JP2012243645A - Electrode and all-solid state nonaqueous electrolyte battery - Google Patents

Electrode and all-solid state nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2012243645A
JP2012243645A JP2011114005A JP2011114005A JP2012243645A JP 2012243645 A JP2012243645 A JP 2012243645A JP 2011114005 A JP2011114005 A JP 2011114005A JP 2011114005 A JP2011114005 A JP 2011114005A JP 2012243645 A JP2012243645 A JP 2012243645A
Authority
JP
Japan
Prior art keywords
active material
electrode
material layer
solid
flaky graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011114005A
Other languages
Japanese (ja)
Inventor
Ryoko Kanda
良子 神田
Kentaro Yoshida
健太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011114005A priority Critical patent/JP2012243645A/en
Publication of JP2012243645A publication Critical patent/JP2012243645A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an electrode which has an active material layer having electron conductivity more excellent than before.SOLUTION: The electrode is provided with an active material layer which contains an active material powder formed of active material particles and a solid electrolyte powder formed of solid electrolyte particles. The active material particle (i.e., the active material powder) of the electrode is lithium titanate. In addition, the active material layer further contains flaky graphite. The flaky graphite has an average thickness of 50-500 nm and an average particle diameter of 2-20 μm. The electrode having such a structure is used as a positive electrode 1 or a negative electrode 2 in an all-solid state nonaqueous electrolyte battery 100.

Description

本発明は、活物質としてチタン酸リチウムを利用した電極、およびその電極を用いた全固体型非水電解質電池に関する。   The present invention relates to an electrode using lithium titanate as an active material, and an all-solid-state nonaqueous electrolyte battery using the electrode.

充放電を繰り返すことを前提とした電気機器の電源として、正極電極と負極電極とこれら電極の間に配される電解質層とを備える非水電解質電池が利用されている。この電池に備わる電極はさらに、集電機能を有する集電体と、活物質を含む活物質層とを備える。このような非水電解質電池のなかでも特に、正・負極電極間のLiイオンの移動により充放電を行う非水電解質電池は、小型でありながら高い放電容量を備える。   A non-aqueous electrolyte battery including a positive electrode, a negative electrode, and an electrolyte layer disposed between these electrodes is used as a power source for electrical equipment that is assumed to be repeatedly charged and discharged. The electrode provided in the battery further includes a current collector having a current collecting function and an active material layer containing an active material. Among such non-aqueous electrolyte batteries, in particular, a non-aqueous electrolyte battery that charges and discharges by movement of Li ions between the positive and negative electrodes has a high discharge capacity while being small.

上記非水電解質電池の電極に使用される活物質として、チタン酸リチウムが注目されている。例えば、特許文献1には、正極活物質としてチタン酸リチウムを利用し、電解質層として有機電解液とセパレーターとの組み合わせを利用している。   As an active material used for the electrode of the non-aqueous electrolyte battery, lithium titanate has attracted attention. For example, Patent Document 1 uses lithium titanate as the positive electrode active material and uses a combination of an organic electrolyte and a separator as the electrolyte layer.

ここで、有機電解液やゲル状高分子を用いる非水電解質電池には、液の沸騰や液漏れなどの問題があった。その問題を解決するために、電解質層を固体とした全固体型非水電解質電池が提案されている。しかし、全固体型非水電解質電池は、放電容量などの電池性能の点で有機電解液を利用した非水電解質電池に劣るという問題がある。そこで、例えば、特許文献2に開示される全固体型非水電解質電池では、電極の活物質層中に活物質粉末と固体電解質粉末と導電助剤とを含有させている。このように、活物質層に固体電解質粉末を含有させることで、活物質層における活物質粒子間のLiイオンの伝導を円滑にすると共に、活物質層に導電助剤を含有させることで、活物質粒子間の電子伝導を円滑にし、全固体型非水電解質電池の性能を向上させることができる。   Here, the non-aqueous electrolyte battery using the organic electrolytic solution or the gel polymer has problems such as liquid boiling and liquid leakage. In order to solve the problem, an all-solid-state non-aqueous electrolyte battery having an electrolyte layer as a solid has been proposed. However, the all-solid-state nonaqueous electrolyte battery has a problem that it is inferior to a nonaqueous electrolyte battery using an organic electrolyte in terms of battery performance such as discharge capacity. Therefore, for example, in the all solid-state nonaqueous electrolyte battery disclosed in Patent Document 2, an active material powder, a solid electrolyte powder, and a conductive additive are contained in the active material layer of the electrode. As described above, the inclusion of the solid electrolyte powder in the active material layer facilitates the conduction of Li ions between the active material particles in the active material layer, and the inclusion of the conductive assistant in the active material layer allows the active material layer to contain the active agent. Electron conduction between the material particles can be made smooth, and the performance of the all-solid-state nonaqueous electrolyte battery can be improved.

特開2006−202552号公報JP 2006-202552 A 特開2008−135379号公報JP 2008-135379 A

特許文献2の構成を採用したとしても、全固体型非水電解質電池の電池性能は、なお十分とは言い難かった。その原因は、導電助剤による活物質粒子間の電子伝導パスが十分に確保されていないからではないかと推察される。   Even if the configuration of Patent Document 2 is adopted, the battery performance of the all solid-state nonaqueous electrolyte battery is still not sufficient. This is presumably because the electron conduction path between the active material particles by the conductive auxiliary agent is not sufficiently secured.

本発明は上記事情に鑑みてなされたものであり、その目的の一つは、活物質層における活物質粒子間の電子伝導を従来よりも良好にした電極を提供することにある。また、本発明の別の目的は、本発明電極を使用することで、従来の全固体型非水電解質電池よりも優れた電池性能を発揮する全固体型非水電解質電池を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide an electrode in which the electron conduction between the active material particles in the active material layer is improved compared to the conventional one. Another object of the present invention is to provide an all-solid-state non-aqueous electrolyte battery that exhibits better battery performance than conventional all-solid-state non-aqueous electrolyte batteries by using the electrode of the present invention. .

本発明者らは、上記課題について鋭意検討した結果、活物質層に含有させる導電助剤の形状に原因があるとの知見を得た。この知見に基づいて本発明電極を以下に規定する。   As a result of intensive studies on the above problems, the present inventors have found that there is a cause in the shape of the conductive additive contained in the active material layer. Based on this finding, the electrode of the present invention is defined below.

