JP2013036095A - Particle aligning device using plasma and particle aligning method - Google Patents

Particle aligning device using plasma and particle aligning method Download PDF

Info

Publication number
JP2013036095A
JP2013036095A JP2011174128A JP2011174128A JP2013036095A JP 2013036095 A JP2013036095 A JP 2013036095A JP 2011174128 A JP2011174128 A JP 2011174128A JP 2011174128 A JP2011174128 A JP 2011174128A JP 2013036095 A JP2013036095 A JP 2013036095A
Authority
JP
Japan
Prior art keywords
plasma
fine particles
substrate
pattern
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011174128A
Other languages
Japanese (ja)
Other versions
JP5895395B2 (en
Inventor
Kazuo Takahashi
和生 高橋
Ryo Miyama
遼 美山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Original Assignee
Kyoto Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC filed Critical Kyoto Institute of Technology NUC
Priority to JP2011174128A priority Critical patent/JP5895395B2/en
Publication of JP2013036095A publication Critical patent/JP2013036095A/en
Application granted granted Critical
Publication of JP5895395B2 publication Critical patent/JP5895395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a particle aligning device which aligns particles of an optional material whose magnitudes are several ten nm to several ten μm in an optional place, in an optional shape and in a short time, and a particle aligning method.SOLUTION: The particle aligning device 20 comprises: a plasma generation device 10 for generating plasma 3; a particle injection part 16 for injecting the particles 6 into a region in which the plasma is generated; a substrate holding part which holds the substrate for aligning the particles in a position facing the plasma in a plasma generation device; and a pattern 14 which is arranged on the substrate 12 and has an opening with a point in which the particles are aligned on the substrate as a center. After the particles are injected into the region in which the plasma is generated, the plasma in the plasma generation device is distinguished and the particles are aligned on the substrate so as to correspond to the pattern.

Description

本発明は、プラズマを用いて微粒子を所定パターンに配列させる微粒子配列装置及び微粒子配列方法に関する。   The present invention relates to a fine particle arrangement apparatus and a fine particle arrangement method for arranging fine particles in a predetermined pattern using plasma.

従来、微粒子配列方法には、(1)自己組織化により微粒子を秩序化した構造を形成する方法、(2)その他の方法により微粒子の任意の配列を形成する方法、などがある。上記(1)の方法の一つとして、さらに、水溶液コロイドを用いて微粒子を長時間かけて沈降させる方法、および微粒子懸濁液中に試料を垂直に浸し、液面が静止状態になるのを待ち、任意の速度で試料を垂直に引き上げるディップコーティング法がある。この方法では、試料の引き上げ速度や溶液中の粒子の濃度により膜厚を制御する。毛細管力と水の蒸発に由来する流動力が働くことにより、コーティングしたい微粒子を均一に整列させることができる。また、微粒子の自己組織化現象を利用した微粒子薄膜の製造方法が知られている(例えば、特許文献1参照。)。   Conventionally, fine particle arrangement methods include (1) a method of forming an ordered structure of fine particles by self-organization, and (2) a method of forming an arbitrary arrangement of fine particles by other methods. As one of the above methods (1), a method in which microparticles are allowed to settle for a long time using an aqueous colloid, and a sample is immersed vertically in a microparticle suspension so that the liquid surface becomes stationary. There is a dip coating method that waits and pulls the sample vertically at an arbitrary speed. In this method, the film thickness is controlled by the pulling speed of the sample and the concentration of particles in the solution. The capillary force and the fluid force derived from the evaporation of water work, whereby the fine particles to be coated can be uniformly aligned. In addition, a method for producing a fine particle thin film using a self-organization phenomenon of fine particles is known (for example, see Patent Document 1).

これに対し、自己組織化以外の微粒子を任意の形状に配列させる方法として、溝構造の内壁の選択された所定の壁部にのみ微粒子の配列集合体を形成させる技術が知られている(例えば、特許文献2参照。)。つまり、表面に所定の幅及び深さを有する溝を基板に形成し、この溝に微粒子懸濁液を充填し、充填した微粒子懸濁液の溶媒を乾燥させ、溝の壁部に微粒子が単層又は複数層で配列してなる微粒子の配列集合体を形成させる微粒子配列構造体の製造方法を提示している。   On the other hand, as a method for arranging fine particles other than self-organized in an arbitrary shape, a technique for forming an array aggregate of fine particles only on a selected predetermined wall portion of the inner wall of the groove structure is known (for example, , See Patent Document 2). That is, a groove having a predetermined width and depth is formed on the surface, the fine particle suspension is filled in the groove, the solvent of the filled fine particle suspension is dried, and the fine particles are simply formed on the wall of the groove. A method for producing a fine particle array structure that forms an array of fine particles arranged in layers or a plurality of layers is presented.

また、単一光を分割するか、あるいは複数の光源を用いて得られる2本のビームを、空間的に間隔を設けて同期走査して照射し、これらの2本のビームの間に、ビームの放射圧の作用しない空間を形成させ、2本のビームの間に存在する複数の微粒子をビームの放射圧により同時にこの空間に捕捉することにより、屈折率の高低や反射に関係なく微粒子を配列する方法が提案されている(例えば、特許文献3参照。)。   In addition, two beams obtained by dividing a single light or using a plurality of light sources are irradiated with synchronous scanning at spatial intervals, and a beam between these two beams is irradiated. By forming a space where the radiation pressure does not act and capturing a plurality of fine particles existing between the two beams simultaneously in this space by the radiation pressure of the beam, the fine particles are arranged regardless of the refractive index level or reflection. Has been proposed (see, for example, Patent Document 3).

また、電子線を用いて基板表面に優先的な吸着サイトを人工的に形成させ、ここに超微粒子を成長させる方法が提示されている(例えば、特許文献4参照。)。この方法では、蒸着基板であるシリコンウエハを走査型電子顕微鏡内に入れ、シリコンウエハに電子線を照射してパターンを形成する。超微粒子の格子状配列の作成は、上記基板を真空蒸着装置に移し、基板上に超微粒子の原料となる物質を蒸着して超微粒子の格子状配列を得ている。   Further, a method has been proposed in which a preferential adsorption site is artificially formed on the substrate surface using an electron beam, and ultrafine particles are grown thereon (see, for example, Patent Document 4). In this method, a silicon wafer as a deposition substrate is placed in a scanning electron microscope, and a pattern is formed by irradiating the silicon wafer with an electron beam. In order to create a lattice arrangement of ultrafine particles, the substrate is transferred to a vacuum deposition apparatus, and a material that is a raw material of ultrafine particles is deposited on the substrate to obtain a lattice arrangement of ultrafine particles.

