JP2011134745A - Thermoelectric powder, thermoelectric conversion element employing the same, and thermoelectric conversion module - Google Patents

Thermoelectric powder, thermoelectric conversion element employing the same, and thermoelectric conversion module Download PDF

Info

Publication number
JP2011134745A
JP2011134745A JP2009290199A JP2009290199A JP2011134745A JP 2011134745 A JP2011134745 A JP 2011134745A JP 2009290199 A JP2009290199 A JP 2009290199A JP 2009290199 A JP2009290199 A JP 2009290199A JP 2011134745 A JP2011134745 A JP 2011134745A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric conversion
conversion element
electrode
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009290199A
Other languages
Japanese (ja)
Inventor
Masahiro Ito
雅宏 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009290199A priority Critical patent/JP2011134745A/en
Publication of JP2011134745A publication Critical patent/JP2011134745A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion element and a thermoelectric conversion module having a high performance index ZT, and to provide a thermoelectric powder employed for the thermoelectric conversion element. <P>SOLUTION: The thermoelectric powder includes a substantially spherical particle body consisting of an electrically insulating material and a film consisting of a thermoelectric material covering an outer surface of the particle body, and the thermoelectric conversion element is obtained by mixing the thermoelectric powder with a binder, forming the mixture into a columnar shape and pressing it, and then performing a heat treatment. According to the thermoelectric conversion element in which the films of the thermoelectric powder are electrically connected to one another, since the film is topologically two-dimensional for a conductive carrier moving through the film consisting of the thermoelectric material and also the total thermal conductivity is reduced due to the heat treatment on the thermoelectric powder, a higher performance index ZT can be obtained compared to a thermoelectric conversion element with the conventional structure. Accordingly, it is possible to increase and improve the amount of the electric power generation by incorporating it into the thermoelectric conversion module. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、温度差を利用して熱を電気に変換する熱電変換素子に係り、特に、熱電変換素子に用いられる熱電粉体とこれを用いた熱電変換素子並びに熱電変換モジュールの改良に関するものである。   The present invention relates to a thermoelectric conversion element that converts heat into electricity using a temperature difference, and more particularly to improvement of thermoelectric powders used in thermoelectric conversion elements, thermoelectric conversion elements using the thermoelectric conversion elements, and thermoelectric conversion modules. is there.

地球温暖化が深刻になり、CO2削減等が人類共通の課題となってきた。一方で、人類のエネルギー源であった化石燃料自体の枯渇もさほど遠いものではないというのも実感として迫ってきている。これ等を背景事象として、人類は、化石燃料の消費そのものの削減と代替エネルギーの活用を図らねばならない。そのためには、化石燃料の消費を減らし、再生可能エネルギーの活用や、排熱利用が重要となる。実際、再生可能エネルギーの活用等が計られてきている。 Global warming has become serious, and CO 2 reduction has become a common issue for humankind. On the other hand, the fact that the depletion of fossil fuels, the energy source of mankind, is not so far away, is approaching. With these as background events, mankind must reduce fossil fuel consumption itself and utilize alternative energy. To that end, it is important to reduce the consumption of fossil fuels, use renewable energy, and use waste heat. In fact, the use of renewable energy has been planned.

ところで、エネルギー消費全体の約1/3は、発電に際して使用されている。そして、最終的に家庭や事業所に電気となって届くのはその内の35%と言われている。つまり、化石燃料から得られるエネルギーの内、65%のエネルギーは、発電時の熱エネルギーとなったり、途中の送電ロスの形で熱となって失われている。また、自動車の燃料消費量は、全エネルギー消費の約10%を占める。そして、その70%が排熱となって大気や地面へ捨てられている。この様に、エネルギーの過半数が熱となって利用されずに廃棄されている。もしも、この排熱の5%でも10%でも電気エネルギーとして再利用できるなら、無視できないエネルギーの有効利用となる。   By the way, about 1/3 of the total energy consumption is used for power generation. And it is said that 35% of them finally reach homes and offices as electricity. In other words, 65% of the energy obtained from fossil fuel is lost as heat energy during power generation or heat in the form of power transmission loss in the middle. In addition, the fuel consumption of automobiles accounts for about 10% of the total energy consumption. And 70% of it becomes waste heat and is thrown away into the atmosphere and the ground. In this way, a majority of the energy is discarded without being used as heat. If 5% or 10% of this exhaust heat can be reused as electrical energy, it will be an effective use of energy that cannot be ignored.

熱を利用して、再度エネルギー化する方法の一つに、そこで生じた温度差を利用し、半導体のゼーベック効果を利用して発電する方法がある。ゼーベック効果の利用は、温度計としての熱電対や、発電に利用されてきた。温度差を与えれば半永久的に発電でき、かつ、機械的な振動等稼動部が不要なため、宇宙船内で、原子核の崩壊熱を利用して発電した例もある。また、体温と大気温の温度差で発電した腕時計もあった。   One of the methods of re-energizing using heat is a method of generating electric power using the temperature difference generated there and utilizing the Seebeck effect of the semiconductor. The use of the Seebeck effect has been used for thermocouples as thermometers and power generation. If a temperature difference is given, power can be generated semi-permanently, and there is an example where power generation is performed using decay heat of nuclei in a spacecraft because an operating part such as mechanical vibration is unnecessary. There were also wristwatches that generated electricity at the temperature difference between body temperature and atmospheric temperature.

他方、ゼーベック効果の逆現象であるペルチェ効果を利用した例はもっと多い。ペルチェ効果とは、電流を流すことで、素子の両端に温度差を作る現象を言う。これは、光通信用の半導体レーザーの温度調節に利用されたり、最近では、音が出ないということからワインクーラーやホテルの冷蔵庫等に利用されたりしている。   On the other hand, there are more examples using the Peltier effect, which is the reverse phenomenon of the Seebeck effect. The Peltier effect is a phenomenon that creates a temperature difference between both ends of an element by passing a current. This is used for temperature control of a semiconductor laser for optical communication, and recently, it is used for wine coolers, hotel refrigerators, etc. because it does not produce sound.

通常、熱電変換素子では、p型材料、n型材料の両方を用い、それらを直列に接続して電圧を稼ぐ方式で利用されている。   Usually, a thermoelectric conversion element uses both a p-type material and an n-type material and connects them in series to obtain a voltage.

S=ゼーベック係数[V/K]、ΔT=高温部と低温部の温度差[1/K]、
σ=電気伝導度[1/Ωm]、κ=熱伝導度[W/mK]とするとき、
1)生成される電圧は、
V=S・ΔT (式1)
2)発電パワーは、以下の式で表される(ここで、fは0.2程度の現実素子の調整用の係数)。
P=f・(Sσ)・ΔT (式2)
3)発電の能力を表すため、以下のようにZ=性能指数[1/K]を使用する。
Z=Sσ/κ (式3)
4)あるいは、性能をより直感的に表し得るということで、以下の無次元の性能指数=ZTを使用することが多く、本発明でもこの無次元数を採用する。
ZT=T・Sσ/κ (式4)
S = Seebeck coefficient [V / K], ΔT = temperature difference between the high temperature part and the low temperature part [1 / K],
When σ = electric conductivity [1 / Ωm] and κ = thermal conductivity [W / mK],
1) The generated voltage is
V = S · ΔT (Formula 1)
2) The generated power is expressed by the following equation (where f is a coefficient for adjusting a real element of about 0.2).
P = f · (S 2 σ) · ΔT 2 (Formula 2)
3) In order to express the power generation capability, Z = performance index [1 / K] is used as follows.
Z = S 2 σ / κ (Formula 3)
4) Or, since the performance can be expressed more intuitively, the following dimensionless figure of merit = ZT is often used, and this dimensionless number is also adopted in the present invention.
ZT = T · S 2 σ / κ (Formula 4)

熱電変換素子を発電として使用するには、ZTが1以上、出来たら2以上が望まれる。ところが、今までの代表的な材料のZTの値は、図1(a)(b)に示すように、ほとんどが1以下である。特に、室温(〜300K)から200℃(〜500K)の範囲では、BiTe系、BiSb系しか見つかっていない。   In order to use the thermoelectric conversion element for power generation, ZT is preferably 1 or more, and preferably 2 or more if possible. However, as shown in FIGS. 1A and 1B, the ZT values of typical materials so far are mostly 1 or less. In particular, only BiTe and BiSb systems have been found in the range from room temperature (up to 300K) to 200 ° C (up to 500K).

温度差からエネルギーを取り出すには、カルノーサイクル以上の効率は不可能である。性能指数ZTと変換効率の間には明確な関係があり、それを図2のグラフ図で示す(非特許文献3参照)。図2の横軸は、低温部温度を300Kとしたときの高温部の温度、縦軸がそれに対応する変換効率である。ΔT=100℃のとき、ZT=0.7では、変換効率が4%程度、ZT=2では10%程度である。   In order to extract energy from the temperature difference, efficiency higher than the Carnot cycle is impossible. There is a clear relationship between the figure of merit ZT and the conversion efficiency, which is shown in the graph of FIG. 2 (see Non-Patent Document 3). The horizontal axis in FIG. 2 is the temperature of the high temperature part when the low temperature part temperature is 300 K, and the vertical axis is the conversion efficiency corresponding thereto. When ΔT = 100 ° C., the conversion efficiency is about 4% when ZT = 0.7, and about 10% when ZT = 2.

ΔT=100℃のとき、熱流Qは、10W/cm程度である。ZT=2の場合、変換効率は10%であるから、電気になるのは、0.1×10W/cm=1W/cm程度である。自然発電器として代表的な太陽電池の場合、降り注ぐ太陽エネルギーは、0.1W/cmである。太陽電池の変換効率は、10%程度であるから、素子単位面積当たりの発電量は、0.01W/cm程度となる。つまり、単位面積当たりの発電量は、熱電変換素子の方が高くなり得るのである。但し、温度差の確保と、ZTの実現が前提である。このように、ZT=2程度となると、いろいろ応用が広がる。非特許文献2には、実現されたZTの大きさとその期待できる市場が上げられている。原理的にはZT=無限大となることもありえるが、現在、報告されている最大値は、ZT=4程度である。 When ΔT = 100 ° C., the heat flow Q is about 10 W / cm 2 . For ZT = 2, because the conversion efficiency is 10%, become electricity is 0.1 × 10W / cm 2 = 1W / cm 2 approximately. In the case of a typical solar battery as a natural power generator, the solar energy that falls is 0.1 W / cm 2 . Since the conversion efficiency of the solar cell is about 10%, the power generation amount per element unit area is about 0.01 W / cm 2 . That is, the power generation amount per unit area can be higher in the thermoelectric conversion element. However, it is premised on ensuring a temperature difference and realizing ZT. Thus, when ZT = 2 or so, various applications are spread. Non-Patent Document 2 lists the realized ZT size and its expected market. In principle, ZT may be infinite, but the maximum value currently reported is about ZT = 4.