(1)本発明電極は、活物質粒子からなる活物質粉末と、固体電解質粒子からなる固体電解質粉末とを含有する活物質層を備える電極である。この本発明電極の活物質層に含まれる活物質粒子(即ち、活物質粉末)は、チタン酸リチウムである。そして、本発明電極の活物質層はさらに、薄片状黒鉛を含有し、その薄片状黒鉛の平均厚さが50〜500nmで、薄片状黒鉛の平均粒径が2〜20μmであることを特徴とする。ここで、薄片状黒鉛の厚みはSEM観察(nは50以上)により測定し、薄片状黒鉛の平面部の平均粒径は、粒度分布測定機を用いて求めたD50(累積質量百分率50%)の値である。 (1) The electrode of the present invention is an electrode including an active material layer containing an active material powder composed of active material particles and a solid electrolyte powder composed of solid electrolyte particles. The active material particles (that is, active material powder) contained in the active material layer of the electrode of the present invention are lithium titanate. The active material layer of the electrode of the present invention further contains flaky graphite, the flaky graphite has an average thickness of 50 to 500 nm, and the flaky graphite has an average particle diameter of 2 to 20 μm. To do. Here, the thickness of the flaky graphite was measured by SEM observation (n is 50 or more), and the average particle size of the flat portion of the flaky graphite was D50 (cumulative mass percentage of 50%) obtained using a particle size distribution measuring machine. Is the value of

本発明者らの検討の結果、アセチレンブラックなどの粒子状の導電助剤は、その嵩密度が高いため、活物質層に空隙を生成し易く、その結果として、活物質層における活物質粒子の利用率を低下させたり、活物質層の成形性を低下させたりするとの知見を得ている。また、気相法炭素繊維(いわゆるカーボンナノチューブ)などの繊維状の導電助剤は、活物質層の成形時に絡まり易く、その結果として、活物質層の一部に局在して、活物質層における活物質粒子の利用率を低下させたり、活物質層の成形性を低下させたりするとの知見と得ている。これに対して、薄片状黒鉛の中でも特に本発明に規定する寸法の薄片状黒鉛を導電助剤に用いれば、粒子状導電助剤や繊維状導電助剤に比べて、活物質層に満遍なく分散し、しかも活物質層に形成される空隙を小さくできる。その結果、本発明電極における活物質粒子間の電子伝導性は、粒子状導電助剤や繊維状導電助剤、本発明の規定を外れる薄片状黒鉛を含む電極に比べて、格段に向上する。そのため、本発明電極を全固体型非水電解質電池の電極として利用したときに、当該電池の電池性能を向上させることができる。   As a result of the study by the present inventors, a particulate conductive additive such as acetylene black has a high bulk density, and therefore easily generates voids in the active material layer. As a result, the active material particles in the active material layer It has been found that the utilization rate is lowered and the moldability of the active material layer is lowered. In addition, fibrous conductive additives such as vapor grown carbon fibers (so-called carbon nanotubes) tend to get entangled during the formation of the active material layer, and as a result, localize in a part of the active material layer, And the knowledge that the utilization factor of the active material particles is lowered and the moldability of the active material layer is lowered. In contrast, among flaky graphite, if flaky graphite having a size specified in the present invention is used as a conductive additive, it is evenly distributed in the active material layer compared to particulate conductive aid and fibrous conductive aid. And the space | gap formed in an active material layer can be made small. As a result, the electronic conductivity between the active material particles in the electrode of the present invention is remarkably improved as compared with an electrode including a particulate conductive aid, a fibrous conductive aid, and flaky graphite that does not fall within the scope of the present invention. Therefore, when the electrode of the present invention is used as an electrode of an all-solid-type nonaqueous electrolyte battery, the battery performance of the battery can be improved.

なお、本発明電極は、正極電極として利用することもできるし、負極電極として利用することもできる。また、本発明電極を、有機電解液やゲル状高分子の電解質を利用した非水電解質電池の電極として利用しても良い。   The electrode of the present invention can be used as a positive electrode or a negative electrode. Further, the electrode of the present invention may be used as an electrode for a non-aqueous electrolyte battery using an organic electrolyte or a gel polymer electrolyte.

(2)本発明電極の一形態として、薄片状黒鉛のd値が0.335nm以上、0.344nm以下であることが好ましい。なお、d値とは、薄片状黒鉛の(002)面の面間隔のことである。 (2) As an embodiment of the electrode of the present invention, it is preferable that the d value of the flaky graphite is 0.335 nm or more and 0.344 nm or less. In addition, d value is a surface interval of the (002) plane of flaky graphite.

薄片状黒鉛のd値を上記範囲とすることで、薄片状黒鉛が活物質粒子間の電子伝導パスとして最も効果的に機能する。   By setting the d value of the flaky graphite within the above range, the flaky graphite functions most effectively as an electron conduction path between the active material particles.

(3)本発明電極の一形態として、前記活物質層における前記薄片状黒鉛の含有量は、質量%で2以上、16以下であることが好ましい。 (3) As one form of this invention electrode, it is preferable that content of the said flaky graphite in the said active material layer is 2-16 in mass%.

導電助剤である薄片状黒鉛の含有量を2質量%以上とすることで、活物質層に導電助剤を含ませた効果を十分に発揮させることができる。また、当該含有量を16質量%以下とすることで、活物質層における活物質粒子の量が少なくなり過ぎることを回避でき、かつ初期の不可逆容量を減らすことができる。   By setting the content of the flaky graphite, which is a conductive additive, to 2% by mass or more, the effect of including the conductive additive in the active material layer can be sufficiently exhibited. Moreover, it can avoid that the quantity of the active material particle in an active material layer becomes too small because the said content shall be 16 mass% or less, and can reduce an initial irreversible capacity | capacitance.

(4)本発明全固体型非水電解質電池は、正極電極と、負極電極と、これら電極間に配される固体電解質層と、を備える全固体型非水電解質電池であって、正極電極、または負極電極のいずれかに、上記(1)〜(3)の本発明電極を利用したことを特徴とする。 (4) The all-solid-state nonaqueous electrolyte battery of the present invention is an all-solid-state nonaqueous electrolyte battery comprising a positive electrode, a negative electrode, and a solid electrolyte layer disposed between these electrodes, Alternatively, the present invention electrode according to the above (1) to (3) is used for any one of the negative electrodes.

既に説明したように、本発明電極では、活物質粉末と固体電解質粉末との総接触面積が大きいため、電極の活物質層中のLiイオン電導性が高い。そのため、その本発明電極を利用した本発明全固体型非水電解質電池は、放電容量などの電池性能に優れた全固体型非水電解質電池となる。   As already described, in the electrode of the present invention, the total contact area between the active material powder and the solid electrolyte powder is large, so that the Li ion conductivity in the active material layer of the electrode is high. Therefore, the all-solid-state nonaqueous electrolyte battery of the present invention using the electrode of the present invention is an all-solid-type nonaqueous electrolyte battery excellent in battery performance such as discharge capacity.