特開平7−116502号公報JP-A-7-116502 特開2011−56626号公報JP 2011-56626 A 特開2001−232182号公報JP 2001-232182 A 特開昭61−41762号公報JP 61-41762 A

しかし、上記の水溶液コロイドを用いて微粒子を沈降させる方法、上記ディップコーティング法および特許文献1に記載された方法では、微粒子を面に均一に配列させることはできるが、微粒子を任意のパターンに配列することはできなかった。また、形成時間は、例えば、数時間から数日間程度を要する場合があった。   However, in the method of precipitating fine particles using the above aqueous colloid, the dip coating method and the method described in Patent Document 1, the fine particles can be arranged uniformly on the surface, but the fine particles are arranged in an arbitrary pattern. I couldn't. Moreover, the formation time may require several hours to several days, for example.

これに対し、微粒子を任意の形状に配列させる方法として、特許文献2から4に示した方法が提示されているが、特許文献2の方法では基板の溝または穴の壁面に選択的に微粒子を形成できるが、平板の任意の場所には形成することはできない。また、特許文献3の方法では光ビームが必要になり、および特許文献4の方法では電子ビームが必要になる。そのため、光ビームや電子ビームを照射しながら微粒子配列を行うか、微粒子形成の核を形成していくので、多大な時間が必要になり、また大面積の処理が難しいという問題点がある。   On the other hand, as a method for arranging fine particles in an arbitrary shape, the methods shown in Patent Documents 2 to 4 are presented. However, in the method of Patent Document 2, fine particles are selectively applied to the walls of grooves or holes in a substrate. Although it can be formed, it cannot be formed anywhere on the flat plate. Further, the method of Patent Document 3 requires a light beam, and the method of Patent Document 4 requires an electron beam. For this reason, since the fine particle arrangement is performed while irradiating the light beam and the electron beam or the nucleus for forming the fine particle is formed, it takes a lot of time and it is difficult to process a large area.

本発明の目的は、数十nmから数十μmの大きさの、任意の材料の微粒子を、任意の場所に、任意の形状に短時間で配列させる微粒子配列装置および微粒子配列方法を提供することである。   An object of the present invention is to provide a fine particle arranging apparatus and a fine particle arranging method for arranging fine particles of an arbitrary material having a size of several tens of nm to several tens of μm in an arbitrary shape in an arbitrary shape in a short time. It is.

本発明に係る微粒子配列装置は、プラズマを発生させるプラズマ発生装置と、
前記プラズマを発生させている領域に微粒子を注入する微粒子注入部と、
前記プラズマ発生装置内で、前記プラズマに面する位置に前記微粒子を配列させるための基板を保持する基板保持部と、
前記基板上に配置するパターンであって、前記基板上に微粒子を配列させる箇所を中心とする開口部を設けたパターンと、
を備え、
前記プラズマを発生させている領域に微粒子を注入した後、前記プラズマ発生装置内の前記プラズマを消滅させて前記基板上に前記パターンに対応して前記微粒子を配列させることができる。
A fine particle array device according to the present invention includes a plasma generator for generating plasma,
A fine particle injection portion for injecting fine particles into the region where the plasma is generated;
A substrate holding unit for holding a substrate for arranging the fine particles at a position facing the plasma in the plasma generator;
A pattern to be arranged on the substrate, and a pattern provided with an opening centered on a location where fine particles are arranged on the substrate;
With
After the fine particles are injected into the region where the plasma is generated, the plasma in the plasma generator is extinguished and the fine particles can be arranged on the substrate corresponding to the pattern.

また、前記パターンは、複数の開口部を有するものとしてもよい。これによって、前記プラズマを消滅させた際には前記複数の開口部のそれぞれの中心にスポット状に前記微粒子を配列させることができる。   The pattern may have a plurality of openings. Accordingly, when the plasma is extinguished, the fine particles can be arranged in a spot shape at the center of each of the plurality of openings.

本発明に係る微粒子配列方法は、
(a)微粒子を配列させる箇所を中心とする開口部を設けたパターンを用意するステップと、
(b)基板上に前記開口部を有するパターンを配置するステップと、
(c)プラズマ発生装置内で、前記パターンを配置した前記基板をプラズマに面する位置に配置するステップと、
(d)前記プラズマ発生装置内にガスを導入し、プラズマを発生させるステップと、
(e)前記プラズマ発生装置内に微粒子を注入するステップと、
(f)前記プラズマを消滅させて、前記微粒子を前記基板上に落下させて、前記パターンに対応して微粒子を配列させるステップと、
を含む。
The fine particle arrangement method according to the present invention includes:
(A) preparing a pattern provided with an opening centered on a place where fine particles are arranged;
(B) disposing a pattern having the opening on the substrate;
(C) placing the substrate on which the pattern is placed in a plasma generator at a position facing the plasma;
(D) introducing a gas into the plasma generator to generate plasma;
(E) injecting fine particles into the plasma generator;
(F) extinguishing the plasma, dropping the fine particles onto the substrate, and arranging the fine particles according to the pattern;
including.

また、前記パターンは、複数の開口部を有するものを用いてもよい。これによって、前記プラズマを消滅させた際には前記複数の開口部のそれぞれの中心にスポット状に前記微粒子を配列させることができる。   Further, the pattern having a plurality of openings may be used. Accordingly, when the plasma is extinguished, the fine particles can be arranged in a spot shape at the center of each of the plurality of openings.

本発明の微粒子配列装置および方法によれば、数十nmから数十μmの大きさの、任意の材料の微粒子を、任意の場所に、任意の形状で、任意の面積に短時間で配列させることができる。   According to the fine particle arrangement apparatus and method of the present invention, fine particles of an arbitrary material having a size of several tens of nanometers to several tens of micrometers are arranged in an arbitrary shape in an arbitrary shape and in an arbitrary area in a short time. be able to.

本発明の実施の形態1に係る微粒子配列装置の構成を示す概略図である。It is the schematic which shows the structure of the fine particle arrangement | sequence apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る微粒子配列装置におけるパターンの平面図である。It is a top view of the pattern in the particulate arrangement device concerning Embodiment 1 of the present invention. 図2のパターンを基板上に配置した場合の断面図である。It is sectional drawing at the time of arrange | positioning the pattern of FIG. 2 on a board | substrate. 図3の場合に微粒子の集合体がどのように配列するかを示す断面図である。FIG. 4 is a cross-sectional view showing how fine particle aggregates are arranged in the case of FIG. 3. (a)は、基板上での微粒子の集合体の配列状態を示す平面図であり、(b)は、微粒子の集合体の拡大図である。(A) is a top view which shows the arrangement | sequence state of the aggregate of microparticles | fine-particles on a board | substrate, (b) is an enlarged view of the aggregate of microparticles | fine-particles. 本発明の実施の形態1の変形例に係る微粒子配列装置において、一対の電極を鉛直方向と垂直方向に配置した場合の基板の配置例を示す概略図である。FIG. 6 is a schematic diagram showing an example of arrangement of substrates when a pair of electrodes are arranged in a vertical direction and a vertical direction in the fine particle array device according to a modification of the first embodiment of the present invention. (a)〜(d)は、参考例に係る微粒子配列方法によって金属微粒子を配列した後、配列した金属微粒子を触媒としてカーボンナノチューブを成長させる概略図である。(A)-(d) is the schematic which grows a carbon nanotube by using the arrange | positioned metal microparticles as a catalyst, after arranging metal microparticles by the microparticle arrangement | sequence method concerning a reference example.

本発明の実施の形態に係る微粒子配列装置及び微粒子配列方法について、添付図面を用いて以下に説明する。なお、図面において実質的に同一の部材については同一の符号を付している。   A fine particle arrangement device and a fine particle arrangement method according to an embodiment of the present invention will be described below with reference to the accompanying drawings. In the drawings, substantially the same members are denoted by the same reference numerals.

(実施の形態1)
図1は、本発明の実施の形態1に係る微粒子配列装置20の構成を示す概略図である。図2は、この微粒子配列装置20に用いるパターン14の平面図である。図3は、図2のパターン14を基板12上に配置した際の断面図である。図4は、図3のパターン14を配置した基板12上に微粒子6の集合体6aが配列する様子を示す概略図である。図5(a)は、基板上での微粒子6の集合体6aの配列状態を示す平面図であり、図5(b)は、微粒子6の集合体6aの拡大図である。
この微粒子配列装置20は、プラズマ発生装置10と、微粒子注入部16と、基板保持部と、パターン14とを備える。プラズマ発生装置10は、プラズマ3を発生させることができる。また、微粒子注入部16は、プラズマ3を発生させている領域に微粒子6を注入することができる。基板保持部(2a)は、プラズマ発生装置10内で、プラズマ3に面する位置に微粒子6を配列させるための基板12を保持する。なお、基板保持部は必ずしも別個に設ける必要はなく、例えば、図1に示すように、プラズマ発生装置10の一方の電極2aによって基板12を保持することができる場合には、電極2aによって基板保持部を兼ねることができる。パターン14は、図2に示すように、基板12上に微粒子6を配列させる箇所を中心とする開口部15を設けている。このパターン14は、基板12上に配置される。実施の形態1に係る微粒子配列装置20では、プラズマ3を発生させている領域に微粒子6を注入した後、プラズマ発生装置10のプラズマ3を消滅させて基板12上にパターン14に対応して微粒子6を配列させることができる。具体的には、図4、図5(a)及び(b)に示すように、パターン14の開口部15の幾何学的中心に微粒子の集合体6aをスポット状に配列させることができる。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a configuration of a fine particle array device 20 according to Embodiment 1 of the present invention. FIG. 2 is a plan view of the pattern 14 used in the fine particle array device 20. FIG. 3 is a cross-sectional view of the pattern 14 shown in FIG. FIG. 4 is a schematic view showing a state in which the aggregates 6a of the fine particles 6 are arranged on the substrate 12 on which the pattern 14 of FIG. 3 is arranged. FIG. 5A is a plan view showing the arrangement state of the aggregates 6a of the fine particles 6 on the substrate, and FIG. 5B is an enlarged view of the aggregates 6a of the fine particles 6. FIG.
The fine particle array device 20 includes a plasma generation device 10, a fine particle injection portion 16, a substrate holding portion, and a pattern 14. The plasma generator 10 can generate the plasma 3. Further, the fine particle injection unit 16 can inject the fine particles 6 into the region where the plasma 3 is generated. The substrate holding unit (2a) holds the substrate 12 for arranging the fine particles 6 at a position facing the plasma 3 in the plasma generator 10. The substrate holding portion is not necessarily provided separately. For example, as shown in FIG. 1, when the substrate 12 can be held by one electrode 2a of the plasma generator 10, the substrate is held by the electrode 2a. Can also serve as a part. As shown in FIG. 2, the pattern 14 is provided with an opening 15 centered on a location where the fine particles 6 are arranged on the substrate 12. This pattern 14 is disposed on the substrate 12. In the fine particle array device 20 according to the first embodiment, the fine particles 6 are injected into the region where the plasma 3 is generated, and then the plasma 3 of the plasma generator 10 is extinguished to correspond to the pattern 14 on the substrate 12. 6 can be arranged. Specifically, as shown in FIGS. 4, 5A and 5B, the aggregates 6a of the fine particles can be arranged in a spot shape at the geometric center of the opening 15 of the pattern 14.

本発明に係る微粒子配列装置20によれば、パターン14の開口部15の中心にのみ微粒子の集合体6aをスポット状に配列させることができる。このように微粒子の集合体6aがパターン14の開口部15の中心にのみスポット状に配列する原理について、本発明者はプラズマ消滅時の輸送機構が関係していると考えている。微粒子の集合体6aにおける微粒子6の密度及び個数はプラズマ3を発生させる条件(圧力及び電力)により制御できる。   According to the fine particle array device 20 of the present invention, the fine particle aggregate 6 a can be arranged in a spot shape only at the center of the opening 15 of the pattern 14. As described above, the present inventor believes that the transport mechanism at the time of extinction of the plasma is related to the principle that the aggregate 6a of the fine particles is arranged in a spot shape only at the center of the opening 15 of the pattern 14. The density and number of the fine particles 6 in the fine particle aggregate 6a can be controlled by conditions (pressure and power) for generating the plasma 3.

なお、基板12上にスポット状に配列した微粒子の集合体6aは、微粒子6自体の大きさが数十nm〜数十μmと小さいため、分子間力によって基板12上に強く吸着する。このように、数十nm〜数十μmの微粒子では分子間力による吸着力が大きいため、プラズマを使用する系、例えば、スパッタリングやCVD等を用いた系では系内への微粒子の混入によって、系内の材料や基板等への汚染が問題視されており、プラズマ発生装置内への微粒子の混入を避けることが大前提とされてきた。これに対して、本発明では、従来の常識からは考えられないプラズマ3中に微粒子6への注入と、開口部を設けたパターンとの組み合わせによる新たな技術内容を検討することによって本発明に至ったものである。   The fine particle aggregate 6a arranged in a spot shape on the substrate 12 is strongly adsorbed on the substrate 12 by intermolecular force because the size of the fine particles 6 itself is as small as several tens of nanometers to several tens of micrometers. Thus, since fine particles of several tens of nanometers to several tens of micrometers have a large adsorption force due to intermolecular force, in a system using plasma, for example, a system using sputtering, CVD, etc., by mixing fine particles into the system, Contamination to materials and substrates in the system has been regarded as a problem, and it has been a major premise to avoid mixing fine particles into the plasma generator. On the other hand, in the present invention, the present invention is studied by examining new technical contents by combining the injection into the fine particles 6 into the plasma 3 and the pattern in which the openings are provided, which cannot be considered from conventional common sense. It has come.

