WO2020116323A1 - All-solid-state lithium ion battery and negative electrode mix - Google Patents

All-solid-state lithium ion battery and negative electrode mix Download PDF

Info

Publication number
WO2020116323A1
WO2020116323A1 PCT/JP2019/046652 JP2019046652W WO2020116323A1 WO 2020116323 A1 WO2020116323 A1 WO 2020116323A1 JP 2019046652 W JP2019046652 W JP 2019046652W WO 2020116323 A1 WO2020116323 A1 WO 2020116323A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
negative electrode
solid
solid electrolyte
mass
Prior art date
Application number
PCT/JP2019/046652
Other languages
French (fr)
Japanese (ja)
Inventor
千明 外輪
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020116323A1 publication Critical patent/WO2020116323A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an all-solid-state lithium-ion battery.
  • -Lithium-ion batteries have high voltage and high energy density, and are widely used.
  • studies on all-solid-state lithium-ion batteries using a solid electrolyte that does not leak and does not leak instead of the organic electrolyte have been actively studied. ..
  • an all-solid-state lithium-ion battery that uses an inorganic ceramics-based lithium-ion conductor as a solid electrolyte has been studied for a long time.
  • Patent Documents 1 to 4 metal-based materials such as In, Al, Si, and Sn, ceramic-based materials such as Li 4 Ti 5 O 12 , graphite, mesocarbon microbeads (MCMB), highly oriented graphite (HOPG). It is disclosed that a carbon-based material such as hard carbon or soft carbon, or a material having a particle surface coated with a carbon layer can be used as the negative electrode active material.
  • Patent Document 4 discloses that two or more kinds of materials are mixed and used as a negative electrode active material, but the optimum particle size of the solid electrolyte to be used, the physical properties of the materials, and the like have not been examined.
  • An all-solid-state lithium ion battery including a negative electrode mixture layer, a positive electrode mixture layer, and a solid electrolyte layer, wherein the negative electrode mixture layer contains 31.0% by mass or more and 85.0% by mass or less of a negative electrode active material, and A solid electrolyte is contained in an amount of 15.0% by mass or more and 69.0% by mass or less, the negative electrode active material has a graphite crystal plane spacing d002 of 0.3354 nm or more and 0.3360 nm or less, and a 50% particle size in a volume-based cumulative particle size distribution.
  • (D50) is 10.0 ⁇ m or more and 30.0 ⁇ m or less, and includes non-aggregated graphite particles having a circularity of 0.84 or more and 0.94 or less, and the solid electrolyte is an oxide-based solid electrolyte or a sulfide-based solid electrolyte.
  • An all-solid-state lithium-ion battery which is at least one kind selected from solid electrolytes and has D50 of 0.10 ⁇ m or more and 3.00 ⁇ m or less.
  • the ratio (I(110)/I(004)) of the peak intensity of the (110) plane to the peak intensity of the (004) plane measured by powder X-ray diffraction measurement of the graphite particles is 0.01 or more 0 8.
  • the conductive additive is particulate carbon or fibrous carbon.
  • a negative electrode mixture containing a negative electrode active material and a solid electrolyte wherein the negative electrode mixture contains 31.0% by mass or more and 85.0% by mass or less of the negative electrode active material and 15.0% by mass or more and 69% of solid electrolyte. 0.0% by mass or less, the negative electrode active material has a graphite crystal plane spacing d002 of 0.3354 nm or more and 0.3360 nm or less, and a 50% diameter (D50) in a volume-based cumulative particle size distribution of 10.0 ⁇ m or more and 30.0 ⁇ m.
  • the circularity includes graphite particles having a non-aggregated structure of 0.84 or more and 0.94 or less, the solid electrolyte is at least one selected from an oxide solid electrolyte and a sulfide solid electrolyte, A negative electrode mixture characterized in that D50 is particles having a particle size of 0.1 ⁇ m or more and 3.0 ⁇ m or less.
  • an all-solid-state lithium-ion battery having good contact between the solid electrolyte and the negative electrode active material, and excellent discharge capacity, rate characteristics, cycle characteristics, and Coulombic efficiency.
  • the all-solid-state lithium-ion battery of the present invention includes at least a negative electrode mixture layer, a positive electrode mixture layer, and a solid electrolyte layer.
  • the negative electrode mixture layer contains at least a negative electrode active material and a solid electrolyte, and preferably contains a conductive auxiliary agent.
  • the solid electrolyte layer contains at least a solid electrolyte, and the solid electrolyte is at least one selected from oxide solid electrolytes and sulfide solid electrolytes.
  • the positive electrode mixture layer contains at least a positive electrode active material.
  • the negative electrode mixture layer contains a negative electrode active material in an amount of 31.0% by mass to 85.0% by mass, and a solid electrolyte in an amount of 15.0% by mass to 69.0% by mass.
  • the negative electrode active material is preferably contained in an amount of 35% by mass or more, and more preferably 45% by mass or more.
  • the content of the negative electrode active material is preferably 80% by mass or less, more preferably 75% by mass or less.
  • the solid electrolyte content is preferably 20% by mass or more, more preferably 25% by mass or more.
  • the solid electrolyte content is preferably 65% by mass or less, more preferably 55% by mass or less.
  • the negative electrode mixture layer according to one embodiment of the present invention preferably contains 0.1% by mass or more of a conductive auxiliary agent. When it is 0.1% by mass or more, the conductivity in the mixture layer is improved, and thus the rate characteristic is improved. From the same viewpoint, 0.5% by mass or more is preferable, and 1.0% by mass or more is most preferable.
  • the negative electrode mixture layer preferably contains 5.0% by mass or less of a conductive auxiliary agent. When it is 5.0% by mass or less, the ionic conductivity in the mixture layer is good and the rate characteristics are improved. From the same viewpoint, it is preferably 4.5% by mass or less, and most preferably 4.0% by mass or less.
  • the negative electrode active material according to one embodiment of the present invention is graphite particles having a non-aggregated structure.
  • the non-aggregated structure has a solid structure inside, and is less likely to cause intra-particle peeling even when repeated expansion and contraction due to charge and discharge, and has excellent cycle characteristics. Further, artificial graphite particles having a non-aggregated structure are preferable.
  • the non-aggregated structure means a state in which the primary particles are not converted into the secondary particles.
  • the 50% particle size (D50) in the volume-based cumulative particle size distribution of the graphite particles according to an embodiment of the present invention is 10.0 ⁇ m or more.
  • D50 is 30.0 ⁇ m or less.
  • the thickness is 30.0 ⁇ m or less, good contact with the solid electrolyte particles is obtained, the resistance is lowered, and the charge/discharge rate characteristics are improved.
  • 20 ⁇ . 0 m or less is preferable, and 18 ⁇ . It is more preferably 0 m or less.
  • the graphite particles according to one embodiment of the present invention have a graphite crystal plane spacing d002 of 0.3354 nm or more determined by a powder X-ray diffraction method.
  • 0.3354 nm is the theoretical lower limit of graphite.
  • d002 is 0.3360 nm or less. This is because if it is 0.3360 nm or less, graphitization is sufficiently advanced and the discharge capacity is increased. From the same viewpoint, 0.3359 nm or less is preferable, and 0.3358 nm or less is more preferable.
  • the graphite crystal plane spacing d002 can be measured by a powder X-ray diffraction (XRD) method by the Gakushin method (2004 version) (Inayoshi Noda, Michio Inagaki, Japan Society for the Promotion of Science, 117th Committee Material, 117). -71-A-1 (1963), Michio Inagaki et al., Japan Society for the Promotion of Science, 117th Committee materials, 117-121-C-5 (1972), Michio Inagaki, "Carbon", 1963, No. 36, 25. -34; Iwashita et al., Carbon vol. 42 (2004), pp. 701-714).
  • XRD powder X-ray diffraction
  • the circularity of the graphite particles according to one embodiment of the present invention is 0.84 or more. When it is 0.84 or more, the packing property of particles is improved and the electrode density can be increased. From the same viewpoint, 0.88 or more is preferable, and 0.91 or more is further preferable.
  • the circularity is 0.94 or less. When it is 0.94 or less, the number of contacts between particles is increased, and the electron conductivity tends to be improved. From the same viewpoint, 0.93 or less is preferable, and 0.92 or less is more preferable. The circularity is measured by the method described in the examples.
  • Graphite includes hexagonal graphite and rhombohedral graphite.
  • Hexagonal graphite has a so-called AB type laminated structure in which layers each having a hexagonal net plane structure of carbon are moved in parallel by (2/3, 1/3) and stacked.
  • a layer having a hexagonal net plane structure of carbon is first translated by (2/3, 1/3) and then translated by (1/3, 2/3) to be stacked, that is, so-called. It has an ABC type laminated structure.
  • Hexagonal graphite exhibits a diffraction peak (hexagonal 100 diffraction line and hexagonal 101 diffraction line) in a diffraction angle range of 41.7 degrees to 42.7 degrees and a range of 43.7 degrees to 44.7 degrees, and has a rhombohedral shape.
  • diffraction peaks (rhombohedral 101 diffraction line and rhombohedral 012 diffraction line) appear in the diffraction angle range of 42.7 degrees to 43.7 degrees and in the range of 45.5 degrees to 46.5 degrees.
  • the rhombohedral crystal structure is formed by lattice distortion generated when pulverizing hexagonal graphite.
  • the graphite particles used in the present invention preferably do not contain rhombohedral crystals.
  • Graphite that does not contain rhombohedral crystals has very little lattice distortion, and therefore tends to have excellent charge-discharge cycle characteristics.
  • the crystal structure degree is measured by the method described in Examples.
  • the BET specific surface area of the graphite particles according to one embodiment of the present invention is preferably 0.1 m 2 /g or more. When it is 0.1 m 2 /g or more, the contact area with the solid electrolyte particles is increased, and the charge/discharge rate characteristics are improved. From the same viewpoint, 0.5 m 2 /g or more is more preferable, and 0.8 m 2 /g or more is most preferable.
  • the upper limit is preferably 5.0 m 2 /g or less. When it is 5.0 m 2 /g or less, side reactions are suppressed and the initial Coulombic efficiency becomes high. More preferably 4.0 m 2 / g or less from the same viewpoint, 3.0 m 2 / g or less is most preferred.
  • the BET specific surface area is measured by the method described in Examples.
  • the graphite particles according to one embodiment of the present invention are preferably coated with low crystalline carbon.
  • the defects on the graphite surface are repaired to improve the initial Coulombic efficiency, and the effect of facilitating the insertion/desorption of lithium ions, which is a characteristic of low crystalline carbon, is also obtained and the rate characteristic can be improved. it can.
  • the low crystalline carbon is amorphous carbon.
  • a method of adhering an organic compound to the surface of the graphite particles and firing it in an inert gas atmosphere at a temperature range of 900 to 1500°C can be mentioned.
  • the organic compound it is preferable to use petroleum pitch, coal pitch, phenol resin, polyvinyl alcohol resin, furan resin, cellulose resin, polystyrene resin, polyimide resin and epoxy resin, and more preferably petroleum pitch or coal pitch. ..
  • the addition amount is preferably 0.01 parts by mass or more with respect to 100 parts by mass of the graphite particles. If the amount is 0.01 parts by mass or more, the initial Coulomb efficiency tends to be excellent.
  • 0.10 parts by mass or more is more preferable, and 0.50 parts by mass or more is most preferable.
  • the addition amount is preferably 5.00 parts by mass or less. When it is 5.00 parts by mass or less, mixing with the solid electrolyte tends to be excellent. From the same viewpoint, it is more preferably 4.00 parts by mass or less, and most preferably 2.00 parts by mass or less.
  • an organic compound is mixed with a solvent to be in a liquid state and mixed and kneaded with the graphite particles, and then the solvent is volatilized, and the graphite particles are coated with a low crystalline carbon layer by performing a baking treatment. It can.
  • a method in which the organic compound and the graphite particles are simply mixed with each other and the mixture is heat-treated may be used.
  • the surface of the graphite particles When the surface of the graphite particles is coated with low crystalline carbon, it has the merit that lithium ions from various directions can be quickly accepted and released. Therefore, by combining a structure with high crystallinity inside the graphite particles and a structure with low crystallinity on the surface of the graphite particles, a battery with excellent rate characteristics and high capacity can be obtained.
  • the R value (ID/IG) which is the intensity ratio of the peak intensity (ID) near 1350 cm ⁇ 1 and the peak intensity (IG) near 1580 cm ⁇ 1 obtained by Raman spectroscopy for the graphite particles.
  • the crystallinity can be determined. The larger the R value, the lower the crystallinity of the surface. If the crystallinity of the surface of the graphite particles is low, the electric resistance on the surface tends to be low, and the low temperature charge/discharge characteristics tend to be good. Therefore, the R value of the graphite particles according to one embodiment of the present invention is preferably 0.05 or more, more preferably 0.08 or more, and further preferably 0.10 or more.
  • the R value of the graphite particles is preferably 0.40 or less, more preferably 0.35 or less, and further preferably 0.30 or less.
  • the graphite particles according to one embodiment of the present invention relatively soft graphite particles are used. This is because when the graphite particles are a soft material, the area that is deformed during compression molding and comes into contact with the solid electrolyte is increased, and the rate characteristics are improved.
  • the ratio I(110)/I(004) of the intensity of the (004) plane diffraction peak and the intensity of the (110) plane diffraction peak measured by the powder X-ray diffraction method indicates the ease of deformation of the particles. Yes, when it is low, the particles are easily deformed, and when it is high, it is difficult to deform.
  • the I(110)/I(004) of the graphite particles according to one embodiment of the present invention is preferably 0.01 or more, more preferably 0.02 or more. When it is 0.01 or more, high rate characteristics can be obtained because excessive orientation is suppressed. I(110)/I(004) is preferably 0.20 or less. If it is 0.20 or less, it is likely to be deformed during compression molding, and the area in contact with the solid electrolyte is increased, so that the rate characteristic is improved. From the same viewpoint, 0.15 or less is more preferable, and 0.12 or less is most preferable. [Solid electrolyte]
  • the solid electrolyte according to one embodiment of the present invention uses at least one selected from an oxide solid electrolyte and a sulfide solid electrolyte.
  • oxide-based solid electrolyte examples include garnet-type complex oxide, perovskite-type complex oxide, LISICON-type complex oxide, NASICON-type complex oxide, Li-alumina-type complex oxide, LIPON, and oxide glass.
  • oxide-based solid electrolytes it is preferable to select an oxide-based solid electrolyte that can be stably used even if the negative electrode potential is low.