(5)本発明全固体型非水電解質電池の一形態として、負極電極を本発明電極とすることが好ましい。その場合、正極電極は、特に限定されない。例えば、正極活物質としてコバルト酸リチウム(LiCoO)などの層状岩塩型化合物や、LiNi1/3Mn1/3Co1/3、LiNi0.8Co0.15Al0.05などを含む正極電極を利用することができる。 (5) As one form of the all solid-state nonaqueous electrolyte battery of the present invention, a negative electrode is preferably used as the electrode of the present invention. In that case, the positive electrode is not particularly limited. For example, a layered rock salt type compound such as lithium cobaltate (LiCoO 2 ) as a positive electrode active material, LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 A positive electrode including the above can be used.

負極活物質としてチタン酸リチウムを利用すると、高起電力の全固体型非水電解質電池とすることができる。   When lithium titanate is used as the negative electrode active material, an all-solid-state nonaqueous electrolyte battery with high electromotive force can be obtained.

本発明電極によれば、従来の全固体型非水電解質電池よりも優れた電池性能を備える全固体型非水電解質電池を作製することができる。   According to the electrode of the present invention, it is possible to produce an all-solid-state nonaqueous electrolyte battery having battery performance superior to that of a conventional all-solid-state nonaqueous electrolyte battery.

実施形態に記載の全固体型非水電解質電池の縦断面図である。It is a longitudinal cross-sectional view of the all-solid-state nonaqueous electrolyte battery described in the embodiment.

<全固体型非水電解質電池の全体構成>
図1に示す全固体型非水電解質電池100は、正極電極1、固体電解質層(SE層)3、および負極電極2を備える。正極電極1はさらに正極集電体11と正極活物質層12を、負極電極2はさらに負極集電体21と負極活物質層22とを備える。この電池100の最も特徴とするところは、正極電極1、もしくは負極電極2のいずれか一方に下記本発明電極を採用したことにある。
<Overall configuration of all solid-state nonaqueous electrolyte battery>
An all solid-state nonaqueous electrolyte battery 100 shown in FIG. 1 includes a positive electrode 1, a solid electrolyte layer (SE layer) 3, and a negative electrode 2. The positive electrode 1 further includes a positive electrode current collector 11 and a positive electrode active material layer 12, and the negative electrode 2 further includes a negative electrode current collector 21 and a negative electrode active material layer 22. The most characteristic feature of the battery 100 is that the following electrode of the present invention is adopted for either the positive electrode 1 or the negative electrode 2.

<電極>
本発明電極は、少なくとも活物質層を備えていれば良い。本実施形態では、活物質層に加えて集電体を備える本発明電極を例にして説明する。この本発明電極を、正極電極1に用いるか負極電極2に用いるかに関わらず、本発明電極の活物質層は、チタン酸リチウム粒子からなる活物質粉末と、固体電解質粒子からなる固体電解質粉末と、薄片状黒鉛と、を含む。
<Electrode>
The electrode of the present invention only needs to have at least an active material layer. In the present embodiment, the electrode of the present invention provided with a current collector in addition to the active material layer will be described as an example. Regardless of whether the electrode of the present invention is used for the positive electrode 1 or the negative electrode 2, the active material layer of the electrode of the present invention comprises an active material powder composed of lithium titanate particles and a solid electrolyte powder composed of solid electrolyte particles. And flaky graphite.

≪活物質粉末≫
活物質であるチタン酸リチウムとしては、組成式LiTi12で表されるものが挙げられる。その他、LiTiOなどを利用することもできる。なお、これらの組成式の一部が他の元素に置換されていても良い。例えば、Liの2%mol以下、もしくはTiの4%mol以下が、Mg、Al、または3d元素などで置換されても良い。
≪Active material powder≫
Examples of the lithium titanate that is an active material include those represented by the composition formula Li 4 Ti 5 O 12 . In addition, Li 2 TiO 3 or the like can also be used. Note that a part of these composition formulas may be substituted with another element. For example, 2% mol or less of Li or 4% mol or less of Ti may be substituted with Mg, Al, or 3d element.

≪固体電解質粉末≫
固体電解質粉末を構成する固体電解質粒子としては、酸化物系や硫化物系を利用することができる。酸化物固体電解質としては、例えば、LiPONを挙げることができる。硫化物固体電解質としては、例えば、LiS−P(必要に応じてPなどの酸化物を含んでいても良い)を挙げることができる。特に、硫化物固体電解質粒子は、低硬度で変形し易いので、電極の作製時に活物質粒子に密着し易いため、好ましい。
≪Solid electrolyte powder≫
As the solid electrolyte particles constituting the solid electrolyte powder, an oxide system or a sulfide system can be used. Examples of the oxide solid electrolyte include LiPON. Examples of the sulfide solid electrolyte include Li 2 S—P 2 S 5 (which may contain an oxide such as P 2 O 5 as necessary). In particular, the sulfide solid electrolyte particles are preferable because they are low in hardness and easily deformed, so that they are easily adhered to the active material particles during the production of the electrode.

≪薄片状黒鉛≫
薄片状黒鉛は、粒子状でも繊維状でもない、平板状の黒鉛である。この薄片状黒鉛の平均厚さは50〜500nmで、かつ薄片状黒鉛の平均粒径が2〜20μmである。薄片状黒鉛の平均厚さは、SEM観察した少なくとも50個以上の薄片状黒鉛で測定した値の平均値である。また、薄片状黒鉛の平均粒径は粒度分布測定機によるD50%累積値である。薄片状黒鉛を平面視したときの形状は、円を含む楕円形、多角形、異形のいずれでも良い。
<< flaky graphite >>
Flaky graphite is flat graphite that is neither particulate nor fibrous. The average thickness of the flaky graphite is 50 to 500 nm, and the average particle size of the flaky graphite is 2 to 20 μm. The average thickness of the flaky graphite is an average value of values measured with at least 50 flaky graphite observed by SEM. Moreover, the average particle diameter of flaky graphite is D50% cumulative value by a particle size distribution analyzer. The shape of the flaky graphite in plan view may be any of an ellipse including a circle, a polygon, and an irregular shape.