表1に示すように(非特許文献2参照)、ZT=2程度となれば、自動車排熱、家庭用コジェネ等に使用できる。実際、市販されている熱電変換素子(KEK製)において、ΔT=250℃で7.2%の変換効率が実現されている。発電量は、0.8W/cmが実現されている。 As shown in Table 1 (see Non-Patent Document 2), if ZT = 2, it can be used for automobile exhaust heat, household cogeneration, and the like. In fact, in a commercially available thermoelectric conversion element (manufactured by KEK), a conversion efficiency of 7.2% is realized at ΔT = 250 ° C. The power generation amount is 0.8 W / cm 2 .

Figure 2011134745
Figure 2011134745

ゼーベック効果を利用した発電利用を考えた場合は、ZT約1.5以上が欲しい。単独の粉体では、BiTe系でのみZTが約1程度であったが、使用温度範囲が100℃程度であるため、温度差は数十度が限界である。従って、低い効率しか役立たない。   If power generation using the Seebeck effect is considered, ZT of about 1.5 or more is desired. In the case of a single powder, ZT was about 1 only in the BiTe system, but since the operating temperature range is about 100 ° C., the temperature difference is limited to several tens of degrees. Therefore, only low efficiency is useful.

ところが、非特許文献1を最初の論文として、ゼーベック効果を利用した発電について、以後、活発に研究されている。例えば、非特許文献2等において、ZT=3近くの値が実現されている(図3参照)。   However, with non-patent document 1 as the first paper, power generation using the Seebeck effect has been actively studied since then. For example, in Non-Patent Document 2, etc., a value close to ZT = 3 is realized (see FIG. 3).

同じ温度差に対して、発電量を大きくするには、つまりZを大きくするには、上述した(式3)から3つのアプローチがあり得る。その一つは、ゼーベック係数(S)を大きくすること。2つ目は、電気伝導度(σ)を大きくすること。3つ目は、熱伝導度(κ)を小さくすることである。しかし、一般に、電気伝導に寄与する電子が同時に熱を運ぶため、電気伝導度と熱伝導度は密接に関連しあっており、単独に制御することは難しいと思われてきた。   To increase the amount of power generation, that is, to increase Z for the same temperature difference, there are three approaches from (Equation 3) described above. One of them is to increase the Seebeck coefficient (S). Second, increase the electrical conductivity (σ). The third is to reduce the thermal conductivity (κ). However, in general, since electrons that contribute to electrical conduction carry heat at the same time, electrical conductivity and thermal conductivity are closely related, and it has been considered difficult to control independently.

このような技術的背景の下、非特許文献1において、低次元構造にすると量子サイズ効果が出てきて、バンド端での単位体積当たりの状態密度が大きくなり、上記ゼーベック係数(S)が大きくなることが初めて指摘された。また同時に、フォノンの平均自由行程が2次元性の特徴的な長さ(例えば、積層構造では熱電材料層の膜厚)で制限されるため、フォノン散乱されてフォノンの走行が邪魔され、その結果、熱伝導度(κ)が小さくなる。つまり、上記2つの効果(ゼーベック係数が大きく、熱伝導度が小さくなる効果)によって、大きなZが実現される可能性があるわけである。   In such a technical background, in Non-Patent Document 1, when a low-dimensional structure is used, a quantum size effect appears, the density of states per unit volume at the band edge increases, and the Seebeck coefficient (S) increases. It was pointed out for the first time. At the same time, the mean free path of phonons is limited by the characteristic length of the two-dimensionality (for example, the film thickness of the thermoelectric material layer in the laminated structure), so that the phonon scattering is disturbed and the result is , Thermal conductivity (κ) becomes small. That is, there is a possibility that a large Z may be realized by the above two effects (the effect of increasing the Seebeck coefficient and decreasing the thermal conductivity).

そして、積層構造にしてZTを大きくした例が非特許文献2に開示されている。このように、材料の検討だけでなく、構造の工夫によってもZTは大きくでき、むしろ構造を工夫した方が大きな効果が得られるといえる。しかし、現実的につけ易い温度差の方向と構造がなかなか一致しないという問題が存在する。   Non-Patent Document 2 discloses an example in which ZT is enlarged in a laminated structure. Thus, it can be said that ZT can be increased not only by studying materials but also by devising the structure, and rather by devising the structure, a greater effect can be obtained. However, there is a problem that the structure of the temperature difference direction and the structure that are easy to apply practically do not match.

現実的に大きなパワーを得るためには大きな温度差が必要である。発電量は温度差の2乗に比例する。通常の単純な積層構造では、積層の膜方向に温度差をつけなければ、期待される2次元性は実現できない。例えば、図4に示すように、熱電材料層と絶縁材料層を積層した熱電変換素子が高温部と低温部との間に配置された場合を考えると、膜の面内方向への温度差は付け難いし、仮に膜の面内方向の温度差を利用して発電する場合、単位膜厚当たりの発電量は大きくなっても、膜厚が薄いため、総合の発電量を大きくすることは難しい。図4においては、膜厚を厚くした方が発電量を大きくすることができる。   A large temperature difference is necessary to obtain a practically large power. The amount of power generation is proportional to the square of the temperature difference. In a normal simple laminated structure, the expected two-dimensionality cannot be realized unless a temperature difference is provided in the film direction of the laminated film. For example, as shown in FIG. 4, when a thermoelectric conversion element in which a thermoelectric material layer and an insulating material layer are stacked is disposed between a high temperature portion and a low temperature portion, the temperature difference in the in-plane direction of the film is If power is generated using the temperature difference in the in-plane direction of the film, it is difficult to increase the total power generation because the film thickness is thin even if the power generation per unit film thickness is large. . In FIG. 4, the amount of power generation can be increased by increasing the film thickness.

現実的な熱電変換素子を考える場合、素子の上下(表と裏)方向に温度差をつけたい。その場合、例えば図5のように、熱電材料層と絶縁材料層を積層して熱電変換素子とし、かつ、その積層膜端面部を高温部と低温部との間に配置した場合、高温部、低温部と接触する積層膜端面部の面積は広い方がよく、また、積層膜端面部の厚さは適切な厚さが必要である。上記厚さがあまりに薄いと、大きな温度差がつき難くなるため発電量は大きくならない。逆に、厚さが厚過ぎると、温度差は大きくなるが、電気抵抗も大きくなるため発電量は大きくならず、最適な厚さが存在する。最適な膜厚は、材料の熱伝導度に依存するが、大体、0.1mmから数mmの範囲となる。   When considering a realistic thermoelectric conversion element, I want to make a temperature difference in the vertical direction (front and back) of the element. In that case, for example, as shown in FIG. 5, when a thermoelectric material layer and an insulating material layer are laminated to form a thermoelectric conversion element, and the laminated film end face portion is disposed between the high temperature portion and the low temperature portion, the high temperature portion, The area of the laminated film end face part that contacts the low temperature part should be large, and the thickness of the laminated film end face part needs to be appropriate. If the thickness is too thin, it will be difficult to produce a large temperature difference, so the amount of power generation will not increase. Conversely, if the thickness is too thick, the temperature difference increases, but the electric resistance also increases, so the amount of power generation does not increase, and an optimum thickness exists. The optimum film thickness depends on the thermal conductivity of the material, but generally ranges from 0.1 mm to several mm.

上記積層膜端面部の面積、言い換えると積層方向の高さ(積層高さ)は、従来の気相積層法等の手法により1mmという積層高さは難しい範囲となる。一方、通常の粉体を利用して1mm級の積層高さを実現することは難しくないが、各熱電材料層の膜厚についてはnm級を実現することが望まれる。   The area of the end face portion of the laminated film, in other words, the height in the laminating direction (lamination height) is a difficult range of a laminating height of 1 mm by a conventional method such as vapor deposition. On the other hand, although it is not difficult to realize a stacking height of 1 mm class using ordinary powder, it is desired to realize nm class for the thickness of each thermoelectric material layer.

これ等条件を満たすには、気相法等の成膜法により1mm級の積層高さを実現することは難しく、コスト的にも厳しく、現実的に利用することは難しいと考えられ、コスト的にも安価に作れる方法が要望される。   In order to satisfy these conditions, it is difficult to realize a stacking height of 1 mm class by a film forming method such as a vapor phase method, and it is considered to be difficult to use practically because it is difficult in terms of cost. In addition, there is a demand for a method that can be made inexpensively.

また、上記積層構造について、ナノレベルで行う積層構造や、ナノワイヤー、ナノドット等を用いて実現しようとすると、真空装置や精巧な成膜装置等が必要となり、また、極めて高コストの材料を使用する必要があり、工業製品として利用することには中々なり難いのが現実である。   In addition, if the above-mentioned laminated structure is to be realized using a nano-level laminated structure, nanowires, nanodots, etc., a vacuum apparatus or a sophisticated film forming apparatus is required, and extremely expensive materials are used. In reality, it is difficult to use as an industrial product.

Hicks & Dresselhaus:Phys。Rev. B47、12727−12731(1993)Hicks & Dresselhaus: Phys. Rev. B47, 12727-12731 (1993) Venkatasubramanian:Nature 413,597-602(2001)Venkatasubramanian: Nature 413,597-602 (2001) Cronin B. Vining:Nature Materials 8(2009)83Cronin B. Vining: Nature Materials 8 (2009) 83 M. R. Dirmyer, I. Martin, G. S. Nolas, I. Martin, G. S. Nolas, A. Sen, J. V. Badding:Samll, 23 Feb (2009)M. R. Dirmyer, I. Martin, G. S. Nolas, I. Martin, G. S. Nolas, A. Sen, J. V. Badding : Samll, 23 Feb (2009)

本発明はこのような問題点に着目してなされたもので、その課題とするところは、上述した積層構造や類似の構造を利用した熱電変換素子において、従来困難とされていた積層構造や類似の構造を利用するときの問題点を克服し、従来構造の熱電変換素子よりも高い性能指数ZTを得ることができる新たな構造の熱電変換素子等を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the thermoelectric conversion element using the above-described laminated structure or similar structure has been conventionally difficult to obtain. It is an object of the present invention to provide a thermoelectric conversion element having a new structure and the like that can obtain a figure of merit ZT higher than that of a thermoelectric conversion element having a conventional structure.