  • La 0.51 Li 0.34 TiO 2.94 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , 50Li 4 SiO 4 .50Li 3 BO 3 , Li 2.9 PO 3.3 N 0.46 , Li 3.6 Si 0.6 P 0.4 O 4 , Li 1.07 Al 0.69 Ti 1.46 (PO 4 ) 3 and Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 are preferable.
  • sulfide-based solid electrolyte examples include sulfide glass, sulfide glass ceramic, and Thio-LISICON type sulfide.
  • sulfide-based solid electrolytes it is preferable to select a sulfide-based solid electrolyte that can be stably used even if the negative electrode potential is low.
  • Li 10 GeP 2 S 12 Li 3.25 Ge 0.25 P 0.75 S 4 , 30Li 2 S.26B 2 S 3 .44LiI, 63Li 2 S.36SiS 2 .1Li 3 PO 4 , 57Li 2 S.38SiS 2 .5Li 4 SiO 4 , 70Li 2 S ⁇ 30P 2 S 5 , 50Li 2 S ⁇ 50GeS 2 , Li 7 P 3 S 11 , Li 3.25 P 0.95 S 4 , Li 3 PS 4 , Li 2 S ⁇ P 2 S 3 ⁇ P 2 S 5 is preferred.
  • the battery performance of an all-solid-state lithium-ion battery is further improved.
  • the above solid electrolytes may be used alone or in combination of two or more. It is more preferable to use a sulfide-based solid electrolyte for the solid electrolyte according to one embodiment of the present invention.
  • the solid electrolyte according to one embodiment of the present invention has a 50% particle size (D50) in the volume-based cumulative particle size distribution of 0.10 ⁇ m or more. This is because when the thickness is 0.10 ⁇ m or more, the ionic conductivity is excellent. From the same viewpoint, 0.20 ⁇ m or more is preferable, and 0.30 ⁇ m or more is further preferable. D50 is 3.00 ⁇ m or less. This is because when the thickness is 3.00 ⁇ m or less, the filling property is excellent. From the same viewpoint, it is preferably 2.00 ⁇ m or less, more preferably 1.50 ⁇ m or less.
  • the D50 of the solid electrolyte according to one embodiment of the present invention is preferably 1/10 or less of the D50 of the graphite particles. This is because when the size of the solid electrolyte particles is set to be equal to or smaller than the size of the graphite particles, the solid electrolyte is easily dispersed in the gaps between the graphite and the ionic conductivity is excellent. From the same viewpoint, 1/50 or less is more preferable, and 1/100 is most preferable.
  • the conduction aid it is preferable to use a particulate carbonaceous conduction aid or a fibrous carbonaceous conduction aid.
  • the particulate carbonaceous conductive aids include Denka Black (registered trademark) (manufactured by Denki Kagaku Kogyo KK), Ketjen Black (registered trademark) (manufactured by Lion Corporation), graphite fine powder SFG series (manufactured by Timcal), Particulate carbon such as graphene can be used.
  • VGCF vapor-phase carbon fiber
  • VGCF registered trademark
  • VGCF registered trademark-H
  • Vapor grown carbon fiber manufactured by Showa Denko KK is most preferable because it has excellent cycle characteristics.
  • the solid electrolyte layer is not particularly limited as long as it is a layer containing a solid electrolyte, and can be appropriately selected according to the purpose.
  • the solid electrolyte is preferably the same as that used for the negative electrode mixture layer.
  • the positive electrode mixture layer is not particularly limited as long as it is a layer containing a positive electrode active material, and can be appropriately selected according to the purpose.
  • the positive electrode mixture layer preferably contains a solid electrolyte.
  • the solid electrolyte is more preferably the same as that used for the negative electrode mixture layer.
  • a known positive electrode active material can be adopted as the positive electrode active material.
  • rock salt type layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , spinel type active materials such as LiMn 2 O 4 , LiFePO 4 ,
  • An olivine-type active material such as LiMnPO 4 , LiNiPO 4 , LiCuPO 4 or a sulfide active material such as Li 2 S can be used.
  • the 50% particle size (D50) in the volume-based cumulative particle size distribution of the positive electrode active material is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • the particle size of the positive electrode active material is preferably 10 times or more the size of the solid electrolyte particles contained in the solid electrolyte layer.
  • a known binder may be used to maintain the shapes of the negative electrode and the positive electrode.
  • polyvinylidene fluoride, polyurethane, polysiloxane, polytetrafluoroethylene, polybutadiene, etc. can be used.
  • Means for producing the negative electrode active material layer and the solid electrolyte particles are not particularly limited. For example, it can be obtained by performing mechanical milling treatment using a mortar, a planetary mill, a ball mill, a vibration mill, Mechanofusion (registered trademark), or the like.
  • the method for producing the solid electrolyte layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method of compression-molding the solid electrolyte particles.
  • the method for producing the positive electrode is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a positive electrode active material, a solid electrolyte, and a conductive additive are mixed in a mortar for 10 minutes, and a planetary ball mill is used.
  • a cylindrical positive electrode mixture layer can be obtained by homogenizing by milling at 100 rpm for 1 hour and press-molding at 400 MPa with a uniaxial press molding machine using a polyethylene die having an inner diameter of 10 mm ⁇ and a SUS punch. ..
  • a positive electrode can be obtained by bringing the positive electrode current collector into close contact therewith.
  • Electrode collector Aluminum foil or SUS foil can be used for the positive electrode current collector, and carbon-coated or oxide-coated foil can also be used.
  • the method of coating is not particularly limited.
  • the carbon contained in the carbon coat layer is not particularly limited, and acetylene black, Ketjen Black (registered trademark), carbon nanotube, graphene, vapor grown carbon fiber, artificial graphite fine powder, etc. can be used. Both rolled foil and electrolytic foil can be used for the current collector.
  • the method for producing the negative electrode is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a negative electrode active material, a solid electrolyte, and a conductive auxiliary agent as necessary in a glove box in an argon gas atmosphere are mortared. And then homogenized by milling at 100 rpm for 1 hour using a planetary ball mill, and press-molded at 400 MPa with a uniaxial press molding machine using a polyethylene die having an inner diameter of 10 mm ⁇ and a SUS punch, A columnar negative electrode mixture layer can be obtained.
  • the negative electrode can be obtained by bringing the negative electrode current collector into close contact therewith.
  • Nickel foil can be used for the negative electrode current collector, and carbon foil or oxide coated nickel foil can also be used.
  • the method of coating is not particularly limited.
  • the carbon contained in the carbon coat layer is not particularly limited, and acetylene black, Ketjen Black (registered trademark), carbon nanotube, graphene, vapor grown carbon fiber, artificial graphite fine powder, or the like can be used. Both rolled foil and electrolytic foil can be used for the current collector.
  • the method for manufacturing the all-solid-state battery is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the negative electrode mixture layer, the solid electrolyte layer, the positive electrode mixture layer may be provided with a current collector.
  • Graphite particles B 100 parts by mass of graphite particles A and 2 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat at 200°C. After that, a firing treatment was performed at 1000° C. for 1 hour under a nitrogen gas stream, and finally, a graphite particle B coated with amorphous carbon was obtained by passing through a sieve having an opening of 45 ⁇ m.
  • [1-3] Graphite particles C Coal-based coke was crushed using a bantam mill (manufactured by Hosokawa Micron Co., Ltd.), and coke particles of D50 12 ⁇ m were obtained by air classification using a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.). The coke particles were heat-treated at 3200° C. for 10 minutes in an argon gas stream using an induction heating furnace to obtain graphite particles C.
  • Graphite particles D 100 parts by mass of graphite particles C and 2 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat at 200°C. Then, a firing treatment was performed at 1000° C. for 1 hour in a nitrogen gas stream, and finally, a graphite particle D covered with amorphous carbon was obtained by passing through a sieve having an opening of 45 ⁇ m.
  • Graphite particles E Green mesocarbon was crushed using a bantam mill (manufactured by Hosokawa Micron Co., Ltd.), and carbon particles having D50 17 ⁇ m were obtained by air classification using a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.). The carbon particles were heat-treated at 3200° C. for 10 minutes in an argon gas stream using an induction heating furnace to obtain graphite particles E.
  • Graphite particles F 100 parts by mass of graphite particles E and 2 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat of 200°C. Then, a firing treatment was performed at 1000° C. for 1 hour under a nitrogen gas stream, and finally, a graphite particle F coated with amorphous carbon was obtained by passing through a sieve having an opening of 45 ⁇ m.
  • Graphite particles G Petroleum-based coke was crushed using a bantam mill (manufactured by Hosokawa Micron Co., Ltd.), and coke particles of D50 7 ⁇ m were obtained by air classification using a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.). The coke particles were heat-treated at 3200° C. for 10 minutes in an argon gas stream using an induction heating furnace. 8 parts by mass of coal-based pitch was mixed with 100 parts by mass of the obtained particles, and kneaded for 30 minutes while applying heat of 200°C. Thereafter, a firing treatment was performed at 1000° C. for 1 hour under a nitrogen gas stream, and finally, a graphite particle G covered with amorphous carbon was obtained by passing through a sieve having an opening of 45 ⁇ m.
  • Graphite particles H Petroleum-based coke was crushed using a bantam mill (manufactured by Hosokawa Micron Co., Ltd.), and coke particles of D50 18 ⁇ m were obtained by air flow classification using a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.).
  • the coke particles were heat-treated at 2800° C. for 10 minutes in an argon gas stream using an induction heating furnace. 100 parts by mass of the obtained particles and 2 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat of 200°C. Thereafter, a firing treatment was performed at 1000° C. for 1 hour under a nitrogen gas stream, and finally, a graphite particle H covered with amorphous carbon was obtained by passing through a sieve having an opening of 45 ⁇ m.
  • Graphite particles I Green mesocarbon particles having a D50 of 10 ⁇ m were heat-treated at 3200° C. for 10 minutes in an argon gas stream using an induction heating furnace to obtain graphite particles. 100 parts by mass of the obtained particles and 2 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat of 200°C. Thereafter, a firing treatment was performed at 1000° C. for 1 hour under a nitrogen gas flow, and finally, a graphite particle I covered with amorphous carbon was obtained by passing through a sieve having an opening of 45 ⁇ m.
  • Rhombohedral diffraction peak A sample plate made of sample glass (sample plate window 18 ⁇ 20 mm, depth 0.2 mm) was filled and measured under the following conditions.
  • XRD device SmartLab manufactured by Rigaku
  • X-ray type Cu-K ⁇ ray K ⁇ ray removal method: Ni filter X-ray output: 45 kV, 200 mA Measuring range: 5.0 to 100.0 deg.
  • Scan speed 2.0 deg. /Min.
  • the obtained waveform it was confirmed whether or not there were peaks on the (100) plane and the (101) plane of the rhombohedral crystal structure.
  • (100) plane 42.7 to 43.7 deg. (101) plane: 45.5 to 46.5 deg.
  • this peak did not exist, it was determined that rhombohedral crystals did not exist.
  • Circularity Circularity measuring device Flow type particle image analyzer FPIA-3000 (manufactured by Sysmex Corporation) The circularity is obtained by dividing the circumference of a circle having the same area as the observed area of a particle image by the circumference of the particle image, and the closer to 1 the closer to a perfect circle.
  • the circularity can be expressed by the following equation, where S is the area of the particle image and L is the perimeter.
  • Circularity (4 ⁇ S) 1/2 /L
  • the graphite particles were purified by passing through a filter with an opening of 106 ⁇ m, 0.1 g of the sample was added to 20 ml of ion-exchanged water, and 0.1-0.5% by mass of a surfactant was added to uniformly disperse the sample.
  • a sample solution for measurement was prepared. The dispersion was performed by using an ultrasonic cleaner UT-105S (manufactured by Sharp Manufacturing System Co.) for 5 minutes. The obtained sample solution for measurement was put into an apparatus, and the median of circularity was calculated from the number-based frequency distribution of circularity analyzed for 10,000 particles in the LPF mode.
  • BET specific surface area measuring device NOVA2200e manufactured by Quantachrome 3 g of the sample was placed in a sample cell (9 mm ⁇ 135 mm), dried at 300° C. under vacuum condition for 1 hour, and then measured. N 2 was used as the gas for measuring the BET specific surface area.
  • Raman spectroscopic analysis Raman spectroscopy: NRS-5100 manufactured by JASCO Corporation Measurement was performed under the conditions of an excitation wavelength of 532.36 nm, an entrance slit width of 200 ⁇ m, an exposure time of 15 seconds, an integration number of 2 times, and a diffraction grating of 600 lines/mm, and a peak intensity (ID) in the range of 1300 to 1400 cm ⁇ 1.
  • the intensity ratio of the intensity (IG) of the peak in the range of 1580 to 1620 cm ⁇ 1 was taken as the R value (ID/IG).
  • press molding was performed by a uniaxial press molding machine to obtain a solid electrolyte layer having a thickness of 960 ⁇ m used for a battery evaluation test.
  • a pair of a polyethylene die having an inner diameter of 10 mm ⁇ provided with an aluminum foil as a positive electrode collector and a polyethylene die having an inner diameter of 10 mm ⁇ provided with a nickel foil as a negative electrode collector were prepared.
  • a negative electrode material mixture layer, a solid electrolyte layer, and a positive electrode material mixture layer were laminated in the polyethylene die, and sandwiched from both sides with a SUS punch at a pressure of 100 MPa to obtain a test battery having a design capacity of 45 mAh.
  • the first charge was 1.25 mA (0.05 C) constant current charge up to 4.2 V, followed by constant voltage charge at 4.2 V for 40 hours. Then, constant current discharge was performed at 1.25 mA (0.05 C) until the voltage became 2.75 V.
  • the discharge capacity (mAh/g) was obtained by dividing the capacity (mAh) at the first discharge by the weight of the graphite particles in the negative electrode mixture layer.
  • the discharge capacity when discharged at 2.5 mA (0.1 C) was taken as 100%, and the ratio of the discharge capacity when discharged at 75 mA (3.0 C) to this was taken as the rate characteristic (%).
  • the initial discharge capacity measured at 25° C. was taken as 100%, and the discharge capacity after 500 cycles was taken as the cycle characteristic (%).
  • the constant current charge of 5.0mA (0.2C) is performed until the charge reaches 4.2V, and then the constant voltage is reduced to 0.05C at the constant voltage of 4.2V. Charged.
  • the discharge was performed by constant current discharge of 25 mA (1.0 C) until the voltage reached 2.75V.
  • Examples 1 to 11 and Comparative Examples 1 to 10 A negative electrode and a battery were prepared in the types and amounts shown in Table 1 for the graphite particles, the solid electrolyte, and the conductive additive used for the negative electrode mixture layer, and their respective properties were evaluated. The results are shown in Table 2. The production of the positive electrode and the solid electrolyte layer is as described above.