また、薄片状黒鉛のd値は、0.335nm以上、0.344nm以下とすることが好ましい。薄片状黒鉛のd値を上記範囲とすることで、薄片状黒鉛が活物質粒子間の電子伝導パスとして最も効果的に機能する。ここで、d値とは黒鉛の(002)面の面間隔のことであり、X線広角回折により測定することができる。   Further, the d value of the flaky graphite is preferably 0.335 nm or more and 0.344 nm or less. By setting the d value of the flaky graphite within the above range, the flaky graphite functions most effectively as an electron conduction path between the active material particles. Here, the d value is the interplanar spacing of the (002) plane of graphite and can be measured by X-ray wide angle diffraction.

ここで、上記d値が大きくなると、ハードカーボン(難黒鉛化性炭素)に近づいていき、薄片化しにくくなると考えられると共に、ハードカーボンは不規則な形状のため、目的とする薄片状黒鉛が得られ難くなる。また、ハードカーボンは塑性変形が起こりにくく、成形体にした際、スプリングバックにより電極中に空隙が出来易くなる。   Here, when the d value is increased, it is considered that the carbon becomes closer to hard carbon (non-graphitizable carbon) and is difficult to flake, and the hard carbon has an irregular shape, so that the desired flake graphite is obtained. It becomes difficult to be. In addition, hard carbon hardly undergoes plastic deformation, and when formed into a molded body, a void is easily formed in the electrode due to the spring back.

≪その他の含有物≫
電極の活物質層は、ポリフッ化ビニリデン(PVDF)などの結着剤を含んでいても良い。結着剤はあくまで補助的なものであるので、活物質層における含有量が高すぎると、電池性能を低下させる。そのため、活物質層における結着剤の含有量は、体積%で15%以下とすることが好ましい。
≪Other contents≫
The active material layer of the electrode may contain a binder such as polyvinylidene fluoride (PVDF). Since the binder is only auxiliary, if the content in the active material layer is too high, the battery performance is lowered. Therefore, the content of the binder in the active material layer is preferably 15% or less by volume%.

≪各物質の配合比≫
活物質層に含まれる活物質粉末は、電池反応の主体となるものであるので、活物質層において十分な量を占める必要がある。具体的には、活物質層におけるその含有量は、質量%で40〜90とすることが好ましい。また、活物質層に含まれる固体電解質粉末は、活物質粒子間のLiイオン伝導を補助するためのものであるので、活物質層におけるその含有量は、質量%で10〜60とすることが好ましい。最後に、活物質層に含まれる薄片状黒鉛は、活物質粒子間の電子伝導を補助するためのものであるので、活物質層におけるその含有量は、質量%で2〜16とすることが好ましい。但し、薄片状黒鉛は、負極活物質層において負極活物質として機能し得る。
≪Mixing ratio of each substance≫
Since the active material powder contained in the active material layer is a main component of the battery reaction, it is necessary to occupy a sufficient amount in the active material layer. Specifically, the content in the active material layer is preferably 40 to 90% by mass. Moreover, since the solid electrolyte powder contained in the active material layer is for assisting Li ion conduction between the active material particles, its content in the active material layer should be 10 to 60 by mass%. preferable. Finally, the flaky graphite contained in the active material layer is for assisting electronic conduction between the active material particles, and therefore its content in the active material layer should be 2 to 16 by mass%. preferable. However, flaky graphite can function as a negative electrode active material in the negative electrode active material layer.

≪集電体≫
本発明電極の集電体は、導電材料のみから構成されていても良いし、絶縁基板上に導電材料の膜を形成したもので構成されていても良い。後者の場合、導電材料の膜が集電体として機能する。導電材料としては、正極集電体11の場合、AlやNi、これらの合金、ステンレスから選択される1種を好適に利用することができるし、負極集電体21の場合、Cu、Ni、Fe、Cr、及びこれらの合金(例えば、ステンレス)から選択される1種を好適に利用できる。
≪Current collector≫
The current collector of the electrode of the present invention may be composed of only a conductive material, or may be composed of a conductive material film formed on an insulating substrate. In the latter case, the conductive material film functions as a current collector. As the conductive material, in the case of the positive electrode current collector 11, one selected from Al, Ni, alloys thereof, and stainless steel can be suitably used. In the case of the negative electrode current collector 21, Cu, Ni, One selected from Fe, Cr, and alloys thereof (for example, stainless steel) can be suitably used.

<本発明電極を負極電極とする場合>
上述した本発明電極を負極電極2として使用する場合、正極電極1の正極活物質層11における正極活物質にはチタン酸リチウムとは異なるものを使用する。例えば、正極活物質としては、層状岩塩型の結晶構造を有する物質、例えば、Liαβ(1−X)(αはCo,Ni,Mnから選択される1種、βはFe,Al,Ti,Cr,Zn,Mo,Biから選択される1種、Xは0.5以上)で表される物質を利用することが好ましい。その具体例としては、LiCoOやLiNiO、LiMnO、LiNi0.5Mn0.5、LiCo0.5Fe0.5、LiCo0.5Al0.5、LiNi1/3Mn1/3Co1/3、LiNi0.8Co0.15Al0.05などを挙げることができる。その他、正極活物質として、スピネル型の結晶構造を有する物質(例えば、LiMnなど)や、オリビン型の結晶構造を有する物質(例えば、LiFePO(0<X<1))を用いることもできる。
<When the electrode of the present invention is a negative electrode>
When the above-described electrode of the present invention is used as the negative electrode 2, a positive electrode active material in the positive electrode active material layer 11 of the positive electrode 1 is different from that of lithium titanate. For example, as the positive electrode active material, a material having a layered rock salt type crystal structure, for example, Liα X β (1-X) O 2 (α is one selected from Co, Ni, Mn, β is Fe, Al , Ti, Cr, Zn, Mo, Bi, and X is preferably 0.5 or more. Specific examples thereof include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 0.5 Mn 0.5 O 2 , LiCo 0.5 Fe 0.5 O 2 , LiCo 0.5 Al 0.5 O 2 , LiNi 1. / 3 Mn 1/3 Co 1/3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 and the like. In addition, as a positive electrode active material, a substance having a spinel crystal structure (for example, LiMn 2 O 4 or the like) or a substance having an olivine crystal structure (for example, Li X FePO 4 (0 <X <1)) is used. It can also be used.

この場合の正極活物質層12にも、本発明電極と同様に、正極活物質層12におけるLiイオン伝導性を向上させるために、固体電解質粒子を含有させることが好ましい。この固体電解質粒子は硫化物系とすることが好ましい。その他、正極活物質層12は、導電助剤や結着剤を含んでいても良い。   In this case, the positive electrode active material layer 12 also preferably contains solid electrolyte particles in order to improve Li ion conductivity in the positive electrode active material layer 12 as in the case of the electrode of the present invention. The solid electrolyte particles are preferably sulfide-based. In addition, the positive electrode active material layer 12 may contain a conductive additive or a binder.

