JP2012533583A - Method and apparatus for dehydrogenating alkanes with homogenized product composition - Google Patents

Method and apparatus for dehydrogenating alkanes with homogenized product composition Download PDF

Info

Publication number
JP2012533583A
JP2012533583A JP2012520940A JP2012520940A JP2012533583A JP 2012533583 A JP2012533583 A JP 2012533583A JP 2012520940 A JP2012520940 A JP 2012520940A JP 2012520940 A JP2012520940 A JP 2012520940A JP 2012533583 A JP2012533583 A JP 2012533583A
Authority
JP
Japan
Prior art keywords
reactors
product composition
composition according
dehydrogenating
constant product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012520940A
Other languages
Japanese (ja)
Inventor
ゲールケ,ヘルムート
シュヴァース,ロルフ
ハインリッツ−アドリアン,マックス
ノル,オリヴァー
ヴェンツェル,ザシャ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
ThyssenKrupp Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Uhde GmbH filed Critical ThyssenKrupp Uhde GmbH
Publication of JP2012533583A publication Critical patent/JP2012533583A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • C07C5/415Catalytic processes with metals

Abstract

本発明は、アルカンを脱水素化する方法に関する。断熱型、アロサーマル型、又はイソサーマル型の複数台の反応装置、又はこれらを組み合わせた装置で、ガス状のアルカンを含有する物質の流れは、連続動作モードで触媒床を通り、アルケン、水素、及び非変性アルカンを含有するガス流となる。製品組成を均質にするために、温度、圧力、蒸気/炭化水素比率を含む処理パラメータの少なくとも一つを、少なくとも1台の反応装置の1個所又は数箇所において、計測値として登録し、少なくとも一の処理パラメータをモニタして、選択的に操作して、反応装置出口における製品ガスの組成が動作中に一定になるようにする。
【選択図】図6
The present invention relates to a method for dehydrogenating alkanes. A plurality of reactors of adiabatic, allothermal, or isothermal types, or a combination of these, the flow of the substance containing the gaseous alkane passes through the catalyst bed in a continuous mode of operation, alkene, hydrogen, And a gas stream containing unmodified alkane. To homogenize the product composition, at least one of the processing parameters including temperature, pressure, steam / hydrocarbon ratio is registered as a measured value at one or several locations in at least one reactor and at least one The process parameters are monitored and selectively manipulated so that the product gas composition at the reactor outlet is constant during operation.
[Selection] Figure 6

Description

本発明は、適切な触媒にアルカンを通すことによって製品組成が均質化であるアルカンを脱水素化する方法に関するものであり、アルケンと、水素と、非変性アルカンを含有するガス流ができる。アルカンの脱水素化は可逆平衡反応に属するので、理想的な触媒条件の下で特定の滞留時間経過後、反応期間中にその化学的平衡に到達する。製品組成、すなわち製品ガス中の一定含有量のアルケン、アルカン、及び水素の調和は、処理工程のパラメータを変えて化学的平衡を所望の方向に向かうようにシフトさせることによって達成される。   The present invention relates to a method for dehydrogenating an alkane having a homogenized product composition by passing an alkane through a suitable catalyst, and a gas stream containing an alkene, hydrogen and an unmodified alkane is produced. Since the dehydrogenation of alkanes belongs to a reversible equilibrium reaction, its chemical equilibrium is reached during the reaction period after a specific residence time under ideal catalytic conditions. Reconciliation of the product composition, ie, the constant content of alkenes, alkanes, and hydrogen in the product gas, is achieved by changing the process parameters to shift the chemical equilibrium in the desired direction.

アルカンの脱水素化は適切な触媒を用いて行われる。反応条件は同じに維持されても、触媒活性は徐々に低下するために、処理工程のパラメータが変わらない限り、生産サイクル中に反応器の出口における製品組成が常に変わってきてしまう。この製品組成が常に変わってしまうことにより、下流側プラントにおいて不具合が生じることがある。例えば精留カラムは、原材料流の濃度の変化の影響を受けやすい。   Alkane dehydrogenation is carried out using a suitable catalyst. Even if the reaction conditions are kept the same, the catalyst activity gradually decreases, so the product composition at the reactor outlet will always change during the production cycle unless the process parameters change. This constantly changing product composition can cause problems in downstream plants. For example, rectification columns are susceptible to changes in the concentration of the raw material stream.

US5243122Aは、アロサーマル改質装置で低級アルカンを脱水素化する方法を開示しており、反応中に触媒床の温度を制御して少しずつ上昇して、反応器の廃液成分が反応中に常に残る。この手法は触媒活性の低下を遅らせて、製品流の組成と、特にその中に含まれるアルケン/アルカン比が稼働中にそのまま残るようにしている。熱化学反応は、燃料ガス供給用の特殊なバルブ制御システムによって制御される。しかしながら、改質装置は並列配置されており、温度以外の影響を及ぼし得る要因は考慮されていない。   US5243122A discloses a method of dehydrogenating lower alkanes in an allothermal reformer, controlling the temperature of the catalyst bed during the reaction and gradually increasing it so that the waste liquid components of the reactor always remain in the reaction. . This approach delays the decrease in catalyst activity so that the composition of the product stream and in particular the alkene / alkane ratio contained therein remains intact during operation. The thermochemical reaction is controlled by a special valve control system for fuel gas supply. However, the reformers are arranged in parallel, and no factors other than temperature are considered.