Abstract

The present invention pertains to an all-solid-state lithium ion battery comprising a negative electrode mix layer, a positive electrode mix layer, and a solid electrolyte layer, and characterized in that the negative electrode mix layer contains 31.0-85.0 mass% of a negative electrode active material and 15.0-69.0 mass% of a solid electrolyte, wherein the negative electrode active material contains non-agglomerated graphite particles having a graphite crystal plane spacing d002 of 0.3354-0.3360 nm, and a D50 which is a 50% diameter of 10.0-30.0 μm in a volume cumulative particle size distribution and has a circularity of 0.84-0.94, and the solid electrolyte is at least one selected from among an oxide-based solid electrolyte and a sulfide-based solid electrolyte and is composed of particles having a D50 of 0.10-3.00 μm. According to the present invention, an all-solid-state lithium ion battery having excellent discharge capacity, rate characteristics, and cycle characteristics can be provided.

Description

全固体リチウムイオン電池および負極合剤All-solid-state lithium-ion battery and negative electrode mixture
 本発明は、全固体リチウムイオン電池に関する。 The present invention relates to an all-solid-state lithium-ion battery.
 リチウムイオン電池は、高電圧、高エネルギー密度であり、広く使用されている。リチウムイオン電池の安全性向上のひとつの方策として、有機電解液の代わりに、不燃で、液漏れのない固体電解質を使用する全固体リチウムイオン電池に関する検討が盛んになっている。  -Lithium-ion batteries have high voltage and high energy density, and are widely used. As one measure for improving the safety of lithium-ion batteries, studies on all-solid-state lithium-ion batteries using a solid electrolyte that does not leak and does not leak instead of the organic electrolyte have been actively studied. ‥
 例えば、ポリエチレンオキサイドLi塩化合物のような高分子固体電解質を用いる全固体化したリチウムイオン電池が古くから多く検討されてきた。しかしながら、高分子固体電解質の室温でのイオン伝導度は電解液に比較して1/100以下であり、室温や低温で取り出せる電流が小さいこと、充電状態で黒鉛負極と副反応を起こしやすいこと、さらに界面の抵抗が高くなるという課題がある。 For example, all-solid-state lithium ion batteries using a polymer solid electrolyte such as a polyethylene oxide Li salt compound have been studied for a long time. However, the ionic conductivity of the polymer solid electrolyte at room temperature is 1/100 or less compared to the electrolytic solution, the current that can be taken out at room temperature or low temperature is small, and the graphite negative electrode is likely to cause a side reaction in the charged state, Further, there is a problem that the resistance of the interface becomes high.
 また、無機セラミックス系のリチウムイオン伝導体を固体電解質として用いる全固体化したリチウムイオン電池も古くから検討されている。 Also, an all-solid-state lithium-ion battery that uses an inorganic ceramics-based lithium-ion conductor as a solid electrolyte has been studied for a long time.
 近年はリチウムイオン伝導度が高い硫化物系固体電解質を中心に盛んに検討されており、常温でもリチウムイオンの伝導率が10-3Scm-1以上を示す硫化物系固体電解質が開発されている。 In recent years, sulfide-based solid electrolytes having high lithium ion conductivity have been actively studied, and sulfide-based solid electrolytes having a lithium ion conductivity of 10 −3 Scm −1 or more even at room temperature have been developed. ..
 特許文献1~4には、In、Al、Si、Sn等の金属系材料、LiTi12等のセラミックス系材料、グラファイト、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等の炭素系材料、粒子表面を炭素層で被覆した材料を負極活物質として用いることができる旨開示されている。 In Patent Documents 1 to 4, metal-based materials such as In, Al, Si, and Sn, ceramic-based materials such as Li 4 Ti 5 O 12 , graphite, mesocarbon microbeads (MCMB), highly oriented graphite (HOPG). It is disclosed that a carbon-based material such as hard carbon or soft carbon, or a material having a particle surface coated with a carbon layer can be used as the negative electrode active material.
特開2011-181260号公報JP, 2011-181260, A 特開2013-16423号公報JP, 2013-16423, A 特開2013-41749号公報JP, 2013-41749, A 特開2015-191864号公報JP, 2005-191864, A
 全固体リチウムイオン電池の固体電解質の研究開発が盛んに行われている一方で、負極活物質として、従来の電解液を用いるリチウムイオン電池で使用されてきた材料を用いることが開示されている。 Despite the active research and development of solid electrolytes for all-solid-state lithium-ion batteries, it has been disclosed to use, as the negative electrode active material, materials that have been used in lithium-ion batteries using conventional electrolytes.
 黒鉛系材料、炭素系材料、ケイ素系材料を負極活物質として用いた場合、負極側の電位がLi基準で0V付近まで低下するが、負極の電位が0.3Vより低下すると固体電解質が不安定化するという問題があった。従来は低い電位まで安定した固体電解質がなかったので、これと組み合わせる黒鉛系、炭素系負極活物質の最適化については十分な検討がなされていなかった。
 また、ケイ素系材料では充放電に伴う体積膨張が著しく、そのため容量劣化が速くなるという別の問題があった。
When a graphite-based material, a carbon-based material, or a silicon-based material is used as the negative electrode active material, the potential on the negative electrode side drops to around 0 V on the Li standard, but when the potential on the negative electrode drops below 0.3 V, the solid electrolyte becomes unstable. There was a problem of becoming. In the past, there was no solid electrolyte that was stable up to a low potential, so no sufficient study was made on the optimization of graphite-based and carbon-based negative electrode active materials to be combined with this.
Further, in the silicon-based material, there is another problem that the volume expansion due to charge and discharge is remarkable, and therefore the capacity deterioration is accelerated.
 特許文献4には2種類以上の材料を混合して負極活物質として使用することが開示されているが、用いる固体電解質の最適な粒子サイズや材料の物性等については検討されていなかった。 Patent Document 4 discloses that two or more kinds of materials are mixed and used as a negative electrode active material, but the optimum particle size of the solid electrolyte to be used, the physical properties of the materials, and the like have not been examined.
 本発明は以下の構成からなる。
[1]負極合剤層、正極合剤層及び固体電解質層を含む全固体リチウムイオン電池であって、前記負極合剤層は負極活物質を31.0質量%以上85.0質量%以下及び固体電解質を15.0質量%以上69.0質量%以下含み、前記負極活物質は黒鉛結晶面間隔d002が0.3354nm以上0.3360nm以下であり、体積基準累積粒径分布における50%粒子径(D50)が10.0μm以上30.0μm以下であり、円形度が0.84以上0.94以下である非凝集構造の黒鉛粒子を含み、前記固体電解質は酸化物系固体電解質及び硫化物系固体電解質から選ばれる少なくとも1種であり、D50が0.10μm以上3.00μm以下の粒子であることを特徴とする全固体リチウムイオン電池。
[2]前記負極合剤層が、0.1質量%以上5.0質量%以下の導電助剤を含有する前記1に記載の全固体リチウムイオン電池。
[3]前記固体電解質のD50が前記黒鉛粒子のD50に対して1/10以下である前記1または2に記載の全固体リチウムイオン電池。
[4]前記黒鉛粒子は菱面体晶を有さない黒鉛粒子である前記1~3のいずれか1項に記載の全固体リチウムイオン電池。
[5]前記黒鉛粒子のBET比表面積が0.1m/g以上5.0m/g以下である前記1~4のいずれか1項に記載の全固体リチウムイオン電池。
[6]前記黒鉛粒子の表面が低結晶性炭素で被覆されている前記1~5のいずれか1項に記載の全固体リチウムイオン電池。
[7]前記黒鉛粒子のラマン分光法で測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1580~1620cm-1の範囲にあるピーク強度(IG)との比の値で示されるR値(R=ID/IG)が0.05以上0.40以下である前記1~6のいずれか1項に記載の全固体リチウムイオン電池。
[8]前記黒鉛粒子の粉末X線回折測定で測定される(004)面のピーク強度に対する(110)面のピーク強度の比(I(110)/I(004))が0.01以上0.20以下である前記1~7のいずれか1項に記載の全固体リチウムイオン電池。
[9]前記固体電解質が、硫化物系固体電解質から選ばれる少なくとも1種である前記1~8のいずれか1項に記載の全固体リチウムイオン電池。
[10]前記導電助剤が、粒子状炭素または繊維状炭素である前記1~9のいずれか1項に記載の全固体リチウムイオン電池。
[11]負極活物質と固体電解質を含む負極合剤であって、前記負極合剤は負極活物質を31.0質量%以上85.0質量%以下及び固体電解質を15.0質量%以上69.0質量%以下含み、前記負極活物質は黒鉛結晶面間隔d002が0.3354nm以上0.3360nm以下であり、体積基準累積粒径分布における50%径(D50)が10.0μm以上30.0μm以下であり、円形度が0.84以上0.94以下である非凝集構造の黒鉛粒子を含み、前記固体電解質は酸化物系固体電解質及び硫化物系固体電解質から選ばれる少なくとも1種であり、D50が0.1μm以上3.0μm以下の粒子であることを特徴とする負極合剤。
The present invention has the following configurations.
[1] An all-solid-state lithium ion battery including a negative electrode mixture layer, a positive electrode mixture layer, and a solid electrolyte layer, wherein the negative electrode mixture layer contains 31.0% by mass or more and 85.0% by mass or less of a negative electrode active material, and A solid electrolyte is contained in an amount of 15.0% by mass or more and 69.0% by mass or less, the negative electrode active material has a graphite crystal plane spacing d002 of 0.3354 nm or more and 0.3360 nm or less, and a 50% particle size in a volume-based cumulative particle size distribution. (D50) is 10.0 μm or more and 30.0 μm or less, and includes non-aggregated graphite particles having a circularity of 0.84 or more and 0.94 or less, and the solid electrolyte is an oxide-based solid electrolyte or a sulfide-based solid electrolyte. An all-solid-state lithium-ion battery, which is at least one kind selected from solid electrolytes and has D50 of 0.10 μm or more and 3.00 μm or less.
[2] The all-solid-state lithium ion battery according to 1 above, wherein the negative electrode mixture layer contains 0.1% by mass or more and 5.0% by mass or less of a conductive auxiliary agent.
[3] The all-solid-state lithium-ion battery according to 1 or 2, wherein the D50 of the solid electrolyte is 1/10 or less of the D50 of the graphite particles.
[4] The all-solid-state lithium ion battery according to any one of 1 to 3 above, wherein the graphite particles are graphite particles having no rhombohedral crystal.
[5] The all-solid-state lithium-ion battery according to any one of 1 to 4 above, wherein the BET specific surface area of the graphite particles is 0.1 m 2 /g or more and 5.0 m 2 /g or less.
[6] The all-solid-state lithium ion battery according to any one of 1 to 5 above, wherein the surfaces of the graphite particles are covered with low crystalline carbon.
[7] Shown by the ratio of the peak intensity (ID) in the range of 1300 to 1400 cm −1 and the peak intensity (IG) in the range of 1580 to 1620 cm −1 , measured by Raman spectroscopy of the graphite particles. 7. The all-solid-state lithium ion battery according to any one of 1 to 6 above, wherein the R value (R=ID/IG) is 0.05 or more and 0.40 or less.
[8] The ratio (I(110)/I(004)) of the peak intensity of the (110) plane to the peak intensity of the (004) plane measured by powder X-ray diffraction measurement of the graphite particles is 0.01 or more 0 8. The all-solid-state lithium-ion battery according to any one of 1 to 7 above, which is 20 or less.
[9] The all-solid-state lithium-ion battery according to any one of 1 to 8 above, wherein the solid electrolyte is at least one selected from sulfide-based solid electrolytes.
[10] The all-solid-state lithium-ion battery according to any one of 1 to 9 above, wherein the conductive additive is particulate carbon or fibrous carbon.
[11] A negative electrode mixture containing a negative electrode active material and a solid electrolyte, wherein the negative electrode mixture contains 31.0% by mass or more and 85.0% by mass or less of the negative electrode active material and 15.0% by mass or more and 69% of solid electrolyte. 0.0% by mass or less, the negative electrode active material has a graphite crystal plane spacing d002 of 0.3354 nm or more and 0.3360 nm or less, and a 50% diameter (D50) in a volume-based cumulative particle size distribution of 10.0 μm or more and 30.0 μm. The following, the circularity includes graphite particles having a non-aggregated structure of 0.84 or more and 0.94 or less, the solid electrolyte is at least one selected from an oxide solid electrolyte and a sulfide solid electrolyte, A negative electrode mixture characterized in that D50 is particles having a particle size of 0.1 μm or more and 3.0 μm or less.
 本発明によれば、固体電解質と負極活物質の間の接触が良好な、放電容量とレート特性とサイクル特性とクーロン効率に優れた全固体リチウムイオン電池を提供することができる。 According to the present invention, it is possible to provide an all-solid-state lithium-ion battery having good contact between the solid electrolyte and the negative electrode active material, and excellent discharge capacity, rate characteristics, cycle characteristics, and Coulombic efficiency.
 以下、本発明の実施形態を詳細に説明する。
[1]全固体リチウムイオン電池
 本発明の全固体リチウムイオン電池は、負極合剤層、正極合剤層、固体電解質層を少なくとも含む。
 負極合剤層は負極活物質及び固体電解質を少なくとも含み、さらに導電助剤を含むことが好ましい。
 固体電解質層は固体電解質を少なくとも含み、固体電解質は酸化物系固体電解質及び硫化物系固体電解質から選ばれる少なくとも1種である。
 正極合材層は正極活物質を少なくとも含む。
Hereinafter, embodiments of the present invention will be described in detail.
[1] All-solid-state lithium-ion battery The all-solid-state lithium-ion battery of the present invention includes at least a negative electrode mixture layer, a positive electrode mixture layer, and a solid electrolyte layer.
The negative electrode mixture layer contains at least a negative electrode active material and a solid electrolyte, and preferably contains a conductive auxiliary agent.
The solid electrolyte layer contains at least a solid electrolyte, and the solid electrolyte is at least one selected from oxide solid electrolytes and sulfide solid electrolytes.
The positive electrode mixture layer contains at least a positive electrode active material.
[負極合剤層]
 本発明の一実施態様にかかる負極合剤層は、負極活物質を31.0質量%以上85.0質量%以下、固体電解質を15.0質量%以上69.0質量%以下含む。このような配合比とした電極合剤を用いて負極を製造することにより、放電容量、充放電レート特性、サイクル特性が良好となる。同様の観点から負極活物質を35質量%以上含むことが好ましく、45質量%以上含むことがさらに好ましい。負極活物質を80質量%以下含むことが好ましく、75質量%以下含むことがさらに好ましい。固体電解質は20質量%以上含むことが好ましく、25質量%以上含むことがさらに好ましい。固体電解質は65質量%以下含むことが好ましく、55質量%以下含むことがさらに好ましい。
[Negative electrode mixture layer]
The negative electrode mixture layer according to one embodiment of the present invention contains a negative electrode active material in an amount of 31.0% by mass to 85.0% by mass, and a solid electrolyte in an amount of 15.0% by mass to 69.0% by mass. By manufacturing the negative electrode using the electrode mixture having such a blending ratio, the discharge capacity, charge/discharge rate characteristics, and cycle characteristics are improved. From the same viewpoint, the negative electrode active material is preferably contained in an amount of 35% by mass or more, and more preferably 45% by mass or more. The content of the negative electrode active material is preferably 80% by mass or less, more preferably 75% by mass or less. The solid electrolyte content is preferably 20% by mass or more, more preferably 25% by mass or more. The solid electrolyte content is preferably 65% by mass or less, more preferably 55% by mass or less.