ここで、正極活物質層12に含有させる固体電解質粒子が硫化物系である場合、硫化物固体電解質粒子と、酸化物の正極活物質粒子とが反応して、両粒子の界面近傍に高抵抗層が形成されることがある。そこで、正極活物質粒子の表面には、非晶質のLiイオン伝導性酸化物、例えば、LiNbOやLiTaOなどの被膜を形成することが好ましい。この被膜を形成することで、正極活物質粒子と固体電解質粒子との界面近傍の高抵抗化を抑制することができる。この被膜は静電噴霧法などにより形成することができる。被膜の厚さは、50nm以下、より好ましくは7nmとする。 Here, when the solid electrolyte particles to be contained in the positive electrode active material layer 12 are sulfide-based, the sulfide solid electrolyte particles react with the positive electrode active material particles of oxide to cause high resistance near the interface between the two particles. A layer may be formed. Therefore, it is preferable to form a film of an amorphous Li ion conductive oxide such as LiNbO 3 or LiTaO 3 on the surface of the positive electrode active material particles. By forming this film, it is possible to suppress an increase in resistance near the interface between the positive electrode active material particles and the solid electrolyte particles. This coating can be formed by electrostatic spraying or the like. The thickness of the coating is 50 nm or less, more preferably 7 nm.

正極活物質層12は、粉末成形法で形成しても良いし、気相法で形成しても良い。特に、粉末成形法が簡便で好ましい。   The positive electrode active material layer 12 may be formed by a powder molding method or a vapor phase method. In particular, a powder molding method is simple and preferable.

<本発明電極を正極電極とする場合>
上述した本発明電極を正極電極1として使用する場合、負極電極2の負極活物質層22における負極活物質にはチタン酸リチウムとは異なるものを使用する。例えば、CやSiなどのLiと合金を形成する元素、あるいは金属Liなどを利用することができる。特に、金属Liは、第1サイクル目の充放電サイクルにおいて、充電容量に対して放電容量が大幅に小さくなるという問題(即ち、不可逆容量が生じる問題)を解決することができる。
<When the electrode of the present invention is a positive electrode>
When the above-described electrode of the present invention is used as the positive electrode 1, a negative electrode active material in the negative electrode active material layer 22 of the negative electrode 2 is different from that of lithium titanate. For example, an element that forms an alloy with Li, such as C or Si, or metal Li can be used. In particular, the metal Li can solve the problem that the discharge capacity becomes significantly smaller than the charge capacity in the first charge / discharge cycle (that is, the problem that irreversible capacity occurs).

負極活物質層22は、粉末成形法で形成しても良いし、気相法で形成しても良い。負極活物質に金属Liを利用する場合、金属Li箔をSE層3に貼り合わせることで、負極活物質層22を形成することもできる。   The negative electrode active material layer 22 may be formed by a powder molding method or a vapor phase method. When using metal Li for the negative electrode active material, the negative electrode active material layer 22 can also be formed by bonding a metal Li foil to the SE layer 3.

<SE層>
SE層3は、正極電極1と負極電極2との間に配置され、両電極1,2間を絶縁する層である。このSE層3に要求される特性は、低電子伝導性でかつ高Liイオン伝導性であることである。SE層3の構成材料には、電極の説明の際に挙げた酸化物固体電解質や硫化物固体電解質を利用できる。なお、SE層3に使用する固体電解質と電極に使用する固体電解質とは異なっていても良いが、同じとすることが好ましい。
<SE layer>
The SE layer 3 is a layer that is disposed between the positive electrode 1 and the negative electrode 2 and insulates the electrodes 1 and 2 from each other. The characteristics required for the SE layer 3 are low electron conductivity and high Li ion conductivity. As the constituent material of the SE layer 3, the oxide solid electrolyte or sulfide solid electrolyte mentioned in the description of the electrode can be used. The solid electrolyte used for the SE layer 3 and the solid electrolyte used for the electrode may be different, but are preferably the same.

<全固体型非水電解質電池の効果>
本発明電極を使用した全固体型非水電解質電池100によれば、薄片状黒鉛からなる導電助剤が活物質粒子間の電子伝導パスとして効果的に機能するため、従来よりも優れた電池性能を発揮する。また、薄片状黒鉛の嵩密度が低いため、活物質層における物質の充填率が向上し、活物質層が欠け難くなる。
<Effect of all solid-state nonaqueous electrolyte battery>
According to the all-solid-state non-aqueous electrolyte battery 100 using the electrode of the present invention, since the conductive auxiliary agent made of flaky graphite effectively functions as an electron conduction path between the active material particles, the battery performance is superior to the conventional one. Demonstrate. Moreover, since the bulk density of flaky graphite is low, the filling rate of the substance in the active material layer is improved, and the active material layer is hardly chipped.

<全固体型非水電解質電池の製造方法>
上記全固体型非水電解質電池100は、例えば、以下のようにして作製することができる。もちろん、以下の製造方法に限定されるわけではない。
<Method for producing all-solid-state nonaqueous electrolyte battery>
The all solid-state nonaqueous electrolyte battery 100 can be manufactured as follows, for example. Of course, it is not necessarily limited to the following manufacturing method.

≪製造方法1≫
第1に、SE層3をまず粉末成形法で作製し、次いでそのSE層3の表面に粉末成形法により正極活物質層12と負極活物質層22を作製する方法が挙げられる。この場合、正極集電体11と負極集電体21は、後から正極活物質層12と負極活物質層22に接合すると良い。もちろん、両集電体11,21を粉末成形型内に配置しておいて、活物質層12,22の成形と同時に活物質層12,22に集電体11,21が接合されるようにしても良い。
≪Production method 1≫
First, there is a method in which the SE layer 3 is first produced by a powder molding method, and then the positive electrode active material layer 12 and the negative electrode active material layer 22 are produced on the surface of the SE layer 3 by a powder molding method. In this case, the positive electrode current collector 11 and the negative electrode current collector 21 are preferably bonded to the positive electrode active material layer 12 and the negative electrode active material layer 22 later. Of course, both the current collectors 11 and 21 are disposed in the powder molding die so that the current collectors 11 and 21 are joined to the active material layers 12 and 22 simultaneously with the formation of the active material layers 12 and 22. May be.