そこで、上記課題について本発明者が鋭意検討を重ねた結果、以下のような技術的知見を得るに至った。   Therefore, as a result of extensive studies by the inventor on the above problems, the following technical knowledge has been obtained.

まず、電気的絶縁材料から成る略球形状の粒子外表面を熱電材料で被覆することにより熱電粉体が得られること、かつ、この熱電粉体を柱状に積層圧着した後、熱処理することにより従来構造の熱電変換素子よりも高い性能指数ZTを有する熱電変換素子が得られることを発見するに至った。更に、得られた熱電変換素子を用いて発電効率に優れた新規な熱電変換モジュールの構造体を完成するに至った。   First, a thermoelectric powder can be obtained by coating the outer surface of a substantially spherical particle made of an electrically insulating material with a thermoelectric material, and this thermoelectric powder is laminated and pressure-bonded in a columnar shape, followed by heat treatment. It came to discover that the thermoelectric conversion element which has a figure of merit ZT higher than the thermoelectric conversion element of a structure is obtained. Furthermore, it came to complete the structure of the novel thermoelectric conversion module excellent in electric power generation efficiency using the obtained thermoelectric conversion element.

すなわち、請求項1に係る発明は、
熱電粉体において、
電気的絶縁材料から成る略球形状の粒子体と、粒子体の外表面を被覆する熱電材料から成る被膜とで構成されることを特徴とするものである。
That is, the invention according to claim 1
In thermoelectric powder,
A substantially spherical particle body made of an electrically insulating material and a coating film made of a thermoelectric material covering the outer surface of the particle body are characterized.

次に、請求項2に係る発明は、
請求項1に記載の発明に係る熱電粉体において、
上記熱電材料から成る被膜の膜厚が10nm以下2nm以上であることを特徴とし、
請求項3に係る発明は、
請求項1または2に記載の発明に係る熱電粉体において、
熱電材料から成る被膜の膜厚に対する、上記粒子体における直径の比が1倍以上であることを特徴とし、
請求項4に係る発明は、
請求項1〜3のいずれかに記載の発明に係る熱電粉体において、
上記粒子体を構成する電気的絶縁材料の熱伝導度が、0.1W/mK以下であることを特徴とし、
また、請求項5に係る発明は、
請求項1〜4のいずれかに記載の発明に係る熱電粉体において、
上記熱電材料が、n型熱電材料若しくはp型熱電材料で構成されていることを特徴とするものである。
Next, the invention according to claim 2
In the thermoelectric powder according to the invention of claim 1,
The film thickness of the thermoelectric material is 10 nm or less and 2 nm or more,
The invention according to claim 3
In the thermoelectric powder according to the invention of claim 1 or 2,
The ratio of the diameter of the particles to the film thickness of the film made of a thermoelectric material is 1 or more times,
The invention according to claim 4
In the thermoelectric powder according to any one of claims 1 to 3,
The thermal conductivity of the electrically insulating material constituting the particle body is 0.1 W / mK or less,
The invention according to claim 5
In the thermoelectric powder according to any one of claims 1 to 4,
The thermoelectric material is composed of an n-type thermoelectric material or a p-type thermoelectric material.

更に、請求項6に係る発明は、
熱電変換素子において、
請求項1〜5のいずれかに記載の熱電粉体をバインダーと混合し、柱状に形成しかつ圧着した後、熱処理して得られることを特徴とし、
また、請求項7に係る発明は、
熱電変換モジュールにおいて、
発泡体から成る基板と、基板上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極と、基板下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極と、上記基板の上側板状電極と下側板状電極が重なり合う領域若しくは近傍領域に開設された複数の貫通孔と、各板状電極内若しくは近傍に設けられた一方の貫通孔に埋め込まれかつ熱電粉体の熱電材料がn型熱電材料で構成される請求項6に記載のn型熱電変換素子と、各板状電極内若しくは近傍に設けられた他方の貫通孔に埋め込まれかつ熱電粉体の熱電材料がp型熱電材料で構成される請求項6に記載のp型熱電変換素子を備え、各板状電極内若しくは近傍に設けられた一組のn型熱電変換素子とp型熱電変換素子の各端部側が対応する上側板状電極と下側板状電極にそれぞれ電気的に接続されてこれ等板状電極を介し複数組のp型熱電変換素子とn型熱電変換素子が直列に配列されていると共に、上側板状電極若しくは下側板状電極側が高温側に配置されかつ他方の電極側が低温側に配置されることを特徴とするものである。
Furthermore, the invention according to claim 6 provides
In the thermoelectric conversion element,
The thermoelectric powder according to any one of claims 1 to 5 is mixed with a binder, formed into a columnar shape and subjected to pressure bonding, and then obtained by heat treatment,
The invention according to claim 7
In thermoelectric conversion module,
A substrate made of foam, a plurality of upper plate-like electrodes provided on the upper surface side of the substrate and not electrically connected to each other, and a plurality of lower plate-like electrodes provided on the lower surface side of the substrate and not electrically connected to each other Embedded in the electrode, a plurality of through holes provided in the region where the upper plate electrode and the lower plate electrode of the substrate overlap or in the vicinity thereof, and one through hole provided in or near each plate electrode; The n-type thermoelectric conversion element according to claim 6, wherein the thermoelectric material of the thermoelectric powder is composed of an n-type thermoelectric material, and the thermoelectric powder embedded in the other through-hole provided in or near each plate electrode. The p-type thermoelectric conversion element according to claim 6, wherein the thermoelectric material is composed of a p-type thermoelectric material, and a pair of n-type thermoelectric conversion element and p-type thermoelectric conversion provided in or near each plate electrode. Each end side of the element corresponds A plurality of p-type thermoelectric conversion elements and n-type thermoelectric conversion elements are arranged in series via the plate-like electrodes and are electrically connected to the side plate-like electrode and the lower plate-like electrode, respectively, and the upper plate-like electrode Alternatively, the lower plate electrode side is disposed on the high temperature side, and the other electrode side is disposed on the low temperature side.

本発明に係る熱電粉体は、電気的絶縁材料から成る略球形状の粒子体と粒子体の外表面を被覆する熱電材料から成る被膜とで構成されることを特徴とし、この熱電粉体を用いた本発明に係る熱電変換素子は、上記熱電粉体をバインダーと混合し、柱状に形成しかつ圧着した後、熱処理して得られることを特徴とする。   The thermoelectric powder according to the present invention comprises a substantially spherical particle body made of an electrically insulating material and a film made of a thermoelectric material covering the outer surface of the particle body. The thermoelectric conversion element according to the present invention is characterized in that the thermoelectric powder is mixed with a binder, formed into a columnar shape, and subjected to heat treatment after being pressure-bonded.

そして、上記熱電粉体の被膜同士が電気的に接続された本発明に係る熱電変換素子によれば、熱電材料から成る被膜中を移動する伝導キャリアにとって上記被膜はトポロジー的に2次元的で、かつ、熱電粉体が熱処理されて全体の熱伝導度が低くなっているため、従来構造の熱電変換素子と較べ高い性能指数ZTを得ることが可能となる。   And, according to the thermoelectric conversion element according to the present invention in which the coatings of the thermoelectric powder are electrically connected, the coating is topologically two-dimensional for the conductive carrier moving in the coating made of the thermoelectric material, In addition, since the thermoelectric powder is heat-treated to reduce the overall thermal conductivity, it is possible to obtain a higher figure of merit ZT than that of a thermoelectric conversion element having a conventional structure.

また、本発明に係る熱電変換モジュールは、発泡体から成る基板と、基板上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極と、基板下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極と、上記基板の上側板状電極と下側板状電極が重なり合う領域若しくは近傍領域に開設された複数の貫通孔と、各板状電極内若しくは近傍に設けられた一方の貫通孔に埋め込まれかつ熱電粉体の熱電材料がn型熱電材料で構成される本発明のn型熱電変換素子と、各板状電極内若しくは近傍に設けられた他方の貫通孔に埋め込まれかつ熱電粉体の熱電材料がp型熱電材料で構成される本発明のp型熱電変換素子を備え、各板状電極内若しくは近傍に設けられた一組のn型熱電変換素子とp型熱電変換素子の各端部側が対応する上側板状電極と下側板状電極にそれぞれ電気的に接続されてこれ等板状電極を介し複数組のp型熱電変換素子とn型熱電変換素子が直列に配列されていると共に、上側板状電極若しくは下側板状電極側が高温側に配置されかつ他方の電極側が低温側に配置される構造を有している。   The thermoelectric conversion module according to the present invention includes a foam substrate, a plurality of upper plate electrodes provided on the upper surface side of the substrate and not electrically connected to each other, and provided on the lower surface side of the substrate and electrically connected to each other. A plurality of lower plate-like electrodes that are not connected to each other, a plurality of through-holes opened in a region where the upper plate-like electrode and the lower plate-like electrode of the substrate overlap or in the vicinity thereof, and in or near each plate-like electrode The n-type thermoelectric conversion element of the present invention in which the thermoelectric material of the thermoelectric powder is embedded in one provided through-hole, and the other through-hole provided in or near each plate-like electrode A set of n-type thermoelectric conversion elements provided in or near each plate-like electrode comprising the p-type thermoelectric conversion element of the present invention embedded in a hole and the thermoelectric material of the thermoelectric powder made of a p-type thermoelectric material And p-type thermoelectric conversion Each end side of the child is electrically connected to the corresponding upper plate electrode and lower plate electrode, and a plurality of sets of p-type thermoelectric conversion elements and n-type thermoelectric conversion elements are arranged in series via these plate electrodes. In addition, the upper plate electrode or the lower plate electrode side is disposed on the high temperature side, and the other electrode side is disposed on the low temperature side.