 本発明の一実施態様にかかる負極合剤層は0.1質量%以上の導電助剤を含有することが好ましい。0.1質量%以上であると、合剤層内の導電性が向上することでレート特性が向上する。同様の観点から0.5質量%以上が好ましく、1.0質量%以上が最も好ましい。負極合剤層は5.0質量%以下の導電助剤を含有することが好ましい。5.0質量%以下であると、合剤層内のイオン伝導性が良好でありレート特性が向上する。同様の観点から4.5質量%以下が好ましく、4.0質量%以下が最も好ましい。 The negative electrode mixture layer according to one embodiment of the present invention preferably contains 0.1% by mass or more of a conductive auxiliary agent. When it is 0.1% by mass or more, the conductivity in the mixture layer is improved, and thus the rate characteristic is improved. From the same viewpoint, 0.5% by mass or more is preferable, and 1.0% by mass or more is most preferable. The negative electrode mixture layer preferably contains 5.0% by mass or less of a conductive auxiliary agent. When it is 5.0% by mass or less, the ionic conductivity in the mixture layer is good and the rate characteristics are improved. From the same viewpoint, it is preferably 4.5% by mass or less, and most preferably 4.0% by mass or less.
[負極活物質]
 本発明の一実施態様にかかる負極活物質は、非凝集構造の黒鉛粒子である。非凝集構造であると内部が中実構造であり、充放電に伴う膨張収縮の繰り返しによっても粒子内剥離を引き起こしにくくサイクル特性が優れる。また、非凝集構造の人造黒鉛粒子が好ましい。なお、非凝集構造とは二次粒子化していない一次粒子そのままの状態ものをいう。
[Negative electrode active material]
The negative electrode active material according to one embodiment of the present invention is graphite particles having a non-aggregated structure. The non-aggregated structure has a solid structure inside, and is less likely to cause intra-particle peeling even when repeated expansion and contraction due to charge and discharge, and has excellent cycle characteristics. Further, artificial graphite particles having a non-aggregated structure are preferable. In addition, the non-aggregated structure means a state in which the primary particles are not converted into the secondary particles.
[D50]
 本発明の一実施態様にかかる黒鉛粒子の体積基準累積粒径分布における50%粒子径(D50)は10.0μm以上である。10.0μm以上であると、黒鉛粒子間の隙間に固体電解質を均一に分散させやすく抵抗が低下し、充放電レート特性が向上するからである。同様の観点から、11.0μm以上が好ましく、12.0μm以上がさらに好ましい。D50は30.0μm以下である。30.0μm以下であると、固体電解質粒子との良好な接触が得られ、抵抗が低下し、充放電レート特性が向上するからである。同様の観点から20μ.0m以下が好ましく、18μ.0m以下がさらに好ましい。
[D50]
The 50% particle size (D50) in the volume-based cumulative particle size distribution of the graphite particles according to an embodiment of the present invention is 10.0 μm or more. When it is 10.0 μm or more, the solid electrolyte is easily dispersed uniformly in the gaps between the graphite particles, the resistance is lowered, and the charge/discharge rate characteristics are improved. From the same viewpoint, 11.0 μm or more is preferable, and 12.0 μm or more is more preferable. D50 is 30.0 μm or less. When the thickness is 30.0 μm or less, good contact with the solid electrolyte particles is obtained, the resistance is lowered, and the charge/discharge rate characteristics are improved. From the same viewpoint, 20 μ. 0 m or less is preferable, and 18 μ. It is more preferably 0 m or less.
[d002]
 本発明の一実施態様にかかる黒鉛粒子は、粉末X線回折法によって求められる黒鉛結晶面間隔d002が0.3354nm以上である。0.3354nmは黒鉛の理論下限値である。d002は0.3360nm以下である。0.3360nm以下であると黒鉛化が十分に進んでおり放電容量が大きくなるためである。同様の観点から、0.3359nm以下が好ましく、0.3358nm以下がさらに好ましい。
 黒鉛結晶面間隔d002は、学振法(2004年版)により粉末X線回折(XRD)法を用いて測定することができる(野田稲吉、稲垣道夫,日本学術振興会,第117委員会資料,117-71-A-1(1963)、稲垣道夫他,日本学術振興会,第117委員会資料,117-121-C-5(1972)、稲垣道夫,「炭素」,1963,No.36,25-34頁;Iwashita et al.,Carbon vol.42(2004),p.701-714参照)。  
[D002]
The graphite particles according to one embodiment of the present invention have a graphite crystal plane spacing d002 of 0.3354 nm or more determined by a powder X-ray diffraction method. 0.3354 nm is the theoretical lower limit of graphite. d002 is 0.3360 nm or less. This is because if it is 0.3360 nm or less, graphitization is sufficiently advanced and the discharge capacity is increased. From the same viewpoint, 0.3359 nm or less is preferable, and 0.3358 nm or less is more preferable.
The graphite crystal plane spacing d002 can be measured by a powder X-ray diffraction (XRD) method by the Gakushin method (2004 version) (Inayoshi Noda, Michio Inagaki, Japan Society for the Promotion of Science, 117th Committee Material, 117). -71-A-1 (1963), Michio Inagaki et al., Japan Society for the Promotion of Science, 117th Committee materials, 117-121-C-5 (1972), Michio Inagaki, "Carbon", 1963, No. 36, 25. -34; Iwashita et al., Carbon vol. 42 (2004), pp. 701-714).
[円形度]
 本発明の一実施態様にかかる黒鉛粒子の円形度は0.84以上である。0.84以上であると粒子の充填性が向上し、電極密度を高くすることができる。同様の観点から、0.88以上が好ましく、0.91以上がさらに好ましい。円形度は0.94以下である。0.94以下であると粒子間での接触が多くなり電子伝導性が良くなる傾向にある。同様の観点から0.93以下が好ましく、0.92以下がさらに好ましい。円形度の測定は実施例に記載の方法による。
[Circularity]
The circularity of the graphite particles according to one embodiment of the present invention is 0.84 or more. When it is 0.84 or more, the packing property of particles is improved and the electrode density can be increased. From the same viewpoint, 0.88 or more is preferable, and 0.91 or more is further preferable. The circularity is 0.94 or less. When it is 0.94 or less, the number of contacts between particles is increased, and the electron conductivity tends to be improved. From the same viewpoint, 0.93 or less is preferable, and 0.92 or less is more preferable. The circularity is measured by the method described in the examples.
[結晶構造]
 黒鉛には六方晶黒鉛と菱面体晶黒鉛とがある。六方晶黒鉛は、炭素の六角網平面構造からなる層が、(2/3,1/3)ずつ平行移動して積み重なる、いわゆるAB型積層構造を成している。一方、菱面体晶黒鉛は、炭素の六角網平面構造からなる層が、先ず(2/3,1/3)平行移動し、次いで(1/3,2/3)平行移動して積み重なる、いわゆるABC型積層構造を成している。
 六方晶黒鉛は回折角41.7度~42.7度の範囲及び43.7度~44.7度の範囲に回折ピーク(六方晶100回折線および六方晶101回折線)が現われ、菱面体晶黒鉛は回折角42.7度~43.7度の範囲および45.5度~46.5度の範囲に回折ピーク(菱面体晶101回折線および菱面体晶012回折線)が現われる。回折角42.7度~43.7度の範囲に回折ピークが存在しない場合、菱面体晶を含まないことが確認できる。また、菱面体晶構造は、六方晶黒鉛を粉砕した際に生じる格子歪みによって形成される。
 本発明に用いられる黒鉛粒子は、菱面体晶を含まないことが好ましい。菱面体晶を含まない黒鉛は格子歪みが非常に少ないため充放電サイクル特性が優れる傾向にある。結晶構造度の測定は実施例に記載の方法による。
[Crystal structure]
Graphite includes hexagonal graphite and rhombohedral graphite. Hexagonal graphite has a so-called AB type laminated structure in which layers each having a hexagonal net plane structure of carbon are moved in parallel by (2/3, 1/3) and stacked. On the other hand, in the rhombohedral graphite, a layer having a hexagonal net plane structure of carbon is first translated by (2/3, 1/3) and then translated by (1/3, 2/3) to be stacked, that is, so-called. It has an ABC type laminated structure.
Hexagonal graphite exhibits a diffraction peak (hexagonal 100 diffraction line and hexagonal 101 diffraction line) in a diffraction angle range of 41.7 degrees to 42.7 degrees and a range of 43.7 degrees to 44.7 degrees, and has a rhombohedral shape. For crystalline graphite, diffraction peaks (rhombohedral 101 diffraction line and rhombohedral 012 diffraction line) appear in the diffraction angle range of 42.7 degrees to 43.7 degrees and in the range of 45.5 degrees to 46.5 degrees. When the diffraction peak does not exist in the range of the diffraction angle of 42.7 degrees to 43.7 degrees, it can be confirmed that rhombohedral crystals are not included. Further, the rhombohedral crystal structure is formed by lattice distortion generated when pulverizing hexagonal graphite.
The graphite particles used in the present invention preferably do not contain rhombohedral crystals. Graphite that does not contain rhombohedral crystals has very little lattice distortion, and therefore tends to have excellent charge-discharge cycle characteristics. The crystal structure degree is measured by the method described in Examples.
[BET比表面積]
 本発明の一実施態様にかかる黒鉛粒子のBET比表面積は0.1m/g以上が好ましい。0.1m/g以上であると固体電解質粒子との接触面積が大きくなり充放電レート特性が向上する。同様の観点から0.5m/g以上がさらに好ましく、0.8m/g以上が最も好ましい。上限は5.0m/g以下であることが好ましい。5.0m/g以下であると、副反応が抑制され、初回クーロン効率が高くなる。同様の観点から4.0m/g以下がさらに好ましく、3.0m/g以下が最も好ましい。BET比表面積の測定は実施例に記載の方法による。
[BET specific surface area]
The BET specific surface area of the graphite particles according to one embodiment of the present invention is preferably 0.1 m 2 /g or more. When it is 0.1 m 2 /g or more, the contact area with the solid electrolyte particles is increased, and the charge/discharge rate characteristics are improved. From the same viewpoint, 0.5 m 2 /g or more is more preferable, and 0.8 m 2 /g or more is most preferable. The upper limit is preferably 5.0 m 2 /g or less. When it is 5.0 m 2 /g or less, side reactions are suppressed and the initial Coulombic efficiency becomes high. More preferably 4.0 m 2 / g or less from the same viewpoint, 3.0 m 2 / g or less is most preferred. The BET specific surface area is measured by the method described in Examples.
[黒鉛粒子の表面構造]
 本発明の一実施態様にかかる黒鉛粒子は、低結晶性炭素による被覆されていることが好ましい。この場合、黒鉛表面の欠陥が修復されることで初回クーロン効率が向上し、また低結晶性炭素の特性であるリチウムイオンの挿入脱離を容易にする効果も得られレート特性を向上させることができる。低結晶性炭素はアモルファス炭素であることがさらに好ましい。
[Surface structure of graphite particles]
The graphite particles according to one embodiment of the present invention are preferably coated with low crystalline carbon. In this case, the defects on the graphite surface are repaired to improve the initial Coulombic efficiency, and the effect of facilitating the insertion/desorption of lithium ions, which is a characteristic of low crystalline carbon, is also obtained and the rate characteristic can be improved. it can. More preferably, the low crystalline carbon is amorphous carbon.
 黒鉛粒子の一実施態様にかかる低結晶性炭素で被覆する方法として、有機化合物を黒鉛粒子表面に付着させ、900~1500℃の温度範囲で不活性ガス雰囲気下にて焼成する方法が挙げられる。
 有機化合物としては、石油系ピッチ、石炭系ピッチ、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂及びエポキシ樹脂を用いることが好ましく、石油系ピッチまたは石炭系ピッチがさらに好ましい。
 添加量は、黒鉛粒子100質量部に対して0.01質量部以上が好ましい。0.01質量部以上であると初回クーロン効率が優れる傾向にある。同様の観点から0.10質量部以上がさらに好ましく、0.50質量部以上が最も好ましい。添加量は5.00質量部以下が好ましい。5.00質量部以下であると固体電解質との混合が優れる傾向にある。同様の観点から4.00質量部以下がさらに好ましく、2.00質量部以下が最も好ましい。
As a method of coating with low crystalline carbon according to one embodiment of the graphite particles, a method of adhering an organic compound to the surface of the graphite particles and firing it in an inert gas atmosphere at a temperature range of 900 to 1500°C can be mentioned.
As the organic compound, it is preferable to use petroleum pitch, coal pitch, phenol resin, polyvinyl alcohol resin, furan resin, cellulose resin, polystyrene resin, polyimide resin and epoxy resin, and more preferably petroleum pitch or coal pitch. ..
The addition amount is preferably 0.01 parts by mass or more with respect to 100 parts by mass of the graphite particles. If the amount is 0.01 parts by mass or more, the initial Coulomb efficiency tends to be excellent. From the same viewpoint, 0.10 parts by mass or more is more preferable, and 0.50 parts by mass or more is most preferable. The addition amount is preferably 5.00 parts by mass or less. When it is 5.00 parts by mass or less, mixing with the solid electrolyte tends to be excellent. From the same viewpoint, it is more preferably 4.00 parts by mass or less, and most preferably 2.00 parts by mass or less.
 手順としては、有機化合物を溶剤と混ぜて液状にして黒鉛粒子と混合及び混練し、その後に溶剤を揮発させ、焼成処理を行うことで黒鉛粒子表面を低結晶性の炭素層で被覆することができる。また、有機化合物と黒鉛粒子を粉体同士で単純に混合し、それを熱処理する方法でも良い。 As a procedure, an organic compound is mixed with a solvent to be in a liquid state and mixed and kneaded with the graphite particles, and then the solvent is volatilized, and the graphite particles are coated with a low crystalline carbon layer by performing a baking treatment. it can. Alternatively, a method in which the organic compound and the graphite particles are simply mixed with each other and the mixture is heat-treated may be used.
 黒鉛粒子の表面が低結晶性炭素で被覆されると様々な方向からのリチウムイオンを素早く受入れ、放出できるメリットがある。従って、黒鉛粒子内部の結晶化度が高い構造と、黒鉛粒子表面の結晶化度が低い構造とが複合化されることでレート特性に優れ、かつ高容量の電池を得ることができる。 When the surface of the graphite particles is coated with low crystalline carbon, it has the merit that lithium ions from various directions can be quickly accepted and released. Therefore, by combining a structure with high crystallinity inside the graphite particles and a structure with low crystallinity on the surface of the graphite particles, a battery with excellent rate characteristics and high capacity can be obtained.
[ラマンR値]
 黒鉛粒子に対するラマン分光測定によって得られる1350cm-1付近のピーク強度(ID)と1580cm-1付近のピーク強度(IG)の強度比であるR値(ID/IG)を求めることにより黒鉛粒子表面の結晶化度を求めることができる。R値が大きい程、表面の結晶化度が低い。黒鉛粒子の粒子表面の結晶化度が低ければ、表面での電気抵抗が下がり、低温充放電特性が良好になる傾向がある。そのため、本発明の一実施態様にかかる黒鉛粒子のR値は0.05以上が好ましく、0.08以上がより好ましく、0.10以上がさらに好ましい。R値が小さい程、黒鉛粒子の粒子表面の結晶化度が高い。サイクル特性を確保するには、黒鉛粒子の粒子表面の結晶化度はある程度高いほうが好ましい。そのため、黒鉛粒子のR値は0.40以下であることが好ましく、0.35以下がより好ましく、0.30以下がさらに好ましい。
[Raman R value]
The R value (ID/IG), which is the intensity ratio of the peak intensity (ID) near 1350 cm −1 and the peak intensity (IG) near 1580 cm −1 obtained by Raman spectroscopy for the graphite particles, The crystallinity can be determined. The larger the R value, the lower the crystallinity of the surface. If the crystallinity of the surface of the graphite particles is low, the electric resistance on the surface tends to be low, and the low temperature charge/discharge characteristics tend to be good. Therefore, the R value of the graphite particles according to one embodiment of the present invention is preferably 0.05 or more, more preferably 0.08 or more, and further preferably 0.10 or more. The smaller the R value, the higher the crystallinity of the graphite particle surface. In order to secure the cycle characteristics, it is preferable that the crystallinity of the graphite particle surface is high to some extent. Therefore, the R value of the graphite particles is preferably 0.40 or less, more preferably 0.35 or less, and further preferably 0.30 or less.