通常は反応中に時間が経つと、炭素を含有するデポジットが触媒に形成されて、アルカンの転換率は著しく低下する。このため、反応が周期的に行われる。一定の反応時間が経過すると反応が停止して、水蒸気を含むこともある酸素含有ガスが触媒を通過する。このガスによって炭素を含有するデポジットが酸化して、触媒がそれ以上広がらなくなり、触媒反応が再開される。   Normally, over time during the reaction, carbon-containing deposits are formed on the catalyst and the alkane conversion is significantly reduced. For this reason, reaction is performed periodically. When a certain reaction time has elapsed, the reaction stops, and an oxygen-containing gas that may contain water vapor passes through the catalyst. This gas oxidizes the carbon-containing deposit and the catalyst no longer spreads, and the catalytic reaction is resumed.

従って、本発明の目的は、アルカンの脱水素化を発展させ、稼働時間全体を通して反応器出口で一定の製品組成を得られるようにすることである。   The object of the present invention is therefore to develop alkane dehydrogenation so that a constant product composition can be obtained at the reactor outlet throughout the operating time.

この目的は、ガス状のアルカン含有物質流を、連続処理モードで、断熱型、アロサーマル型、又はイソサーマル型の触媒床あるいはこれらを組み合わせた触媒床に通して、アルケン、水素、及び非変性アルカンを含んだガス流ができることと、
・温度、圧力、又は蒸気/炭化水素比の少なくとも一つを、少なくとも1台の反応装置の1箇所又は数箇所における測定値として記録することと、
・稼働中に少なくとも1台の反応装置の出口における製品ガスの組成を一定に維持するように処理工程パラメータの少なくとも一つに選択的に影響を与えるようにすること、
によって、達成される。
The purpose is to pass a gaseous alkane-containing material stream in a continuous process mode through an adiabatic, allothermal, or isothermal catalyst bed or a combination of these to obtain alkenes, hydrogen, and non-modified alkanes. A gas flow containing
Recording at least one of temperature, pressure, or steam / hydrocarbon ratio as a measurement at one or several locations of at least one reactor;
Selectively affecting at least one of the process parameters so as to maintain a constant product gas composition at the outlet of at least one reactor during operation;
Is achieved by

反応装置の一又は複数の地点において、温度、圧力、又は蒸気/炭化水素比率を測定することが可能であり、続いて、処理パラメータを制御し、反応装置の端部における製品ガスの成分が稼働中に一定であり続けるように、制御装置によって選択的に操作することが可能である。   Temperature, pressure, or steam / hydrocarbon ratio can be measured at one or more points in the reactor, followed by controlling process parameters and running product gas components at the end of the reactor It can be selectively operated by the control device so that it remains constant inside.

本発明の実施例においては、2乃至10台の同じ又は異なる反応装置を連結システムとして稼働するものを構想している。しかしながら、経済的な理由で、2乃至4台の反応装置を使用するのが好ましい。これらの反応装置は、アロサーマル型、断熱型、イソサーマル型でよい。勿論、相応の効率と経済性を達成するために別の装置を組み合わせてもよい。温度、圧力、蒸気/炭化水素比率の処理パラメータは、製品組成を均質化するために選択的に操作することができる。燃料ガス/酸素の供給と、適宜の温度センサによって、少なくとも一台の反応装置で温度を制御できる。同様に、反応装置内の圧力は、製品ガス放出用の調節バルブによって制御可能である。反応装置内での蒸気/炭化水素比率は、蒸気及びガス状の炭化水素の供給量によって決まり、この操作は最初の反応装置で行なわれることが望ましい。   Embodiments of the present invention envision operating 2 to 10 identical or different reactors as a connected system. However, for economic reasons, it is preferred to use 2 to 4 reactors. These reactors may be allothermal, adiabatic, or isothermal. Of course, other devices may be combined to achieve reasonable efficiency and economy. Process parameters of temperature, pressure, steam / hydrocarbon ratio can be selectively manipulated to homogenize the product composition. The temperature can be controlled by at least one reactor by supplying fuel gas / oxygen and an appropriate temperature sensor. Similarly, the pressure in the reactor can be controlled by a regulating valve for product gas release. The steam / hydrocarbon ratio in the reactor is determined by the supply of steam and gaseous hydrocarbons, and this operation is preferably performed in the first reactor.

本発明の更なる実施例では、製品ガスの成分を測定する分析器が用いられている。この分析器は、例えば、ガスクロマトグラフィであってもよい。温度、圧力、又は蒸気/炭化水素比率の特定のターゲット値により、分析器を用いて製品ガスの成分が測定される。この結果、個々の処理パラメータと、組み合わせた処理パラメータを操作して、所望の一定の生成物組成を実現できるようにする。例えばランプ関数など、時間によって変化する関数を処理制御システムによって特定することで、同じことを行うことができる。   In a further embodiment of the invention, an analyzer is used that measures the composition of the product gas. This analyzer may be, for example, a gas chromatography. Depending on the specific target value of temperature, pressure or steam / hydrocarbon ratio, the composition of the product gas is measured using an analyzer. As a result, individual processing parameters and combined processing parameters can be manipulated to achieve the desired constant product composition. The same can be done by specifying a function that changes over time, such as a ramp function, by the processing control system.

