2.7Se0.3)を貫通孔に充填すると共に、N型熱電変換材料(Bi2Te2.7Se0.3)よりなる約1.0mmの層をグラスウール板の表裏面に形成してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、断熱層4A及びN型熱電変換材料層6Nの3層構造である。 (8-1) An N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is applied to a plate-like glass wool plate having a corner of 105 mm × 250 mm and a thickness of 5 mm having through-holes of φ0.3 mm at a pitch of 0.5 mm. While filling the through-hole, an N-type thermoelectric conversion part was fabricated by forming layers of about 1.0 mm made of an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) on the front and back surfaces of the glass wool plate. The N-type thermoelectric conversion part has a three-layer structure of an N-type thermoelectric conversion material layer 3N, a heat insulating layer 4A, and an N-type thermoelectric conversion material layer 6N.

(8−2)φ0.3mmの貫通孔を0.5mmピッチで全面に有する角105mm×250mm,厚さ5mmの板状のグラスウール板に、P型熱電変換材料(Bi0.5Sb1.5Te3)を貫通孔に充填すると共に、P型熱電変換材料(Bi0.5Sb1.5Te3)よりなる約1.0mmの層をグラスウール板の表裏面に形成してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、断熱層4B及びP型熱電変換材料層6Pの3層構造である。 (8-2) A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is applied to a plate-like glass wool plate having an angle of 105 mm × 250 mm and a thickness of 5 mm having through-holes of φ0.3 mm on the entire surface at a pitch of 0.5 mm. While filling the through-holes, a P-type thermoelectric conversion part was produced by forming a layer of about 1.0 mm made of a P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) on the front and back surfaces of the glass wool plate. The P-type thermoelectric conversion part has a three-layer structure of a P-type thermoelectric conversion material layer 3P, a heat insulating layer 4B, and a P-type thermoelectric conversion material layer 6P.

(8−3)角105mm×505mm、厚さ0.2mmのAl基板よりなる導電性基板2の中央下部に、角105×5mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んで、N型熱電変換部とP型熱電変換部とを対向するように導電性基板2下部に配置した。 (8-3) An insulating layer 9 made of an acrylic plate having a corner of 105 × 5 mm and a height of 7.5 mm is formed at the lower center of the conductive substrate 2 made of an Al substrate having a corner of 105 mm × 505 mm and a thickness of 0.2 mm. The N-type thermoelectric conversion part and the P-type thermoelectric conversion part are arranged below the conductive substrate 2 with the insulating layer 9 interposed therebetween.

(8−4)角105mm×250mm、厚さ0.2mmのAl基板よりなる電極8A及び電極8Bを、N型熱電変換材料層6N及びP型熱電変換材料層6Pの下部にそれぞれ配置し、電極8A,8B下部に接触するようにペルチェ素子として使用する第2、第3の熱電変換素子10A,10Bを配置した(以上、図8、図1参照)。 (8-4) An electrode 8A and an electrode 8B made of an Al substrate each having a square size of 105 mm × 250 mm and a thickness of 0.2 mm are disposed below the N-type thermoelectric conversion material layer 6N and the P-type thermoelectric conversion material layer 6P, respectively. Second and third thermoelectric conversion elements 10A and 10B used as Peltier elements are arranged so as to be in contact with lower portions of 8A and 8B (see FIGS. 8 and 1).

また、図8の装置のペルチェ素子として使用する第2、第3の熱電変換素子10A,10Bは、以下の(8−5)〜(8−8)のように作製した。このペルチェ素子10A,10Bは、実施例4(実施形態4,図4)と基本的な構造が同じであるので、図4を参照しながら説明する。なお、作製したペルチェ素子10Aの斜視図を図11に示す。   Moreover, the 2nd, 3rd thermoelectric conversion elements 10A and 10B used as a Peltier element of the apparatus of FIG. 8 were produced as the following (8-5)-(8-8). Since the basic structure of the Peltier elements 10A and 10B is the same as that of Example 4 (Embodiment 4 and FIG. 4), description will be made with reference to FIG. A perspective view of the manufactured Peltier element 10A is shown in FIG.

(8−5)φ0.3mmの貫通孔を0.5mmピッチで全面に有する角50mm×230mm,厚さ5mmの板状のグラスウール板に、N型熱電変換材料(Bi2Te2.7Se0.3)を貫通孔に充填すると共に、N型熱電変換材料(Bi2Te2.7Se0.3)よりなる約1.0mmの層をグラスウール板の表裏面に形成し、その片面に角50mm×500mm,厚さ50μmのグラファイトシートを積層してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、断熱層4A、N型熱電変換材料層6N、グラファイト層5Aの4層構造とした。この構造の場合、グラファイトシートは断熱層やN型熱電変換材料層よりも幅が長いので、グラファイト層5Aには、積層よりはみ出た延在部分が存在する。 (8-5) An N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is applied to a plate-like glass wool plate having an angle of 50 mm × 230 mm and a thickness of 5 mm having through-holes of φ0.3 mm at a pitch of 0.5 mm. While filling the through-hole, a layer of about 1.0 mm made of an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is formed on the front and back surfaces of the glass wool plate, and one side has an angle of 50 mm × 500 mm and a thickness of 50 μm. A graphite sheet was laminated to produce an N-type thermoelectric conversion part. The N-type thermoelectric conversion part has a four-layer structure of an N-type thermoelectric conversion material layer 3N, a heat insulating layer 4A, an N-type thermoelectric conversion material layer 6N, and a graphite layer 5A. In the case of this structure, the graphite sheet has a longer width than the heat insulating layer and the N-type thermoelectric conversion material layer, and therefore the graphite layer 5A has an extended portion that protrudes from the stack.

(8−6)φ0.3mmの貫通孔を0.5mmピッチで全面に有する角50mm×230mm,厚さ5mmの板状のグラスウール板に、P型熱電変換材料(Bi0.5Sb1.5Te3)を貫通孔に充填すると共に、P型熱電変換材料(Bi0.5Sb1.5Te3)よりなる約1.0mmの層をグラスウール板の表裏面に形成し、その片面に角50mm×500mm,厚さ50μmのグラファイトシートを積層してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、断熱層4B、P型熱電変換材料層6P、グラファイト層5Bの4層構造とした。この構造の場合、グラファイト層は断熱層やP型熱電変換材料層よりも幅が長いので、グラファイト層5Bには、積層よりはみ出た延在部分が存在する。 (8-6) A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is applied to a plate-like glass wool plate having a diameter of 50 mm × 230 mm and a thickness of 5 mm having through-holes with a diameter of 0.3 mm at a pitch of 0.5 mm. While filling the through-holes, a layer of about 1.0 mm made of P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is formed on the front and back surfaces of the glass wool plate, and each side has a square of 50 mm × 500 mm and a thickness of 50 μm. A P-type thermoelectric conversion part was produced by laminating graphite sheets. The P-type thermoelectric conversion part has a four-layer structure of a P-type thermoelectric conversion material layer 3P, a heat insulating layer 4B, a P-type thermoelectric conversion material layer 6P, and a graphite layer 5B. In the case of this structure, since the graphite layer is longer than the heat insulating layer and the P-type thermoelectric conversion material layer, the graphite layer 5B has an extended portion that protrudes from the stack.

(8−7)角105mm×230mm、厚さ0.2mmのAl基板よりなる導電性基板2(図8、図11では10AL,10BL)の中央部に、角5mm×230mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んでN型熱電変換部とP型熱電変換部とを対向するように導電性基板2上に配置した。 (8-7) Square 5 mm × 230 mm, Height 7.5 mm at the center of conductive substrate 2 (10AL, 10BL in FIGS. 8 and 11) made of Al substrate with 105 mm × 230 mm square and 0.2 mm thickness An insulating layer 9 made of an acrylic plate was formed, and the N-type thermoelectric conversion part and the P-type thermoelectric conversion part were arranged on the conductive substrate 2 with the insulating layer 9 interposed therebetween.

(8−8)角50mm×250mm,厚さ0.2mmのAl基板よりなる電極8A,8B(図8、図11では10AH,10BH)を、グラファイト層5A,5Bの積層よりはみ出た延在部の端にそれぞれ配置した(以上、図4参照)。
以上の工程で製造したペルチェ素子10A,10Bの表面・裏面を、厚さ100μmのPETフィルム(帝人デュポンフィルム(株)社製)でカバーし絶縁した。
なお、図8参照、ペルチェ素子10A,10Bの吸熱作用部(電極10AL,10BL)は、発電に寄与する熱電変換素子1Aの低温作用部(電極8A,8B)に接触して配置され、ペルチェ素子10A,10Bの発熱作用部(電極10AH,10BH)は、熱電変換素子1Aの高温作用部(導電性基板2)に接触して配置され、熱電変換発電装置1Hを構成する。
(8-8) Extending portions of electrodes 8A and 8B (10AH and 10BH in FIGS. 8 and 11) made of an Al substrate having a square size of 50 mm × 250 mm and a thickness of 0.2 mm are protruded from the laminated graphite layers 5A and 5B. (Refer to FIG. 4 above).
The front and back surfaces of the Peltier elements 10A and 10B manufactured in the above process were covered and insulated with a 100 μm thick PET film (manufactured by Teijin DuPont Films).
8, the endothermic action portions (electrodes 10AL and 10BL) of the Peltier elements 10A and 10B are disposed in contact with the low temperature action portions (electrodes 8A and 8B) of the thermoelectric conversion element 1A that contributes to power generation. The heat generating action parts (electrodes 10AH and 10BH) of 10A and 10B are arranged in contact with the high temperature action part (conductive substrate 2) of the thermoelectric conversion element 1A to constitute the thermoelectric conversion power generation apparatus 1H.

以上の工程で作製された熱電変換発電装置1Hの熱電発電特性を評価した。平均気温25℃の日中12:00から16:00までの間、南向きにパネルを設置し、それぞれのペルチェ素子10A,10Bに2V・3Aの電圧・電流を供給し駆動させ続け、その間に熱電変換発電素子1Aの電極8Aと電極8B間で発電される電圧・電流を検知し評価した。合計12Wの入力に対して平均して約16.1Wの出力を検知することができた。   The thermoelectric power generation characteristics of the thermoelectric conversion power generation device 1H produced through the above steps were evaluated. Between 12:00 and 16:00 during the day at an average temperature of 25 ° C., a panel is installed facing south, and the voltage and current of 2V and 3A are continuously supplied to the Peltier elements 10A and 10B. The voltage / current generated between the electrode 8A and the electrode 8B of the thermoelectric conversion power generation element 1A was detected and evaluated. An average of about 16.1 W of output was detected for a total of 12 W of input.

〔実施例9〕
実施形態9(図9)の態様の熱電変換発電装置1Iを作製し熱電発電の評価を行った。
Example 9
A thermoelectric conversion power generation device 1I according to the embodiment 9 (FIG. 9) was produced and thermoelectric power generation was evaluated.

熱電変換発電装置1Iは、実施形態9で述べたように、発電に寄与する第1の熱電変換素子1Bと、第1の熱電変換素子に安定した温度差を与えるためにペルチェ素子として使用する第2、第3の熱電変換素子20A,20Bを組み合わせたものである。   As described in the ninth embodiment, the thermoelectric conversion power generator 1I is used as a Peltier element to give a stable temperature difference between the first thermoelectric conversion element 1B contributing to power generation and the first thermoelectric conversion element. 2 and 3rd thermoelectric conversion elements 20A and 20B are combined.

第1の熱電変換素子1Bは、実施例2(実施形態2,図2)の態様の素子であり、以下の(9−1)〜(9−4)のように作製した。図9及び図2を参照しながら説明する。   The 1st thermoelectric conversion element 1B is an element of the aspect of Example 2 (Embodiment 2, FIG. 2), and was produced like the following (9-1)-(9-4). This will be described with reference to FIGS.

(9−1)角105mm×250mm,厚さ1.5mmのN型熱電変換材料(Bi2Te2.7Se0.3)の基板上に、約5.0mmの厚みのグラスウール基板を粉砕した断熱材粉末よりなる多孔質断熱層を形成し、その上からN型熱電変換材料(Bi2Te2.7Se0.3)を断熱層の孔部分に埋め込むように印刷して、断熱層の上に約0.5mmの厚みのN型熱電変換材料(Bi2Te2.7Se0.3)層を形成してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、断熱層4C及びN型熱電変換材料層6Nの3層構造である。 (9-1) From a heat insulating material powder obtained by pulverizing a glass wool substrate having a thickness of about 5.0 mm on a substrate of an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) having a square of 105 mm × 250 mm and a thickness of 1.5 mm. A porous heat insulating layer is formed, and an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is printed on the heat insulating layer so as to be embedded in the hole, and a thickness of about 0.5 mm is formed on the heat insulating layer. N type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) layer was formed to produce an N type thermoelectric conversion part. The N-type thermoelectric conversion part has a three-layer structure of an N-type thermoelectric conversion material layer 3N, a heat insulating layer 4C, and an N-type thermoelectric conversion material layer 6N.

(9−2)角105mm×250mm,厚さ1.5mmのP型熱電変換材料(Bi0.5Sb1.5Te3)の基板上に、約5.0mmの厚みのグラスウール基板を粉砕した断熱材粉末よりなる多孔質断熱層を形成し、その上からP型熱電変換材料(Bi0.5Sb1.5Te3)を断熱層の孔部分に埋め込むように印刷して、断熱層の上に約0.5mmの厚みのP型熱電変換材料(Bi0.5Sb1.5Te3)層を形成してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、断熱層4D及びP型熱電変換材料層6Pの3層構造である。 (9-2) From a heat insulating material powder obtained by pulverizing a glass wool substrate having a thickness of about 5.0 mm on a substrate of a P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) having a size of 105 mm × 250 mm and a thickness of 1.5 mm A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is printed so as to be embedded in the hole portion of the heat insulation layer, and a thickness of about 0.5 mm is formed on the heat insulation layer. A P-type thermoelectric conversion part was formed by forming a P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) layer. The P-type thermoelectric conversion part has a three-layer structure of a P-type thermoelectric conversion material layer 3P, a heat insulating layer 4D, and a P-type thermoelectric conversion material layer 6P.

(9−3)角105mm×505mm、厚さ0.2mmのAl基板よりなる導電性基板2の中央下部に、角105×5mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んで、N型熱電変換部とP型熱電変換部とを対向するように導電性基板2下部に配置した。 (9-3) An insulating layer 9 made of an acrylic plate having a corner of 105 × 5 mm and a height of 7.5 mm is formed at the lower center of the conductive substrate 2 made of an Al substrate having a corner of 105 mm × 505 mm and a thickness of 0.2 mm. The N-type thermoelectric conversion part and the P-type thermoelectric conversion part are arranged below the conductive substrate 2 with the insulating layer 9 interposed therebetween.

(9−4)角105mm×250mm、厚さ0.2mmのAl基板よりなる電極8A及び電極8Bを、N型熱電変換材料層6N及びP型熱電変換材料層6Pの下部にそれぞれ配置し、電極8A,8B下部に接触するようにペルチェ素子として使用する第2、第3の熱電変換素子20A,20Bを配置した(以上、図9、図2参照)。 (9-4) An electrode 8A and an electrode 8B made of an Al substrate having a square size of 105 mm × 250 mm and a thickness of 0.2 mm are disposed below the N-type thermoelectric conversion material layer 6N and the P-type thermoelectric conversion material layer 6P, respectively. Second and third thermoelectric conversion elements 20A and 20B used as Peltier elements are arranged so as to be in contact with lower portions of 8A and 8B (see FIGS. 9 and 2).

また、図9の装置のペルチェ素子として使用する第2、第3の熱電変換素子20A,20Bは、以下の(9−5)〜(9−8)のように作製した。このペルチェ素子20A,20Bは、実施例5(実施形態5,図5)と基本的な構造が同じであるので、図5を参照しながら説明する。なお、参考に作製したペルチェ素子の斜視図を図11に示す。   Moreover, the 2nd, 3rd thermoelectric conversion elements 20A and 20B used as a Peltier element of the apparatus of FIG. 9 were produced as the following (9-5)-(9-8). Since the basic structure of the Peltier elements 20A and 20B is the same as that of Example 5 (Embodiment 5 and FIG. 5), description will be made with reference to FIG. FIG. 11 shows a perspective view of a Peltier element manufactured for reference.

(9−5)角50mm×230mm,厚さ1.5mmのN型熱電変換材料(Bi2Te2.7Se0.3)の基板上に、約5.0mmの厚みのグラスウール基板を粉砕した断熱材粉末よりなる多孔質断熱層を形成し、その上からN型熱電変換材料(Bi2Te2.7Se0.3)を断熱層の孔部分に埋め込むように印刷して、断熱層の上に約0.5mmの厚みのN型熱電変換材料(Bi2Te2.7Se0.3)層を形成し、その上に角50mm×500mm,厚さ50μmのグラファイトシートを積層してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、断熱層4C、N型熱電変換材料層6N、グラファイト層5Aの4層構造とした。この構造の場合、グラファイト層は断熱層やN型熱電変換材料層よりも幅が長いので、グラファイト層5Aには、積層よりはみ出た延在部分が存在する。 (9-5) From a heat insulating material powder obtained by grinding a glass wool substrate having a thickness of about 5.0 mm on a substrate of an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) having a square size of 50 mm × 230 mm and a thickness of 1.5 mm A porous heat insulating layer is formed, and an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) is printed on the heat insulating layer so as to be embedded in the hole, and a thickness of about 0.5 mm is formed on the heat insulating layer. N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) layer was formed, and a graphite sheet having a square of 50 mm × 500 mm and a thickness of 50 μm was laminated thereon to produce an N-type thermoelectric conversion part. The N-type thermoelectric conversion part has a four-layer structure of an N-type thermoelectric conversion material layer 3N, a heat insulating layer 4C, an N-type thermoelectric conversion material layer 6N, and a graphite layer 5A. In the case of this structure, since the graphite layer is longer than the heat insulating layer and the N-type thermoelectric conversion material layer, the graphite layer 5A has an extended portion that protrudes from the stack.

(9−6)角50mm×230mm,厚さ1.5mmのP型熱電変換材料(Bi0.5Sb1.5Te3)の基板上に、約3.0mmの厚みのグラスウール基板を粉砕した断熱材粉末よりなる多孔質断熱層を形成し、その上からP型熱電変換材料(Bi0.5Sb1.5Te3)を断熱層の孔部分に埋め込むように印刷して、断熱層の上に約0.5mmの厚みのP型熱電変換材料(Bi0.5Sb1.5Te3)層を形成し、その上に角50mm×500mm,厚さ50μmのグラファイトシートを積層してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、断熱層4D、P型熱電変換材料層6P、グラファイト層5Bの4層構造とした。この構造の場合、グラファイト層は断熱層やP型熱電変換材料層よりも幅が長いので、グラファイト層5Bには、積層よりはみ出た延在部分が存在する。 (9-6) From a heat insulating material powder obtained by pulverizing a glass wool substrate having a thickness of about 3.0 mm on a substrate of a P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) having a square size of 50 mm × 230 mm and a thickness of 1.5 mm A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) is printed so as to be embedded in the hole portion of the heat insulation layer, and a thickness of about 0.5 mm is formed on the heat insulation layer. P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) layer was formed, and a graphite sheet having a corner of 50 mm × 500 mm and a thickness of 50 μm was laminated thereon to produce a P-type thermoelectric conversion part. The P-type thermoelectric conversion part has a four-layer structure of a P-type thermoelectric conversion material layer 3P, a heat insulating layer 4D, a P-type thermoelectric conversion material layer 6P, and a graphite layer 5B. In the case of this structure, since the graphite layer is longer than the heat insulating layer and the P-type thermoelectric conversion material layer, the graphite layer 5B has an extended portion that protrudes from the stack.

(9−7)角105mm×230mm、厚さ1.0mmのAl基板よりなる導電性基板2(図9では20AL,20BL、図11では10AL)の中央部に、角5mm×230mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んでN型熱電変換部とP型熱電変換部とを対向するように導電性基板2上に配置した。 (9-7) In the central part of the conductive substrate 2 (20AL, 20BL in FIG. 9, 10AL in FIG. 11) made of an Al substrate having a corner of 105 mm × 230 mm and a thickness of 1.0 mm, a corner of 5 mm × 230 mm, height 7 An insulating layer 9 made of a .5 mm acrylic plate was formed, and the N-type thermoelectric conversion part and the P-type thermoelectric conversion part were arranged on the conductive substrate 2 with the insulating layer 9 interposed therebetween.

(9−8)角50mm×250mm,厚さ0.3mmのAl基板よりなる電極8A,8B(図9では20AH,20BH、図11では10AH)を、グラファイト層5A,5Bの積層よりはみ出た延在部の端にそれぞれ配置した(以上、図5参照)。 (9-8) The electrodes 8A and 8B (20AH and 20BH in FIG. 9 and 10AH in FIG. 11) made of an Al substrate having a square size of 50 mm × 250 mm and a thickness of 0.3 mm extend beyond the graphite layers 5A and 5B. They were arranged at the ends of the existing parts (see FIG. 5 above).

以上の工程で製造したペルチェ素子20A,20Bの表面・裏面を、厚さ100μmのPETフィルム(帝人デュポンフィルム(株)社製)でカバーし絶縁した。   The front and back surfaces of the Peltier elements 20A and 20B manufactured in the above process were covered and insulated with a 100 μm thick PET film (manufactured by Teijin DuPont Films).

なお、図9参照、ペルチェ素子20A,20Bの吸熱作用部(電極20AL,20BL)は、発電に寄与する熱電変換素子1Bの低温作用部(電極8A,8B)に接触して配置され、ペルチェ素子20A,20Bの発熱作用部(電極20AH,20BH)は、熱電変換素子1Bの高温作用部(導電性基板2)に接触して配置され、熱電変換発電装置1Iを構成する。   9, the endothermic action portions (electrodes 20AL and 20BL) of the Peltier elements 20A and 20B are arranged in contact with the low temperature action portions (electrodes 8A and 8B) of the thermoelectric conversion element 1B that contributes to power generation. The heat generating action parts (electrodes 20AH and 20BH) of 20A and 20B are arranged in contact with the high temperature action part (conductive substrate 2) of the thermoelectric conversion element 1B and constitute the thermoelectric conversion power generation apparatus 1I.

以上の工程で作製された熱電変換発電装置1Iの熱電発電特性を評価した。平均気温25℃の日中12:00から16:00までの間、南向きにパネルを設置し、それぞれのペルチェ素子20A,20Bに2V・3Aの電圧・電流を供給し駆動させ続け、その間に熱電変換発電素子1Bの電極8Aと電極8B間で発電される電圧・電流を検知し評価した。合計12Wの入力に対して平均して約16.6Wの出力を検知することができた。   The thermoelectric power generation characteristics of the thermoelectric conversion power generator 1I produced through the above steps were evaluated. Between 12:00 and 16:00 during the day at an average temperature of 25 ° C., a panel is installed facing south, and the voltage and current of 2V and 3A are continuously supplied to the Peltier elements 20A and 20B. The voltage / current generated between the electrode 8A and the electrode 8B of the thermoelectric conversion power generation element 1B was detected and evaluated. An average output of about 16.6 W was detected for a total of 12 W input.

〔実施例10〕
実施形態10(図10)の態様の熱電変換発電装置1Jを作製し熱電発電の評価を行った。
Example 10
A thermoelectric conversion power generator 1J having the form of the tenth embodiment (FIG. 10) was produced and thermoelectric power generation was evaluated.

熱電変換発電装置1Jは、実施形態10で述べたように、発電に寄与する第1の熱電変換素子1Fと、第1の熱電変換素子に安定した温度差を与えるためにペルチェ素子として使用する第2、第3の熱電変換素子20A,20Bを組み合わせたものである。   As described in the tenth embodiment, the thermoelectric conversion power generation apparatus 1J is a first thermoelectric conversion element 1F that contributes to power generation and a first Peltier element that is used to give a stable temperature difference to the first thermoelectric conversion element. 2 and 3rd thermoelectric conversion elements 20A and 20B are combined.

第1の熱電変換素子1Fは、実施例6(実施形態6,図6)の態様の素子であり、以下の(10−1)〜(10−4)のように作製した。図10及び図6を参照しながら説明する。   The 1st thermoelectric conversion element 1F is an element of the aspect of Example 6 (Embodiment 6, FIG. 6), and was produced like the following (10-1)-(10-4). This will be described with reference to FIGS.

(10−1)角105mm×505mm、厚さ0.4mmのAl基板よりなる導電性基板2の中央下部に、角100×5mm,高さ7.5mmのグラスウール板よりなる絶縁層9を形成した。グラスウール板とAl基板の接着にはAlペーストを使用し600℃で焼成することで接着した。 (10-1) An insulating layer 9 made of a glass wool plate having a corner of 100 × 5 mm and a height of 7.5 mm was formed at the lower center of the conductive substrate 2 made of an Al substrate having a corner of 105 mm × 505 mm and a thickness of 0.4 mm. . The glass wool plate and the Al substrate were bonded by using an Al paste and firing at 600 ° C.

(10−2)上記グラスウール板で隔てられたAl基板上の一方の角105mm×250mmの部分に、約1mmの厚みのN型熱電変換材料(Bi2Te2.7Se0.3)層を形成し、その上に角105mm×505mm,厚さ50μmのグラファイトシートを積層し、続いて角105mm×250mm,厚さ5mmの板状のグラスウール板の下面・側面・上面に前記グラファイトシートを接着し、最上部のグラファイト層の上面に、約1mmの厚みのN型熱電変換材料(Bi2Te2.7Se0.3)層を形成してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、グラフィト層5A、断熱層4E、グラファイト層5A、N型熱電変換材料層6Nの5層構造とした。 (10-2) An N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) layer having a thickness of about 1 mm is formed on one corner 105 mm × 250 mm on the Al substrate separated by the glass wool plate, A graphite sheet having a corner of 105 mm × 505 mm and a thickness of 50 μm is laminated thereon, and then the graphite sheet is adhered to the lower surface, side surface, and upper surface of a plate-like glass wool plate having a corner of 105 mm × 250 mm and a thickness of 5 mm. An N-type thermoelectric conversion part (Bi 2 Te 2.7 Se 0.3 ) layer having a thickness of about 1 mm was formed on the upper surface of the graphite layer to produce an N-type thermoelectric conversion part. The N-type thermoelectric conversion part has a five-layer structure of an N-type thermoelectric conversion material layer 3N, a graffit layer 5A, a heat insulating layer 4E, a graphite layer 5A, and an N-type thermoelectric conversion material layer 6N.

(10−3)上記グラスウール板で隔てられたAl基板上の他方の角105mm×250mmの部分に、約1mmの厚みのP型熱電変換材料(Bi0.5Sb1.5Te3)層を形成し、その上に角105mm×505mm,厚さ50μmのグラファイトシートを積層し、続いて角105mm×250mm,厚さ5mmの板状のグラスウール板の下面・側面・上面に前記グラファイトシートを接着し、最上部のグラファイト層の上面に、約1mmの厚みのP型熱電変換材料(Bi0.5Sb1.5Te3)層を形成してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、グラフィト層5B、断熱層4F、グラファイト層5B、N型熱電変換材料層6Pの5層構造とした。 (10-3) A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) layer having a thickness of about 1 mm is formed on the other corner 105 mm × 250 mm on the Al substrate separated by the glass wool plate, A graphite sheet having a corner of 105 mm × 505 mm and a thickness of 50 μm is laminated thereon, and then the graphite sheet is adhered to the lower surface, side surface, and upper surface of a plate-like glass wool plate having a corner of 105 mm × 250 mm and a thickness of 5 mm. A P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) layer having a thickness of about 1 mm was formed on the upper surface of the graphite layer to produce a P-type thermoelectric conversion portion. The P-type thermoelectric conversion part has a five-layer structure of a P-type thermoelectric conversion material layer 3P, a graffit layer 5B, a heat insulating layer 4F, a graphite layer 5B, and an N-type thermoelectric conversion material layer 6P.