[I(110)/I(004)]
 本発明の一実施態様にかかる黒鉛粒子には、比較的柔らかい黒鉛粒子を使用する。黒鉛粒子が柔らかい材料である場合、圧縮成形した際に変形し固体電解質に接触する面積が多くなり、レート特性が向上するからである。粉末X線回折法によって測定される(004)面回折ピークの強度と(110)面回折ピークの強度との比I(110)/I(004)は粒子の変形のしやすさを示すものであり、低い場合は粒子が変形しやすく、高い場合は変形しにくいことを表す。
 本発明の一実施態様にかかる黒鉛粒子のI(110)/I(004)は0.01以上が好ましく、0.02以上がさらに好ましい。0.01以上であると、過度の配向が抑えられることで高いレート特性が得られる。I(110)/I(004)は0.20以下が好ましい。0.20以下であると、圧縮成形した際に変形しやすく、固体電解質に接触する面積が多くなることで、レート特性が向上するためである。同様の観点から、0.15以下がさらに好ましく、0.12以下が最も好ましい。
[固体電解質]
[I(110)/I(004)]
As the graphite particles according to one embodiment of the present invention, relatively soft graphite particles are used. This is because when the graphite particles are a soft material, the area that is deformed during compression molding and comes into contact with the solid electrolyte is increased, and the rate characteristics are improved. The ratio I(110)/I(004) of the intensity of the (004) plane diffraction peak and the intensity of the (110) plane diffraction peak measured by the powder X-ray diffraction method indicates the ease of deformation of the particles. Yes, when it is low, the particles are easily deformed, and when it is high, it is difficult to deform.
The I(110)/I(004) of the graphite particles according to one embodiment of the present invention is preferably 0.01 or more, more preferably 0.02 or more. When it is 0.01 or more, high rate characteristics can be obtained because excessive orientation is suppressed. I(110)/I(004) is preferably 0.20 or less. If it is 0.20 or less, it is likely to be deformed during compression molding, and the area in contact with the solid electrolyte is increased, so that the rate characteristic is improved. From the same viewpoint, 0.15 or less is more preferable, and 0.12 or less is most preferable.
[Solid electrolyte]
 本発明の一実施態様にかかる固体電解質は、酸化物系固体電解質および硫化物系固体電解質から選ばれる少なくとも1種を使用する。 The solid electrolyte according to one embodiment of the present invention uses at least one selected from an oxide solid electrolyte and a sulfide solid electrolyte.
 酸化物系固体電解質としては、ガーネット型複合酸化物、ペロブスカイト型複合酸化物、LISICON型複合酸化物、NASICON型複合酸化物、Liアルミナ型複合酸化物、LIPON、酸化物ガラスが挙げられる。これらの酸化物系固体電解質のうち、負極電位が低くても安定的に使用できる酸化物系固体電解質を選択することが好ましい。例えば、La0.51Li0.34TiO2.94、Li1.3l0.3Ti1.7(PO43、Li7La3Zr212、50Li4SiO4・50Li3BO3、Li2.9PO3.30.46、Li3.6Si0.60.44、Li1.07Al0.69Ti1.46(PO43、Li1.5l0.5Ge1.5(PO43が好適である。 Examples of the oxide-based solid electrolyte include garnet-type complex oxide, perovskite-type complex oxide, LISICON-type complex oxide, NASICON-type complex oxide, Li-alumina-type complex oxide, LIPON, and oxide glass. Among these oxide-based solid electrolytes, it is preferable to select an oxide-based solid electrolyte that can be stably used even if the negative electrode potential is low. For example, La 0.51 Li 0.34 TiO 2.94 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 7 La 3 Zr 2 O 12 , 50Li 4 SiO 4 .50Li 3 BO 3 , Li 2.9 PO 3.3 N 0.46 , Li 3.6 Si 0.6 P 0.4 O 4 , Li 1.07 Al 0.69 Ti 1.46 (PO 4 ) 3 and Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 are preferable.
 硫化物系固体電解質としては、硫化物ガラス、硫化物ガラスセラミック、Thio-LISICON型硫化物が挙げられる。これらの硫化物系固体電解質のうち、負極電位が低くても安定的に使用できる硫化物系固体電解質を選択することが好ましい。例えば、Li10GeP212、Li3.25Ge0.250.754、30Li2S・26B23・44LiI、63Li2S・36SiS2・1Li3PO4、57Li2S・38SiS2・5Li4SiO4、70Li2S・30P25、50Li2S・50GeS2、Li7311、Li3.250.954、Li3PS4、Li2S・P23・P25が好適である。 Examples of the sulfide-based solid electrolyte include sulfide glass, sulfide glass ceramic, and Thio-LISICON type sulfide. Among these sulfide-based solid electrolytes, it is preferable to select a sulfide-based solid electrolyte that can be stably used even if the negative electrode potential is low. For example, Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4 , 30Li 2 S.26B 2 S 3 .44LiI, 63Li 2 S.36SiS 2 .1Li 3 PO 4 , 57Li 2 S.38SiS 2 .5Li 4 SiO 4 , 70Li 2 S·30P 2 S 5 , 50Li 2 S·50GeS 2 , Li 7 P 3 S 11 , Li 3.25 P 0.95 S 4 , Li 3 PS 4 , Li 2 S·P 2 S 3 ·P 2 S 5 is preferred.
 負極電位が低くても安定的に使用できる固体電解質を、本発明の負極活物質と組み合わせることで、全固体リチウムイオン電池の電池性能がさらに向上する。上記の固体電解質は1種類で用いてもよいし、2種以上を組み合わせて用いることも可能である。本発明の一実施態様にかかる固体電解質には、硫化物系固体電解質を使用することがさらに好ましい。 By combining a solid electrolyte that can be used stably even with a low negative electrode potential with the negative electrode active material of the present invention, the battery performance of an all-solid-state lithium-ion battery is further improved. The above solid electrolytes may be used alone or in combination of two or more. It is more preferable to use a sulfide-based solid electrolyte for the solid electrolyte according to one embodiment of the present invention.
 本発明の一実施態様にかかる固体電解質は、体積基準累積粒径分布における50%粒子径(D50)が0.10μm以上である。0.10μm以上とすると、イオン伝導率が優れるためである。同様の観点から、0.20μm以上が好ましく、0.30μm以上がさらに好ましい。D50は3.00μm以下である。3.00μm以下とすることで、充填性が優れるためである。同様の観点から、2.00μm以下が好ましく、1.50μm以下がさらに好ましい。 The solid electrolyte according to one embodiment of the present invention has a 50% particle size (D50) in the volume-based cumulative particle size distribution of 0.10 μm or more. This is because when the thickness is 0.10 μm or more, the ionic conductivity is excellent. From the same viewpoint, 0.20 μm or more is preferable, and 0.30 μm or more is further preferable. D50 is 3.00 μm or less. This is because when the thickness is 3.00 μm or less, the filling property is excellent. From the same viewpoint, it is preferably 2.00 μm or less, more preferably 1.50 μm or less.
 本発明の一実施態様にかかる前記固体電解質のD50が前記黒鉛粒子のD50に対して1/10以下であることが好ましい。これは黒鉛粒子のサイズに対して固体電解質粒子のサイズを一定以下にすることで、黒鉛間の隙間に固体電解質が分散しやすくイオン伝導性が優れるからである。同様の観点から、1/50以下がより好ましく1/100が最も好ましい。 The D50 of the solid electrolyte according to one embodiment of the present invention is preferably 1/10 or less of the D50 of the graphite particles. This is because when the size of the solid electrolyte particles is set to be equal to or smaller than the size of the graphite particles, the solid electrolyte is easily dispersed in the gaps between the graphite and the ionic conductivity is excellent. From the same viewpoint, 1/50 or less is more preferable, and 1/100 is most preferable.
[導電助剤]
 導電助剤としては、粒子状炭素質導電助剤、繊維状炭素質導電助剤を用いることが好ましい。粒子状炭素質導電助剤は、デンカブラック(登録商標)(電気化学工業(株)製)、ケッチェンブラック(登録商標)(ライオン(株)製)、黒鉛微粉SFGシリーズ(Timcal社製)、グラフェン等の粒子状炭素を使用することができる。
 繊維状炭素質導電助剤は、気相法炭素繊維「VGCF(登録商標)」「VGCF(登録商標)‐H」(昭和電工(株)製)、カーボンナノチューブ、カーボンナノホーン等を使用することができる。サイクル特性に優れることから気相法炭素繊維「VGCF(登録商標)‐H」(昭和電工(株)製)が最も好ましい。
[Conductive agent]
As the conduction aid, it is preferable to use a particulate carbonaceous conduction aid or a fibrous carbonaceous conduction aid. The particulate carbonaceous conductive aids include Denka Black (registered trademark) (manufactured by Denki Kagaku Kogyo KK), Ketjen Black (registered trademark) (manufactured by Lion Corporation), graphite fine powder SFG series (manufactured by Timcal), Particulate carbon such as graphene can be used.
As the fibrous carbonaceous conduction aid, vapor-phase carbon fiber “VGCF (registered trademark)” “VGCF (registered trademark)-H” (manufactured by Showa Denko KK), carbon nanotube, carbon nanohorn, etc. may be used. it can. Vapor grown carbon fiber "VGCF (registered trademark)-H" (manufactured by Showa Denko KK) is most preferable because it has excellent cycle characteristics.
[固体電解質層]
 固体電解質層は固体電解質が含まれる層であれば、特に制限はなく、目的に応じて適宜選択することができる。固体電解質は負極合剤層に用いるものと同種のものであることが好ましい。
[Solid electrolyte layer]
The solid electrolyte layer is not particularly limited as long as it is a layer containing a solid electrolyte, and can be appropriately selected according to the purpose. The solid electrolyte is preferably the same as that used for the negative electrode mixture layer.
[正極合剤層]
 正極合剤層は正極活物質が含まれる層であれば、特に制限はなく、目的に応じて適宜選択することができる。正極合剤層は固体電解質を含むことが好ましい。固体電解質は負極合剤層に用いるものと同種のものであることがさらに好ましい。
[Positive electrode mixture layer]
The positive electrode mixture layer is not particularly limited as long as it is a layer containing a positive electrode active material, and can be appropriately selected according to the purpose. The positive electrode mixture layer preferably contains a solid electrolyte. The solid electrolyte is more preferably the same as that used for the negative electrode mixture layer.
[正極活物質]
 正極活物質には公知の正極活物質が採用可能である。例えば、LiCoO、LiMnO、LiNiO、LiVO、LiNi1/3Mn1/3Co1/3等の岩塩型層状活物質、LiMn等のスピネル型活物質、LiFePO、LiMnPO、LiNiPO、LiCuPO等のオリビン型活物質、LiS等の硫化物活物質等を使用することができる。
[Cathode active material]
A known positive electrode active material can be adopted as the positive electrode active material. For example, rock salt type layered active materials such as LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , spinel type active materials such as LiMn 2 O 4 , LiFePO 4 , An olivine-type active material such as LiMnPO 4 , LiNiPO 4 , LiCuPO 4 or a sulfide active material such as Li 2 S can be used.
 正極活物質の体積基準累積粒径分布における50%粒子径(D50)は1μm以上30μm以下が好ましく、3μm以上10μm以下がさらに好ましい。正極活物質の粒子サイズは固体電解質層に含まれる固体電解質粒子に対して10倍以上が好ましい。 The 50% particle size (D50) in the volume-based cumulative particle size distribution of the positive electrode active material is preferably 1 μm or more and 30 μm or less, more preferably 3 μm or more and 10 μm or less. The particle size of the positive electrode active material is preferably 10 times or more the size of the solid electrolyte particles contained in the solid electrolyte layer.
[結着剤]
 負極、正極の形状を維持するために公知の結着剤を用いることもできる。例えば、ポリフッ化ビニリデン、ポリウレタン、ポリシロキサン、ポリテトラフルオロエチレン、ポリブタジエン等を用いることができる。
[Binder]
A known binder may be used to maintain the shapes of the negative electrode and the positive electrode. For example, polyvinylidene fluoride, polyurethane, polysiloxane, polytetrafluoroethylene, polybutadiene, etc. can be used.
[製造方法]
[固体電解質粒子の製造方法]
 負極活物質層、固体電解質粒子を製造する手段は特に限定されない。例えば乳鉢、遊星ミル、ボールミル、振動ミル、メカノフュージョン(登録商標)等を用いてメカニカルミリング処理を行うことで得られる。
[Production method]
[Method for producing solid electrolyte particles]
Means for producing the negative electrode active material layer and the solid electrolyte particles are not particularly limited. For example, it can be obtained by performing mechanical milling treatment using a mortar, a planetary mill, a ball mill, a vibration mill, Mechanofusion (registered trademark), or the like.
[固体電解質層の製造方法]
 固体電解質層の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記固体電解質粒子を圧縮成形する方法などが挙げられる。
[Method for producing solid electrolyte layer]
The method for producing the solid electrolyte layer is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method of compression-molding the solid electrolyte particles.
[正極の製造方法]
 正極の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば正極活物質と固体電解質と導電助剤を乳鉢で10分間混合し、さらに遊星型ボールミルを用いて100rpmで1時間ミリング処理することにより均一化し、内径10mmφのポリエチレン製ダイとSUS製のパンチを用いて一軸プレス成形機により400MPaでプレス成形することで、円柱状正極合剤層を得ることができる。これに正極集電体を密着させることで正極を得ることができる。
[Production method of positive electrode]
The method for producing the positive electrode is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a positive electrode active material, a solid electrolyte, and a conductive additive are mixed in a mortar for 10 minutes, and a planetary ball mill is used. A cylindrical positive electrode mixture layer can be obtained by homogenizing by milling at 100 rpm for 1 hour and press-molding at 400 MPa with a uniaxial press molding machine using a polyethylene die having an inner diameter of 10 mmφ and a SUS punch. .. A positive electrode can be obtained by bringing the positive electrode current collector into close contact therewith.
[正極集電体]
 正極集電体にはアルミ箔またはSUS箔が使用可能であり、カーボンコートまたは酸化物コートした箔を用いることもできる。コートする方法は特に限定されない。またカーボンコート層に含まれるカーボンも特に限定されないが、アセチレンブラック、ケッチェンブラック(登録商標)、カーボンナノチューブ、グラフェン、気相法炭素繊維、人造黒鉛微粉末等を用いることができる。集電体には圧延箔、電解箔のいずれも用いることができる。
[Positive electrode collector]
Aluminum foil or SUS foil can be used for the positive electrode current collector, and carbon-coated or oxide-coated foil can also be used. The method of coating is not particularly limited. The carbon contained in the carbon coat layer is not particularly limited, and acetylene black, Ketjen Black (registered trademark), carbon nanotube, graphene, vapor grown carbon fiber, artificial graphite fine powder, etc. can be used. Both rolled foil and electrolytic foil can be used for the current collector.
 [負極の製造方法]
 負極の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばアルゴンガス雰囲気にしたグローブボックス内で負極活物質と固体電解質と必要に応じて導電助剤を乳鉢で混合し、さらに遊星型ボールミルを用いて100rpmで1時間ミリング処理することにより均一化し、内径10mmφのポリエチレン製ダイとSUS製のパンチを用いて一軸プレス成形機により400MPaでプレス成形することで、円柱状負極合剤層を得ることができる。これに負極集電体を密着させることで負極を得ることができる。
[Negative electrode manufacturing method]
The method for producing the negative electrode is not particularly limited and may be appropriately selected depending on the intended purpose.For example, a negative electrode active material, a solid electrolyte, and a conductive auxiliary agent as necessary in a glove box in an argon gas atmosphere are mortared. And then homogenized by milling at 100 rpm for 1 hour using a planetary ball mill, and press-molded at 400 MPa with a uniaxial press molding machine using a polyethylene die having an inner diameter of 10 mmφ and a SUS punch, A columnar negative electrode mixture layer can be obtained. The negative electrode can be obtained by bringing the negative electrode current collector into close contact therewith.
[負極集電体]