≪製造方法2≫
第2に、正負いずれかの電極をまず作製し、その電極を基板として残りの層を順次積層する方法が挙げられる。例えば、本発明電極を正極電極1とする場合、型内に配置したAl箔などの正極集電体11の上に、チタン酸リチウム粉末と固体電解質粉末と薄片状黒鉛の混合粉末を充填し、プレスすることで、正極電極1を作製する。次いで、その正極電極1の上に、SE層3と負極電極2を積層していく。SE層3と負極電極2は粉末成形法や気相法などで適宜積層していけば良い。
≪Production method 2≫
Secondly, there is a method in which one of positive and negative electrodes is first produced and the remaining layers are sequentially laminated using the electrode as a substrate. For example, when the electrode of the present invention is the positive electrode 1, a mixed powder of lithium titanate powder, solid electrolyte powder, and flaky graphite is filled on the positive electrode current collector 11 such as an Al foil disposed in the mold, The positive electrode 1 is produced by pressing. Next, the SE layer 3 and the negative electrode 2 are stacked on the positive electrode 1. The SE layer 3 and the negative electrode 2 may be appropriately laminated by a powder molding method or a vapor phase method.

≪製造方法3≫
第3に、正極電極1と負極電極2を個別に作製し、これら電極1,2の間に粉末状の固体電解質粉末を配置して、全体をプレスする方法が挙げられる。電極1,2は、個別に作製する段階で集電体11,21を有していても良いし、有していなくても良い。後者の場合、電極1,2と固体電解質粉末とをプレスした後に、集電体11,21をプレス体に接合すれば良い。
≪Production method 3≫
Thirdly, there is a method in which the positive electrode 1 and the negative electrode 2 are individually manufactured, a powdered solid electrolyte powder is disposed between the electrodes 1 and 2, and the whole is pressed. The electrodes 1 and 2 may or may not have the current collectors 11 and 21 at the stage of individual production. In the latter case, the current collectors 11 and 21 may be joined to the pressed body after the electrodes 1 and 2 and the solid electrolyte powder are pressed.

<実施例1>
本実施例では、チタン酸リチウム粉末と固体電解質粉末と導電助剤とを加圧成形した電極を負極電極として利用した複数の全固体型非水電解質電池(電池α〜δ)を作製した。各電池α〜δの相違点は、後述する表1に示すように、負極電極の作製に使用する導電助剤の種類、および材料の混合比の少なくとも一つが異なることである。
<Example 1>
In this example, a plurality of all solid-state non-aqueous electrolyte batteries (batteries α to δ) were produced using an electrode obtained by pressure-forming lithium titanate powder, solid electrolyte powder, and a conductive additive as a negative electrode. The difference between the batteries α to δ is that, as shown in Table 1 described later, at least one of the kinds of conductive assistants used for the production of the negative electrode and the mixing ratio of the materials is different.

≪電池αの製造方法≫
各電池αの製造方法は、以下に示すように共通である。まず、LiS−Pを主成分とする硫化物固体電解質粉末を80mg秤量し、直径10mmの筒状ポリカーボネート型に入れ、面圧1MPaでプレスした。これによって、円盤状のSE層を形成することができる。
≪Method of manufacturing battery α≫
The manufacturing method of each battery α is common as shown below. First, 80 mg of the sulfide solid electrolyte powder mainly composed of Li 2 S—P 2 S 5 was weighed, put into a cylindrical polycarbonate mold having a diameter of 10 mm, and pressed at a surface pressure of 1 MPa. Thereby, a disk-shaped SE layer can be formed.

一方、静電噴霧法で膜厚10nmのLiNbOを表面にコーティングしたLiCoO粒子からなる正極活物質粉末と、SE層の作製に利用した硫化物固体電解質粉末と、を70質量部:30質量部の割合で混合した正極活物質混合体を作製した。LiCoOへのLiNbOのコーティングは静電噴霧法により行なった。 On the other hand, 70 parts by mass: 30 parts by mass of positive electrode active material powder composed of LiCoO 2 particles whose surface is coated with LiNbO 3 having a thickness of 10 nm by electrostatic spraying and sulfide solid electrolyte powder used for the production of the SE layer A positive electrode active material mixture mixed at a ratio of parts was prepared. LiCoO 2 was coated with LiNbO 3 by electrostatic spraying.

また、LiTi12粒子からなる負極活物質粉末と、SE層の作製に利用した硫化物固体電解質粉末と、薄片状黒鉛(導電助剤)と、を40質量部:60質量部:5質量部の割合で混合した負極活物質混合体を作製した。薄片状黒鉛は不定形の平板状で、その平均厚さは0.5μm、その平均粒径は5μmであった。また、薄片状黒鉛のd値を、X線広角回折によって測定したところ、0.337nmであった。このような薄片状黒鉛は、天然黒鉛の粉砕または湿式法により得ることができる。 Also, 40 parts by mass: 60 parts by mass of negative electrode active material powder composed of Li 4 Ti 5 O 12 particles, sulfide solid electrolyte powder used for producing the SE layer, and flaky graphite (conducting aid) A negative electrode active material mixture mixed at a ratio of 5 parts by mass was prepared. The flaky graphite was an irregular flat plate having an average thickness of 0.5 μm and an average particle diameter of 5 μm. The d value of the flaky graphite was measured by X-ray wide angle diffraction and found to be 0.337 nm. Such flaky graphite can be obtained by pulverization of natural graphite or a wet method.

次に、筒状の型内に、15mgの正極活物質混合体、円盤状のSE層、22mgの負極活物質混合体の順に配置し、面圧360MPaでプレスした。そして、プレス形成体を型から抜き出して、そのプレス成形体に正負集電体を取り付けた状態でコインセル内に配置することで電池αを作製した。   Next, 15 mg of a positive electrode active material mixture, a disc-shaped SE layer, and 22 mg of a negative electrode active material mixture were placed in this order in a cylindrical mold and pressed at a surface pressure of 360 MPa. And the battery (alpha) was produced by extracting the press-forming body from the type | mold, and arrange | positioning in the coin cell in the state which attached the positive / negative current collector to the press-molding body.

≪電池β〜δの製造方法≫
電池β〜δの製造方法は、以下に示す点以外、電池αの製造方法と同様である。
≪Method for manufacturing batteries β to δ≫
The manufacturing method of the batteries β to δ is the same as the manufacturing method of the battery α except for the following points.

[電池β]…負極活物質混合体における負極活物質粉末:硫化物固体電解質粉末:薄片状黒鉛=40質量部:60質量部:12質量部。   [Battery β] Negative electrode active material powder in negative electrode active material mixture: sulfide solid electrolyte powder: flaky graphite = 40 parts by mass: 60 parts by mass: 12 parts by mass.

[電池γ]…負極活物質混合体に含有させる導電助剤が粒径数十nmの粒子状のアセチレンブラック。負極活物質混合体における負極活物質粉末:硫化物固体電解質粉末:アセチレンブラック=40質量部:60質量部:4質量部。   [Battery γ] A particulate acetylene black in which the conductive auxiliary agent contained in the negative electrode active material mixture has a particle size of several tens of nanometers. Negative electrode active material powder in negative electrode active material mixture: sulfide solid electrolyte powder: acetylene black = 40 parts by mass: 60 parts by mass: 4 parts by mass.

[電池δ]…負極活物質混合体に含有させる導電助剤が粒径数十nmの粒子状のアセチレンブラック。負極活物質混合体における負極活物質粉末:硫化物固体電解質粉末:アセチレンブラック=40質量部:60質量部:12質量部。ここで、電池δは、型内からプレス成形体を抜き出す際、負極活物質層が崩れてしまい、電池として成り立たなかった。   [Battery δ] A particulate acetylene black having a particle size of several tens of nanometers as a conductive aid contained in the negative electrode active material mixture. Negative electrode active material powder in negative electrode active material mixture: sulfide solid electrolyte powder: acetylene black = 40 parts by mass: 60 parts by mass: 12 parts by mass. Here, when the press-molded body was extracted from the mold, the battery δ was not formed as a battery because the negative electrode active material layer collapsed.

≪試験≫
作製した電池α〜γを50μA/cmで充電し、充電後の各電池の抵抗をインピーダンスアナライザーで測定すると共に、各電池の放電容量(mAh/cm)を測定した。また、負極活物質層に含まれる負極活物質粉末の利用率(%)を測定した。利用率は、『測定した電池の放電容量』/『負極活物質層に含まれる負極活物質粉末の量から推測される理論上の放電容量(LTOの容量密度を175mAh/gとして算出)』から求めた。その結果を表1に示す。なお、表1には、負極活物質層の構成も合わせて表示する。
≪Test≫
The produced batteries α to γ were charged at 50 μA / cm 2 , the resistance of each battery after charging was measured with an impedance analyzer, and the discharge capacity (mAh / cm 2 ) of each battery was measured. Moreover, the utilization factor (%) of the negative electrode active material powder contained in the negative electrode active material layer was measured. Utilization rate is from “measured battery discharge capacity” / “theoretical discharge capacity estimated from the amount of negative electrode active material powder contained in the negative electrode active material layer (calculated assuming the capacity density of LTO as 175 mAh / g)”. Asked. The results are shown in Table 1. Table 1 also shows the configuration of the negative electrode active material layer.

Figure 2012243645
Figure 2012243645

表1における電池α,βと電池γとの比較から、負極活物質層の導電助剤として薄片状黒鉛を利用することで、電池の放電容量を向上させ、かつ電池の抵抗を低減できることが分かった。   From the comparison between the batteries α, β and the battery γ in Table 1, it is found that the discharge capacity of the battery can be improved and the resistance of the battery can be reduced by using flaky graphite as a conductive additive for the negative electrode active material layer. It was.

また、表1における電池αと電池βとの比較から、活物質層における薄片状黒鉛の含有量を質量%で2〜16とすることで、電池の放電容量を向上させ、かつ電池の抵抗を低減できることが分かった。   Further, from the comparison between the battery α and the battery β in Table 1, by setting the content of flaky graphite in the active material layer to 2 to 16 by mass%, the discharge capacity of the battery is improved and the resistance of the battery is increased. It was found that it can be reduced.

なお、本発明は、上述の実施の形態に限定されるわけではなく、本発明の要旨を逸脱しない範囲で適宜変更して実施することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the gist of the present invention.

本発明電極は、充放電を繰り返すことを前提とした電気機器に使用される全固体型非水電解質電池の電極として好適に利用可能である。   The electrode of the present invention can be suitably used as an electrode for an all-solid-state nonaqueous electrolyte battery used in an electric device on the premise that charging and discharging are repeated.

100 全固体型非水電解質電池
1 正極電極
11 正極集電体 12 正極活物質層
2 負極電極
21 負極集電体 22 負極活物質層
3 固体電解質層(SE層)
DESCRIPTION OF SYMBOLS 100 All-solid-state nonaqueous electrolyte battery 1 Positive electrode 11 Positive electrode collector 12 Positive electrode active material layer 2 Negative electrode 21 Negative electrode collector 22 Negative electrode active material layer 3 Solid electrolyte layer (SE layer)

Claims (5)

活物質粒子からなる活物質粉末と、固体電解質粒子からなる固体電解質粉末とを含有する活物質層を備える電極であって、
前記活物質粒子は、チタン酸リチウムであり、
前記活物質層はさらに、薄片状黒鉛を含有し、
当該薄片状黒鉛の平均厚さが50〜500nmで、薄片状黒鉛の平均粒径が2〜20μmであることを特徴とする電極。
An electrode comprising an active material layer comprising an active material powder comprising active material particles and a solid electrolyte powder comprising solid electrolyte particles,
The active material particles are lithium titanate,
The active material layer further contains flaky graphite,
An electrode having an average thickness of flaky graphite of 50 to 500 nm and an average particle diameter of flaky graphite of 2 to 20 μm.
前記薄片状黒鉛のd値が0.335nm以上、0.344nm以下であることを特徴とする請求項1に記載の電極。
ここで、d値は、(002)面の面間隔である。
2. The electrode according to claim 1, wherein the flaky graphite has a d value of 0.335 nm or more and 0.344 nm or less.
Here, the d value is an interval between (002) planes.
前記活物質層における前記薄片状黒鉛の含有量は、質量%で2以上、16以下であることを特徴とする請求項1または2に記載の電極。   3. The electrode according to claim 1, wherein a content of the flaky graphite in the active material layer is 2 or more and 16 or less by mass%. 正極電極と、負極電極と、これら電極間に配される固体電解質層と、を備える全固体型非水電解質電池であって、
前記正極電極、または負極電極のいずれかに、請求項1〜3のいずれか一項に記載の電極を利用したことを特徴とする全固体型非水電解質電池。
An all-solid-type non-aqueous electrolyte battery comprising a positive electrode, a negative electrode, and a solid electrolyte layer disposed between these electrodes,
The all-solid-state nonaqueous electrolyte battery using the electrode as described in any one of Claims 1-3 for either the said positive electrode or a negative electrode.
前記負極電極は、請求項1〜3のいずれか一項に記載の電極であることを特徴とする請求項4に記載の全固体型非水電解質電池。   The all-solid-state nonaqueous electrolyte battery according to claim 4, wherein the negative electrode is the electrode according to claim 1.
JP2011114005A 2011-05-20 2011-05-20 Electrode and all-solid state nonaqueous electrolyte battery Withdrawn JP2012243645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011114005A JP2012243645A (en) 2011-05-20 2011-05-20 Electrode and all-solid state nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011114005A JP2012243645A (en) 2011-05-20 2011-05-20 Electrode and all-solid state nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2012243645A true JP2012243645A (en) 2012-12-10

Family

ID=47465111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011114005A Withdrawn JP2012243645A (en) 2011-05-20 2011-05-20 Electrode and all-solid state nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2012243645A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130281A (en) * 2016-01-18 2017-07-27 トヨタ自動車株式会社 All-solid battery manufacturing method
WO2017149927A1 (en) * 2016-03-03 2017-09-08 Necエナジーデバイス株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2019026940A1 (en) * 2017-08-04 2019-02-07 積水化学工業株式会社 Carbon material, positive electrode for all-solid-state batteries, negative electrode for all-solid-state batteries, and all-solid-state battery
JP2019087346A (en) * 2017-11-02 2019-06-06 太陽誘電株式会社 All-solid battery and method of manufacturing the same
WO2020116324A1 (en) * 2018-12-05 2020-06-11 昭和電工株式会社 All-solid-state lithium ion battery and negative electrode mix
WO2020116323A1 (en) * 2018-12-05 2020-06-11 昭和電工株式会社 All-solid-state lithium ion battery and negative electrode mix
CN111834630A (en) * 2019-04-16 2020-10-27 丰田自动车株式会社 Method for producing slurry, method for producing active material layer, and method for producing all-solid-state battery
JP2021034326A (en) * 2019-08-29 2021-03-01 マクセルホールディングス株式会社 All-solid battery
WO2021079700A1 (en) * 2019-10-23 2021-04-29 Tdk株式会社 All-solid-state battery
WO2021176832A1 (en) * 2020-03-06 2021-09-10 Tdk株式会社 All-solid-state battery
WO2021176834A1 (en) * 2020-03-06 2021-09-10 Tdk株式会社 All-solid-state battery
JP2021163579A (en) * 2020-03-31 2021-10-11 本田技研工業株式会社 All-solid battery and manufacturing method therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130281A (en) * 2016-01-18 2017-07-27 トヨタ自動車株式会社 All-solid battery manufacturing method
WO2017149927A1 (en) * 2016-03-03 2017-09-08 Necエナジーデバイス株式会社 Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2017149927A1 (en) * 2016-03-03 2018-12-27 Necエナジーデバイス株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6995738B2 (en) 2016-03-03 2022-01-17 株式会社エンビジョンAescジャパン Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
JPWO2019026940A1 (en) * 2017-08-04 2020-06-25 積水化学工業株式会社 Carbon materials, positive electrodes for all-solid-state batteries, negative electrodes for all-solid-state batteries, and all-solid-state batteries
WO2019026940A1 (en) * 2017-08-04 2019-02-07 積水化学工業株式会社 Carbon material, positive electrode for all-solid-state batteries, negative electrode for all-solid-state batteries, and all-solid-state battery
CN110710045A (en) * 2017-08-04 2020-01-17 积水化学工业株式会社 Carbon material, positive electrode for all-solid battery, negative electrode for all-solid battery, and all-solid battery
JP2019087346A (en) * 2017-11-02 2019-06-06 太陽誘電株式会社 All-solid battery and method of manufacturing the same
JP7027125B2 (en) 2017-11-02 2022-03-01 太陽誘電株式会社 All-solid-state battery and its manufacturing method
WO2020116323A1 (en) * 2018-12-05 2020-06-11 昭和電工株式会社 All-solid-state lithium ion battery and negative electrode mix
WO2020116324A1 (en) * 2018-12-05 2020-06-11 昭和電工株式会社 All-solid-state lithium ion battery and negative electrode mix
CN111834630A (en) * 2019-04-16 2020-10-27 丰田自动车株式会社 Method for producing slurry, method for producing active material layer, and method for producing all-solid-state battery
JP2021034326A (en) * 2019-08-29 2021-03-01 マクセルホールディングス株式会社 All-solid battery
JP7284666B2 (en) 2019-08-29 2023-05-31 マクセル株式会社 All-solid battery
WO2021079700A1 (en) * 2019-10-23 2021-04-29 Tdk株式会社 All-solid-state battery
WO2021176832A1 (en) * 2020-03-06 2021-09-10 Tdk株式会社 All-solid-state battery
WO2021176834A1 (en) * 2020-03-06 2021-09-10 Tdk株式会社 All-solid-state battery
JP2021163579A (en) * 2020-03-31 2021-10-11 本田技研工業株式会社 All-solid battery and manufacturing method therefor
US11817549B2 (en) 2020-03-31 2023-11-14 Honda Motor Co., Ltd. All-solid-state battery and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2012243645A (en) Electrode and all-solid state nonaqueous electrolyte battery
JP5594379B2 (en) Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery
WO2015068268A1 (en) All-solid-state cell, electrode for all-solid-state cell, and method for manufacturing same
JP6704295B2 (en) All-solid-state lithium secondary battery and manufacturing method thereof
CN111758176A (en) Method for predoping negative electrode active material, method for producing negative electrode, and method for producing power storage device
JP6897253B2 (en) Negative electrode for lithium ion secondary battery
JP2012227107A (en) Electrode body for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2012243644A (en) Electrode and all-solid state nonaqueous electrolyte battery
JP5782616B2 (en) Lithium secondary battery
JP7129144B2 (en) All-solid-state battery and manufacturing method thereof
JP2012164571A (en) Negative electrode body and lithium ion battery
JP2015201388A (en) Cathode active material for non-aqueous secondary battery and manufacturing method for the same
JP2018181702A (en) Method for manufacturing all-solid lithium ion secondary battery
CN112054193A (en) Positive electrode material for secondary battery and secondary battery using the same
US9692048B2 (en) Nonaqueous electrolyte rechargeable battery
JP2013045515A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and production method therefor, positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
WO2014199782A1 (en) Anode active material for electrical device, and electrical device using same
JP2012248454A (en) Positive electrode, and all-solid nonaqueous electrolyte battery
JP2018181706A (en) Method for manufacturing all-solid lithium ion secondary battery
JP5890715B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN110235289A (en) Positive active material, anode and lithium ion secondary battery
JP2013125636A (en) Nonaqueous electrolyte battery
JP7033258B2 (en) Positive electrode for non-aqueous electrolyte secondary batteries
WO2014199781A1 (en) Negative-electrode active material for use in electrical device and electrical device using same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805