(10−4)角105mm×250mm、厚さ0.2mmのAl基板よりなる電極8A及び電極8Bを、N型熱電変換材料層6N及びP型熱電変換材料層6Pの上部にそれぞれ配置した(以上、図10、図6参照)。 (10-4) An electrode 8A and an electrode 8B made of an Al substrate having a size of 105 mm × 250 mm and a thickness of 0.2 mm are respectively arranged on the upper portions of the N-type thermoelectric conversion material layer 6N and the P-type thermoelectric conversion material layer 6P. FIG. 10 and FIG. 6).

また、図10の装置のペルチェ素子として使用する第2、第3の熱電変換素子20A,20Bは、実施例9のペルチェ素子として使用する第2、第3の熱電変換素子20A,20Bと全く同じものを使用した。よってペルチェ素子20A,20Bの製造工程は上記の(9−5)〜(9−8)の製造工程を参照されたし。   Also, the second and third thermoelectric conversion elements 20A and 20B used as the Peltier elements of the apparatus of FIG. 10 are exactly the same as the second and third thermoelectric conversion elements 20A and 20B used as the Peltier elements of the ninth embodiment. I used something. Therefore, refer to the manufacturing processes (9-5) to (9-8) above for the manufacturing process of the Peltier elements 20A and 20B.

なお、図10参照、ペルチェ素子20A,20Bの吸熱作用部(電極20AL,20BL)は、発電に寄与する熱電変換素子1Fの低温作用部(電極8A,8B)に接触して配置され、ペルチェ素子20A,20Bの発熱作用部(電極20AH,20BH)は、熱電変換素子1Fの高温作用部(導電性基板2)に接触して配置され、熱電変換発電装置1Jを構成する。   10, the endothermic action portions (electrodes 20AL and 20BL) of the Peltier elements 20A and 20B are arranged in contact with the low temperature action portions (electrodes 8A and 8B) of the thermoelectric conversion element 1F that contributes to power generation. The heat generating action parts (electrodes 20AH and 20BH) of 20A and 20B are arranged in contact with the high temperature action part (conductive substrate 2) of the thermoelectric conversion element 1F to constitute the thermoelectric conversion power generation apparatus 1J.

以上の工程で作製された熱電変換発電装置1Jの熱電発電特性を評価した。平均気温25℃の日中12:00から16:00までの間、南向きにパネルを設置し、それぞれのペルチェ素子20A,20Bに2V・3Aの電圧・電流を供給し駆動させ続け、その間に熱電変換発電素子1Cの電極8Aと電極8B間で発電される電圧・電流を検知し評価した。合計12Wの入力に対して平均して約17.7Wの出力を検知することができた。   The thermoelectric power generation characteristics of the thermoelectric conversion power generation apparatus 1J manufactured through the above steps were evaluated. Between 12:00 and 16:00 during the day at an average temperature of 25 ° C., a panel is installed facing south, and the voltage and current of 2V and 3A are continuously supplied to the Peltier elements 20A and 20B. The voltage / current generated between the electrode 8A and the electrode 8B of the thermoelectric conversion power generation element 1C was detected and evaluated. An average output of about 17.7 W could be detected for a total of 12 W input.

〔比較例3〕
比較例3(図14)の態様の熱電変換発電装置1Mを作製し熱電発電の評価を行った。
[Comparative Example 3]
A thermoelectric conversion power generator 1M in the mode of Comparative Example 3 (FIG. 14) was produced and evaluated for thermoelectric power generation.

熱電変換発電装置1Mは、比較形態3で述べたように、発電に寄与する第1の熱電変換素子1Kと、第1の熱電変換素子に安定した温度差を与えるためにペルチェ素子として使用する第2、第3の熱電変換素子40A,40Bを組み合わせたものである。   As described in Comparative Example 3, the thermoelectric conversion power generation apparatus 1M is a first thermoelectric conversion element 1K that contributes to power generation, and a first Peltier element that is used to give a stable temperature difference to the first thermoelectric conversion element. 2 and 3rd thermoelectric conversion elements 40A and 40B are combined.

第1の熱電変換素子1Kは、比較例1(比較形態1,図12)の態様の素子であり、以下の(11−1)〜(11−4)のように作製した。図14及び図12を参照しながら説明する。   The 1st thermoelectric conversion element 1K is an element of the aspect of the comparative example 1 (comparative form 1, FIG. 12), and was produced like the following (11-1)-(11-4). This will be described with reference to FIGS.

(11−1)N型熱電変換部として、角105mm×250mm,厚さ7mmのN型熱電変換材料(Bi2Te2.7Se0.3)の基板を用意した。N型熱電変換部は、N型熱電変換材料層3Nのみである。 (11-1) As an N-type thermoelectric conversion part, a substrate of an N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) having a corner of 105 mm × 250 mm and a thickness of 7 mm was prepared. The N-type thermoelectric conversion part is only the N-type thermoelectric conversion material layer 3N.

(11−2)P型熱電変換部として、角105mm×250mm,厚さ7mmのP型熱電変換材料(Bi0.5Sb1.5Te3)の基板を用意した。P型熱電変換部は、P型熱電変換材料層3Pのみである。 (11-2) As a P-type thermoelectric conversion part, a substrate of P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) having a corner of 105 mm × 250 mm and a thickness of 7 mm was prepared. The P-type thermoelectric conversion part is only the P-type thermoelectric conversion material layer 3P.

(11−3)角105mm×505mm、厚さ0.2mmのAl基板よりなる導電性基板2の中央下部に、角105×5mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んで、N型熱電変換部とP型熱電変換部とを対向するように導電性基板2下部に配置した。 (11-3) An insulating layer 9 made of an acrylic plate having a corner of 105 × 5 mm and a height of 7.5 mm is formed at the lower center of the conductive substrate 2 made of an Al substrate having a corner of 105 mm × 505 mm and a thickness of 0.2 mm. The N-type thermoelectric conversion part and the P-type thermoelectric conversion part are arranged below the conductive substrate 2 with the insulating layer 9 interposed therebetween.

(11−4)角105mm×250mm、厚さ0.3mmのAl基板よりなる電極8A及び電極8Bを、N型熱電変換材料層3N及びP型熱電変換材料層3Pの下部にそれぞれ配置し、電極8A,8B下部に接触するようにペルチェ素子として使用する第2、第3の熱電変換素子40A,40Bを配置した(以上、図14、図12参照)。 (11-4) An electrode 8A and an electrode 8B made of an Al substrate each having a square size of 105 mm × 250 mm and a thickness of 0.3 mm are disposed below the N-type thermoelectric conversion material layer 3N and the P-type thermoelectric conversion material layer 3P, respectively. Second and third thermoelectric conversion elements 40A and 40B used as Peltier elements are arranged so as to be in contact with lower portions of 8A and 8B (see FIGS. 14 and 12).

また、図14の装置のペルチェ素子として使用する第2、第3の熱電変換素子40A,40Bは、以下の(11−5)〜(11−8)のように作製した。このペルチェ素子40A,40Bは、比較例2(比較形態2,図13)と基本的な構造が同じであるので、図13を参照しながら説明する。   Moreover, the 2nd, 3rd thermoelectric conversion elements 40A and 40B used as a Peltier element of the apparatus of FIG. 14 were produced as the following (11-5)-(11-8). The Peltier elements 40A and 40B have the same basic structure as Comparative Example 2 (Comparative Form 2 and FIG. 13), and will be described with reference to FIG.

(11−5)角50mm×230mm,厚さ7mmのN型熱電変換材料(Bi2Te2.7Se0.3)の基板に、角50mm×500mm,厚さ50μmのグラファイトシートを積層してN型熱電変換部を作製した。N型熱電変換部は、N型熱電変換材料層3N、グラファイト層5Aの2層構造とした。この構造の場合、グラファイト層はN型熱電変換材料層よりも幅が長いので、グラファイト層5Aには、積層よりはみ出た延在部分が存在する。 (11-5) N-type thermoelectric conversion by laminating a graphite sheet of 50 mm × 500 mm and 50 μm thickness on a substrate of N-type thermoelectric conversion material (Bi 2 Te 2.7 Se 0.3 ) of 50 mm × 230 mm square and 7 mm thick Part was produced. The N-type thermoelectric conversion part has a two-layer structure of an N-type thermoelectric conversion material layer 3N and a graphite layer 5A. In the case of this structure, since the graphite layer is longer in width than the N-type thermoelectric conversion material layer, the graphite layer 5A has an extended portion that protrudes from the stack.

(11−6)角50mm×230mm,厚さ7mmのP型熱電変換材料(Bi0.5Sb1.5Te3)の基板に、角50mm×500mm,厚さ50μmのグラファイトシートを積層してP型熱電変換部を作製した。P型熱電変換部は、P型熱電変換材料層3P、グラファイト層5Bの2層構造とした。この構造の場合、グラファイト層はP型熱電変換材料層よりも幅が長いので、グラファイト層5Bには、積層よりはみ出た延在部分が存在する。 (11-6) P-type thermoelectric conversion by laminating a graphite sheet of 50 mm × 500 mm and 50 μm thickness on a substrate of P-type thermoelectric conversion material (Bi 0.5 Sb 1.5 Te 3 ) of 50 mm × 230 mm square and 7 mm thick Part was produced. The P-type thermoelectric conversion part has a two-layer structure of a P-type thermoelectric conversion material layer 3P and a graphite layer 5B. In the case of this structure, since the graphite layer is longer in width than the P-type thermoelectric conversion material layer, the graphite layer 5B has an extended portion that protrudes from the stack.

(11−7)角105mm×230mm、厚さ0.2mmのAl基板よりなる導電性基板2(図14では40AL,40BL)の中央部に、角5mm×230mm,高さ7.5mmのアクリル板よりなる絶縁層9を形成し、絶縁層9を挟んでN型熱電変換部とP型熱電変換部とを対向するように導電性基板2上に配置した。 (11-7) Acrylic plate having a square of 5 mm × 230 mm and a height of 7.5 mm in the central portion of the conductive substrate 2 (40AL, 40BL in FIG. 14) made of an Al substrate having a square of 105 mm × 230 mm and a thickness of 0.2 mm The insulating layer 9 made of this was formed, and the N-type thermoelectric conversion part and the P-type thermoelectric conversion part were arranged on the conductive substrate 2 with the insulating layer 9 interposed therebetween.

(11−8)角50mm×250mm,厚さ0.2mmのAl基板よりなる電極8A,8B(図14では40AH,40BH)を、グラファイト層5A,5Bの積層よりはみ出た延在部の端にそれぞれ配置した(以上、図13参照)。 (11-8) Electrodes 8A and 8B (40AH and 40BH in FIG. 14) made of an Al substrate having a size of 50 mm × 250 mm and a thickness of 0.2 mm are attached to the ends of the extending portions protruding from the laminated layers of the graphite layers 5A and 5B. Each was arranged (see FIG. 13 above).

以上の工程で製造したペルチェ素子40A,40Bの表面・裏面を、厚さ100μmのPETフィルム(帝人デュポンフィルム(株)社製)でカバーし絶縁した。   The front and back surfaces of the Peltier elements 40A and 40B manufactured in the above steps were covered and insulated with a 100 μm thick PET film (manufactured by Teijin DuPont Films).

なお、図14参照、ペルチェ素子40A,40Bの吸熱作用部(電極40AL,40BL)は、発電に寄与する熱電変換素子1Kの低温作用部(電極8A,8B)に接触して配置され、ペルチェ素子40A,40Bの発熱作用部(電極40AH,40BH)は、熱電変換素子1Kの高温作用部(導電性基板2)に接触して配置され、熱電変換発電装置1Mを構成する。   14, the endothermic action parts (electrodes 40AL and 40BL) of the Peltier elements 40A and 40B are arranged in contact with the low temperature action part (electrodes 8A and 8B) of the thermoelectric conversion element 1K that contributes to power generation. The heating action portions (electrodes 40AH and 40BH) of 40A and 40B are arranged in contact with the high temperature action portion (conductive substrate 2) of the thermoelectric conversion element 1K, and constitute the thermoelectric conversion power generator 1M.

以上の工程で作製された熱電変換発電装置1Mの熱電発電特性を評価した。平均気温25℃の日中12:00から16:00までの間、南向きにパネルを設置し、それぞれのペルチェ素子40A,40Bに2V・3Aの電圧・電流を供給し駆動させ続け、その間に熱電変換発電素子1Kの電極8Aと電極8B間で発電される電圧・電流を検知し評価した。合計12Wの入力に対して平均して約14.3Wの出力を検知することができた。   The thermoelectric power generation characteristics of the thermoelectric conversion power generation device 1M manufactured through the above steps were evaluated. Between 12:00 and 16:00 during the day at an average temperature of 25 ° C., a panel is installed facing south, and 2V and 3A voltage and current are continuously supplied to the Peltier elements 40A and 40B. The voltage / current generated between the electrode 8A and the electrode 8B of the thermoelectric conversion power generation element 1K was detected and evaluated. An average output of about 14.3 W was detected for a total of 12 W input.

以上の実施形態で示した断熱層と熱電変換材料層は3層よりも多層に積層することもできる。また、実施形態で示した種々の特徴は、互いに組み合わせることもできる。例えば、実施形態8に係る熱電変換発電装置において、同装置に使用される実施形態1に係る熱電変換発電素子1Aを実施形態7に係る熱電変換素子1Gに置き換えてもよい。   The heat insulating layer and the thermoelectric conversion material layer shown in the above embodiment can be laminated in a multilayered structure rather than three layers. The various features shown in the embodiments can be combined with each other. For example, in the thermoelectric conversion power generation apparatus according to the eighth embodiment, the thermoelectric conversion power generation element 1A according to the first embodiment used in the apparatus may be replaced with the thermoelectric conversion element 1G according to the seventh embodiment.

1A,1B,1C,1D,1E,1F,1G:本発明の熱電変換素子
1K,1L:比較例の熱電変換素子
1H,1I,1J:本発明の熱電変換発電装置
1M:比較例の熱電変換発電装置
2:導電性基板(第1電極)
3N,6N:N型熱電変換材料層
3P,6P:P型熱電変換材料層
4A,4B,4C,4D,4E,4F,4G,4H:断熱層
5A,5B:グラファイト層、異方性導電材料層
8A,8B:電極(第2電極又は第3電極)
9:絶縁層(絶縁体)
10A,10B,20A,20B,40A,40B:第2、第3の熱電変換素子(熱電変換素子又はペルチェ素子)
10AL,10BL,20AL,20BL,40AL,40BL:電極(吸熱作用部)
10AH,10BH,20AH,20BH,40AH,40BH:電極(発熱作用部)
10AG,10BG,20AG,20BG,40AG,40BG:延在部(グラファイト層の延在部)
1A, 1B, 1C, 1D, 1E, 1F, 1G: Thermoelectric conversion elements 1K, 1L of the present invention: Thermoelectric conversion elements 1H, 1I, 1J of comparative example: Thermoelectric conversion power generator 1M of the present invention: Thermoelectric conversion of comparative example Power generation device 2: conductive substrate (first electrode)
3N, 6N: N-type thermoelectric conversion material layer 3P, 6P: P-type thermoelectric conversion material layer 4A, 4B, 4C, 4D, 4E, 4F, 4G, 4H: Heat insulation layer 5A, 5B: Graphite layer, anisotropic conductive material Layers 8A and 8B: Electrodes (second electrode or third electrode)
9: Insulating layer (insulator)
10A, 10B, 20A, 20B, 40A, 40B: second and third thermoelectric conversion elements (thermoelectric conversion elements or Peltier elements)
10AL, 10BL, 20AL, 20BL, 40AL, 40BL: Electrode (endothermic action part)
10AH, 10BH, 20AH, 20BH, 40AH, 40BH: Electrode (heating unit)
10AG, 10BG, 20AG, 20BG, 40AG, 40BG: Extension part (extension part of the graphite layer)

Claims (13)

第1電極と、
前記第1電極上に絶縁体を挟んで互いに離れて形成されたP型及びN型熱電変換部と、
各熱電変換部上にそれぞれ形成された第2及び第3電極とを備え、
前記P型及びN型熱電変換部が少なくとも断熱材料よりなる断熱層を有することを特徴とする熱電変換素子。
A first electrode;
P-type and N-type thermoelectric converters formed on the first electrode and spaced apart from each other with an insulator interposed therebetween;
Second and third electrodes respectively formed on each thermoelectric conversion unit,
The P-type and N-type thermoelectric conversion parts have a heat insulating layer made of at least a heat insulating material.
前記P型及びN型熱電変換部が、少なくとも熱電変換材料層及び断熱材料よりなる断熱層とを有し、2層以上に積層された層を有することを特徴とする請求項1に記載の熱電変換素子。 2. The thermoelectric device according to claim 1, wherein the P-type and N-type thermoelectric conversion units have at least a thermoelectric conversion material layer and a heat insulating layer made of a heat insulating material, and have a layer laminated in two or more layers. Conversion element. 前記P型及びN型熱電変換部が、熱電変換材料層、断熱層、熱電変換材料層の順で積層されていることを特徴とする請求項1又は2に記載の熱電変換素子。 The thermoelectric conversion element according to claim 1, wherein the P-type and N-type thermoelectric conversion portions are laminated in the order of a thermoelectric conversion material layer, a heat insulating layer, and a thermoelectric conversion material layer. 前記断熱層は断熱材料よりなる層であり、該断熱材料よりなる層は貫通孔を有し、貫通孔には熱電変換材料が充填されていることを特徴とする請求項1〜3のいずれか1つに記載の熱電変換素子。 The heat insulating layer is a layer made of a heat insulating material, the layer made of the heat insulating material has a through hole, and the through hole is filled with a thermoelectric conversion material. The thermoelectric conversion element as described in one. 前記断熱層は断熱材料からなる多孔質材よりなり、該多孔質材の孔には熱電変換材料が充填されていることを特徴とする請求項1〜3のいずれか1つに記載の熱電変換素子。 The thermoelectric conversion according to any one of claims 1 to 3, wherein the heat insulating layer is made of a porous material made of a heat insulating material, and pores of the porous material are filled with a thermoelectric conversion material. element. 前記断熱層の多孔質材は、断熱材微粒子及び断熱材料を粉砕して微粒子化した粉末のうち少なくとも1つと、樹脂粒子とを混合し、有機溶媒及び樹脂のうち少なくとも1つを加えて混練することにより作製したペーストを印刷後、焼成して前記樹脂粒子を燃焼消失させることによって形成された多孔質材であることを特徴とする請求項5に記載の熱電変換素子。 The porous material of the heat insulating layer is prepared by mixing at least one of fine particles of heat insulating material and powder obtained by pulverizing the heat insulating material and resin particles, and kneading by adding at least one of an organic solvent and a resin. The thermoelectric conversion element according to claim 5, wherein the thermoelectric conversion element is a porous material formed by printing a paste prepared by baking and firing to burn and eliminate the resin particles. 前記断熱層を形成する断熱材料が、シリカ、多孔質シリカ、ガラス、グラスウール、ロックウール、けいそう土、フェノール樹脂、メラミン樹脂、シリコン樹脂、或いは中空粒子形状の無機粒子の群より選択されることを特徴とする請求項1〜6に記載の熱電変換素子。 The heat insulating material forming the heat insulating layer is selected from the group of silica, porous silica, glass, glass wool, rock wool, diatomaceous earth, phenol resin, melamine resin, silicon resin, or hollow particle-shaped inorganic particles. The thermoelectric conversion element according to claim 1, wherein: 前記各熱電変換部は、さらにグラファイト層を有することを特徴とする請求項1〜7のいずれか1つに記載の熱電変換素子。 Each said thermoelectric conversion part has a graphite layer further, The thermoelectric conversion element as described in any one of Claims 1-7 characterized by the above-mentioned. 前記各熱電変換部は、熱電変換材料層、下部グラファイト層、断熱層、上部グラファイト層、熱電変換材料層の順で積層された構造を有し、下部グラファイト層及び上部グラファイト層は断熱層の側面で繋がる一枚のシートからなることを特徴とする請求項8に記載の熱電変換素子。 Each thermoelectric conversion part has a structure in which a thermoelectric conversion material layer, a lower graphite layer, a heat insulating layer, an upper graphite layer, and a thermoelectric conversion material layer are laminated in this order, and the lower graphite layer and the upper graphite layer are side surfaces of the heat insulating layer. The thermoelectric conversion element according to claim 8, wherein the thermoelectric conversion element is composed of a single sheet connected together. 前記断熱層は空洞部分を有する中空構造であることを特徴とする請求項9に記載の熱電変換素子。 The thermoelectric conversion element according to claim 9, wherein the heat insulating layer has a hollow structure having a hollow portion. 前記各熱電変換部は、熱電変換材料層、断熱層、熱電変換材料層、グラファイト層の順で積層された構造を有することを特徴とする請求項8に記載の熱電変換素子。 The thermoelectric conversion element according to claim 8, wherein each thermoelectric conversion unit has a structure in which a thermoelectric conversion material layer, a heat insulating layer, a thermoelectric conversion material layer, and a graphite layer are laminated in this order. 前記P型及びN型熱電変換部は、少なくとも断熱層及びグラファイト層を有し、前記グラファイトが積層構造からはみ出してなる延在部を有し、前記延在部上に電極を有することを特徴とする請求項8又は請求項11に記載の熱電変換素子。 The P-type and N-type thermoelectric conversion parts have at least a heat insulating layer and a graphite layer, the graphite has an extension part that protrudes from a laminated structure, and has an electrode on the extension part. The thermoelectric conversion element according to claim 8 or 11. 熱電変換発電素子とペルチェ素子を組み合わせてなる熱電変換発電装置であり、
前記熱電変換発電素子は請求項1〜12のいずれか1つに記載の熱電変換素子であり、
及び前記ペルチェ素子は、請求項12に記載の熱電変換素子であり、
前記ペルチェ素子により前記熱電変換発電素子の低温部を吸熱し、且つ該熱電変換発電素子の高温部あるいは高温部に接触する熱だめとなる対象物に放熱し、該熱電変換発電素子で発電することを特徴とする熱電変換発電装置。
It is a thermoelectric conversion power generation device that combines a thermoelectric conversion power generation element and a Peltier element,
The thermoelectric conversion power generation element is a thermoelectric conversion element according to any one of claims 1 to 12,
And the Peltier element is the thermoelectric conversion element according to claim 12,
The Peltier element absorbs heat at the low temperature part of the thermoelectric conversion power generation element and dissipates heat to the high temperature part of the thermoelectric conversion power generation element or an object serving as a heat reservoir in contact with the high temperature part, and the thermoelectric conversion power generation element generates power. A thermoelectric conversion power generator characterized by the above.
JP2012130940A 2011-07-20 2012-06-08 Thermoelectric transducer and thermoelectric conversion power generator Withdrawn JP2013042113A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012130940A JP2013042113A (en) 2011-07-20 2012-06-08 Thermoelectric transducer and thermoelectric conversion power generator
PCT/JP2012/068465 WO2013012065A1 (en) 2011-07-20 2012-07-20 Thermoelectric conversion element and thermoelectric conversion power generation system
CN201410665971.8A CN104465977B (en) 2011-07-20 2012-07-20 Thermoelectricity changes element and thermoelectricity transformation power generator
US14/233,480 US10790430B2 (en) 2011-07-20 2012-07-20 Thermoelectric conversion element and thermoelectric conversion power generation device
AU2012284833A AU2012284833C1 (en) 2011-07-20 2012-07-20 Thermoelectric conversion element and thermoelectric conversion power generation system
CN201280035636.9A CN103688379A (en) 2011-07-20 2012-07-20 Thermoelectric conversion element and thermoelectric conversion power generation system
CA2840059A CA2840059C (en) 2011-07-20 2012-07-20 Thermoelectric conversion element and thermoelectric conversion power generation device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011159036 2011-07-20
JP2011159036 2011-07-20
JP2012130940A JP2013042113A (en) 2011-07-20 2012-06-08 Thermoelectric transducer and thermoelectric conversion power generator

Publications (2)

Publication Number Publication Date
JP2013042113A true JP2013042113A (en) 2013-02-28
JP2013042113A5 JP2013042113A5 (en) 2015-07-09

Family

ID=47890209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130940A Withdrawn JP2013042113A (en) 2011-07-20 2012-06-08 Thermoelectric transducer and thermoelectric conversion power generator

Country Status (1)

Country Link
JP (1) JP2013042113A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038961A (en) * 2013-07-17 2015-02-26 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion layer forming composition
JP2017204550A (en) * 2016-05-11 2017-11-16 積水化学工業株式会社 Thermoelectric conversion material, thermoelectric conversion element and method of manufacturing thermoelectric conversion element
WO2023127590A1 (en) * 2021-12-28 2023-07-06 日東電工株式会社 Thermoelectric conversion element and sensor module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038961A (en) * 2013-07-17 2015-02-26 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion layer forming composition
JP2017204550A (en) * 2016-05-11 2017-11-16 積水化学工業株式会社 Thermoelectric conversion material, thermoelectric conversion element and method of manufacturing thermoelectric conversion element
WO2023127590A1 (en) * 2021-12-28 2023-07-06 日東電工株式会社 Thermoelectric conversion element and sensor module

Similar Documents

Publication Publication Date Title
CA2840059C (en) Thermoelectric conversion element and thermoelectric conversion power generation device
JP6583461B2 (en) Method for manufacturing thermoelectric conversion device
JP5499317B2 (en) Thermoelectric conversion element and thermoelectric conversion module
WO2013011997A1 (en) Stacked thermoelectric conversion module
CN103403899A (en) Thermoelectric device and thermoelectric module having the same, and method of manufacturing the same
WO2009139295A1 (en) Thermoelectric generation apparatus
US20130284229A1 (en) Method of manufacturing thermoelectric conversion element and thermoelectric conversion element
KR102561240B1 (en) Thermo electric element
JP2012124469A (en) Thermoelectric element and thermoelectric module
JPWO2017038831A1 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2013042113A (en) Thermoelectric transducer and thermoelectric conversion power generator
WO2013012065A1 (en) Thermoelectric conversion element and thermoelectric conversion power generation system
CN104934523A (en) Middle-high temperature thermoelectric module
JP5923332B2 (en) Thermoelectric conversion element, thermoelectric conversion power generation device and power generation method
JP6822227B2 (en) Thermoelectric conversion module
Tappura et al. Large-area implementation and critical evaluation of the material and fabrication aspects of a thin-film thermoelectric generator based on aluminum-doped zinc oxide
JP2014107443A (en) Thermoelectric conversion device and manufacturing method therefor
JP2011134745A (en) Thermoelectric powder, thermoelectric conversion element employing the same, and thermoelectric conversion module
JP4882855B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP2012033848A (en) Laminated thermoelectric element and manufacturing method of the same
JP7293116B2 (en) Thermoelectric sintered bodies and thermoelectric elements
JPWO2010058526A1 (en) Thermoelectric power generation device and power generation method using the same
JP5974289B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2012124480A (en) Thermoelectric element and manufacturing method for the same
JPH11168245A (en) Thermoelectric conversion device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130826

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150929