 負極集電体にはニッケル箔が使用可能であり、カーボンコートまたは酸化物コートしたニッケル箔を用いることもできる。コートする方法は特に限定されない。またカーボンコート層に含まれるカーボンも特に限定されないが、アセチレンブラック、ケッチェンブラック(登録商標)、カーボンナノチューブ、グラフェン、気相法炭素繊維、人造黒鉛微粉末等を用いることができる。集電体には圧延箔、電解箔のいずれも用いることができる。
[Negative electrode current collector]
Nickel foil can be used for the negative electrode current collector, and carbon foil or oxide coated nickel foil can also be used. The method of coating is not particularly limited. The carbon contained in the carbon coat layer is not particularly limited, and acetylene black, Ketjen Black (registered trademark), carbon nanotube, graphene, vapor grown carbon fiber, artificial graphite fine powder, or the like can be used. Both rolled foil and electrolytic foil can be used for the current collector.
[全固体電池の製造方法]
 全固体電池の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば前記負極合剤層、前記固体電解質層、前記正極合剤層を、集電体を備えた内径10mmφのポリエチレン製ダイの中に積層し、両側からSUS製のパンチで100MPaの圧力で挟むことで、全固体リチウムイオン電池を得ることができる。
[Method of manufacturing all-solid-state battery]
The method for manufacturing the all-solid-state battery is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the negative electrode mixture layer, the solid electrolyte layer, the positive electrode mixture layer may be provided with a current collector. By laminating in a polyethylene die having an inner diameter of 10 mmφ and sandwiching it from both sides with a SUS punch at a pressure of 100 MPa, an all-solid-state lithium ion battery can be obtained.
 以下、本発明の実施例を具体的に説明する。なお、これらは説明のための単なる例示であって、本発明を限定するものではない。
 なお、実施例及び比較例に用いる黒鉛粒子、全固体電池の特性についての測定方法は以下の通りである。
Hereinafter, examples of the present invention will be specifically described. It should be noted that these are merely examples for explanation and do not limit the present invention.
The methods for measuring the characteristics of the graphite particles and all-solid-state battery used in Examples and Comparative Examples are as follows.
[1]黒鉛粒子の製造
[1-1]黒鉛粒子A
 石油系コークスをバンタムミル(ホソカワミクロン(株)製)を用いて粉砕し、ターボクラシファイヤー(日清エンジニアリング(株)製)を用いて気流分級によりD50=14μmのコークス粒子を得た。
 このコークス粒子を誘導加熱炉を用いてアルゴンガス気流下において3200℃の熱処理を10分間行って黒鉛粒子Aを得た。
[1] Production of graphite particles [1-1] Graphite particles A
Petroleum-based coke was crushed using a bantam mill (manufactured by Hosokawa Micron Co., Ltd.), and coke particles of D50=14 μm were obtained by air flow classification using a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.).
The coke particles were heat-treated at 3200° C. for 10 minutes in an argon gas stream using an induction heating furnace to obtain graphite particles A.
[1-2]黒鉛粒子B
 黒鉛粒子A100質量部と石炭系ピッチ2質量部を混合し、200℃の熱を加えながら30分間混練した。その後、窒素ガス気流下において1000℃で1時間の焼成処理を行い、最後に目開き45μmの篩を通すことでアモルファス炭素で被覆された黒鉛粒子Bを得た。
[1-2] Graphite particles B
100 parts by mass of graphite particles A and 2 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat at 200°C. After that, a firing treatment was performed at 1000° C. for 1 hour under a nitrogen gas stream, and finally, a graphite particle B coated with amorphous carbon was obtained by passing through a sieve having an opening of 45 μm.
[1-3]黒鉛粒子C
 石炭系コークスをバンタムミル(ホソカワミクロン(株)製)を用いて粉砕し、ターボクラシファイヤー(日清エンジニアリング(株)製)を用いて気流分級によりD50=12μmのコークス粒子を得た。
 このコークス粒子を誘導加熱炉を用いてアルゴンガス気流下において3200℃の熱処理を10分間行って黒鉛粒子Cを得た。
[1-3] Graphite particles C
Coal-based coke was crushed using a bantam mill (manufactured by Hosokawa Micron Co., Ltd.), and coke particles of D50=12 μm were obtained by air classification using a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.).
The coke particles were heat-treated at 3200° C. for 10 minutes in an argon gas stream using an induction heating furnace to obtain graphite particles C.
[1-4]黒鉛粒子D
 黒鉛粒子C100質量部と石炭系ピッチ2質量部を混合し、200℃の熱を加えながら30分間混練した。その後、窒素ガス気流下において1000℃で1時間の焼成処理を行い、最後に目開き45μmの篩を通すことでアモルファス炭素で被覆された黒鉛粒子Dを得た。
[1-4] Graphite particles D
100 parts by mass of graphite particles C and 2 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat at 200°C. Then, a firing treatment was performed at 1000° C. for 1 hour in a nitrogen gas stream, and finally, a graphite particle D covered with amorphous carbon was obtained by passing through a sieve having an opening of 45 μm.
[1-5]黒鉛粒子E
 グリーンメソカーボンをバンタムミル(ホソカワミクロン(株)製)を用いて粉砕し、ターボクラシファイヤー(日清エンジニアリング(株)製)を用いて気流分級によりD50=17μmのカーボン粒子を得た。
 このカーボン粒子を誘導加熱炉を用いてアルゴンガス気流下において3200℃の熱処理を10分間行って黒鉛粒子Eを得た。
[1-5] Graphite particles E
Green mesocarbon was crushed using a bantam mill (manufactured by Hosokawa Micron Co., Ltd.), and carbon particles having D50=17 μm were obtained by air classification using a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.).
The carbon particles were heat-treated at 3200° C. for 10 minutes in an argon gas stream using an induction heating furnace to obtain graphite particles E.
[1-6]黒鉛粒子F
 黒鉛粒子E100質量部と石炭系ピッチ2質量部を混合し、200℃の熱を加えながら30分間混練した。その後、窒素ガス気流下において1000℃で1時間の焼成処理を行い、最後に目開き45μmの篩を通すことでアモルファス炭素で被覆された黒鉛粒子Fを得た。
[1-6] Graphite particles F
100 parts by mass of graphite particles E and 2 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat of 200°C. Then, a firing treatment was performed at 1000° C. for 1 hour under a nitrogen gas stream, and finally, a graphite particle F coated with amorphous carbon was obtained by passing through a sieve having an opening of 45 μm.
[1-7]黒鉛粒子G
 石油系コークスをバンタムミル(ホソカワミクロン(株)製)を用いて粉砕し、ターボクラシファイヤー(日清エンジニアリング(株)製)を用いて気流分級によりD50=7μmのコークス粒子を得た。このコークス粒子を誘導加熱炉を用いてアルゴンガス気流下において3200℃の熱処理を10分間行った。得られた粒子100質量部に対して石炭系ピッチ8質量部を混合し、200℃の熱を加えながら30分間混練した。その後、窒素ガス気流下において1000℃で1時間の焼成処理を行い、最後に目開き45μmの篩を通すことでアモルファス炭素で被覆された黒鉛粒子Gを得た。
[1-7] Graphite particles G
Petroleum-based coke was crushed using a bantam mill (manufactured by Hosokawa Micron Co., Ltd.), and coke particles of D50=7 μm were obtained by air classification using a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.). The coke particles were heat-treated at 3200° C. for 10 minutes in an argon gas stream using an induction heating furnace. 8 parts by mass of coal-based pitch was mixed with 100 parts by mass of the obtained particles, and kneaded for 30 minutes while applying heat of 200°C. Thereafter, a firing treatment was performed at 1000° C. for 1 hour under a nitrogen gas stream, and finally, a graphite particle G covered with amorphous carbon was obtained by passing through a sieve having an opening of 45 μm.
[1-8]黒鉛粒子H
 石油系コークスをバンタムミル(ホソカワミクロン(株)製)を用いて粉砕し、ターボクラシファイヤー(日清エンジニアリング(株)製)を用いて気流分級によりD50=18μmのコークス粒子を得た。
 このコークス粒子を誘導加熱炉を用いてアルゴンガス気流下において2800℃の熱処理を10分間行った。得られた粒子100質量部と石炭系ピッチ2質量部を混合し、200℃の熱を加えながら30分間混練した。その後、窒素ガス気流下において1000℃で1時間の焼成処理を行い、最後に目開き45μmの篩を通すことでアモルファス炭素で被覆された黒鉛粒子Hを得た。
[1-8] Graphite particles H
Petroleum-based coke was crushed using a bantam mill (manufactured by Hosokawa Micron Co., Ltd.), and coke particles of D50=18 μm were obtained by air flow classification using a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.).
The coke particles were heat-treated at 2800° C. for 10 minutes in an argon gas stream using an induction heating furnace. 100 parts by mass of the obtained particles and 2 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat of 200°C. Thereafter, a firing treatment was performed at 1000° C. for 1 hour under a nitrogen gas stream, and finally, a graphite particle H covered with amorphous carbon was obtained by passing through a sieve having an opening of 45 μm.
[1-9]黒鉛粒子I
 D50=10μmのグリーンメソカーボン粒子を誘導加熱炉を用いてアルゴンガス気流下において3200℃の熱処理を10分間行って黒鉛粒子を得た。得られた粒子100質量部と石炭系ピッチ2質量部を混合し、200℃の熱を加えながら30分間混練した。その後、窒素ガス気流下において1000℃で1時間の焼成処理を行い、最後に目開き45μmの篩を通すことでアモルファス炭素で被覆された黒鉛粒子Iを得た。
[1-9] Graphite particles I
Green mesocarbon particles having a D50 of 10 μm were heat-treated at 3200° C. for 10 minutes in an argon gas stream using an induction heating furnace to obtain graphite particles. 100 parts by mass of the obtained particles and 2 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat of 200°C. Thereafter, a firing treatment was performed at 1000° C. for 1 hour under a nitrogen gas flow, and finally, a graphite particle I covered with amorphous carbon was obtained by passing through a sieve having an opening of 45 μm.
[1-10]黒鉛粒子J
 石油系コークスを電気式管状炉を用いて窒素ガス気流下1500℃で60分間の熱処理を行った。得られた粒子をバンタムミル(ホソカワミクロン(株)製)を用いて粉砕し、ターボクラシファイヤー(日清エンジニアリング(株)製)を用いて気流分級によりD50=14μmのコークス粒子を得た。
 このコークス粒子を誘導加熱炉を用いてアルゴンガス気流下において3200℃の熱処理を10分間行い、最後に目開き45μmの篩を通すことで黒鉛粒子Jを得た。
[1-10] Graphite particles J
The petroleum coke was heat-treated for 60 minutes at 1500° C. in a nitrogen gas stream using an electric tubular furnace. The obtained particles were crushed using a Bantam mill (manufactured by Hosokawa Micron Co., Ltd.), and coke particles of D50=14 μm were obtained by air classification using a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.).
The coke particles were heat-treated at 3200° C. for 10 minutes in an argon gas stream using an induction heating furnace, and finally passed through a sieve having an opening of 45 μm to obtain graphite particles J.
[1-11]黒鉛粒子K
 D50=12μmの球状化天然黒鉛100質量部と石炭系ピッチ2質量部を混合し、200℃の熱を加えながら30分間混練した。その後、窒素ガス気流下において1000℃で1時間の焼成処理を行い、最後に目開き45μmの篩を通すことで黒鉛粒子Kを得た。
[1-11] Graphite particles K
100 parts by mass of spheroidized natural graphite having D50=12 μm and 2 parts by mass of coal-based pitch were mixed and kneaded for 30 minutes while applying heat at 200° C. Thereafter, a firing treatment was performed at 1000° C. for 1 hour in a nitrogen gas stream, and finally, a graphite particle K was obtained by passing through a sieve having an opening of 45 μm.
[2]黒鉛粒子の評価
[2-1]体積基準累積粒径分布における50%粒子径(D50)
 粒度測定装置:Malvern製Mastersizer2000
 5mgのサンプルを容器に入れ、界面活性剤が0.04質量%含まれた水を10g加えて5分間超音波処理を行った後に測定を行った。
[2] Evaluation of graphite particles [2-1] 50% particle size (D50) in volume-based cumulative particle size distribution
Particle size measuring apparatus: Mastersizer2000 manufactured by Malvern
A 5 mg sample was placed in a container, 10 g of water containing 0.04% by mass of a surfactant was added, and ultrasonic treatment was carried out for 5 minutes, followed by measurement.
[2-2]粉末X線回折測定
[2-2-1]d002
 サンプルと標準シリコン(NIST製)が9対1の質量比になるように混ぜた混合物をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下の条件で測定を行った。
 XRD装置:Rigaku製SmartLab
 X線種:Cu-Kα線
 Kβ線除去方法:Niフィルター
 X線出力:45kV、200mA
 測定範囲:24.0~30.0deg.
 スキャンスピード:2.0deg./min.
 得られた波形に対し、学振法((稲垣道夫、「炭素」、1963、No.36、25-34頁;Iwashita et al.,Carbon vol.42(2004),p.701-714)を適用し面間隔d002の値を求めた。
[2-2] Powder X-ray diffraction measurement [2-2-1] d002
Fill a glass sample plate (sample plate window 18×20 mm, depth 0.2 mm) with a mixture of the sample and standard silicon (NIST) in a mass ratio of 9:1, and measure under the following conditions: I went.
XRD device: SmartLab manufactured by Rigaku
X-ray type: Cu-Kα ray Kβ ray removal method: Ni filter X-ray output: 45 kV, 200 mA
Measuring range: 24.0 to 30.0 deg.
Scan speed: 2.0 deg. /Min.
Gakshin method ((Michio Inagaki, “Carbon”, 1963, No. 36, pages 25-34; Iwashita et al., Carbon vol. 42 (2004), p. 701-714)) was applied to the obtained waveforms. Then, the value of the surface spacing d002 was determined.
[2-2-2]菱面体晶回折ピーク
 サンプルガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下の条件で測定を行った。
 XRD装置:Rigaku製SmartLab
 X線種:Cu-Kα線
 Kβ線除去方法:Niフィルター
 X線出力:45kV、200mA
 測定範囲:5.0~100.0deg.
 スキャンスピード:2.0deg./min.
 得られた波形に対して、菱面体晶構造の(100)面と(101)面にピークが存在するか確認した。
 (100)面:42.7~43.7deg.
 (101)面:45.5~46.5deg.
 このピークが存在しない場合を菱面体晶が存在しないと判定した。
[2-2-2] Rhombohedral diffraction peak A sample plate made of sample glass (sample plate window 18×20 mm, depth 0.2 mm) was filled and measured under the following conditions.
XRD device: SmartLab manufactured by Rigaku
X-ray type: Cu-Kα ray Kβ ray removal method: Ni filter X-ray output: 45 kV, 200 mA
Measuring range: 5.0 to 100.0 deg.
Scan speed: 2.0 deg. /Min.
With respect to the obtained waveform, it was confirmed whether or not there were peaks on the (100) plane and the (101) plane of the rhombohedral crystal structure.
(100) plane: 42.7 to 43.7 deg.
(101) plane: 45.5 to 46.5 deg.
When this peak did not exist, it was determined that rhombohedral crystals did not exist.
[2-2-3]I(110)/I(004)
 2-2-2で得られた波形に対し、(004)面のピーク強度I(004)と(110)面のピーク強度I(110)から配向性の指標となる強度比I(110)/I(004)を算出した。なお、各面のピークは以下の範囲のうち最大の強度のものをそれぞれのピークとして選択した。
 (004)面:54.0~55.0deg.
 (110)面:76.5~78.0deg.
[2-2-3] I(110)/I(004)
With respect to the waveform obtained in 2-2-2, from the peak intensity I(004) of the (004) plane and the peak intensity I(110) of the (110) plane, the intensity ratio I(110)/ I(004) was calculated. In addition, the peak of each surface selected the thing of the maximum intensity in the following range as each peak.
(004) plane: 54.0 to 55.0 deg.
(110) plane: 76.5 to 78.0 deg.
[2-3]円形度
 円形度測定装置:フロー式粒子像分析装置FPIA-3000(シスメックス社製)
 円形度とは、観測された粒子像の面積と同面積を有する円の周長を粒子像の周長で割ったものであり、1に近いほど真円に近い。円形度は粒子像の面積をS、周長をLとすると、以下の式で表すことができる。
 円形度=(4πS)1/2/L
 黒鉛粒子を目開き106μmのフィルターを通すことで精製し、その試料0.1gを20mlのイオン交換水中に添加し、界面活性剤を0.1~0.5質量%加えることによって均一に分散させ、測定用試料溶液を調製した。分散は超音波洗浄機UT-105S(シャープマニファクチャリングシステム社製)を用い、5分間処理することにより行った。得られた測定用試料溶液を装置に投入し、LPFモードで10000個の粒子に対して解析された円形度の個数基準の度数分布により円形度の中央値を算出した。
[2-3] Circularity Circularity measuring device: Flow type particle image analyzer FPIA-3000 (manufactured by Sysmex Corporation)
The circularity is obtained by dividing the circumference of a circle having the same area as the observed area of a particle image by the circumference of the particle image, and the closer to 1 the closer to a perfect circle. The circularity can be expressed by the following equation, where S is the area of the particle image and L is the perimeter.