本発明の更なる実施例では、アルカンからアルケンを生産する本発明の方法の使用も特許請求の対象となっている。特にプロパンからプロペン、n−ブタンからn−ブテンとブタジエン、イソブタンからイソブテン、あるいはこれらの混合物への脱水素化、及びアルカンから芳香族炭化水素への脱水素還化のための本発明の方法の使用も特許請求の対象となっている。しかしながら、従来技術における脱水素化方法で脱水素化できるアルカン又は炭化水素は、いずれも脱水素化が可能である。   In a further embodiment of the invention, the use of the method of the invention for producing alkenes from alkanes is also claimed. In particular, the process of the present invention for the dehydrogenation of propane to propene, n-butane to n-butene and butadiene, isobutane to isobutene, or mixtures thereof, and dehydrogenation of alkanes to aromatic hydrocarbons. Use is also claimed. However, any alkane or hydrocarbon that can be dehydrogenated by the dehydrogenation method in the prior art can be dehydrogenated.

本発明は、いくつかの例を基に説明されており、ここでは、本発明の方法を提供する、プロパンからプロペンへ脱水素化するアロサーマル反応装置が実施例として示されている。この反応装置は、以下の処理パラメータで稼働する:入口温度:510℃、入口と出口の温度差 ΔT:75K、出口圧力p:6.0バール、蒸気/炭化水素比率のモル比 STHC:3.5。   The invention has been described on the basis of several examples, in which an allothermal reactor for dehydrogenating propane to propene, which provides the process of the invention, is shown as an example. The reactor operates with the following processing parameters: inlet temperature: 510 ° C., inlet and outlet temperature difference ΔT: 75K, outlet pressure p: 6.0 bar, steam / hydrocarbon ratio molar ratio STHC: 3. 5.

例1:図1に示すように、処理パラメータが変わらなければ、プロペン収量が初期値26.7%から26.1%に減少している。   Example 1: As shown in FIG. 1, if the processing parameters do not change, the propene yield has decreased from the initial value of 26.7% to 26.1%.

例2:図2に示すように、サイクル全体を通して温度差ΔTが増加すると、プロペン収量が26.7%で一定に保たれる。その他のパラメータは全て例1のままである。   Example 2: As shown in FIG. 2, as the temperature difference ΔT increases throughout the cycle, the propene yield remains constant at 26.7%. All other parameters remain as in Example 1.

例3:図3に示すように、サイクル全体を通して出口圧力pが低下すると、プロペン収量は26.7%で一定に保たれる。その他のパラメータは全て例1のままである。   Example 3: As shown in FIG. 3, as the outlet pressure p decreases throughout the cycle, the propene yield remains constant at 26.7%. All other parameters remain as in Example 1.

例4:図4に示すように、サイクル全体を通して蒸気/炭化水素比率(STHC)が増加すると、プロペン収量は26.7%で一定に保たれる。その他のパラメータは全て例1のままである。   Example 4: As shown in FIG. 4, as the steam / hydrocarbon ratio (STHC) increases throughout the cycle, the propene yield remains constant at 26.7%. All other parameters remain as in Example 1.

例5:図5に示すように、サイクル全体に亘って圧力を0.05バール/時で、常時低下させ、同時に、温度差ΔTを少しずつ増加させると、プロペン収量を均一にできる。例えば生ガスの圧縮といった後続の処理ステップは特定の入口圧力を必要とするため、実際には、出口圧力pを時間の経過と共に別に低下させる(例3のように)のは、通常、任意に実行できない。従って、いくつかの処理パラメータを同時に操作して、所望の一定の製品ガス成分を達成することが好ましい。   Example 5: As shown in FIG. 5, the propene yield can be made uniform by constantly decreasing the pressure at 0.05 bar / hour throughout the cycle and at the same time increasing the temperature difference ΔT gradually. Subsequent processing steps, such as compression of raw gas, require a specific inlet pressure, so in practice it is usually optional to reduce the outlet pressure p separately over time (as in Example 3). Cannot execute. Accordingly, it is preferred to operate several processing parameters simultaneously to achieve the desired constant product gas composition.