そして、本発明に係る熱電変換モジュールによれば、各貫通孔に埋め込まれた熱電変換素子が従来構造の熱電変換素子と較べて高い性能指数ZTを有しており、更に、熱電変換素子が存在しない非熱電素子空間が発泡体で構成され、上記空間が空気で構成される従来構造の熱電変換モジュールと比較して熱伝導度が小さくなり、これにより熱電変換モジュール内に大きな温度差が実現されることになるため、発電量を増加、改善させることが可能となる。   According to the thermoelectric conversion module according to the present invention, the thermoelectric conversion element embedded in each through hole has a higher figure of merit ZT than the thermoelectric conversion element of the conventional structure, and there is a thermoelectric conversion element. The non-thermoelectric element space is made of foam, and the thermal conductivity is lower than that of the conventional thermoelectric conversion module where the space is made of air, thereby realizing a large temperature difference in the thermoelectric conversion module. Therefore, it becomes possible to increase and improve the power generation amount.

図1(a)は従来の代表的なp型熱電材料の性能指数ZTにおける温度依存性を示すグラフ図、図1(b)は従来の代表的なn型熱電材料の性能指数ZTにおける温度依存性を示すグラフ図。FIG. 1A is a graph showing the temperature dependence of the performance index ZT of a conventional typical p-type thermoelectric material, and FIG. 1B is the temperature dependence of the performance index ZT of a conventional typical n-type thermoelectric material. The graph which shows sex. 従来の代表的な熱電材料の性能指数ZTと変換効率との関係を示すグラフ図。The graph which shows the relationship between the figure of merit ZT of conventional typical thermoelectric material, and conversion efficiency. 最近研究されている熱電材料の使用温度領域と性能指数ZTとの関係を示すグラフ図。The graph which shows the relationship between the service temperature range of the thermoelectric material currently studied, and the figure of merit ZT. 熱電材料層と絶縁材料層を積層して構成された熱電変換素子の面内方向に温度勾配がある場合を示す模式図。The schematic diagram which shows the case where there exists a temperature gradient in the surface direction of the thermoelectric conversion element comprised by laminating | stacking a thermoelectric material layer and an insulating material layer. 熱電材料層と絶縁材料層を積層して構成された熱電変換素子の積層高さ方向に温度勾配がある場合を示す模式図。The schematic diagram which shows the case where there exists a temperature gradient in the lamination | stacking height direction of the thermoelectric conversion element comprised by laminating | stacking a thermoelectric material layer and an insulating material layer. 電気的に接続された熱電材料から成る被膜中を移動する伝導キャリアの通路を示す模式図。The schematic diagram which shows the path | route of the conductive carrier which moves in the film which consists of an electrically connected thermoelectric material. 本発明に係る熱電粉体の熱電材料から成る被膜同士が電気的に接続された熱電変換素子を示す説明図。Explanatory drawing which shows the thermoelectric conversion element by which the coatings which consist of the thermoelectric material of the thermoelectric powder which concerns on this invention were electrically connected. 本発明に係る熱電変換モジュールの概略構造を示す模式図。The schematic diagram which shows schematic structure of the thermoelectric conversion module which concerns on this invention. 本発明の変形例に係る熱電変換モジュールの概略構造を示す模式図。The schematic diagram which shows schematic structure of the thermoelectric conversion module which concerns on the modification of this invention. 図10(a)〜(e)は本発明に係る熱電変換モジュールの製造工程の一例を示す製造工程図。FIGS. 10A to 10E are manufacturing process diagrams showing an example of a manufacturing process of the thermoelectric conversion module according to the present invention.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、本発明に係る熱電粉体は、電気的絶縁材料から成る略球形状の粒子体と粒子体の外表面を被覆する熱電材料から成る被膜とで構成されることを特徴とし、本発明に係る熱電変換素子は、上記熱電粉体をバインダーと混合し、柱状に形成しかつ圧着した後、熱処理して得られることを特徴とする。また、本発明に係る熱電変換モジュールは、発泡体から成る基板と、基板上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極と、基板下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極と、上記基板の上側板状電極と下側板状電極が重なり合う領域若しくは近傍領域に開設された複数の貫通孔と、各板状電極内若しくは近傍に設けられた一方の貫通孔に埋め込まれかつ熱電粉体の熱電材料がn型熱電材料で構成される上記n型熱電変換素子と、各板状電極内若しくは近傍に設けられた他方の貫通孔に埋め込まれかつ熱電粉体の熱電材料がp型熱電材料で構成される上記p型熱電変換素子を備え、各板状電極内若しくは近傍に設けられた一組のn型熱電変換素子とp型熱電変換素子の各端部側が対応する上側板状電極と下側板状電極にそれぞれ電気的に接続されてこれ等板状電極を介し複数組のp型熱電変換素子とn型熱電変換素子が直列に配列されていると共に、上側板状電極若しくは下側板状電極側が高温側に配置されかつ他方の電極側が低温側に配置されることを特徴とするものである。   First, the thermoelectric powder according to the present invention comprises a substantially spherical particle body made of an electrically insulating material and a film made of a thermoelectric material covering the outer surface of the particle body. Such a thermoelectric conversion element is obtained by mixing the thermoelectric powder with a binder, forming a columnar shape and press-bonding, followed by heat treatment. The thermoelectric conversion module according to the present invention includes a foam substrate, a plurality of upper plate electrodes provided on the upper surface side of the substrate and not electrically connected to each other, and provided on the lower surface side of the substrate and electrically connected to each other. A plurality of lower plate-like electrodes that are not connected to each other, a plurality of through-holes opened in a region where the upper plate-like electrode and the lower plate-like electrode of the substrate overlap or in the vicinity thereof, and in or near each plate-like electrode In the n-type thermoelectric conversion element embedded in one through-hole provided and the thermoelectric material of the thermoelectric powder is composed of an n-type thermoelectric material, and the other through-hole provided in or near each plate-like electrode A set of n-type thermoelectric conversion elements and p-type thermoelectric elements provided in or near each plate electrode, including the above-described p-type thermoelectric conversion element, in which the thermoelectric material of the embedded thermoelectric powder is composed of a p-type thermoelectric material. Each of the conversion elements The part side is electrically connected to the corresponding upper plate electrode and lower plate electrode, respectively, and a plurality of sets of p-type thermoelectric conversion elements and n-type thermoelectric conversion elements are arranged in series via these plate-like electrodes. The upper plate electrode or the lower plate electrode is disposed on the high temperature side, and the other electrode is disposed on the low temperature side.

(1)熱電材料
熱電材料としては、高性能を有するIrSb、BiTe、PbTe等のカルコゲン系化合物の他、熱電特性は低いが資源的に豊富なFeSi、SiGe等の珪化物が挙げられる。また、Si半導体中のキャリア濃度が1024(1/m)程度になるようにP、B、Al等種々の添加元素の単独または複合添加を行い、その添加量を調整することにより、ゼーベック係数が極めて大きく、熱電変換効率を著しく高めたSi基熱電変換材料も利用することができる。その他、公知のいずれの材質も採用可能である。Siに、Ge、C、Snの内少なくとも1種を5〜10原子%、Siをp型半導体またはn型半導体となすための添加元素の内少なくとも1種を0.001原子%〜20原子%含有し、多結晶Siの粒界部に上記Ge、C、Snの1種以上あるいは更に添加元素の1種以上が析出した結晶組織を有するSi基熱電変換材料等のSi基熱電変換材料は熱電変換効率が著しく高いため好ましい。
(1) Thermoelectric material Thermoelectric materials include chalcogen compounds such as IrSb 3 , Bi 2 Te 3 , and PbTe that have high performance, and silicides such as FeSi 2 and SiGe that have low thermoelectric properties but are abundant in resources. Can be mentioned. Also, by adding various additive elements such as P, B, and Al alone or in combination so that the carrier concentration in the Si semiconductor is about 10 24 (1 / m 3 ), and adjusting the addition amount, Seebeck A Si-based thermoelectric conversion material having a very large coefficient and significantly improved thermoelectric conversion efficiency can also be used. In addition, any known material can be used. In Si, at least one of Ge, C, and Sn is 5 to 10 atomic%, and at least one of additive elements for making Si a p-type semiconductor or an n-type semiconductor is 0.001 atomic% to 20 atomic%. Si-based thermoelectric conversion materials such as Si-based thermoelectric conversion materials containing a crystal structure in which one or more of Ge, C, and Sn or further one or more of the additive elements are precipitated are included in the grain boundary portion of polycrystalline Si. This is preferable because the conversion efficiency is remarkably high.

Siをp型半導体となすためのドーパント元素としては、pグループ群(Be、Mg、Ca、Sr、Ba、Zn、Cd、Hg、B、Al、Ga、In、Tl)、および、遷移金属元素群(Y、Mo、Zr)の各群から選択する1種または2種以上が望ましい。特に好ましい元素は、B、Ga、Alである。   As dopant elements for making Si a p-type semiconductor, p group groups (Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, B, Al, Ga, In, Tl), and transition metal elements One or more selected from each group of the groups (Y, Mo, Zr) is desirable. Particularly preferable elements are B, Ga, and Al.

また、Si基熱電変換材料をn型半導体となすためのドーパント元素は、nグループ群(N、P、As、Sb、Bi、O、S、Se、Te)、遷移金属元素群(Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Nb、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Os、Ir、Pt、Pt、Au。但し、Feは10原子%以下)、および、希土類元素群(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu)の各群から選択する1種または2種以上が望ましい。特に好ましい元素は、P、Cu、Asである。   Further, dopant elements for making an Si-based thermoelectric conversion material an n-type semiconductor include n group groups (N, P, As, Sb, Bi, O, S, Se, Te), transition metal element groups (Ti, V , Cr, Mn, Fe, Co, Ni, Cu, Nb, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Pt, Au (provided that Fe is 10 atomic% or less) , And one or more selected from each group of rare earth elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu). Particularly preferable elements are P, Cu, and As.

そして、本発明に係る熱電粉体に用いられる熱電材料として、室温から200℃付近の温度領域で使用する場合は、BiTe系、BiSb系が特性的に優れており好ましい。但し、これ等熱電材料に限定されるものではなく、適宜他の熱電材料から選定される。また、最も大きな発電量が期待される300℃〜400℃付近の温度領域で使用する場合は、MgSi系等も使用することができる。 And as a thermoelectric material used for the thermoelectric powder according to the present invention, BiTe type and BiSb type are preferable because they are excellent in characteristics when used in a temperature range from room temperature to around 200 ° C. However, it is not limited to these thermoelectric materials, and is appropriately selected from other thermoelectric materials. Further, when used in a temperature region of 300 ° C. to 400 around ° C. The most significant amount of power generation is expected, it can also be used 2 system like MgSi.

次に、本発明に係る熱電粉体の熱電材料から成る被膜の膜厚については、10nm以下2nm以上であることが好ましい。電気的絶縁材料から成る略球形状の粒子体外表面を被覆する上記被膜の膜厚が10nmを超えると、上記粒子体で構成される図6に示すコア部との厚さの差がなくなり、2次元性が失われてZTの増強が難しくなり好ましくない。上記被膜の膜厚が10nm以下であることは、熱電材料部の2次元性の維持という要請から望まれる厚みである。他方、上記被膜の膜厚が2nm未満であると、図6に示すコア部と被膜との体積比が問題となり、熱電粉体の集合体から成る熱電変換素子全体の空間では変換素子として機能しない上記コア部が大半を占めてしまい、熱電変換素子全体での発電量が小さくなってしまうからである。   Next, the film thickness of the film made of the thermoelectric material of the thermoelectric powder according to the present invention is preferably 10 nm or less and 2 nm or more. When the thickness of the coating film covering the outer surface of the substantially spherical particle body made of an electrically insulating material exceeds 10 nm, there is no difference in thickness from the core portion shown in FIG. The dimensionality is lost, making it difficult to enhance ZT. That the thickness of the coating is 10 nm or less is a thickness desired from the request for maintaining the two-dimensionality of the thermoelectric material portion. On the other hand, if the film thickness is less than 2 nm, the volume ratio between the core portion and the film shown in FIG. 6 becomes a problem, and it does not function as a conversion element in the entire space of the thermoelectric conversion element composed of an aggregate of thermoelectric powders. This is because the core portion occupies the majority and the amount of power generation in the entire thermoelectric conversion element becomes small.

(2)電気的絶縁材料
本発明に係る熱電粉体において略球形状の粒子体を構成する電気的絶縁材料については、その熱伝導度が0.1W/mK以下である材料が好ましい。上記熱電粉体を用いて構成される本発明の熱電変換素子における両電極間の熱伝導は低い方が大きな温度差が出るからである。一方、熱電材料は半導体のため、極端に小さな熱伝導度を有しているものを選択することは難しい。熱伝導のかなり小さなBiTe系で、約1W/mK程度であるから、熱電粉体を用いて構成される熱電変換素子の熱伝導度はこれより小さな熱伝導度としなければならない。上記粒子体で構成されるコア部は、被膜を構成する熱電材料の10倍近い体積比があるから、熱伝導度が1/10以下であれば、コア部の熱伝導度が、熱電粉体を用いて構成される熱電変換素子の熱伝導度の主体となる。その意味から、上記粒子体で構成されるコア部の熱伝導度は0.1W/mK以下が望ましい。具体的には、上記粒子体を構成する電気的絶縁材料として、SrTiO、SiO、TiO等の酸化物が望ましいが、これ等に限定されるわけではなく、適宜他の電気的絶縁材料も選定される。これ等の材料を用いて、直径が10nm程度の略球形状の粒子体を製造することが好ましい。
(2) Electrically Insulating Material The electrically insulating material constituting the substantially spherical particles in the thermoelectric powder according to the present invention is preferably a material having a thermal conductivity of 0.1 W / mK or less. This is because the lower the heat conduction between the two electrodes in the thermoelectric conversion element of the present invention configured using the thermoelectric powder, the greater the temperature difference. On the other hand, since the thermoelectric material is a semiconductor, it is difficult to select a material having extremely small thermal conductivity. Since it is a BiTe system having a considerably small thermal conductivity and about 1 W / mK, the thermal conductivity of the thermoelectric conversion element formed using the thermoelectric powder must be smaller than this. Since the core part composed of the particles has a volume ratio nearly 10 times that of the thermoelectric material constituting the coating, if the thermal conductivity is 1/10 or less, the thermal conductivity of the core part is the thermoelectric powder. It becomes the main of the thermal conductivity of the thermoelectric conversion element comprised using. In that sense, the thermal conductivity of the core part composed of the above-mentioned particles is preferably 0.1 W / mK or less. Specifically, an oxide such as SrTiO 3 , SiO 2 , TiO 2 or the like is desirable as the electrically insulating material constituting the particle body, but is not limited thereto, and other electrically insulating materials are appropriately used. Is also selected. It is preferable to produce a substantially spherical particle having a diameter of about 10 nm using these materials.

そして、直径が10nm程度の電気的絶縁材料から成る粒子体の製造方法として各種の方法があり、その製法は任意に選択される。昨今、ナノサイズの粒子を製造する方法は種々報告されており、既に工業的にも種々の方法が実用化されている。例えば、ホットソープ法(別名ポリオール法)、ゾルゲル法、液相還元法、アルコキシド法、噴霧熱分解法、共沈法、ソルボサーマル法、水熱合成法等々ある。上記ホットソープ法(ポリオール法)では、有機金属化合物等を、配位性有機化合物の融液中で熱分解して粒子生成する方法である。また、ゾルゲル法では、有機金属(アルコキシド)の加水分解でナノサイズの粒子を作製する方法である。   There are various methods for producing a particle body made of an electrically insulating material having a diameter of about 10 nm, and the production method is arbitrarily selected. Recently, various methods for producing nano-sized particles have been reported, and various methods have already been put into practical use industrially. For example, there are a hot soap method (also called a polyol method), a sol-gel method, a liquid phase reduction method, an alkoxide method, a spray pyrolysis method, a coprecipitation method, a solvothermal method, a hydrothermal synthesis method, and the like. The hot soap method (polyol method) is a method of generating particles by thermally decomposing an organometallic compound or the like in a melt of a coordinating organic compound. The sol-gel method is a method for producing nano-sized particles by hydrolysis of an organic metal (alkoxide).

(3)熱電粉体
本発明に係る熱電粉体は、上述したように電気的絶縁材料から成る略球形状の粒子体と粒子体の外表面を被覆する熱電材料から成る被膜とで構成されることを特徴とする。
(3) Thermoelectric powder The thermoelectric powder according to the present invention comprises a substantially spherical particle body made of an electrically insulating material and a coating film made of a thermoelectric material covering the outer surface of the particle body as described above. It is characterized by that.

そして、直径が10nm程度の電気的絶縁材料から成る粒子体の外表面を、熱電材料で被覆することにより本発明の熱電粉体を得ることができる。尚、熱電材料から成る被膜の膜厚については、上述したように10nm以下2nm以上であることが好ましい。また、熱電材料から成る被膜の膜厚に対する、上記粒子体における直径の比が1倍以上であることが好ましい。上記被膜の膜厚に対する、電気的絶縁材料から成る粒子体における直径の比が1倍未満であると、熱電変換素子の2次元性が壊れて3次元的になるため好ましくない。   And the thermoelectric powder of this invention can be obtained by coat | covering the outer surface of the particle body which consists of an electrically insulating material about 10 nm in diameter with a thermoelectric material. The film thickness of the film made of the thermoelectric material is preferably 10 nm or less and 2 nm or more as described above. Moreover, it is preferable that the ratio of the diameter of the particle body to the film thickness of the film made of the thermoelectric material is 1 time or more. If the ratio of the diameter of the particles made of the electrically insulating material to the film thickness of the coating is less than 1 time, the two-dimensionality of the thermoelectric conversion element is broken and becomes three-dimensional, which is not preferable.

直径が10nm程度の電気的絶縁材料から成る粒子体の外表面を熱電材料で被覆する方法としては特に限定されないが、例えば、湿式法、ソルボサーマル法(溶液法)、電子蒸着法、スパッタリング法、レーザーアブレーション法等々が挙げられる。   The method of coating the outer surface of the particle body made of an electrically insulating material having a diameter of about 10 nm with a thermoelectric material is not particularly limited. For example, a wet method, a solvothermal method (solution method), an electron vapor deposition method, a sputtering method, Laser ablation method etc. are mentioned.

この中で、特に、電子蒸着法やスパッタリング法で熱電材料の薄膜を作ることは、研究だけでなく工業的にも実用化されている。レーザーアブレーション法も研究レベルで広く利用されている製法である。これ等の方法を用いて、電気的絶縁材料から成るナノサイズの粒子体をチャンバー内でかき回し、宙に浮いた状態で成膜する方法で、粒子体表面に皮一枚の成膜を行なうという方法も工業的に広く使われている製法である。湿式法では、液相還元法、アルコキシド法、逆ミセル法、コロイド法、等々がある。また、上記ソルボサーマル法(溶液法)としては、例えば、非特許文献4等に記載された方法があり、非特許文献4では、溶液法で、直径17nmから98nmの粉を作製している。   Among them, in particular, making a thin film of a thermoelectric material by an electron vapor deposition method or a sputtering method has been put into practical use not only in research but also industrially. The laser ablation method is also widely used at the research level. Using these methods, nano-sized particles made of an electrically insulating material are stirred in a chamber and deposited in the air, forming a single sheet of film on the surface of the particles. The method is also a manufacturing method widely used industrially. As the wet method, there are a liquid phase reduction method, an alkoxide method, a reverse micelle method, a colloid method, and the like. Moreover, as said solvothermal method (solution method), there exists a method described in the nonpatent literature 4, etc., for example, In the nonpatent literature 4, the powder of diameter 17nm -98nm is produced with the solution method.

(4)熱電変換素子
本発明に係る熱電変換素子は、上記熱電粉体をバインダーと混合し、柱状に形成しかつ圧着した後、熱処理して熱電粉体の熱電材料から成る被膜同士を電気的に接合させて得られる。電気的接合を得る上記熱処理は、窒素雰囲気中、300℃程度の条件で、6時間程度行えばよい。
(4) Thermoelectric conversion element In the thermoelectric conversion element according to the present invention, the thermoelectric powder is mixed with a binder, formed into a columnar shape, press-bonded, and then heat-treated to electrically coat the coatings made of the thermoelectric material of the thermoelectric powder. It is obtained by joining to. The heat treatment for obtaining electrical bonding may be performed for about 6 hours under a condition of about 300 ° C. in a nitrogen atmosphere.

そして、図6および図7に示すように、熱電材料から成る被膜同士の電気的接合がなされた熱電変換素子においては、伝導キャリア(電子)は、熱電粉体の熱電材料から成る被膜中を移動し、被膜の膜厚は上述したように薄いため、伝導キャリアにとってはトポロジー的に十分に2次元的であると考えられ、一方、熱電粉体が焼結(熱処理)されているため、全体の熱伝導度はかなり低くなっている。   As shown in FIGS. 6 and 7, in the thermoelectric conversion element in which the coatings made of the thermoelectric material are electrically joined, the conduction carriers (electrons) move in the coating made of the thermoelectric material of the thermoelectric powder. However, since the film thickness of the coating is thin as described above, it is considered that the conductive carrier is sufficiently two-dimensional in terms of topology, while the thermoelectric powder is sintered (heat treated), The thermal conductivity is quite low.

(5)熱電変換モジュール
図7に示すように、熱電粉体の焼結体で構成された本発明に係る熱電変換素子の上下を電極に接合する。実用的に使用するには、n型熱電変換素子、p型熱電変換素子を同様に作製し、これ等を直列につなぎ、上下に温度差をつけて熱電変換モジュールとして発電を行うことが可能となる。
(5) Thermoelectric conversion module As shown in FIG. 7, the upper and lower sides of the thermoelectric conversion element according to the present invention, which is composed of a sintered body of thermoelectric powder, are joined to electrodes. For practical use, it is possible to produce n-type thermoelectric conversion elements and p-type thermoelectric conversion elements in the same way, connect them in series, and generate power as a thermoelectric conversion module with a temperature difference between the top and bottom Become.

そして、本発明に係る熱電変換モジュールは、例えば図8に示すように、発泡体から成る基板1と、基板1上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極2と、基板1下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極3と、上記基板1を介し上側板状電極2と下側板状電極3が重なり合う領域を貫通しかつ上側板状電極2と下側板状電極3毎にそれぞれ2個ずつ設けられた貫通孔4と、各板状電極2、3の一方の貫通孔4に埋め込まれたn型材料から成るn型熱電変換素子5と、各板状電極2、3の他方の貫通孔4に埋め込まれたp型材料から成るp型熱電変換素子6を備え、各板状電極2、3のn型熱電変換素子5とp型熱電変換素子6の各端部側が対応する上側板状電極2と下側板状電極3にそれぞれ電気的に接続されてこれ等板状電極2、3を介して複数組のn型熱電変換素子5とp型熱電変換素子6が直列に配列されていると共に、上側板状電極2若しくは下側板状電極3側が高温側に配置されかつ他方の電極側が低温側に配置される構造を有している。   The thermoelectric conversion module according to the present invention includes, as shown in FIG. 8, for example, a substrate 1 made of a foam and a plurality of upper plate electrodes 2 that are provided on the upper surface side of the substrate 1 and are not electrically connected to each other. A plurality of lower plate-like electrodes 3 that are provided on the lower surface side of the substrate 1 and are not electrically connected to each other, and a region where the upper plate-like electrode 2 and the lower plate-like electrode 3 overlap with each other through the substrate 1 and Two through-holes 4 provided for each of the upper plate-like electrode 2 and the lower plate-like electrode 3, and an n-type thermoelectric composed of an n-type material embedded in one through-hole 4 of each plate-like electrode 2, 3. A conversion element 5 and a p-type thermoelectric conversion element 6 made of a p-type material embedded in the other through-hole 4 of each plate electrode 2, 3 are provided, and the n-type thermoelectric conversion element 5 of each plate electrode 2, 3. And the upper plate electrode 2 corresponding to each end side of the p-type thermoelectric conversion element 6 A plurality of sets of n-type thermoelectric conversion elements 5 and p-type thermoelectric conversion elements 6 are arranged in series via the plate-like electrodes 2, 3 respectively connected to the lower plate-like electrode 3, and The side plate electrode 2 or the lower plate electrode 3 side is arranged on the high temperature side, and the other electrode side is arranged on the low temperature side.

また、本発明の変形例に係る熱電変換モジュールは、図9に示すように発泡体から成る基板(図示せず)と、基板上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極12と、基板下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極13と、上記基板の上側板状電極12と下側板状電極13の近傍領域に開設された複数の貫通孔(図示せず)と、各板状電極12、13近傍に設けられた一方の貫通孔に埋め込まれたn型材料から成るn型熱電変換素子15と、各板状電極12、13近傍に設けられた他方の貫通孔に埋め込まれたp型材料から成るp型熱電変換素子16とを備え、各板状電極12、13近傍に設けられた一組のn型熱電変換素子15とp型熱電変換素子16の各端部側が対応する上側板状電極12と下側板状電極13にそれぞれ電気的に接続されてこれ等板状電極12、13を介し複数組のn型熱電変換素子15とp型熱電変換素子16とが直列に配列されていると共に、上側板状電極12側が高温側に配置されかつ他方の下側板状電極13側が低温側に配置される構造を有している。   A thermoelectric conversion module according to a modification of the present invention includes a foam substrate (not shown) as shown in FIG. 9 and a plurality of upper surfaces that are provided on the upper surface side of the substrate and are not electrically connected to each other. The side plate-like electrode 12 is provided in the vicinity of the plurality of lower plate-like electrodes 13 that are provided on the lower surface side of the substrate and are not electrically connected to each other, and the upper plate-like electrode 12 and the lower plate-like electrode 13 of the substrate. A plurality of through holes (not shown), an n-type thermoelectric conversion element 15 made of an n-type material embedded in one through hole provided in the vicinity of each plate-like electrode 12, 13, and each plate-like electrode 12. And a p-type thermoelectric conversion element 16 made of a p-type material embedded in the other through-hole provided in the vicinity of 13, and a set of n-type thermoelectric conversion elements provided in the vicinity of the plate-like electrodes 12, 13 15 and each end side of the p-type thermoelectric conversion element 16 are A plurality of sets of n-type thermoelectric conversion elements 15 and p-type thermoelectric conversion elements 16 are connected in series to the corresponding upper plate-like electrode 12 and lower plate-like electrode 13, respectively. And the upper plate electrode 12 side is arranged on the high temperature side and the other lower plate electrode 13 side is arranged on the low temperature side.

図8および図9に示す熱電変換モジュールによれば、各貫通孔に埋め込まれた熱電変換素子が従来構造の熱電変換素子と較べて高い性能指数ZTを有しており、更に、熱電変換素子の支配しない空間(熱電変換素子が存在しない非熱電素子空間)が発泡ポリスチレン、ポリスチレンフォーム等の発泡体から成る基板で構成され、上記空間が空気で構成される従来の熱電変換モジュールと比較して熱伝導度が小さくなり、これにより熱電変換モジュール内に大きな温度差が実現されることになるため、発電量を増加、改善させることが可能となる。   According to the thermoelectric conversion module shown in FIG. 8 and FIG. 9, the thermoelectric conversion element embedded in each through-hole has a higher figure of merit ZT than the thermoelectric conversion element of the conventional structure. The non-dominated space (non-thermoelectric element space where no thermoelectric conversion element exists) is composed of a substrate made of foamed material such as expanded polystyrene or polystyrene foam, and the space is heated compared to conventional thermoelectric conversion modules composed of air. Since the conductivity is reduced and a large temperature difference is realized in the thermoelectric conversion module, the power generation amount can be increased and improved.

そして、図8に示す熱電変換モジュールは、例えば、図10(a)〜(e)の製造工程図に示すような工程を経て製造することができる。   And the thermoelectric conversion module shown in FIG. 8 can be manufactured through a process as shown to the manufacturing process figure of FIG.10 (a)-(e), for example.

すなわち、発泡スチロール等の発泡性樹脂板(図10a参照)の両面に銅等の金属箔を貼り合わせ(図10b参照)、かつ、図示外のマスクを用いたエッチング処理により、発泡性樹脂板の両面に複数の上側板状電極と下側板状電極を形成する(図10c参照)。   That is, both surfaces of the foamable resin plate are obtained by bonding metal foils such as copper to both surfaces of the foamable resin plate (see FIG. 10a) such as polystyrene foam (see FIG. 10b) and using an unillustrated mask. A plurality of upper plate electrodes and lower plate electrodes are formed (see FIG. 10c).

次に、発泡性樹脂板を介し上側板状電極と下側板状電極が重なり合う領域に打ち抜き法により断面矩形状の貫通孔を複数設けると共に、これ等貫通孔に上述した本発明に係るn型熱電変換素子とp型熱電変換素子をそれぞれ埋め込みかつ半田付けして構造体とし(図10d参照)、更に、必要に応じて上側板状電極と下側板状電極側を樹脂シートで覆って(図10e参照)、熱電変換モジュールを得ることができる。   Next, a plurality of through holes having a rectangular cross section are formed by punching in a region where the upper plate electrode and the lower plate electrode overlap through a foamed resin plate, and the n-type thermoelectric device according to the present invention described above is provided in these through holes. The conversion element and the p-type thermoelectric conversion element are embedded and soldered to form a structure (see FIG. 10d), and the upper plate electrode and the lower plate electrode are covered with a resin sheet as necessary (FIG. 10e). See), and a thermoelectric conversion module can be obtained.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

[熱電粉体の製造]
250mLのフラスコに50mLのジフェニルエーテルを入れ、窒素雰囲気で50℃に温めた後、ビスマス−ネオデカノイル(1.0mM)を加えた。次に、チオールを1.0mM加えた後、Teを1.5mM加えた。
[Manufacture of thermoelectric powder]
50 mL of diphenyl ether was placed in a 250 mL flask and warmed to 50 ° C. in a nitrogen atmosphere, and then bismuth-neodecanoyl (1.0 mM) was added. Next, 1.0 mM of thiol was added, and then 1.5 mM of Te was added.

次いで、シリカのナノ球(直径20nm)を加え、遠心分離機にかけ、かつ、真空乾燥させて、シリカナノ粒子の表面に平均膜厚10nmのBiTeが被覆された熱電粉体すなわち、シリカナノ粒子から成る粒子体とこの表面を被覆するBiTeから成る被膜とで構成される熱電粉体を得た。 Next, a thermoelectric powder in which silica nanospheres (diameter 20 nm) are added, centrifuged, and vacuum dried to coat the surface of the silica nanoparticles with Bi 2 Te 3 having an average film thickness of 10 nm, that is, silica nanoparticles A thermoelectric powder composed of a particle body made of and a coating film made of Bi 2 Te 3 covering the surface was obtained.

尚、熱電材料(BiTe)から成る被膜の膜厚は透過電子顕微鏡観察で測定した。 The film thickness of the film made of the thermoelectric material (Bi 2 Te 3 ) was measured by observation with a transmission electron microscope.

[実施例1]
上記熱電粉体の製造方法において、加えるシリカナノ粒子の量を1gとし、同様の工程により熱電粉体を得た。
[Example 1]
In the thermoelectric powder production method, the amount of silica nanoparticles added was 1 g, and a thermoelectric powder was obtained by the same process.

得られた熱電粉体を電子顕微鏡(日立製作所社製 走査電子顕微鏡 S−3700N)で確認したところ、各シリカナノ粒子上に厚さ約5nmのBiTe膜で被覆された実施例1に係る熱電粉体が得られた。 When the obtained thermoelectric powder was confirmed with an electron microscope (Scanning Electron Microscope S-3700N, manufactured by Hitachi, Ltd.), each silica nanoparticle was coated with a Bi 2 Te 3 film having a thickness of about 5 nm. A thermoelectric powder was obtained.

次に、白金基板上に導電ペースト(大研化学工業社製 NAG−38B)を塗布し、実施例1に係る熱電粉体を5mm×5mm角の形状で、厚さ1mm程積層した後、圧着し、300℃で10時間、熱処理を行った。その後、金を蒸着して電極とし、図7に示したような実施例1に係るn型熱電変換素子とした。   Next, a conductive paste (NAG-38B manufactured by Daiken Chemical Industry Co., Ltd.) was applied on the platinum substrate, and the thermoelectric powder according to Example 1 was laminated in a 5 mm × 5 mm square shape with a thickness of about 1 mm, followed by pressure bonding. Then, heat treatment was performed at 300 ° C. for 10 hours. Then, gold was vapor-deposited to make an electrode, and an n-type thermoelectric conversion element according to Example 1 as shown in FIG. 7 was obtained.

このn型熱電変換素子の性能を見るため、n型のみで計測した。すなわち、上記n型熱電変換素子の上下に20℃の温度差をつけ、発電量を計測し、そこからZTを計算したところ、ZT=2.3となった。   In order to see the performance of this n-type thermoelectric conversion element, measurement was performed only for the n-type. That is, a temperature difference of 20 ° C. was added above and below the n-type thermoelectric conversion element, the amount of power generation was measured, and ZT was calculated therefrom.

通常のBiTe系ではZTが約1.0程度なので、実施例1に係るn型熱電変換素子は熱電変換素子として優れており、熱電変換素子を構成する実施例1に係る熱電粉体の2次元性を反映していることが確認された。 Since the normal Bi 2 Te 3 system has a ZT of about 1.0, the n-type thermoelectric conversion element according to Example 1 is excellent as a thermoelectric conversion element, and the thermoelectric powder according to Example 1 constituting the thermoelectric conversion element. It was confirmed that this reflects the two-dimensionality.

[実施例2]
投入するシリカナノ粒子の量を変えることで、熱電材料(BiTe)から成る被膜の膜厚を変えた以外は実施例1と同一の条件で熱電変換素子を作製した。
[Example 2]
A thermoelectric conversion element was produced under the same conditions as in Example 1 except that the thickness of the coating film made of the thermoelectric material (Bi 2 Te 3 ) was changed by changing the amount of silica nanoparticles to be added.

そして、得られた熱電変換素子のZTを求め、熱電材料から成る被膜の膜厚との関係を確認した。この結果を表2に示す。   And ZT of the obtained thermoelectric conversion element was calculated | required, and the relationship with the film thickness of the film which consists of thermoelectric materials was confirmed. The results are shown in Table 2.

Figure 2011134745
Figure 2011134745

[比較例1]
投入するシリカナノ粒子の量を変えることで、熱電材料(BiTe)から成る被膜の膜厚を変えた以外は実施例1と同一の条件で熱電変換素子を作製した。
[Comparative Example 1]
A thermoelectric conversion element was produced under the same conditions as in Example 1 except that the thickness of the coating film made of the thermoelectric material (Bi 2 Te 3 ) was changed by changing the amount of silica nanoparticles to be added.

そして、得られた熱電変換素子のZTを求め、熱電材料から成る被膜の膜厚との関係を確認した。この結果を表3に示す。   And ZT of the obtained thermoelectric conversion element was calculated | required, and the relationship with the film thickness of the film which consists of thermoelectric materials was confirmed. The results are shown in Table 3.

Figure 2011134745
Figure 2011134745

「確 認」
(1)表2に示されたデータから確認されるように、熱電材料(BiTe)から成る被膜の膜厚が10nm以下2nm以上の場合、n型熱電変換素子の性能指数ZTが1.5以上となることが分かった。
"Confirmation"
(1) As confirmed from the data shown in Table 2, when the film thickness of the thermoelectric material (Bi 2 Te 3 ) is 10 nm or less and 2 nm or more, the figure of merit ZT of the n-type thermoelectric conversion element is 1 It was found to be 5 or more.

(2)他方、表2と表3に示されたデータから確認されるように、BiTeから成る被膜の膜厚が10nmを超える場合、n型熱電変換素子の性能指数ZTが目的とする1.5以上にならないことが分かった。 (2) On the other hand, as confirmed from the data shown in Tables 2 and 3, when the film thickness of the film made of Bi 2 Te 3 exceeds 10 nm, the figure of merit ZT of the n-type thermoelectric conversion element is It turned out that it does not become 1.5 or more.

[実施例3]
コア部(粒子体)の材料として、上記シリカナノ粒子に代えて平均粒径約10nm多孔質シリカを用いた以外は実施例1〜2と同様に行い、実施例3に係る熱電粉体とn型熱電変換素子を製造した。
[Example 3]
The thermoelectric powder and n-type according to Example 3 were used in the same manner as in Examples 1 and 2 except that porous silica having an average particle size of about 10 nm was used instead of the silica nanoparticles as the material for the core (particles). A thermoelectric conversion element was manufactured.

上記多孔質シリカの熱伝導度は0.03W/mK程度であった。また、実施例1で用いたシリカナノ粒子の熱伝導度は0.6W/mK程度であった。   The thermal conductivity of the porous silica was about 0.03 W / mK. Moreover, the thermal conductivity of the silica nanoparticles used in Example 1 was about 0.6 W / mK.

そして、シリカナノ粒子に代えて多孔質シリカを使用したことで、いずれの場合においてもZTが約20%向上したことが確認された。   And it was confirmed that ZT improved by about 20% in any case by using porous silica instead of silica nanoparticles.

[実施例4]
実施例2中における投入するシリカナノ粒子の量を0.5gとし、実施例2と同様の条件で熱電材料(BiTe)から成る被膜の膜厚が10nmの熱電粉体を製造した。
[Example 4]
In Example 2, the amount of silica nanoparticles to be charged was 0.5 g, and a thermoelectric powder having a film thickness of 10 nm made of a thermoelectric material (Bi 2 Te 3 ) was produced under the same conditions as in Example 2.

次に、得られた熱電粉体をバインダーと混合し、かつ、3mm×3mm×5mmの型に詰め、圧縮した後、400℃で熱処理して焼結させ、ロッド状のn型熱電変換素子を製造した。   Next, the obtained thermoelectric powder is mixed with a binder, packed in a 3 mm × 3 mm × 5 mm mold, compressed, heat treated at 400 ° C. and sintered, and a rod-shaped n-type thermoelectric conversion element is obtained. Manufactured.

次に、実施例1においてTeに代えてSbを適用した以外は実施例1と同様にして熱電材料(BiSb)から成る被膜の膜厚が10nmの熱電粉体を製造し、かつ、得られた熱電粉体をバインダーと混合し、3mm×3mm×5mmの型に詰め、圧縮した後、400℃で熱処理して焼結させ、ロッド状のp型熱電変換素子を製造した。 Next, a thermoelectric powder having a film thickness of 10 nm made of a thermoelectric material (Bi 2 Sb 3 ) was produced in the same manner as in Example 1 except that Sb was applied instead of Te in Example 1, and The obtained thermoelectric powder was mixed with a binder, packed in a 3 mm × 3 mm × 5 mm mold, compressed, and then heat treated at 400 ° C. to sinter, thereby producing a rod-shaped p-type thermoelectric conversion element.

そして、図9に示すように、ロッド状のp型熱電変換素子とn型熱電変換素子を互いに1mmの間隔が開くように平行に配置し、かつ、電気的には直列に接続した。   Then, as shown in FIG. 9, rod-shaped p-type thermoelectric conversion elements and n-type thermoelectric conversion elements were arranged in parallel so as to be spaced apart from each other by 1 mm, and electrically connected in series.

そして、従来の熱電変換素子と同じように、高温側を100℃に維持した金属板に固着し、低温側を同様に30℃の金属板に固着して、実施例4に係る熱電変換モジュールを製造し、温度差発電を試みたところ、従来の材料では達成困難であったZT=1.5の性能を得ることができた。   And like the conventional thermoelectric conversion element, the high temperature side is fixed to a metal plate maintained at 100 ° C., and the low temperature side is similarly fixed to a metal plate of 30 ° C., and the thermoelectric conversion module according to Example 4 is obtained. When manufacturing and temperature difference power generation were tried, it was possible to obtain a performance of ZT = 1.5, which was difficult to achieve with conventional materials.

本発明に係る熱電粉体の被膜同士が電気的に接続された本発明の熱電変換素子によれば、熱電材料から成る被膜中を移動する伝導キャリアにとって上記被膜はトポロジー的に2次元的であり、更に、熱電粉体が熱処理されて全体の熱伝導度が低くなっているため、従来構造の熱電変換素子と較べ高い性能指数ZTを得ることが可能となる。従って、発電量を増加、改善させる熱電変換モジュールに組み込まれて利用される産業上の利用可能性を有している。   According to the thermoelectric conversion element of the present invention in which the coatings of the thermoelectric powder according to the present invention are electrically connected, the coating is topologically two-dimensional for the conductive carrier moving in the coating made of the thermoelectric material. Furthermore, since the thermoelectric powder is heat-treated and the overall thermal conductivity is low, it is possible to obtain a higher figure of merit ZT as compared with a thermoelectric conversion element having a conventional structure. Accordingly, the present invention has industrial applicability that is incorporated into a thermoelectric conversion module that increases and improves the amount of power generation.

1 発泡体から成る基板
2 上側板状電極
3 下側板状電極
4 貫通孔
5 n型熱電変換素子
6 p型熱電変換素子
12 上側板状電極
13 下側板状電極
15 n型熱電変換素子
16 p型熱電変換素子
DESCRIPTION OF SYMBOLS 1 Substrate made of foam 2 Upper plate electrode 3 Lower plate electrode 4 Through hole 5 n-type thermoelectric conversion element 6 p-type thermoelectric conversion element 12 upper plate-like electrode 13 lower plate-like electrode 15 n-type thermoelectric conversion element 16 p-type Thermoelectric conversion element

Claims (7)

電気的絶縁材料から成る略球形状の粒子体と、粒子体の外表面を被覆する熱電材料から成る被膜とで構成されることを特徴とする熱電粉体。   A thermoelectric powder comprising a substantially spherical particle body made of an electrically insulating material and a coating film made of a thermoelectric material covering an outer surface of the particle body. 上記熱電材料から成る被膜の膜厚が10nm以下2nm以上であることを特徴とする請求項1に記載の熱電粉体。   The thermoelectric powder according to claim 1, wherein the film made of the thermoelectric material has a thickness of 10 nm or less and 2 nm or more. 熱電材料から成る被膜の膜厚に対する、上記粒子体における直径の比が1倍以上であることを特徴とする請求項1または2に記載の熱電粉体。   The thermoelectric powder according to claim 1 or 2, wherein a ratio of a diameter of the particle body to a film thickness of a film made of a thermoelectric material is 1 or more. 上記粒子体を構成する電気的絶縁材料の熱伝導度が、0.1W/mK以下であることを特徴とする請求項1〜3のいずれかに記載の熱電粉体。   The thermoelectric powder according to any one of claims 1 to 3, wherein a thermal conductivity of the electrically insulating material constituting the particle body is 0.1 W / mK or less. 上記熱電材料が、n型熱電材料若しくはp型熱電材料で構成されていることを特徴とする請求項1〜4のいずれかに記載の熱電粉体。   The thermoelectric powder according to claim 1, wherein the thermoelectric material is composed of an n-type thermoelectric material or a p-type thermoelectric material. 請求項1〜5のいずれかに記載の熱電粉体をバインダーと混合し、柱状に形成しかつ圧着した後、熱処理して得られることを特徴とする熱電変換素子。   A thermoelectric conversion element obtained by mixing the thermoelectric powder according to any one of claims 1 to 5 with a binder, forming it in a columnar shape and press-bonding it, followed by heat treatment. 発泡体から成る基板と、基板上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極と、基板下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極と、上記基板の上側板状電極と下側板状電極が重なり合う領域若しくは近傍領域に開設された複数の貫通孔と、各板状電極内若しくは近傍に設けられた一方の貫通孔に埋め込まれかつ熱電粉体の熱電材料がn型熱電材料で構成される請求項6に記載のn型熱電変換素子と、各板状電極内若しくは近傍に設けられた他方の貫通孔に埋め込まれかつ熱電粉体の熱電材料がp型熱電材料で構成される請求項6に記載のp型熱電変換素子を備え、各板状電極内若しくは近傍に設けられた一組のn型熱電変換素子とp型熱電変換素子の各端部側が対応する上側板状電極と下側板状電極にそれぞれ電気的に接続されてこれ等板状電極を介し複数組のp型熱電変換素子とn型熱電変換素子が直列に配列されていると共に、上側板状電極若しくは下側板状電極側が高温側に配置されかつ他方の電極側が低温側に配置されることを特徴とする熱電変換モジュール。   A substrate made of foam, a plurality of upper plate-like electrodes provided on the upper surface side of the substrate and not electrically connected to each other, and a plurality of lower plate-like electrodes provided on the lower surface side of the substrate and not electrically connected to each other Embedded in the electrode, a plurality of through holes provided in the region where the upper plate electrode and the lower plate electrode of the substrate overlap or in the vicinity thereof, and one through hole provided in or near each plate electrode; The n-type thermoelectric conversion element according to claim 6, wherein the thermoelectric material of the thermoelectric powder is composed of an n-type thermoelectric material, and the thermoelectric powder embedded in the other through-hole provided in or near each plate electrode. The p-type thermoelectric conversion element according to claim 6, wherein the thermoelectric material is composed of a p-type thermoelectric material, and a pair of n-type thermoelectric conversion element and p-type thermoelectric conversion provided in or near each plate electrode. Each end side of the element corresponds A plurality of p-type thermoelectric conversion elements and n-type thermoelectric conversion elements are arranged in series via the plate-like electrodes and are electrically connected to the side plate-like electrode and the lower plate-like electrode, respectively, and the upper plate-like electrode Alternatively, the thermoelectric conversion module is characterized in that the lower plate electrode side is disposed on the high temperature side and the other electrode side is disposed on the low temperature side.
JP2009290199A 2009-12-22 2009-12-22 Thermoelectric powder, thermoelectric conversion element employing the same, and thermoelectric conversion module Pending JP2011134745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290199A JP2011134745A (en) 2009-12-22 2009-12-22 Thermoelectric powder, thermoelectric conversion element employing the same, and thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009290199A JP2011134745A (en) 2009-12-22 2009-12-22 Thermoelectric powder, thermoelectric conversion element employing the same, and thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2011134745A true JP2011134745A (en) 2011-07-07

Family

ID=44347203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290199A Pending JP2011134745A (en) 2009-12-22 2009-12-22 Thermoelectric powder, thermoelectric conversion element employing the same, and thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2011134745A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959496A (en) * 2012-05-31 2014-07-30 独立行政法人科学技术振兴机构 Thermoelectric material, method for producing same, and thermoelectric conversion module using same
WO2016002061A1 (en) * 2014-07-04 2016-01-07 株式会社日立製作所 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
JP2016063006A (en) * 2014-09-17 2016-04-25 トヨタ紡織株式会社 Columnar aggregate
JP2018152521A (en) * 2017-03-14 2018-09-27 国立研究開発法人産業技術総合研究所 Thermoelectric conversion material and method of producing the same, thermoelectric power generation module, and peltier cooler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021670A (en) * 2005-07-19 2007-02-01 Dainippon Printing Co Ltd Core shell type nano particle and thermoelectric conversion material
WO2007066820A1 (en) * 2005-12-07 2007-06-14 Toyota Jidosha Kabushiki Kaisha Thermoelectric conversion material and process for producing the same
JP2008147625A (en) * 2006-10-13 2008-06-26 Toyota Motor Engineering & Manufacturing North America Inc Homogeneous thermoelectric nanocomposite material using core-shell nanoparticles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021670A (en) * 2005-07-19 2007-02-01 Dainippon Printing Co Ltd Core shell type nano particle and thermoelectric conversion material
WO2007066820A1 (en) * 2005-12-07 2007-06-14 Toyota Jidosha Kabushiki Kaisha Thermoelectric conversion material and process for producing the same
JP2008147625A (en) * 2006-10-13 2008-06-26 Toyota Motor Engineering & Manufacturing North America Inc Homogeneous thermoelectric nanocomposite material using core-shell nanoparticles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103959496A (en) * 2012-05-31 2014-07-30 独立行政法人科学技术振兴机构 Thermoelectric material, method for producing same, and thermoelectric conversion module using same
CN103959496B (en) * 2012-05-31 2015-05-13 独立行政法人科学技术振兴机构 Thermoelectric material, method for producing same, and thermoelectric conversion module using same
WO2016002061A1 (en) * 2014-07-04 2016-01-07 株式会社日立製作所 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material
JP2016063006A (en) * 2014-09-17 2016-04-25 トヨタ紡織株式会社 Columnar aggregate
JP2018152521A (en) * 2017-03-14 2018-09-27 国立研究開発法人産業技術総合研究所 Thermoelectric conversion material and method of producing the same, thermoelectric power generation module, and peltier cooler

Similar Documents

Publication Publication Date Title
CN104137282B (en) Comprise the heterogeneous stacked of Graphene and comprise this heterogeneous stacked thermoelectric material, electrothermal module and thermoelectric device
US7309830B2 (en) Nanostructured bulk thermoelectric material
EP2210288B1 (en) Nanostructured bulk thermoelectric material
JP4446064B2 (en) Thermoelectric conversion element and thermoelectric conversion module
CN101969095B (en) Quasi one-dimensional nano structural thermoelectric material, device and preparation method thereof
CN102449790B (en) Thermoelectric material coated with a protective layer
KR101876947B1 (en) Thermoelectric Device using Bulk Material of Nano Structure and Thermoelectric Module having The Same, and Method of Manufacture The Same
KR102067647B1 (en) Manufacturing method of thermoelectric device and cooling thermoelectric moudule using the same
JP2011134745A (en) Thermoelectric powder, thermoelectric conversion element employing the same, and thermoelectric conversion module
WO2004105144A1 (en) Thermoelectric material and method for producing same
CN105051925B (en) High-efficiency thermal electrical switching device
KR20200095861A (en) Thermoelectric composite, and thermoelectric element and device including the same
JP3867134B2 (en) Method for producing composite oxide sintered body
MX2013010470A (en) Structure useful for producing a thermoelectric generator, thermoelectric generator comprising same and method for producing same.
CN101969096B (en) Nanostructured thermoelectric material and device and production method thereof
KR101537974B1 (en) Porous Organic Thermoelectric Device
JP3896479B2 (en) Method for producing composite oxide sintered body
KR101980194B1 (en) Thermoelectric material comprising nano-inclusions, thermoelectric module and thermoelectric apparatus comprising same
KR101409404B1 (en) Manufacturing method for thermoelectric material and thermelectric material manufactured thereby
JP3896480B2 (en) Method for producing composite oxide sintered body
JP2015043412A (en) Thermoelectric element and method of manufacturing the same
KR102065111B1 (en) Heat radiation-thermoelectric fin, thermoelectric module and thermoelectric apparatus comprising the same
JP2003332637A (en) Thermoelectric material and thermoelectric module using the same
JP2001048517A (en) Clathrate compound, highly efficient thermoelectric material, their production and thermoelectric module using highly efficient thermoelectric material
Ertuğrul Synthesis and thermoelectric characterization of Ca3Co4O9 particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625