Circularity=(4πS) 1/2 /L
The graphite particles were purified by passing through a filter with an opening of 106 μm, 0.1 g of the sample was added to 20 ml of ion-exchanged water, and 0.1-0.5% by mass of a surfactant was added to uniformly disperse the sample. A sample solution for measurement was prepared. The dispersion was performed by using an ultrasonic cleaner UT-105S (manufactured by Sharp Manufacturing System Co.) for 5 minutes. The obtained sample solution for measurement was put into an apparatus, and the median of circularity was calculated from the number-based frequency distribution of circularity analyzed for 10,000 particles in the LPF mode.
[2-4]粒子の凝集状態
 黒鉛粒子の凝集・非凝集状態の観察は、日本電子製FE-SEM(JSM-7600F)により、カラムモードをSEI(加速電圧5.0kV)に設定し目視で行った。
[2-4] Aggregation state of particles To observe the aggregation/non-aggregation state of graphite particles, the column mode was set to SEI (accelerating voltage 5.0 kV) by FE-SEM (JSM-7600F) manufactured by JEOL and visually. went.
[2-5]BET比表面積
 BET比表面積測定装置:Quantachrome社製NOVA2200e
 サンプルセル(9mm×135mm)に3gのサンプルを入れ、300℃、真空条件下で1時間乾燥後、測定を行った。BET比表面積測定用のガスはNを用いた。
[2-5] BET specific surface area BET specific surface area measuring device: NOVA2200e manufactured by Quantachrome
3 g of the sample was placed in a sample cell (9 mm×135 mm), dried at 300° C. under vacuum condition for 1 hour, and then measured. N 2 was used as the gas for measuring the BET specific surface area.
[2-6]ラマン分光分析(R値)
 ラマン分光装置:日本分光株式会社製NRS-5100
 励起波長532.36nm、入射スリット幅200μm、露光時間15秒、積算回数2回、回折格子600本/mmの条件で測定を行い、1300~1400cm-1の範囲にあるピークの強度(ID)と1580~1620cm-1の範囲にあるピークの強度(IG)の強度比をR値(ID/IG)とした。
[2-6] Raman spectroscopic analysis (R value)
Raman spectroscopy: NRS-5100 manufactured by JASCO Corporation
Measurement was performed under the conditions of an excitation wavelength of 532.36 nm, an entrance slit width of 200 μm, an exposure time of 15 seconds, an integration number of 2 times, and a diffraction grating of 600 lines/mm, and a peak intensity (ID) in the range of 1300 to 1400 cm −1. The intensity ratio of the intensity (IG) of the peak in the range of 1580 to 1620 cm −1 was taken as the R value (ID/IG).
[3]電池の作製
[3-1]固体電解質層の作製
 アルゴンガス雰囲気下で出発原料のLiS(日本化学(株)製)とP(シグマ アルドリッチ ジャパン合同会社製)を75:25のモル比率で秤量して混合し、遊星型ボールミル(P-5型、フリッチュ・ジャパン(株)製)及びジルコニアボール(10mmφ7個、3mmφ10個)を用いて20時間メカニカルミリング(回転数400rpm)することにより、D50が8μmのLiPS非晶質固体電解質を得た。
 内径10mmφのポリエチレン製ダイとSUS製のパンチを用いて、一軸プレス成形機によりプレス成形を行うことで、電池評価試験に用いる厚さ960μmの固体電解質層を得た。
[3] Preparation of Battery [3-1] Preparation of Solid Electrolyte Layer In an argon gas atmosphere, starting materials Li 2 S (manufactured by Nippon Kagaku Co., Ltd.) and P 2 S 5 (manufactured by Sigma-Aldrich Japan GK) are used. : Weighing and mixing at a molar ratio of 25, using a planetary ball mill (P-5 type, manufactured by Fritsch Japan KK) and zirconia balls (10 mmφ7 pieces, 3 mmφ10 pieces) for 20 hours mechanical milling (rotation speed 400 rpm) By doing so, a Li 3 PS 4 amorphous solid electrolyte having a D50 of 8 μm was obtained.
Using a polyethylene die having an inner diameter of 10 mmφ and a SUS punch, press molding was performed by a uniaxial press molding machine to obtain a solid electrolyte layer having a thickness of 960 μm used for a battery evaluation test.
[3-2]負極合剤層の作製
 アルゴンガス雰囲気にしたグローブボックス内で負極活物質である黒鉛粒子と固体電解質と必要に応じて導電助剤(デンカブラック(HS-100)またはVGCF-H)を混合し、さらに遊星型ボールミルを用いて100rpmで1時間ミリング処理することにより均一化し、内径10mmφのポリエチレン製ダイとSUS製のパンチを用いて一軸プレス成形機により400MPaでプレス成形することで、電池評価試験に用いる厚さ65μmmである円柱状の負極合剤層を得た。
[3-2] Preparation of Negative Electrode Mixture Layer Graphite particles as a negative electrode active material, a solid electrolyte, and optionally a conductive additive (Denka Black (HS-100) or VGCF-H) in a glove box in an argon gas atmosphere. ) Are mixed and further homogenized by milling at 100 rpm for 1 hour using a planetary ball mill, and press-molded at 400 MPa with a uniaxial press molding machine using a polyethylene die having an inner diameter of 10 mmφ and a SUS punch. A columnar negative electrode mixture layer having a thickness of 65 μm used in the battery evaluation test was obtained.
[3-3]正極合剤層の作製
 正極活物質LiCoO(日本化学工業(株)製、D50:10μm)55質量%、固体電解質(LiPS、D50:8μm)40質量%、デンカブラック(HS-100)5質量%を混合し、さらに遊星型ボールミルを用いて100rpmで1時間ミリング処理することにより均一化し、内径10mmφのポリエチレン製ダイとSUS製のパンチを用いて一軸プレス成形機により400MPaでプレス成形することで、電池評価試験に用いる厚さ65μmの正極合剤層を得た。
[3-3] Preparation of Positive Electrode Mixture Layer Positive electrode active material LiCoO 2 (manufactured by Nippon Kagaku Kogyo Co., Ltd., D50:10 μm) 55% by mass, solid electrolyte (Li 3 PS 4 , D50:8 μm) 40% by mass, Denka 5% by mass of black (HS-100) is mixed and further homogenized by milling at 100 rpm for 1 hour using a planetary ball mill. A uniaxial press molding machine using a polyethylene die with an inner diameter of 10 mmφ and a SUS punch. By press molding at 400 MPa, a positive electrode mixture layer having a thickness of 65 μm used in the battery evaluation test was obtained.
[3-4]電池の組み立て
 正極集電体としてアルミ箔を備えた内径10mmφのポリエチレン製ダイと、負極集電体としてニッケル箔を備えた内径10mmφのポリエチレン製ダイとを1対用意し、前記負極合剤層、固体電解質層、正極合剤層を前記ポリエチレン製ダイの中に積層し、両側からSUS製のパンチで100MPaの圧力で挟むことで、設計容量45mAhの試験電池を得た。
[3-4] Assembly of Battery A pair of a polyethylene die having an inner diameter of 10 mmφ provided with an aluminum foil as a positive electrode collector and a polyethylene die having an inner diameter of 10 mmφ provided with a nickel foil as a negative electrode collector were prepared. A negative electrode material mixture layer, a solid electrolyte layer, and a positive electrode material mixture layer were laminated in the polyethylene die, and sandwiched from both sides with a SUS punch at a pressure of 100 MPa to obtain a test battery having a design capacity of 45 mAh.
[3-5]電池評価
 一回目の充電は1.25mA(0.05C)で4.2Vまで定電流充電を行い、続いて4.2Vの一定電圧で40時間の定電圧充電を行った。
 その後、1.25mA(0.05C)にて2.75Vになるまで定電流放電を行った。初回放電時の容量(mAh)を負極合剤層中の黒鉛粒子の重量で割った値を放電容量(mAh/g)とした。
 2.5mA(0.1C)で放電した時の放電容量を100%とし、これに対する75mA(3.0C)で放電した時の放電容量の割合をレート特性(%)とした。
 25℃にて測定した初回の放電容量を100%として、500サイクル後の放電容量をサイクル特性(%)とした。サイクル特性の測定においては、充電は4.2Vになるまで5.0mA(0.2C)の定電流充電を行い、続いて4.2Vの一定電圧で0.05Cまで電流が小さくなるまで定電圧充電を行った。また、放電は25mA(1.0C)の定電流放電で2.75Vになるまで行った。
[3-5] Battery Evaluation The first charge was 1.25 mA (0.05 C) constant current charge up to 4.2 V, followed by constant voltage charge at 4.2 V for 40 hours.
Then, constant current discharge was performed at 1.25 mA (0.05 C) until the voltage became 2.75 V. The discharge capacity (mAh/g) was obtained by dividing the capacity (mAh) at the first discharge by the weight of the graphite particles in the negative electrode mixture layer.
The discharge capacity when discharged at 2.5 mA (0.1 C) was taken as 100%, and the ratio of the discharge capacity when discharged at 75 mA (3.0 C) to this was taken as the rate characteristic (%).
The initial discharge capacity measured at 25° C. was taken as 100%, and the discharge capacity after 500 cycles was taken as the cycle characteristic (%). In the measurement of cycle characteristics, the constant current charge of 5.0mA (0.2C) is performed until the charge reaches 4.2V, and then the constant voltage is reduced to 0.05C at the constant voltage of 4.2V. Charged. The discharge was performed by constant current discharge of 25 mA (1.0 C) until the voltage reached 2.75V.
実施例1~11,比較例1~10:
 負極合剤層に用いる黒鉛粒子、固体電解質及び導電助剤を表1に示す種類及び量にて、負極及び電池を作製し、それぞれの特性を評価した。結果を表2に示す。正極、固体電解質層の作製は前述のとおりである。
Examples 1 to 11 and Comparative Examples 1 to 10:
A negative electrode and a battery were prepared in the types and amounts shown in Table 1 for the graphite particles, the solid electrolyte, and the conductive additive used for the negative electrode mixture layer, and their respective properties were evaluated. The results are shown in Table 2. The production of the positive electrode and the solid electrolyte layer is as described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  負極合剤層、正極合剤層及び固体電解質層を含む全固体リチウムイオン電池であって、前記負極合剤層は負極活物質を31.0質量%以上85.0質量%以下及び固体電解質を15.0質量%以上69.0質量%以下含み、前記負極活物質は黒鉛結晶面間隔d002が0.3354nm以上0.3360nm以下であり、体積基準累積粒径分布における50%粒子径(D50)が10.0μm以上30.0μm以下であり、円形度が0.84以上0.94以下である非凝集構造の黒鉛粒子を含み、前記固体電解質は酸化物系固体電解質及び硫化物系固体電解質から選ばれる少なくとも1種であり、D50が0.10μm以上3.00μm以下の粒子であることを特徴とする全固体リチウムイオン電池。 An all-solid-state lithium-ion battery including a negative electrode mixture layer, a positive electrode mixture layer, and a solid electrolyte layer, wherein the negative electrode mixture layer contains 31.0% by mass or more and 85.0% by mass or less of a negative electrode active material and a solid electrolyte. 15.0% by mass or more and 69.0% by mass or less, the negative electrode active material has a graphite crystal plane spacing d002 of 0.3354 nm or more and 0.3360 nm or less, and a 50% particle size (D50) in a volume-based cumulative particle size distribution. Is 10.0 μm or more and 30.0 μm or less and includes graphite particles having a non-aggregated structure having a circularity of 0.84 or more and 0.94 or less, and the solid electrolyte is an oxide-based solid electrolyte or a sulfide-based solid electrolyte. An all-solid-state lithium-ion battery, which is at least one selected and has D50 of 0.10 μm or more and 3.00 μm or less.
  2.  前記負極合剤層が、0.1質量%以上5.0質量%以下の導電助剤を含有する請求項1に記載の全固体リチウムイオン電池。 The all-solid-state lithium ion battery according to claim 1, wherein the negative electrode mixture layer contains 0.1% by mass or more and 5.0% by mass or less of a conductive auxiliary agent.
  3.  前記固体電解質のD50が前記黒鉛粒子のD50に対して1/10以下である請求項1または2に記載の全固体リチウムイオン電池。 The all-solid-state lithium-ion battery according to claim 1 or 2, wherein the D50 of the solid electrolyte is 1/10 or less of the D50 of the graphite particles.
  4.  前記黒鉛粒子は菱面体晶を有さない黒鉛粒子である請求項1~3のいずれか1項に記載の全固体リチウムイオン電池。 The all-solid-state lithium ion battery according to any one of claims 1 to 3, wherein the graphite particles are graphite particles having no rhombohedral crystal.
  5.  前記黒鉛粒子のBET比表面積が0.1m/g以上5.0m/g以下である請求項1~4のいずれか1項に記載の全固体リチウムイオン電池。 The all-solid-state lithium ion battery according to any one of claims 1 to 4, wherein the BET specific surface area of the graphite particles is 0.1 m 2 /g or more and 5.0 m 2 /g or less.
  6.  前記黒鉛粒子の表面が低結晶性炭素で被覆されている請求項1~5のいずれか1項に記載の全固体リチウムイオン電池。 The all-solid-state lithium-ion battery according to any one of claims 1 to 5, wherein the surface of the graphite particles is coated with low crystalline carbon.
  7.  前記黒鉛粒子のラマン分光法で測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1580~1620cm-1の範囲にあるピーク強度(IG)との比の値で示されるR値(R=ID/IG)が0.05以上0.40以下である請求項1~6のいずれか1項に記載の全固体リチウムイオン電池。 R value indicated by the ratio of the peak intensity (ID) in the range of 1300 to 1400 cm -1 and the peak intensity (IG) in the range of 1580 to 1620 cm -1 of the graphite particles measured by Raman spectroscopy. The all-solid-state lithium-ion battery according to any one of claims 1 to 6, wherein (R=ID/IG) is 0.05 or more and 0.40 or less.
  8.  前記黒鉛粒子の粉末X線回折測定で測定される(004)面のピーク強度に対する(110)面のピーク強度の比(I(110)/I(004))が0.01以上0.20以下である請求項1~7のいずれか1項に記載の全固体リチウムイオン電池。 The ratio (I(110)/I(004)) of the peak intensity of the (110) plane to the peak intensity of the (004) plane measured by powder X-ray diffraction measurement of the graphite particles is 0.01 or more and 0.20 or less. The all-solid-state lithium-ion battery according to any one of claims 1 to 7.
  9.  前記固体電解質が、硫化物系固体電解質から選ばれる少なくとも1種である請求項1~8のいずれか1項に記載の全固体リチウムイオン電池。 The all-solid-state lithium-ion battery according to any one of claims 1 to 8, wherein the solid electrolyte is at least one selected from sulfide-based solid electrolytes.
  10.  前記導電助剤が、粒子状炭素または繊維状炭素である請求項1~9のいずれか1項に記載の全固体リチウムイオン電池。 The all-solid-state lithium-ion battery according to any one of claims 1 to 9, wherein the conductive additive is particulate carbon or fibrous carbon.
  11.  負極活物質と固体電解質を含む負極合剤であって、前記負極合剤は負極活物質を31.0質量%以上85.0質量%以下及び固体電解質を15.0質量%以上69.0質量%以下含み、前記負極活物質は黒鉛結晶面間隔d002が0.3354nm以上0.3360nm以下であり、体積基準累積粒径分布における50%径(D50)が10.0μm以上30.0μm以下であり、円形度が0.84以上0.94以下である非凝集構造の黒鉛粒子を含み、前記固体電解質は酸化物系固体電解質及び硫化物系固体電解質から選ばれる少なくとも1種であり、D50が0.10μm以上3.00μm以下の粒子であることを特徴とする負極合剤。 A negative electrode mixture containing a negative electrode active material and a solid electrolyte, wherein the negative electrode mixture contains 31.0% by mass or more and 85.0% by mass or less of the negative electrode active material and 15.0% by mass or more and 69.0% by mass of the solid electrolyte. %, the graphite crystal plane spacing d002 of the negative electrode active material is 0.3354 nm or more and 0.3360 nm or less, and the 50% diameter (D50) in the volume-based cumulative particle size distribution is 10.0 μm or more and 30.0 μm or less. And a non-aggregated graphite particle having a circularity of 0.84 or more and 0.94 or less, the solid electrolyte is at least one selected from an oxide solid electrolyte and a sulfide solid electrolyte, and D50 is 0. A negative electrode mixture characterized by comprising particles having a size of 10 μm or more and 3.00 μm or less.
PCT/JP2019/046652 2018-12-05 2019-11-28 All-solid-state lithium ion battery and negative electrode mix WO2020116323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-228374 2018-12-05
JP2018228374A JP2022029464A (en) 2018-12-05 2018-12-05 All-solid-state lithium-ion battery