表1はこれらの例をまとめたものであり、処理パラメータの製品ガス成分に及ぼす明らかな影響を示す。

Figure 2012533583
Table 1 summarizes these examples and shows the clear effect of processing parameters on product gas components.
Figure 2012533583

以下に、本発明を図面に基づいて説明する。
図1は、本発明の一実施例を示す。 図2は、本発明の一実施例を示す。 図3は、本発明の一実施例を示す。 図4は、本発明の一実施例を示す。 図5は、本発明の一実施例を示す。 図6は、温度制御システムに直列に接続されているアロサーマル型で断熱型の反応装置からなる装置を示す。 図7は、温度制御システムと圧力制御システムに直列に接続されているアロサーマル型で断熱型の反応装置からなる装置を示す。 図8は、温度制御システムと圧力制御システム具え、プロセス制御システムによって直列に接続された断熱型の反応装置からなる装置を示す。
The present invention will be described below with reference to the drawings.
FIG. 1 shows an embodiment of the present invention. FIG. 2 shows an embodiment of the present invention. FIG. 3 shows an embodiment of the present invention. FIG. 4 shows an embodiment of the present invention. FIG. 5 shows an embodiment of the present invention. FIG. 6 shows an apparatus consisting of an allothermal and adiabatic reactor connected in series to a temperature control system. FIG. 7 shows an apparatus consisting of an allothermal and adiabatic reactor connected in series with a temperature control system and a pressure control system. FIG. 8 shows an apparatus comprising an adiabatic reactor connected in series by a process control system comprising a temperature control system and a pressure control system.

図6は、アロサーマル型反応装置(1)と断熱型反応装置(2)の2台を直列に接続した装置を、酸素供給管(3)と共に示す。反応ガス(4)はアロサーマル型反応装置(1)に送られる。加熱はバーナ(5)によって行われ、このバーナは燃料ガス(6)と酸素含有ガス(7)で作動する。反応装置(1)には、触媒を置いて反応が実行される閉管システム(8)が設けられている。第1反応システム(1)の出口には、温度測定器(10)と分析器(11)が接続されている。燃料ガスの供給は、温度測定器(10)と電気制御回路(10a)によって制御されており、分析器(11)の測定値が製品ガス(9)中の所望の値のアルケンを常に示すように制御されている。反応装置システム(1)からの製品ガス(9)は、次いで酸素含有ガス(3)と混合されて断熱型反応装置(2)に送られる。この反応装置にも、脱水素化と水素酸化(12)用の閉配管があり、触媒を具え、水素酸化と更なる脱水素化が行われる。第2の反応装置の出口にも温度測定器(13)と分析器(14)が設けられている。酸素の供給は、温度測定器(13)と電気制御回路(13a)によって制御されており、分析器(14)の測定値が製品ガス(15)中の所望の値のアルケンを常に示すように制御されている。   FIG. 6 shows an apparatus in which two units of an allothermal reactor (1) and an adiabatic reactor (2) are connected in series together with an oxygen supply pipe (3). The reaction gas (4) is sent to the allothermal reactor (1). Heating is performed by a burner (5), which operates with fuel gas (6) and oxygen-containing gas (7). The reactor (1) is provided with a closed tube system (8) in which a reaction is carried out by placing a catalyst. A temperature measuring device (10) and an analyzer (11) are connected to the outlet of the first reaction system (1). The supply of fuel gas is controlled by a temperature measuring device (10) and an electrical control circuit (10a) so that the measured value of the analyzer (11) always indicates the desired value of alkene in the product gas (9). Is controlled. The product gas (9) from the reactor system (1) is then mixed with the oxygen-containing gas (3) and sent to the adiabatic reactor (2). This reactor also has a closed pipe for dehydrogenation and hydrogen oxidation (12), which is equipped with a catalyst to carry out hydrogen oxidation and further dehydrogenation. A temperature measuring device (13) and an analyzer (14) are also provided at the outlet of the second reactor. The supply of oxygen is controlled by a temperature measuring device (13) and an electrical control circuit (13a) so that the measured value of the analyzer (14) always indicates the desired value of alkene in the product gas (15). It is controlled.

図7は、アロサーマルに作動する第1反応装置(1)と断熱で作動する第2反応装置(2)からなる装置を、酸素供給管(3)と共に示す。温度測定器(10)を用いて第1反応システムの出口(9)で温度を測定し、電気測定信号(10a)によって、燃料ガスと酸素の供給(6、7)とに応じて制御される。このように、第1反応システム内を一定温度に調整できる。この装置では、製品組成は第2反応システムの出口(15)でのみ制御される。これは、第2反応システムの出口にある分析器(17)によって行われ、この分析器は第2反応システム(2)の反応装置の圧力制御バルブ(16)によって圧力を計測し、電気制御回路(16a、17a)によってこの計測値をプロセス制御システム(18)に送る。反応装置(2)の温度は、電気制御回路(13a)と酸素供給管(3)を経て制御される。プロセス制御システム(18)は、必要な圧力設定値を計算し、電気測定信号(17a)と反応装置システムの出口にある圧力制御バルブ(16)によって、制御タスクを実行し、第2反応装置(2)の出口で得られる製品ガス(15)の成分が常に同じとなるようにする。   FIG. 7 shows an apparatus comprising a first reactor (1) that operates allothermally and a second reactor (2) that operates by heat insulation, together with an oxygen supply pipe (3). The temperature is measured at the outlet (9) of the first reaction system using a temperature measuring device (10) and controlled according to the supply of fuel gas and oxygen (6, 7) by means of an electrical measurement signal (10a). . Thus, the inside of the first reaction system can be adjusted to a constant temperature. In this device, the product composition is controlled only at the outlet (15) of the second reaction system. This is done by an analyzer (17) at the outlet of the second reaction system, which measures the pressure by means of the pressure control valve (16) of the reactor of the second reaction system (2), and an electric control circuit. This measured value is sent to the process control system (18) by (16a, 17a). The temperature of the reactor (2) is controlled via the electric control circuit (13a) and the oxygen supply pipe (3). The process control system (18) calculates the required pressure setpoint, performs the control task by means of the electrical measurement signal (17a) and the pressure control valve (16) at the outlet of the reactor system, and the second reactor ( The components of the product gas (15) obtained at the outlet of 2) are always the same.

図8は、断熱型の3台の反応装置(19、2a、2b)を直列に接続した装置を酸素供給管(3a、3b)と共に示す。第1反応装置(19)における反応は断熱状態で進み、反応システムの出口(9)で確実に変化する製品組成が得られる。反応装置(2a、2b)では、選択的な水素酸化が行われる。第2反応装置(2a)の出口には温度測定器(20)が設けられており、電気制御回路(20a)と酸素供給管(3a)とを経て反応装置(2a)を制御している。温度測定器(20)の計測値は、電気制御回路(18a)を経由してプロセス制御システム(18)に送られる。これは、反応装置(2a)の出口における製品ガスの成分を示す。第3反応装置(2b)の出口には別の温度測定器(21)が設けられており、電気制御回路(21b)と酸素供給管(3a)とを経て、これに接続された反応装置を制御する。温度測定器(21)は、電気制御回路(21a)を経て計測値をプロセス制御システム(18)に送る。これによって、第3反応システム(22)の出口において、所望の一定の製品ガス成分を得る。   FIG. 8 shows an apparatus in which three adiabatic reactors (19, 2a, 2b) are connected in series together with oxygen supply pipes (3a, 3b). The reaction in the first reactor (19) proceeds in an adiabatic state and a product composition is obtained that changes reliably at the outlet (9) of the reaction system. In the reactor (2a, 2b), selective hydrogen oxidation is performed. A temperature measuring device (20) is provided at the outlet of the second reaction device (2a), and the reaction device (2a) is controlled via an electric control circuit (20a) and an oxygen supply pipe (3a). The measured value of the temperature measuring device (20) is sent to the process control system (18) via the electric control circuit (18a). This shows the component of the product gas at the outlet of the reactor (2a). Another temperature measuring device (21) is provided at the outlet of the third reaction device (2b), and the reaction device connected to the temperature measurement device (21b) is connected to the temperature control device (21b) and the oxygen supply pipe (3a). Control. The temperature measuring device (21) sends the measured value to the process control system (18) via the electric control circuit (21a). This obtains the desired constant product gas component at the outlet of the third reaction system (22).

1 アロサーマル型反応装置
2 断熱状態で作動する反応装置
3 酸素供給管
3a 酸素供給管
3b 酸素供給管
4 反応ガス
5 バーナ
6 燃料ガス
7 酸素含有ガス
8 脱水素化反応用の閉配管システム
9 第1反応システムからの製品ガス
10 温度測定器
10a 電気制御回路
11 製品ガス成分を測定する分析器
12 脱水素化及び水素酸化用閉配管システム
13 温度測定器
13a 電気制御回路
14 製品ガス中のアルケン量測定用分析器
15 製品ガス
16 圧力制御バルブ
16a 電気制御回路
17 分析器
17a 電気制御回路
18 プロセス制御システム
18a 電気制御回路
19 断熱状態で作動する反応装置
20 温度測定器
20a 電気制御回路
21 温度測定器
21a 電気制御回路
21b 電気制御回路
22 製品ガス
DESCRIPTION OF SYMBOLS 1 Arothermal reactor 2 Reactor operated in an adiabatic state 3 Oxygen supply pipe 3a Oxygen supply pipe 3b Oxygen supply pipe 4 Reactive gas 5 Burner 6 Fuel gas 7 Oxygen-containing gas 8 Closed piping system 9 for dehydrogenation reaction Product gas 10 from reaction system Temperature measuring instrument 10a Electrical control circuit 11 Analyzer 12 for measuring product gas component Dehydrogenation and hydrogen oxidation closed piping system 13 Temperature measuring instrument 13a Electrical control circuit 14 Measurement of alkene content in product gas Analyzer 15 product gas 16 pressure control valve 16a electric control circuit 17 analyzer 17a electric control circuit 18 process control system 18a electric control circuit 19 reactor 20 operating in adiabatic state temperature measuring device 20a electric control circuit 21 temperature measuring device 21a Electric control circuit 21b Electric control circuit 22 Product gas

Claims (15)

一定の製品組成でアルカンを脱水素化する方法であって、ガス状アルカン含有物質を、断熱型、アロサーマル型、イソサーマル型、又はこれらを組み合わせた複数の反応装置における触媒床を、連続動作モードで通過させ、アルケン、水素、及び非変性アルカンを含有するガス流を生成する方法において、
・温度、圧力、又は蒸気/炭化水素比率のうちの少なくとも一つを、前記反応装置の少なくとも一つの一又は複数個所における測定値として、記録するステップと、
・前記処理パラメータの少なくとも一つを選択的に制御して、少なくとも1台の反応装置の出口における製品ガスの組成が、作動中に一定となるようにするステップ、
を具えることを特徴とする方法。
A method for dehydrogenating alkanes with a constant product composition comprising a gaseous bed of alkane-containing material, adiabatic, allothermal, isothermal, or a combination of these catalyst beds in a plurality of reactors in a continuous mode of operation. And producing a gas stream containing alkene, hydrogen, and unmodified alkane.
Recording at least one of temperature, pressure or steam / hydrocarbon ratio as a measurement at one or more of the reactors;
Selectively controlling at least one of the process parameters so that the composition of the product gas at the outlet of the at least one reactor is constant during operation;
A method characterized by comprising.
請求項1に記載の一定の製品組成でアルカンを脱水素化する方法において、
タイプの異なる2乃至10台、望ましくは2乃至4台の反応装置が連結システムとして作動することを特徴とする方法。
A method for dehydrogenating alkanes with a constant product composition according to claim 1,
A method characterized in that 2 to 10 reactors of different types, preferably 2 to 4 reactors, operate as a linkage system.
請求項1に記載の一定の製品組成でアルカンを脱水素化する方法において、
タイプが同じ2乃至10台、望ましくは2乃至4台の反応装置が連結システムとして作動することを特徴とする方法。
A method for dehydrogenating alkanes with a constant product composition according to claim 1,
A method characterized in that 2 to 10 reactors of the same type, preferably 2 to 4 reactors, operate as a connected system.
請求項1乃至3のいずれか1項に記載の一定の製品組成でアルカンを脱水素化する方法において、
前記反応装置の1台における温度が、燃料ガスの供給と温度センサによって制御されることを特徴とする方法。
A method for dehydrogenating alkanes with a constant product composition according to any one of claims 1-3.
A method in which the temperature in one of the reactors is controlled by a fuel gas supply and a temperature sensor.
請求項1乃至3のいずれか1項に記載の一定の製品組成でアルカンを脱水素化する方法において、
前記反応装置の1台における温度が、温度センサによる前記酸素の供給を介して制御されることを特徴とする方法。
A method for dehydrogenating alkanes with a constant product composition according to any one of claims 1-3.
A method wherein the temperature in one of the reactors is controlled via the supply of oxygen by a temperature sensor.
請求項1乃至5のいずれか1項に記載の一定の製品組成でアルカンを脱水素化する方法において、
前記反応装置の少なくとも1台における圧力が、調節バルブによる製品ガスの放出によって制御されることを特徴とする方法。
A method for dehydrogenating an alkane with a constant product composition according to any one of claims 1 to 5,
A method in which the pressure in at least one of the reactors is controlled by the release of product gas through a regulating valve.
請求項1乃至6のいずれか1項に記載の一定の製品組成でアルカンを脱水素化する方法において、
前記反応装置の少なくとも1台における蒸気/炭化水素比率が、蒸気及びガス状の炭化水素の供給量によって制御されることを特徴とする方法。
A method for dehydrogenating an alkane with a constant product composition according to any one of claims 1 to 6,
A method characterized in that the steam / hydrocarbon ratio in at least one of the reactors is controlled by the supply of steam and gaseous hydrocarbons.
請求項7に記載の一定の製品組成でアルカンを脱水素化する方法において、
前記反応装置のうち第1番目の装置における蒸気/炭化水素比率が、蒸気及びガス状の炭化水素の供給量によって制御されることを特徴とする方法。
A method for dehydrogenating alkanes with a constant product composition according to claim 7,
A method characterized in that the steam / hydrocarbon ratio in the first of the reactors is controlled by the supply of steam and gaseous hydrocarbons.
請求項1乃至8のいずれか1項に記載の一定の製品組成でアルカンを脱水素化する方法において、
前記反応装置の少なくとも1台における処理パラメータが、分析器による前記製品ガス組成用測定値に応じて操作されることを特徴とする方法。
A method for dehydrogenating an alkane with a constant product composition according to any one of claims 1 to 8,
A process characterized in that process parameters in at least one of the reactors are manipulated according to the product gas composition measurements by an analyzer.
請求項1乃至8のいずれか1項に記載の一定の製品組成でアルカンを脱水素化する方法において、
前記反応装置の少なくとも1台における処理パラメータが、プロセス制御システムによって時間で変化する機能を特定することによって操作されることを特徴とする方法。
A method for dehydrogenating an alkane with a constant product composition according to any one of claims 1 to 8,
A method wherein a process parameter in at least one of the reactors is manipulated by a process control system by specifying a function that changes over time.
請求項1乃至10のいずれか1項に記載の一定の製品組成でアルカンを脱水素化する方法において、
複数の処理パラメータが同時に操作されることを特徴とする方法。
A method for dehydrogenating an alkane with a constant product composition according to any one of claims 1-10.
A method characterized in that a plurality of processing parameters are operated simultaneously.
プロパンからプロペンへの脱水素化用の、請求項1乃至11のいずれか1項に記載の一定の製品組成でアルカンを脱水素化する方法の使用。   Use of a process for dehydrogenating alkanes with a constant product composition according to any one of claims 1 to 11 for the dehydrogenation of propane to propene. n−ブタンからn−ブテン及びブタジエンへの脱水素化用の、請求項1乃至11のいずれか1項に記載の一定の製品組成でアルカンを脱水素化する方法の使用。   Use of a process for dehydrogenating alkanes with a constant product composition according to any one of claims 1 to 11 for the dehydrogenation of n-butane to n-butene and butadiene. イソブタンからイソブテンへの脱水素化用の、請求項1乃至11のいずれか1項に記載の一定の製品組成でアルカンを脱水素化する方法の使用。   Use of a process for dehydrogenating alkanes with a constant product composition according to any one of claims 1 to 11 for the dehydrogenation of isobutane to isobutene. アルカンから芳香族炭素への脱水素化用の、請求項1乃至11のいずれか1項に記載の一定の製品組成でアルカンを脱水素化する方法の使用。   Use of a process for dehydrogenating alkanes with a constant product composition according to any one of claims 1 to 11 for dehydrogenation of alkanes to aromatic carbon.
JP2012520940A 2009-07-22 2010-07-16 Method and apparatus for dehydrogenating alkanes with homogenized product composition Pending JP2012533583A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009034464A DE102009034464A1 (en) 2009-07-22 2009-07-22 Process and apparatus for the dehydrogenation of alkanes with a homogenization of the product composition
DE102009034464.0 2009-07-22
PCT/EP2010/004348 WO2011009570A1 (en) 2009-07-22 2010-07-16 Process and apparatus for dehydrating alkanes with equalization of the product composition

Publications (1)

Publication Number Publication Date
JP2012533583A true JP2012533583A (en) 2012-12-27

Family

ID=42830392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012520940A Pending JP2012533583A (en) 2009-07-22 2010-07-16 Method and apparatus for dehydrogenating alkanes with homogenized product composition

Country Status (16)

Country Link
US (1) US20120197054A1 (en)
EP (1) EP2456739A1 (en)
JP (1) JP2012533583A (en)
KR (1) KR20120099368A (en)
CN (1) CN102471187B (en)
AR (1) AR080272A1 (en)
BR (1) BR112012001215A2 (en)
CA (1) CA2768874A1 (en)
DE (1) DE102009034464A1 (en)
EG (1) EG27148A (en)
IN (1) IN2012DN01598A (en)
MX (1) MX2012000935A (en)
MY (1) MY172617A (en)
RU (1) RU2556010C2 (en)
WO (1) WO2011009570A1 (en)
ZA (1) ZA201201280B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532794A (en) * 2015-11-04 2018-11-08 エクソンモービル ケミカル パテンツ インコーポレイテッド Method and system for converting hydrocarbons to cyclopentadiene

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011009204A1 (en) 2011-01-19 2012-07-19 Thyssenkrupp Uhde Gmbh bulk particles
CN103772117B (en) * 2012-10-25 2016-08-03 中国石油化工股份有限公司 The method of butylene multiple-stage adiabatic oxidative dehydrogenation butadiene
CN103965002B (en) * 2013-01-30 2016-08-03 中国石油化工股份有限公司 The oxidative dehydrogenation processes of lower carbon number hydrocarbons
US20160090337A1 (en) * 2014-09-30 2016-03-31 Uop Llc Paraffin dehydrogenation with oxidative reheat
CN104689764A (en) * 2015-03-18 2015-06-10 昊华(成都)科技有限公司 Heat insulation reactor with controllable temperature
DE102015209874A1 (en) * 2015-05-29 2016-12-01 Thyssenkrupp Ag System for injecting a reactive gas-containing component into a synthesis reactor
US9926242B2 (en) 2015-11-04 2018-03-27 Exxonmobil Chemical Patents Inc. Integrated gas turbine and conversion system process
JP6707129B2 (en) 2015-11-04 2020-06-10 エクソンモービル ケミカル パテンツ インコーポレイテッド Heating tube conversion system and method
US10843984B2 (en) * 2017-11-02 2020-11-24 Uop Llc Dehydrogenation process at reduced hydrogen to hydrocarbon ratios
CN110108091B (en) * 2019-04-10 2020-08-21 大连理工大学 Cryogenic liquefaction system with improved hydrogen separation membrane insertion for STAR propane dehydrogenation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737473A (en) * 1970-07-27 1973-06-05 Phillips Petroleum Co Two-stage dehydrogenation process
JPS4851567A (en) * 1971-10-22 1973-07-19
JPS5239602A (en) * 1975-09-22 1977-03-28 Uop Inc Method of dehydrogenation by injection of water
US5243122A (en) * 1991-12-30 1993-09-07 Phillips Petroleum Company Dehydrogenation process control
DE10229661A1 (en) * 2001-10-09 2003-04-10 Linde Ag Catalytic dehydrogenation of alkanes to produce alkenes comprises monitoring the formation of conversion products and adjusting the temperature profile along the catalyst bed
JP2006504762A (en) * 2002-10-31 2006-02-09 ウーデ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for catalytic dehydrogenation of hydrocarbons

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2541831A1 (en) 1975-09-19 1977-03-24 Uop Inc Catalytic dehydrogenation of normal paraffins - with addn. of water to feed stream to increase catalyst life
US4132529A (en) * 1977-05-05 1979-01-02 Uop Inc. Temperature control in exothermic/endothermic reaction systems
US5527979A (en) * 1993-08-27 1996-06-18 Mobil Oil Corporation Process for the catalytic dehydrogenation of alkanes to alkenes with simultaneous combustion of hydrogen
NO316512B1 (en) * 2000-01-25 2004-02-02 Statoil Asa Process and reactor for autothermal dehydrogenation of hydrocarbons
DE10237514A1 (en) * 2002-08-16 2004-02-26 Basf Ag Isothermal dehydrogenation of alkanes, useful especially for preparation of propene, over mixed bed of dehydrogenation catalyst and inert particles that reduce temperature gradients
DE102006029790A1 (en) * 2006-06-27 2008-01-03 Basf Ag Continuous heterogeneously catalyzed partial dehydrogenation of hydrocarbon involves dehydrogenation through catalyst bed disposed in reaction chamber and with generation of product gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737473A (en) * 1970-07-27 1973-06-05 Phillips Petroleum Co Two-stage dehydrogenation process
JPS4851567A (en) * 1971-10-22 1973-07-19
JPS5239602A (en) * 1975-09-22 1977-03-28 Uop Inc Method of dehydrogenation by injection of water
US5243122A (en) * 1991-12-30 1993-09-07 Phillips Petroleum Company Dehydrogenation process control
DE10229661A1 (en) * 2001-10-09 2003-04-10 Linde Ag Catalytic dehydrogenation of alkanes to produce alkenes comprises monitoring the formation of conversion products and adjusting the temperature profile along the catalyst bed
JP2006504762A (en) * 2002-10-31 2006-02-09 ウーデ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for catalytic dehydrogenation of hydrocarbons

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532794A (en) * 2015-11-04 2018-11-08 エクソンモービル ケミカル パテンツ インコーポレイテッド Method and system for converting hydrocarbons to cyclopentadiene

Also Published As

Publication number Publication date
MX2012000935A (en) 2012-06-01
CN102471187A (en) 2012-05-23
KR20120099368A (en) 2012-09-10
EP2456739A1 (en) 2012-05-30
DE102009034464A1 (en) 2011-08-18
WO2011009570A1 (en) 2011-01-27
US20120197054A1 (en) 2012-08-02
RU2012105068A (en) 2013-08-27
CA2768874A1 (en) 2011-01-27
BR112012001215A2 (en) 2017-05-30
MY172617A (en) 2019-12-06
CN102471187B (en) 2015-10-07
ZA201201280B (en) 2012-11-28
RU2556010C2 (en) 2015-07-10
IN2012DN01598A (en) 2015-06-05
AR080272A1 (en) 2012-03-28
EG27148A (en) 2015-08-10

Similar Documents

Publication Publication Date Title
JP2012533583A (en) Method and apparatus for dehydrogenating alkanes with homogenized product composition
US4996387A (en) Dehydrogenation process
Fatsikostas et al. Reaction network of steam reforming of ethanol over Ni-based catalysts
Bakare et al. Fluidized bed ODH of ethane to ethylene over VOx–MoOx/γ-Al2O3 catalyst: Desorption kinetics and catalytic activity
BR112019022309B1 (en) CHEMICAL COMPLEX AND PROCESS FOR THE OXIDATIVE DEHYDROGENATION OF LOWER ALKANES TO A CORRESPONDING ALKENE
Avila et al. Hydrogen-selective natural mordenite in a membrane reactor for ethane dehydrogenation
Battersby et al. An analysis of the Peclet and Damkohler numbers for dehydrogenation reactions using molecular sieve silica (MSS) membrane reactors
WO2006069393A2 (en) Dehydrogenation process
Aseem et al. C2 yield enhancement during oxidative coupling of methane in a nonpermselective porous membrane reactor
RU2010127225A (en) DEVICE FOR PROCESSING APPARATUS OIL GASES AND METHOD OF ITS OPERATION
Alpay et al. Combined reaction and separation in pressure swing processes
TW200302819A (en) Dehydrogenation process
Chen et al. Hydrogen production from the steam reforming of liquid hydrocarbons in membrane reactor
KR101562691B1 (en) Hydrocarbon dehydrogenation process
JPS5852229A (en) Dehydrogenation
Chen et al. Integration of gasoline prereforming into autothermal reforming for hydrogen production
Lei et al. Non-catalytic ethane cracking using concentrated solar energy
JP2008528464A (en) Process for producing olefins by autothermal cracking
Harada et al. Hydrogen production by autothermal reforming of kerosene over MgAlOx-supported Rh catalysts
Xue et al. The use of membrane reactors for catalytic n-butane oxidation to maleic anhydride with a butane-rich feed
US8986639B2 (en) Denox treatment for a regenerative pyrolysis reactor
Wu et al. Dynamic control of a selective hydrogenation process with undesired MAPD impurities in the C3-cut streams
JP2016040217A (en) Dehydrogenation system, and operating method of dehydrogenation system
US20230061675A1 (en) Methods and systems for performing oxidative coupling of methane
Dimov et al. Steam conversion of liquefied petroleum gas and methane in microchannel reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140627

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150814

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151015

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20151211