また、本発明に係る微粒子配列装置20によって、パターン14の開口部15の中心にのみ微粒子の集合体6aがスポット状に配列する点について、大気中で基板12の上に同様のパターン14を配置し、パターン14の上部から微粒子6を落下させた場合と比較する。大気中で微粒子6をパターン14の上から落下させた場合、パターン14を基板12から除去しても開口部15の形状全体にわたって微粒子6が分散した状態のものが得られるだけであり、本発明に係る微粒子配列装置によって得られるスポット状に配列した状態のものは得られない。   Further, the same pattern 14 is arranged on the substrate 12 in the atmosphere in that the fine particle aggregate 6a is arranged in a spot shape only at the center of the opening 15 of the pattern 14 by the fine particle array device 20 according to the present invention. Compared with the case where the fine particles 6 are dropped from the upper part of the pattern 14. When the fine particles 6 are dropped from above the pattern 14 in the atmosphere, even if the pattern 14 is removed from the substrate 12, only the fine particles 6 dispersed in the entire shape of the opening 15 can be obtained. The thing of the state arranged in the spot form obtained by the fine particle arrangement | sequence apparatus which concerns on cannot be obtained.

さらに、本発明に係る微粒子配列装置によれば、パターン14の開口部15の形状及び配置を制御することによって、微粒子の集合体6aをスポット状に配列させる箇所及び配列パターンを制御することができる。このことは、微粒子の集合体6aの配列パターンを自由に制御できることを意味している。例えば、本発明に係る微粒子配列装置は、エッチング等の湿式プロセスによらないドライプロセスによる金属のパターニングに利用できる。また、半導体分野の層間配線用にカーボンナノチューブを使用する用途においても、層間の数十μmの孔にカーボンナノチューブを成長させるための触媒として金属微粒子を孔の底に配列させる用途にも利用できる。さらに、微粒子の集合体6aをスポット状に所定間隔で配置できるので、スペーサや層間の電気的接続用の導電性粒子の配置に使用できる。   Furthermore, according to the fine particle arrangement apparatus according to the present invention, by controlling the shape and arrangement of the openings 15 of the pattern 14, the locations and arrangement patterns where the fine particle aggregates 6a are arranged in a spot shape can be controlled. . This means that the arrangement pattern of the fine particle aggregate 6a can be freely controlled. For example, the fine particle array device according to the present invention can be used for metal patterning by a dry process that does not depend on a wet process such as etching. In addition, the present invention can also be used in applications where carbon nanotubes are used for interlayer wiring in the semiconductor field, and metal fine particles are arranged at the bottoms of the holes as a catalyst for growing carbon nanotubes in holes of several tens of μm between layers. Furthermore, since the aggregate 6a of the fine particles can be arranged in a spot shape at a predetermined interval, it can be used for arranging conductive particles for electrical connection between spacers and layers.

以下に、本発明に係る微粒子配列装置を構成する各部材について説明する。   Below, each member which comprises the fine particle arrangement | sequence apparatus which concerns on this invention is demonstrated.

<プラズマ発生装置>
プラズマ発生装置10は、プラズマ3を発生させることができるものであれば、放電型、熱電離型、光電離型のいずれのプラズマ発生装置も使用できる。例えば、放電型のプラズマ発生装置としては、一対の電極間に直流電圧又は高周波電圧を印加してプラズマ発生可能なプラズマ発生装置を使用できる。あるいは、熱電離型のプラズマ発生装置として、高周波誘導熱プラズマ発生装置を用いてもよい。また、光電離型のプラズマ発生装置を用いてもよい。
なお、図1のプラズマ発生装置10の上下の電極2a、2bのうち、一方の電極2aのみに電源4を接続し、他方の電極2bは接地しているが、このような接続状態に限定されるものではない。例えば、他方の電極2bを浮動電位としてもよい。この場合には、プラズマ発生装置10の真空容器自体が接地電極として機能しうると考えられる。あるいは、両方の電極2a、2bに共に電源を接続してもよい。
<Plasma generator>
As long as the plasma generator 10 can generate the plasma 3, any of a plasma generator of a discharge type, a thermoionization type, or a photoionization type can be used. For example, as a discharge-type plasma generator, a plasma generator capable of generating plasma by applying a DC voltage or a high-frequency voltage between a pair of electrodes can be used. Alternatively, a high frequency induction thermal plasma generator may be used as the thermal ionization type plasma generator. Alternatively, a photoionization type plasma generator may be used.
In addition, although the power supply 4 is connected to only one electrode 2a and the other electrode 2b is grounded among the upper and lower electrodes 2a and 2b of the plasma generator 10 of FIG. 1, it is limited to such a connection state. It is not something. For example, the other electrode 2b may have a floating potential. In this case, it is considered that the vacuum vessel itself of the plasma generator 10 can function as a ground electrode. Alternatively, a power source may be connected to both electrodes 2a and 2b.

<プラズマ>
プラズマ3は、通常使用しうる希ガスのプラズマを使用できる。例えば、アルゴン、ネオン、クリプトン、キセノン、ラドン等のプラズマを使用できる。プラズマとして、上記希ガスのプラズマに限定するものではない。
<Plasma>
The plasma 3 can be a rare gas plasma that can be normally used. For example, plasma of argon, neon, krypton, xenon, radon, etc. can be used. The plasma is not limited to the rare gas plasma.

<基板保持部>
基板保持部によって、プラズマ発生装置10内で、プラズマに面する位置に基板を保持する。微粒子6を重力によって基板12上に落下させる場合には、基板12をプラズマに対して鉛直下方となるように基板保持部を設ける。あるいは微粒子6に重力以外の力、例えば、電磁力を作用させて基板に配列させる場合には、微粒子6に作用させる力の方向に沿って基板12を保持するように基板保持部を設ける。なお、例えば図1に示すように、一方の電極上に基板を載置する場合には電極2aによって基板保持部を兼ねてもよい。
一方、図6の変形例に示すように、プラズマ発生装置10の一対の電極2a、2bの配置方向が水平方向であって鉛直方向と垂直な場合には、基板保持部を電極とは別に設ける必要がある。
<Substrate holder>
The substrate holding unit holds the substrate at a position facing the plasma in the plasma generator 10. When the fine particles 6 are dropped on the substrate 12 by gravity, a substrate holding unit is provided so that the substrate 12 is vertically below the plasma. Alternatively, when a force other than gravity, for example, an electromagnetic force is applied to the fine particles 6 and arranged on the substrate, the substrate holding portion is provided so as to hold the substrate 12 along the direction of the force applied to the fine particles 6. For example, as shown in FIG. 1, when a substrate is placed on one electrode, the electrode 2a may also serve as a substrate holding portion.
On the other hand, as shown in the modification of FIG. 6, when the arrangement direction of the pair of electrodes 2a and 2b of the plasma generator 10 is the horizontal direction and perpendicular to the vertical direction, the substrate holding portion is provided separately from the electrodes. There is a need.

<基板>
微粒子6を配列させる基板12としては、特に限定されないが、例えば、ガラス基板、シリコン基板、金属基板等の様々な基板を使用できる。なお、基板12がガラス基板等のように電気的に絶縁体である場合には、直流電圧印加型のプラズマ発生装置の電極2a、2b上に基板12を載置できない点に留意する必要がある。また、基板12は、プラズマ3に面する位置に配置する。なお、上述のように、微粒子6を重力によって基板12上に落下させる場合には、基板12をプラズマに対して鉛直下方となるように配置する。あるいは微粒子6に重力以外の力、例えば、電磁力を作用させて基板12に配列させる場合には、微粒子6に作用させる力の方向に沿って基板12を配置すればよい。
<Board>
Although it does not specifically limit as the board | substrate 12 which arrange | positions the microparticles | fine-particles 6, For example, various board | substrates, such as a glass substrate, a silicon substrate, a metal substrate, can be used. It should be noted that when the substrate 12 is an electrically insulating material such as a glass substrate, the substrate 12 cannot be placed on the electrodes 2a and 2b of the DC voltage application type plasma generator. . The substrate 12 is disposed at a position facing the plasma 3. As described above, when the microparticles 6 are dropped on the substrate 12 by gravity, the substrate 12 is disposed vertically below the plasma. Alternatively, when a force other than gravity, for example, an electromagnetic force is applied to the fine particles 6 and arranged on the substrate 12, the substrate 12 may be disposed along the direction of the force applied to the fine particles 6.

<微粒子注入部>
微粒子注入部16は、プラズマ発生後に微粒子6をプラズマ3又はそのシース領域に注入するものである。この微粒子注入部16は、例えば、図1に示すように、タンク17内の微粒子6の粉末を、ふるいを介してプラズマ発生装置10内に注入してもよい。なお、微粒子の前駆体を注入して、プラズマ発生装置10内において微粒子6に変化させてもよい。例えば、有機金属ガスを注入してプラズマ発生装置10内で金属微粒子を得るようにしてもよい。あるいは、メタンからなるガスを注入してプラズマ3によって炭素微粒子を得るようにしてもよい。
<Particle injection part>
The fine particle injection section 16 is for injecting the fine particles 6 into the plasma 3 or its sheath region after the plasma is generated. For example, as shown in FIG. 1, the fine particle injection unit 16 may inject the powder of the fine particles 6 in the tank 17 into the plasma generator 10 through a sieve. Alternatively, a fine particle precursor may be injected and changed into the fine particles 6 in the plasma generator 10. For example, metal fine particles may be obtained in the plasma generator 10 by injecting an organometallic gas. Alternatively, carbon fine particles may be obtained by plasma 3 by injecting a gas composed of methane.

<微粒子>
基板上に配列させる微粒子6は、素材は特に限定されないが、例えば、金、銀、銅、アルミニウム等の金属微粒子、フラーレン粒子等の炭素微粒子、シリコン等の半導体微粒子、二酸化珪素(SiO)等の酸化物微粒子、有機物からなる有機物微粒子、あるいは、微粒子本体は、例えばメラミン樹脂であって表面にニッケル等の金属コーティングを施した複合体微粒子等のいずれであってもよい。また、微粒子6の粒径は、数十nm〜数十μmの範囲であればよい。具体的には、使用するプラズマあるいはシース中で帯電することによって浮遊可能な粒径の範囲であればよい。なお、微粒子6は、例えば、基板12上から数mm程度の間隔を空けて浮遊する。
<Fine particles>
The material of the fine particles 6 arranged on the substrate is not particularly limited. For example, metal fine particles such as gold, silver, copper, and aluminum, carbon fine particles such as fullerene particles, semiconductor fine particles such as silicon, silicon dioxide (SiO 2 ), and the like. The fine oxide particles, the organic fine particles composed of an organic substance, or the fine particle main body may be, for example, a composite fine particle that is a melamine resin and has a surface coated with a metal coating such as nickel. The particle diameter of the fine particles 6 may be in the range of several tens of nm to several tens of μm. Specifically, it may be in the range of the particle size that can float by charging in the plasma or sheath used. The fine particles 6 float, for example, at an interval of about several mm from the substrate 12.

<パターン>
パターン14は、基板12上に配置するものであって、微粒子6をスポット状で配列させる箇所を中心とする開口部15を有する。パターン14に設ける開口部15の幾何学的中心に微粒子の集合体がスポット状に配列するので、微粒子の集合体6aをスポット状に集中させる箇所と開口部15の中心とを整合させるように開口部15を設ける。開口部15の形状は四角形状に限られず、三角形状、多角形状、円形状等の通常使用しうる幾何学的形状を使用できる。また、開口部15の数は一つに限られず複数であってもよい。
<Pattern>
The pattern 14 is arranged on the substrate 12 and has an opening 15 centering on a spot where the fine particles 6 are arranged in a spot shape. Since the aggregates of the fine particles are arranged in a spot shape at the geometric center of the opening 15 provided in the pattern 14, the openings are arranged so that the location where the fine particle aggregate 6 a is concentrated in the spot shape and the center of the opening 15 are aligned. A portion 15 is provided. The shape of the opening 15 is not limited to a quadrangular shape, and a geometric shape that can be normally used, such as a triangular shape, a polygonal shape, or a circular shape, can be used. Further, the number of openings 15 is not limited to one and may be plural.

また、パターン14は、例えば、金属メッシュで構成してもよい。あるいは、基板12上にフォトリソグラフィ法等によって開口部15を設けたパターン14を形成してもよい。パターン14は、微粒子配列の後、基板12上から除去する。なお、微粒子配列後もパターン14自体を構造物として利用する場合にはパターン14を除去する必要はない。   Further, the pattern 14 may be constituted by a metal mesh, for example. Or you may form the pattern 14 which provided the opening part 15 on the board | substrate 12 with the photolithographic method. The pattern 14 is removed from the substrate 12 after the fine particle arrangement. If the pattern 14 itself is used as a structure even after the fine particles are arranged, it is not necessary to remove the pattern 14.

<微粒子配列方法>
本発明の実施の形態1に係る微粒子配列方法について以下に説明する。
(a)微粒子6を配列させる箇所を中心とする開口部15を設けたパターン14を用意する。微粒子の集合体6aは、開口部15の幾何学的中心にスポット状に配列されるので、微粒子6を配列しようとする箇所を幾何学的中心とする開口部15を設ける。なお、開口部15の形状は円形、長方形、三角形等のいずれの形状であってもよい。また、開口部15は一つに限られず、複数の開口部を設けてもよい。
(b)基板12上に開口部15を有するパターン14を配置する。パターン14として金属メッシュのパターン14を用いた場合には、基板12上にパターン14を載せてもよい。あるいは、基板上にフォトリソグラフィ法等によってパターン14を形成してもよい。さらに、複数の孔を設けた構造物をパターン14として配置してもよい。
(c)プラズマ発生装置10内で、パターン14を配置した基板12をプラズマ3に対して鉛直下方となる位置に配置する。放電型のプラズマ発生装置を用いた場合には、一方の電極の上に基板12を載置してもよい。
(d)プラズマ発生装置10内にガスを導入し、プラズマ3を発生させる。なお、プラズマの発生方法は、例えば、放電型によるプラズマ発生方法の場合、一対の電極2a、2b間に直流電圧又は高周波電圧を印加することによって電極間にプラズマ3を発生させることができる。なお、両方の電極2a、2bの電気的接続条件によって、電圧印加の対象は異なる場合がある。例えば、図1とは異なり、電極2bを浮動電位とした場合、プラズマ発生装置10の真空容器が接地電極として機能すると考えられるので、電極2aと真空容器との間への電圧印加となる。なお、その他の電気的接続の変更も可能であり、電気的接続条件に応じて電圧印加の対象を読み替えればよい。また、熱電離型や光電離型によるプラズマ発生方法によってプラズマ3を発生させてもよい。
(e)プラズマ発生装置10内に微粒子6を注入する。
(f)一対の電極2a、2b間の電圧印加を停止してプラズマ3を消滅させて、微粒子6を基板12上に落下させて、パターン14に対応して微粒子を配列させる。具体的には、プラズマ3を消滅させた際、複数の開口部15のそれぞれの中心にスポット状に微粒子の集合体6aを配列させることができる。なお、実現される微粒子の集合体6aの配列パターンのスケールはプラズマ3を発生させる条件(圧力、電力)に依存する。
以上によって、基板12上の任意の箇所に微粒子の集合体6aを配列させることができる。
<Particle array method>
The fine particle arrangement method according to Embodiment 1 of the present invention will be described below.
(A) A pattern 14 provided with an opening 15 centering on a place where the fine particles 6 are arranged is prepared. Since the aggregate 6a of the fine particles is arranged in a spot shape at the geometric center of the opening 15, the opening 15 having a geometric center as a position where the fine particles 6 are to be arranged is provided. The shape of the opening 15 may be any shape such as a circle, a rectangle, and a triangle. Further, the number of openings 15 is not limited to one, and a plurality of openings may be provided.
(B) The pattern 14 having the opening 15 is disposed on the substrate 12. When a metal mesh pattern 14 is used as the pattern 14, the pattern 14 may be placed on the substrate 12. Alternatively, the pattern 14 may be formed on the substrate by a photolithography method or the like. Furthermore, a structure provided with a plurality of holes may be arranged as the pattern 14.
(C) In the plasma generator 10, the substrate 12 on which the pattern 14 is arranged is arranged at a position vertically below the plasma 3. When a discharge-type plasma generator is used, the substrate 12 may be placed on one electrode.
(D) A gas is introduced into the plasma generator 10 to generate plasma 3. For example, in the case of a discharge-type plasma generation method, the plasma 3 can be generated between the electrodes by applying a DC voltage or a high-frequency voltage between the pair of electrodes 2a and 2b. In addition, the object of voltage application may differ with the electrical connection conditions of both electrodes 2a and 2b. For example, unlike FIG. 1, when the electrode 2b is set to a floating potential, it is considered that the vacuum vessel of the plasma generating apparatus 10 functions as a ground electrode, and thus voltage is applied between the electrode 2a and the vacuum vessel. Note that other electrical connections can be changed, and the voltage application target may be read according to the electrical connection conditions. Further, the plasma 3 may be generated by a plasma generation method using a thermoionization type or a photoionization type.
(E) The fine particles 6 are injected into the plasma generator 10.
(F) The voltage application between the pair of electrodes 2a and 2b is stopped, the plasma 3 is extinguished, the fine particles 6 are dropped on the substrate 12, and the fine particles are arranged corresponding to the pattern 14. Specifically, when the plasma 3 is extinguished, the aggregates 6a of fine particles can be arranged in the form of spots at the centers of the plurality of openings 15. Note that the scale of the arrangement pattern of the aggregate 6a of the fine particles to be realized depends on the conditions (pressure, power) for generating the plasma 3.
As described above, the aggregates 6a of the fine particles can be arranged at arbitrary locations on the substrate 12.

(実施例1)
実施例1に係る微粒子配列方法について以下に説明する。
(a)微粒子6を配列させる箇所を中心とする正方形の開口部15を設けた金属メッシュからなるパターン14を用意した。図2に示すように、開口部15の正方形の一辺の長さは155μm、各開口部15の間の間隔は55μmとした。また、図3に示すように、パターン14の厚さは55μmであった。
(b)基板12上に開口部15を有するパターン14を配置した。
(c)放電型のプラズマ発生装置10内で、パターン14を配置した基板12をプラズマ3に対して鉛直下方となる電極2aの上に載置した。
(d)放電型のプラズマ発生装置10内にArガスを導入し、一対の電極2a、2bの間に13.56MHzの高周波電圧を印加してプラズマ3を発生させた。プラズマ3の発生条件としては、圧力900mTorr(1.2hPa)、電力4.4Wとした。
(e)プラズマ発生装置10内に微粒子6を注入した。微粒子6は、直径1.55μmの二酸化珪素(SiO2)微粒子であった。
(f)一対の電極2a、2b間の電圧印加を停止してプラズマ3を消滅させて、微粒子6を基板12上に落下させて、パターン14に対応して微粒子6を配列させた。具体的には、図5の(a)に示すように、複数の開口部15の周期と対応してスポット状に微粒子の集合体6aが配列した。それぞれの微粒子の集合体6aの大きさはおよそ19μmであり、一つの集合体6aには数個から数十個の微粒子6が集合していた。
Example 1
The fine particle arrangement method according to Example 1 will be described below.
(A) A pattern 14 made of a metal mesh provided with a square opening 15 centering on a place where the fine particles 6 are arranged was prepared. As shown in FIG. 2, the length of one side of the square of the opening 15 was 155 μm, and the interval between the openings 15 was 55 μm. As shown in FIG. 3, the thickness of the pattern 14 was 55 μm.
(B) A pattern 14 having an opening 15 is disposed on the substrate 12.
(C) In the discharge-type plasma generator 10, the substrate 12 on which the pattern 14 is arranged was placed on the electrode 2 a that is vertically below the plasma 3.
(D) Ar gas was introduced into the discharge-type plasma generator 10, and a high frequency voltage of 13.56 MHz was applied between the pair of electrodes 2 a and 2 b to generate plasma 3. The conditions for generating the plasma 3 were a pressure of 900 mTorr (1.2 hPa) and a power of 4.4 W.
(E) Fine particles 6 were injected into the plasma generator 10. The fine particles 6 were silicon dioxide (SiO 2) fine particles having a diameter of 1.55 μm.
(F) The voltage application between the pair of electrodes 2 a and 2 b was stopped to extinguish the plasma 3, the fine particles 6 were dropped on the substrate 12, and the fine particles 6 were arranged corresponding to the pattern 14. Specifically, as shown in FIG. 5A, the aggregates 6a of the fine particles are arranged in a spot shape corresponding to the period of the plurality of openings 15. The size of each fine particle aggregate 6a is about 19 μm, and several to several tens of fine particles 6 are aggregated in one aggregate 6a.

(実施例2)
実施例2に係る微粒子配列方法について、実施例1と比較して、プラズマ発生条件である電力を3.5Wとした。この結果、スポット状の微粒子の集合体6aの大きさは25μmとなった。また、この微粒子の集合体6aにはおよそ25個の微粒子6が集合していた。
(Example 2)
In the fine particle arrangement method according to Example 2, the power as the plasma generation condition was set to 3.5 W as compared with Example 1. As a result, the size of the spot-like fine particle aggregate 6a was 25 μm. In addition, about 25 fine particles 6 gathered in the fine particle aggregate 6a.

(参考例)
参考例は、実施例1又は実施例2によって基板12上に金属微粒子の集合体6aを配列させた後、その金属微粒子の集合体6aを核としてカーボンナノチューブを成長させる場合の応用例の一つを示すものである。図7(a)〜(d)は、参考例に係る微粒子配列方法によって金属微粒子を配列した後、配列した金属微粒子を触媒としてカーボンナノチューブを成長させる概略図である。
(a)基板12上に開口部を有するパターン14を配置して、その上にプラズマ3を発生させ、プラズマ3中に金属微粒子6を注入する(図7(a))。
(b)プラズマ3を消滅させることによって、基板12上にパターン14の開口部の中心に対応して、金属微粒子の集合体6aがスポット状に配列する(図7(b))。
(c)パターン14を除去する(図7(c))。金属微粒子の集合体6aの配列周期はパターン14の開口部の周期と略一致すると考えられる。
(d)金属微粒子の集合体6aを触媒としてカーボンナノチューブ8が成長する(図7(d))。
以上のように、本発明の微粒子配列装置及び方法によって、カーボンナノチューブの核となる金属微粒子を規則正しく配列させることができ、これによってカーボンナノチューブ8を規則正しく成長させることができるものと期待される。
(Reference example)
The reference example is one of application examples in the case where the aggregates 6a of the metal fine particles are arranged on the substrate 12 according to Example 1 or 2, and then the carbon nanotubes are grown using the aggregate 6a of the metal fine particles as a nucleus. Is shown. FIGS. 7A to 7D are schematic views of growing carbon nanotubes using the arranged metal fine particles as a catalyst after arranging the metal fine particles by the fine particle arranging method according to the reference example.
(A) A pattern 14 having an opening is disposed on a substrate 12, plasma 3 is generated thereon, and metal fine particles 6 are injected into the plasma 3 (FIG. 7A).
(B) By extinguishing the plasma 3, the aggregates 6a of metal fine particles are arranged in a spot shape on the substrate 12 corresponding to the center of the opening of the pattern 14 (FIG. 7B).
(C) The pattern 14 is removed (FIG. 7C). The arrangement period of the metal fine particle aggregate 6 a is considered to be substantially the same as the period of the opening of the pattern 14.
(D) The carbon nanotubes 8 grow using the metal fine particle aggregate 6a as a catalyst (FIG. 7D).
As described above, it is expected that the fine particle arraying apparatus and method of the present invention can regularly arrange the metal fine particles serving as the nuclei of the carbon nanotubes, thereby allowing the carbon nanotubes 8 to grow regularly.

本発明に係る微粒子配列装置及び方法によれば、微粒子をパターンの開口部の中心にスポット状に配列させることができる。そこで、任意のパターンに金属微粒子を配列させることによって、金属微粒子を核としてカーボンナノチューブを成長させることができる。あるいは、本発明に係る微粒子配列装置及び方法によれば、微粒子の集合体をスポット状に所定間隔で配置できるので、スペーサや層間の電気的接続用の導電性粒子の配置に使用できる。   According to the fine particle arrangement apparatus and method of the present invention, fine particles can be arranged in a spot shape at the center of the opening of the pattern. Therefore, by arranging metal fine particles in an arbitrary pattern, carbon nanotubes can be grown with the metal fine particles as nuclei. Alternatively, according to the fine particle arrangement apparatus and method of the present invention, the aggregate of fine particles can be arranged in a spot shape at a predetermined interval, so that it can be used for arrangement of conductive particles for electrical connection between spacers and layers.

2a、2b 電極
3 プラズマ
4 電源
6 微粒子
6a 微粒子集合体
8 カーボンナノチューブ
10 プラズマ発生装置
12 基板
14 パターン
15 開口部
16 微粒子注入部
17 タンク
20 微粒子配列装置
2a, 2b Electrode 3 Plasma 4 Power supply 6 Fine particle 6a Fine particle assembly 8 Carbon nanotube 10 Plasma generator 12 Substrate 14 Pattern 15 Opening 16 Fine particle injection part 17 Tank 20 Fine particle arrangement apparatus

Claims (4)

プラズマを発生させるプラズマ発生装置と、
前記プラズマを発生させている領域に微粒子を注入する微粒子注入部と、
前記プラズマ発生装置内で、前記プラズマに面する位置に前記微粒子を配列させるための基板を保持する基板保持部と、
前記基板上に配置するパターンであって、前記基板上に微粒子を配列させる箇所を中心とする開口部を設けたパターンと、
を備え、
前記プラズマを発生させている領域に微粒子を注入した後、前記プラズマ発生装置内の前記プラズマを消滅させて前記基板上に前記パターンに対応して前記微粒子を配列させる微粒子配列装置。
A plasma generator for generating plasma;
A fine particle injection portion for injecting fine particles into the region where the plasma is generated;
A substrate holding unit for holding a substrate for arranging the fine particles at a position facing the plasma in the plasma generator;
A pattern to be arranged on the substrate, and a pattern provided with an opening centered on a location where fine particles are arranged on the substrate;
With
A fine particle arraying device that, after injecting fine particles into a region where the plasma is generated, extinguishes the plasma in the plasma generating device and arranges the fine particles on the substrate corresponding to the pattern.
前記パターンは、複数の開口部を有し、前記プラズマを消滅させた際には前記複数の開口部のそれぞれの中心にスポット状に前記微粒子を配列させる、請求項1に記載の微粒子配列装置。   The fine particle array device according to claim 1, wherein the pattern has a plurality of openings, and when the plasma is extinguished, the fine particles are arranged in a spot shape at the center of each of the plurality of openings. (a)微粒子を配列させる箇所を中心とする開口部を設けたパターンを用意するステップと、
(b)基板上に前記開口部を有するパターンを配置するステップと、
(c)プラズマ発生装置内で、前記パターンを配置した前記基板をプラズマに面する位置に配置するステップと、
(d)前記プラズマ発生装置内にガスを導入し、プラズマを発生させるステップと、
(e)前記プラズマ発生装置内に微粒子を注入するステップと、
(f)前記プラズマを消滅させて、前記微粒子を前記基板上に落下させて、前記パターンに対応して微粒子を配列させるステップと、
を含む、微粒子配列方法。
(A) preparing a pattern provided with an opening centered on a place where fine particles are arranged;
(B) disposing a pattern having the opening on the substrate;
(C) placing the substrate on which the pattern is placed in a plasma generator at a position facing the plasma;
(D) introducing a gas into the plasma generator to generate plasma;
(E) injecting fine particles into the plasma generator;
(F) extinguishing the plasma, dropping the fine particles onto the substrate, and arranging the fine particles according to the pattern;
A method for arranging fine particles.
前記パターンは、複数の開口部を有し、前記プラズマを消滅させた際には前記複数の開口部のそれぞれの中心にスポット状に前記微粒子を配列させる、請求項3に記載の微粒子配列方法。   4. The fine particle arrangement method according to claim 3, wherein the pattern has a plurality of openings, and the fine particles are arranged in a spot shape at the center of each of the plurality of openings when the plasma is extinguished.
JP2011174128A 2011-08-09 2011-08-09 Fine particle arrangement apparatus and fine particle arrangement method using plasma Active JP5895395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174128A JP5895395B2 (en) 2011-08-09 2011-08-09 Fine particle arrangement apparatus and fine particle arrangement method using plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174128A JP5895395B2 (en) 2011-08-09 2011-08-09 Fine particle arrangement apparatus and fine particle arrangement method using plasma

Publications (2)

Publication Number Publication Date
JP2013036095A true JP2013036095A (en) 2013-02-21
JP5895395B2 JP5895395B2 (en) 2016-03-30

Family

ID=47885966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174128A Active JP5895395B2 (en) 2011-08-09 2011-08-09 Fine particle arrangement apparatus and fine particle arrangement method using plasma

Country Status (1)

Country Link
JP (1) JP5895395B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745528A (en) * 1993-07-27 1995-02-14 Nissin Electric Co Ltd Selective deposition method of fine particles
JP2002510753A (en) * 1998-04-02 2002-04-09 マツクス−プランク−ゲゼルシャフト ツール フエルデルング デル ヴイツセンシャフテン エー フアウ Method and apparatus for uniquely manipulating and attaching particles
JP2004250727A (en) * 2003-02-18 2004-09-09 Toshiba Corp Apparatus and method for forming particle-deposited layer
US20060275549A1 (en) * 2005-06-06 2006-12-07 Subramanian Krupakar M System for controlling placement of nanoparticles and methods of using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745528A (en) * 1993-07-27 1995-02-14 Nissin Electric Co Ltd Selective deposition method of fine particles
JP2002510753A (en) * 1998-04-02 2002-04-09 マツクス−プランク−ゲゼルシャフト ツール フエルデルング デル ヴイツセンシャフテン エー フアウ Method and apparatus for uniquely manipulating and attaching particles
JP2004250727A (en) * 2003-02-18 2004-09-09 Toshiba Corp Apparatus and method for forming particle-deposited layer
US20060275549A1 (en) * 2005-06-06 2006-12-07 Subramanian Krupakar M System for controlling placement of nanoparticles and methods of using same

Also Published As

Publication number Publication date
JP5895395B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
Gao et al. Self-assembled nanowire− nanoribbon junction arrays of ZnO
US8652874B2 (en) Large scale patterned growth of aligned one-dimensional nanostructures
CN100463094C (en) Method for producing field transmitting display device
US20140191650A1 (en) Electric field emitting source, element using same, and production method therefor
Asbahi et al. Large area directed self-assembly of sub-10 nm particles with single particle positioning resolution
EP2964455A1 (en) Techniques for fabricating diamond nanostructures
Fisher et al. Rapid electron beam writing of topologically complex 3D nanostructures using liquid phase precursor
TW200305187A (en) Fed cathode structure using electrophoretic deposition and method of fabrication
US11583875B2 (en) Systems and methods of electron beam induced processing
US7018944B1 (en) Apparatus and method for nanoscale pattern generation
KR101412652B1 (en) Preparation of a nanostructure by focused patterning of nanoparticles and nanostructure obtained thereby
JP4849375B2 (en) Fine particle array thin film, method for manufacturing the same, and fine particle array thin film manufacturing apparatus
JP5895395B2 (en) Fine particle arrangement apparatus and fine particle arrangement method using plasma
Smith et al. Self-assembly of segmented anisotropic particles: tuning compositional anisotropy to form vertical or horizontal arrays
CN1532884A (en) Field transmitting display
KR20070040129A (en) Carbon naanotubes structure and vertical alignement method of the carbon nanotubes
Wang et al. Modulating the Charge Transfer Plasmon in Bridged Au Core‐Satellite Homometallic Nanostructures
KR101349976B1 (en) Optical device for 3-dimensional nanoparticle structure
Cole et al. Mimicking Electrodeposition in the Gas Phase: A Programmable Concept for Selected‐Area Fabrication of Multimaterial Nanostructures
KR20060107835A (en) Method and system for forming a film of material using plasmon assisted chemical reactions
Noriki et al. Patterning technique for gold nanoparticles on substrates using a focused electron beam
Lee et al. Vertical stacking of three-dimensional nanostructures via an aerosol lithography for advanced optical applications
JP4340433B2 (en) Nozzle for ultrafine ink jet printing and method for producing the same
Yau et al. Scanning tunneling microscope–laser fabrication of nanostructures
FR2690272A1 (en) A method of producing controllable field emitter devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5895395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250