Publications (1)

Publication Number Publication Date
WO2020116323A1 true WO2020116323A1 (en) 2020-06-11

Family

ID=70973790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046652 WO2020116323A1 (en) 2018-12-05 2019-11-28 All-solid-state lithium ion battery and negative electrode mix

Country Status (3)

Country Link
JP (1) JP2022029464A (en)
TW (1) TW202036965A (en)
WO (1) WO2020116323A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243645A (en) * 2011-05-20 2012-12-10 Sumitomo Electric Ind Ltd Electrode and all-solid state nonaqueous electrolyte battery
WO2015152215A1 (en) * 2014-03-31 2015-10-08 株式会社クレハ Method for producing negative electrode for all-solid battery, and negative electrode for all-solid battery
WO2015152214A1 (en) * 2014-03-31 2015-10-08 株式会社クレハ Negative electrode for all-solid battery and all-solid battery including same
WO2018123967A1 (en) * 2016-12-26 2018-07-05 昭和電工株式会社 All-solid-state lithium ion battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243645A (en) * 2011-05-20 2012-12-10 Sumitomo Electric Ind Ltd Electrode and all-solid state nonaqueous electrolyte battery
WO2015152215A1 (en) * 2014-03-31 2015-10-08 株式会社クレハ Method for producing negative electrode for all-solid battery, and negative electrode for all-solid battery
WO2015152214A1 (en) * 2014-03-31 2015-10-08 株式会社クレハ Negative electrode for all-solid battery and all-solid battery including same
WO2018123967A1 (en) * 2016-12-26 2018-07-05 昭和電工株式会社 All-solid-state lithium ion battery

Also Published As

Publication number Publication date
TW202036965A (en) 2020-10-01
JP2022029464A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
JP6404530B1 (en) All-solid-state lithium ion battery
KR101887952B1 (en) Negative-electrode material for lithium-ion secondary battery
JP6572551B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
EP2602851B1 (en) Method for producing an anode active material for lithium secondary battery
WO2015080203A1 (en) Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
WO2014092141A1 (en) Negative electrode material for lithium ion secondary battery, negative electrode sheet for lithium ion secondary battery, and lithium secondary battery
US20190334173A1 (en) Composite graphite particles, method for producing same, and use thereof
JP2016110969A (en) Negative electrode active material for lithium ion secondary battery, and manufacturing method thereof
JP7293645B2 (en) Composite active material for lithium secondary battery and manufacturing method thereof
JP6619123B2 (en) Anode material for lithium ion secondary battery
JP2018170246A (en) Composite active material for lithium secondary battery and manufacturing method therefor
WO2019031543A1 (en) Negative electrode active material for secondary battery, and secondary battery
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP7248019B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2020116324A1 (en) All-solid-state lithium ion battery and negative electrode mix
CN114597326A (en) Negative electrode active material, negative plate containing negative electrode active material and battery
JP2016115418A (en) Method for using silicon graphite complex particles, material for improvement of discharge capacity of graphite negative electrode for nonaqueous secondary battery, mix particle, electrode and nonaqueous electrolyte secondary battery
JP2020173992A (en) Sulfide solid electrolyte, manufacturing method of sulfide solid electrolyte, electrode body, and all-solid-state battery
JP2000003708A (en) Coated carbon material, manufacture thereof and lithium secondary battery using the material
JP2015219989A (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
WO2020129879A1 (en) All-solid lithium ion battery negative electrode mixture and all-solid lithium ion battery
WO2020110942A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery
WO2020116323A1 (en) All-solid-state lithium ion battery and negative electrode mix
JP2018055999A (en) Low-crystallinity carbon material for negative electrode active material of lithium ion secondary battery, method for manufacturing the same, lithium ion secondary battery negative electrode arranged by use thereof, and lithium ion secondary battery
WO2020110943A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP