JP2012237056A - METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL - Google Patents

METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL Download PDF

Info

Publication number
JP2012237056A
JP2012237056A JP2012065262A JP2012065262A JP2012237056A JP 2012237056 A JP2012237056 A JP 2012237056A JP 2012065262 A JP2012065262 A JP 2012065262A JP 2012065262 A JP2012065262 A JP 2012065262A JP 2012237056 A JP2012237056 A JP 2012237056A
Authority
JP
Japan
Prior art keywords
powder
mocr
target material
average particle
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012065262A
Other languages
Japanese (ja)
Inventor
Masashi Kaminada
真史 上灘
Kazuya Saito
和也 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012065262A priority Critical patent/JP2012237056A/en
Publication of JP2012237056A publication Critical patent/JP2012237056A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a low-oxygen MoCr target material, which achieves low cost and in which a third element is not added, and the MoCr target material.SOLUTION: The method for producing a MoCr target material containing 0.5-50 atom% of Cr and comprising the balance of Mo and unavoidable impurities is provided, which includes the steps of: (1) pulverizing a Mo sintered body to produce a Mo powder having an average particle size of 20-500 μm; (2) producing a reduction treated Mo powder by performing heat treatment of the Mo powder in a reducing atmosphere; (3) preparing a Cr raw material powder having an average particle size of 20-500 μm; (4) producing a mixed powder obtained by mixing the reduction treated Mo powder and the Cr raw material powder; and (5) producing a MoCr sintered body by performing pressure sintering of the mixed powder.

Description

本発明は、スパッタリング等の物理蒸着技術に用いられるMoCrターゲット材の製造方法およびこれにより得られるMoCrターゲット材に関するものである。   The present invention relates to a method for producing a MoCr target material used in physical vapor deposition techniques such as sputtering and a MoCr target material obtained thereby.

現在、平面表示装置の一種である液晶ディスプレイ等の薄膜電極および薄膜配線等には、電気抵抗の小さいMo等の高融点金属膜が広く利用されている。そして、これら薄膜電極および薄膜配線等には、薄膜形成の製造工程中での、耐熱性、耐食性の要求があるため、例えば、Cr、W、Nb等を添加したMo合金の適用が進んでいる。   Currently, refractory metal films such as Mo having a low electrical resistance are widely used for thin film electrodes and thin film wirings of liquid crystal displays, which are a kind of flat display device. These thin film electrodes, thin film wirings, and the like have requirements for heat resistance and corrosion resistance during the manufacturing process of thin film formation, and therefore, for example, application of Mo alloys to which Cr, W, Nb, etc. are added is progressing. .

上記のMo合金を配線として形成する方法としては、同一組成のターゲット材をスパッタリングによって形成する方法が一般的に利用されている。そして、Mo合金のターゲット材に関しては、成分構成やターゲット材に含まれる不純物の低減等に関して様々な提案がなされている。   As a method of forming the Mo alloy as a wiring, a method of forming a target material having the same composition by sputtering is generally used. And regarding the target material of Mo alloy, various proposals are made regarding a component structure, reduction of impurities contained in the target material, and the like.

ターゲット材に含まれる不純物の中で特に問題となるものとして酸素が挙げられる。特にMoCrターゲット材においては、酸素値が高い場合、CrはMoよりも酸素との親和力が強いため、ミクロ組織においてCr中に酸素濃化相が形成される。この酸素濃化相は他の箇所と比較してスパッタレートが遅いため、そこにノジュールとよばれる小さな突起が形成され、これが起因となりパーティクルやスプラッシュ等の問題が多発する場合がある。また、薄膜の電気抵抗が高くなるという問題も発生する。これらの事象からMoCrターゲット材は酸素含有量を低くする必要がある。   Among the impurities contained in the target material, oxygen is particularly problematic. In particular, in the case of a MoCr target material, when the oxygen value is high, Cr has a stronger affinity for oxygen than Mo, so that an oxygen-enriched phase is formed in Cr in the microstructure. Since this oxygen-concentrated phase has a slower sputtering rate than other portions, small protrusions called nodules are formed there, and problems such as particles and splash may occur frequently. Moreover, the problem that the electrical resistance of a thin film becomes high also generate | occur | produces. From these events, the MoCr target material needs to have a low oxygen content.

上記問題点を解決するため、所定の粒径を有するCr原料粉末を固形化したものと、真空中で電子ビーム溶解あるいは不活性ガス雰囲気中でアーク溶解等によって得られるMo溶解品を用いることによって低酸素のMoCrターゲットを製造する方法が提案されている。(特許文献1)   In order to solve the above-mentioned problems, by using a solidified Cr raw material powder having a predetermined particle size and a Mo-dissolved product obtained by, for example, electron beam melting in vacuum or arc melting in an inert gas atmosphere A method for producing a low oxygen MoCr target has been proposed. (Patent Document 1)

一方、別の方法として、炭素を脱酸素剤として添加することによって酸素含有量を低減させる方法が提案されている。(特許文献2)   On the other hand, as another method, a method of reducing the oxygen content by adding carbon as an oxygen scavenger has been proposed. (Patent Document 2)

特開平10−168564号公報JP-A-10-168564 特開2002−194536号公報JP 2002-194536 A

特許文献1に開示されるMoCrターゲットの製造方法は、先ず粒径の大きいCr原料粉末を熱間静水圧プレスによって固形化し、一方Moは真空中で電子ビーム溶解あるいは不活性ガス雰囲気中でアーク溶解等によって溶解して、それぞれ低酸素なバルク体を作製する。次いで作製したCrとMoそれぞれのバルク体を機械加工して、所定形状のターゲットおよびチップとし、これらを狙いの合金組成となるような面積比で配置するという製造方法である。また、特許文献1には、上記で作製したCrバルク体とMoバルク体を交互に多数枚重ね合わせ、引き続いてホットプレスによってこれらを圧着し複合体を得るという製造方法も提案されている。このような製造方法は、複雑且つ高コストであるため経済的に不利である。   In the method for producing a MoCr target disclosed in Patent Document 1, first, a Cr raw material powder having a large particle size is solidified by hot isostatic pressing, while Mo is melted in an electron beam in a vacuum or arc melted in an inert gas atmosphere. Each is dissolved by, for example, a low oxygen bulk body. Next, the manufactured bulk body of Cr and Mo is machined to form a target and a chip having a predetermined shape, and these are arranged in an area ratio so as to obtain a target alloy composition. Patent Document 1 also proposes a manufacturing method in which a large number of Cr bulk bodies and Mo bulk bodies produced above are alternately stacked, and then these are pressed together by hot pressing to obtain a composite. Such a manufacturing method is economically disadvantageous because it is complicated and expensive.

また、特許文献2に開示されるMoCrターゲット材の製造方法は、脱酸素剤として炭素を添加するため、MoCrターゲット中に添加した炭素が残留する場合があり、この残留炭素を起因としたノジュールによりパーティクルやスプラッシュが誘発されるおそれがある。   Moreover, since the manufacturing method of the MoCr target material disclosed by patent document 2 adds carbon as an oxygen scavenger, the carbon added in the MoCr target may remain, and due to the nodule caused by this residual carbon. Particles and splash may be induced.

本発明の目的は、上記課題に鑑み、単純且つ低コストで、さらに第三元素を添加しない方法で低酸素なMoCrターゲット材を製造する方法およびMoCrターゲット材を提供することである。   In view of the above problems, an object of the present invention is to provide a method for producing a low-oxygen MoCr target material and a MoCr target material by a method that is simple and low-cost and that does not add a third element.

すなわち本発明は、
Crを0.5〜50原子%含有し残部Moおよび不可避的不純物からなるMoCrターゲット材の製造方法であって、
(1)Mo焼結体を平均粒径20〜500μmに粉砕してMo粉末を作製する工程と、
(2)該Mo粉末を還元性雰囲気中で熱処理して還元処理Mo粉末を作製する工程と、
(3)平均粒径20〜500μmのCr原料粉末を準備する工程と、
(4)前記還元処理Mo粉末と前記Cr原料粉末とを混合した混合粉末を作製する工程と、
(5)該混合粉末を加圧焼結してMoCr焼結体を作製する工程と、
を有するMoCrターゲット材の製造方法である。
That is, the present invention
A method for producing a MoCr target material containing 0.5 to 50 atomic% of Cr and comprising the remaining Mo and inevitable impurities,
(1) A step of pulverizing the Mo sintered body to an average particle size of 20 to 500 μm to produce Mo powder;
(2) a step of heat-treating the Mo powder in a reducing atmosphere to produce a reduced Mo powder;
(3) preparing a Cr raw material powder having an average particle size of 20 to 500 μm;
(4) producing a mixed powder obtained by mixing the reduction-treated Mo powder and the Cr raw material powder;
(5) pressure-sintering the mixed powder to produce a MoCr sintered body;
It is a manufacturing method of the MoCr target material which has this.

本発明においては、前記混合粉末に、還元処理Mo粉末の平均粒径よりも小さく且つ平均粒径5〜100μmのMo原料粉末をさらに混合してもよい。
また、本発明における加圧焼結は、焼結温度800〜1800℃、圧力10〜200MPaで1〜10時間行うことが好ましい。
また、本発明のMoCrターゲット材は、Crを0.5〜50原子%含有し残部Moおよび不可避的不純物からなるMoCrターゲット材であって、Cr粒周囲に酸素濃化相が連続して存在しないMoCrターゲット材である。
In this invention, you may further mix Mo raw material powder smaller than the average particle diameter of reduction process Mo powder and an average particle diameter of 5-100 micrometers into the said mixed powder.
The pressure sintering in the present invention is preferably performed at a sintering temperature of 800 to 1800 ° C. and a pressure of 10 to 200 MPa for 1 to 10 hours.
In addition, the MoCr target material of the present invention is a MoCr target material containing 0.5 to 50 atomic% of Cr, the balance being Mo and inevitable impurities, and there is no continuous oxygen-enriched phase around the Cr grains. MoCr target material.

本発明によれば、パーティクルやスプラッシュが誘発されるおそれの少ない低酸素のMoCrターゲットを単純な工程でかつ低コストで提供できるため、その工業的価値は極めて大きい。   According to the present invention, a low-oxygen MoCr target that is less likely to induce particles and splash can be provided by a simple process and at a low cost. Therefore, its industrial value is extremely high.

本発明例1で作製したターゲット材の断面のミクロ組織および元素分布を示す図面代用写真である。(a)は光学顕微鏡によって撮影されたミクロ組織写真である。(b)〜(d)は(a)と同一視野においてエネルギー分散型X線分析装置によって撮影された元素分布を示す写真であり、(b)はMo、(c)はCr、(d)は酸素の分布をそれぞれ示している。2 is a drawing-substituting photograph showing a microstructure and element distribution of a cross section of a target material produced in Example 1 of the present invention. (A) is the micro structure photograph image | photographed with the optical microscope. (B) to (d) are photographs showing the element distribution taken by the energy dispersive X-ray analyzer in the same field of view as (a), (b) is Mo, (c) is Cr, (d) is Each distribution of oxygen is shown. 本発明例2で作製したターゲット材の断面のミクロ組織および元素分布を示す図面代用写真である。(a)〜(d)の記号の意味は図1と同一である。It is a drawing substitute photograph which shows the microstructure and element distribution of the cross section of the target material produced in Example 2 of this invention. The meanings of symbols (a) to (d) are the same as those in FIG. 本発明例3で作製したターゲット材の断面のミクロ組織および元素分布を示す図面代用写真である。(a)〜(d)の記号の意味は図1と同一である。It is a drawing substitute photograph which shows the microstructure and element distribution of the cross section of the target material produced in Example 3 of this invention. The meanings of symbols (a) to (d) are the same as those in FIG. 本発明例4で作製したターゲット材の断面のミクロ組織および元素分布を示す図面代用写真である。(a)〜(d)の記号の意味は図1と同一である。It is a drawing substitute photograph which shows the microstructure and element distribution of the cross section of the target material produced in Example 4 of this invention. The meanings of symbols (a) to (d) are the same as those in FIG. 本発明例5で作製したターゲット材の断面のミクロ組織および元素分布を示す図面代用写真である。(a)〜(d)の記号の意味は図1と同一である。It is a drawing substitute photograph which shows the microstructure and element distribution of the cross section of the target material produced in Example 5 of this invention. The meanings of symbols (a) to (d) are the same as those in FIG. 比較例1で作製したターゲット材の断面のミクロ組織および元素分布を示す図面代用写真である。(a)〜(d)の記号の意味は図1と同一である。5 is a drawing-substituting photograph showing a microstructure and element distribution of a cross section of a target material produced in Comparative Example 1. FIG. The meanings of symbols (a) to (d) are the same as those in FIG. 比較例2で作製したターゲット材の断面のミクロ組織および元素分布を示す図面代用写真である。(a)〜(d)の記号の意味は図1と同一である。10 is a drawing-substituting photograph showing a microstructure and element distribution of a cross section of a target material produced in Comparative Example 2. FIG. The meanings of symbols (a) to (d) are the same as those in FIG.

本発明における最大の特徴は、MoCrターゲット材のミクロ組織に存在するCr粒周囲の酸素濃化相を低減するために、焼結前のMo粉末中の酸素含有量を極力低減する方法を採用した点にある。   The greatest feature of the present invention is a method of reducing the oxygen content in the Mo powder before sintering as much as possible in order to reduce the oxygen-concentrated phase around the Cr grains present in the microstructure of the MoCr target material. In the point.

本発明者は、Mo粉末とCr粉末を混合し焼結する際に、焼結容器内に多量に含まれる酸素が、酸素との親和力がMoよりも高いCr粒付近に移動し、Cr粒周囲に酸素濃化相を形成して固定されることを確認した。そして、このCr粒周囲に形成される酸素濃化相が、パーティクルやスプラッシュ等の発生の原因であると考えた。   When the present inventors mix and sinter Mo powder and Cr powder, the oxygen contained in a large amount in the sintering vessel moves to the vicinity of the Cr grains where the affinity for oxygen is higher than that of Mo, and the surroundings of the Cr grains It was confirmed that an oxygen-concentrated phase was formed and fixed. The oxygen-enriched phase formed around the Cr grains was considered to be the cause of generation of particles and splashes.

そこで、本発明者は、MoCrターゲット材の製造にあたり、Cr粒周囲に形成される酸素濃化相を低減するために鋭意検討した結果、以下の工程を有する製造方法を確立した。以下に本発明に係る製造方法を工程ごとに説明する。   Therefore, as a result of intensive studies to reduce the oxygen-concentrated phase formed around the Cr grains in manufacturing the MoCr target material, the present inventor has established a manufacturing method having the following steps. The manufacturing method according to the present invention will be described below for each process.

(1)Mo焼結体を粉砕して平均粒径20〜500μmのMo粉末を作製する工程
本発明においては、先ずMo焼結体を準備する。これは、例えば三酸化Moを還元したMo原料粉末を一度焼結体とした後に平均粒径20〜500μmに粉砕してMo粉末を作製することで、市販される化学製法によって製造される微細なMo原料粉末に比べて、表面積が小さくなりMo粉末表面に存在する酸素量を低減することが可能となるためである。なお、Mo原料粉末を焼結して得られる焼結体は、相対密度80%以上であることが好ましい。焼結手段としては、Mo焼結体の酸素含有量を300質量ppm以下に低減するために、真空脱気した焼結雰囲気でホットプレス、熱間静水圧プレス等の加圧焼結を実施することが望ましい。また、還元性雰囲気中での常圧焼結も望ましい。
そして、Mo焼結体を粉砕してMo粉末を作製する。これは、Mo中にCrが微細に分散したMoCr焼結体を作製するため、Cr原料粉末と十分に混合が可能な粉末形状に再度戻す必要があるためである。本発明では、例えばボールミル、インパクトミル、ジョークラッシャー等の機械的作用により粉砕することで平均粒径20〜500μmのMo粉末にする。
また、平均粒径20〜500μmに調整するのは、20μm未満にまで小さくしようとすると、コストが著しく増加するとともに、生成時にMo粉末の酸化が進みすぎるためである。一方、500μmを越えると、粉末3重点ポアの発生頻度が高くなり、MoCr焼結体の高密度化が達成できにくくなるためである。
(1) The process which grind | pulverizes Mo sintered compact and produces Mo powder with an average particle diameter of 20-500 micrometers In this invention, first, Mo sintered compact is prepared. For example, the Mo raw material powder obtained by reducing Mo trioxide is once made into a sintered body and then pulverized to an average particle size of 20 to 500 μm to produce Mo powder. This is because the surface area becomes smaller than the Mo raw material powder, and the amount of oxygen present on the surface of the Mo powder can be reduced. In addition, it is preferable that the sintered compact obtained by sintering Mo raw material powder has a relative density of 80% or more. As a sintering means, in order to reduce the oxygen content of the Mo sintered body to 300 ppm by mass or less, pressure sintering such as hot pressing and hot isostatic pressing is performed in a vacuum deaerated sintering atmosphere. It is desirable. Also, atmospheric sintering in a reducing atmosphere is desirable.
And Mo powder is grind | pulverized and Mo powder is produced. This is because, in order to produce a MoCr sintered body in which Cr is finely dispersed in Mo, it is necessary to return to a powder shape that can be sufficiently mixed with the Cr raw material powder. In the present invention, Mo powder having an average particle size of 20 to 500 μm is obtained by pulverization by a mechanical action such as a ball mill, impact mill, or jaw crusher.
The reason why the average particle size is adjusted to 20 to 500 μm is that, when trying to reduce the average particle size to less than 20 μm, the cost increases remarkably and the oxidation of the Mo powder proceeds too much during the production. On the other hand, if it exceeds 500 μm, the frequency of generation of powder triple point pores increases, and it becomes difficult to increase the density of the MoCr sintered body.

(2)Mo粉末を還元性雰囲気中で熱処理して還元処理Mo粉末を作製する工程
次に、Mo粉末を還元性雰囲気中で熱処理して還元処理Mo粉末を作製する。
Mo焼結体の状態で酸素含有量が300質量ppm以下であったものを粉砕すると、その後のハンドリングや保管等の時間経過により、Mo粉末の表面に酸素が吸着される。そのため、本発明では、Mo粉末表面に存在する酸素を除去するために、Mo粉末を還元性雰囲気で熱処理をする。本発明での還元性雰囲気としては、例えば水素雰囲気や減圧雰囲気等が利用可能である。また、還元性雰囲気中での熱処理の温度条件としては、概ね500〜1500℃とすることが望ましい。それは、500℃未満では酸素低減効果が極めて小さいためである。一方、1500℃を超えると粉砕したMo粉末同士の接触部分が拡散結合を開始するため、再度の粉砕が必要な場合があるためである。
この熱処理により、本発明は、粉砕後に500質量ppm以上であったMo粉末の酸素含有量を、100質量ppm以下に低減することが可能となる。
(2) Step of producing a reduction-treated Mo powder by heat-treating Mo powder in a reducing atmosphere Next, heat-treating the Mo powder in a reducing atmosphere to produce a reduction-treated Mo powder.
When an oxygen content of 300 mass ppm or less in the state of the Mo sintered body is pulverized, oxygen is adsorbed on the surface of the Mo powder over time, such as subsequent handling and storage. Therefore, in this invention, in order to remove the oxygen which exists in Mo powder surface, Mo powder is heat-processed in a reducing atmosphere. As the reducing atmosphere in the present invention, for example, a hydrogen atmosphere or a reduced pressure atmosphere can be used. Moreover, as temperature conditions of the heat processing in a reducing atmosphere, it is desirable to set it as about 500-1500 degreeC in general. This is because the oxygen reduction effect is extremely small below 500 ° C. On the other hand, when the temperature exceeds 1500 ° C., the contact portion between the pulverized Mo powders starts diffusion bonding, and thus pulverization may be necessary.
By this heat treatment, the present invention can reduce the oxygen content of the Mo powder, which was 500 mass ppm or more after pulverization, to 100 mass ppm or less.

(3)平均粒径20〜500μmのCr原料粉末を準備する工程
本発明で適用できるCr原料粉末としては、純度99%以上で、平均粒径20〜500μmのCr粉末を使用することができる。ここでCr原料粉末の平均粒径をMo粉末と同じく20〜500μmとするのは、Mo粉末とCr原料粉末との粒径差が大き過ぎると、焼結体組織にムラが発生しやすくなり、ターゲットで均一なスパッタリングが行えなくなるためである。
また、本発明で適用するCr原料粉末の酸素含有量は、400質量ppm以下であることが好ましい。これにより、混合粉末の酸素含有量を低く抑えることができ、MoCrターゲット材中のCr粒周囲に形成される酸素濃化相を低減させることが可能となる。
(3) Step of preparing Cr raw material powder having average particle diameter of 20 to 500 μm As Cr raw material powder applicable in the present invention, Cr powder having a purity of 99% or more and an average particle diameter of 20 to 500 μm can be used. Here, the average particle size of the Cr raw material powder is set to 20 to 500 μm as in the case of the Mo powder. If the particle size difference between the Mo powder and the Cr raw material powder is too large, unevenness is likely to occur in the sintered body structure. This is because uniform sputtering cannot be performed with the target.
Moreover, it is preferable that the oxygen content of Cr raw material powder applied by this invention is 400 mass ppm or less. Thereby, the oxygen content of the mixed powder can be kept low, and the oxygen-concentrated phase formed around the Cr grains in the MoCr target material can be reduced.

(4)還元処理Mo粉末とCr原料粉末とを混合した混合粉末を作製する工程
次に、熱処理された還元処理Mo粉末とCr原料粉末とを混合した混合粉末を加圧焼結してMoCr焼結体を作製する。
MoにCrを添加するのは、薄膜にしたときの耐食性を向上させるためであり、Cr含有量が0.5原子%未満であると十分な耐食性が得られない。一方、Crの含有量を50原子%より多くすると、電気抵抗が高くなり過ぎる。よってCr含有量は、0.5〜50原子%とする。
本発明では、還元処理Mo粉末とCr原料粉末とをV型混合機やクロスロータリー混合機等で混合することで均一な混合粉末を得ることができる。粉末の混合は還元性雰囲気中で行うことが好ましい。
また、本発明では、還元処理Mo粉末とCr原料粉末との混合粉末に、還元処理Mo粉末の平均粒径よりも小さく且つ平均粒径5〜100μmのMo原料粉末をさらに混合することが好ましい。これにより焼結性が増し、焼結体密度を向上させることができる。このとき、Mo原料粉末の酸素含有量は、700質量ppm以下が好ましい。また、Mo原料粉末は、Mo粉末の全量に対して50%以下の範囲で添加することが好ましい。
(4) Step of producing a mixed powder in which reduction-treated Mo powder and Cr raw material powder are mixed Next, the mixed powder in which heat-treated reduction-treated Mo powder and Cr raw material powder are mixed is pressure-sintered to burn MoCr. A ligature is prepared.
The reason why Cr is added to Mo is to improve the corrosion resistance when a thin film is formed. If the Cr content is less than 0.5 atomic%, sufficient corrosion resistance cannot be obtained. On the other hand, if the Cr content is more than 50 atomic%, the electrical resistance becomes too high. Therefore, Cr content shall be 0.5-50 atomic%.
In the present invention, a uniform mixed powder can be obtained by mixing the reduced Mo powder and the Cr raw material powder with a V-type mixer or a cross rotary mixer. It is preferable to mix the powder in a reducing atmosphere.
Moreover, in this invention, it is preferable to further mix Mo raw material powder with an average particle diameter of 5-100 micrometers smaller than the average particle diameter of reduction process Mo powder with the mixed powder of reduction process Mo powder and Cr raw material powder. Thereby, sinterability increases and a sintered compact density can be improved. At this time, the oxygen content of the Mo raw material powder is preferably 700 ppm by mass or less. Moreover, it is preferable to add Mo raw material powder in 50% or less of range with respect to the whole quantity of Mo powder.

(5)混合粉末を加圧焼結してMoCr焼結体を作製する工程
混合粉末の加圧焼結には、熱間静水圧プレスやホットプレスが適用可能であり、焼結温度1000〜1800℃、圧力10〜200MPaで1〜10時間行うことが好ましい。
これらの条件の選択は、加圧焼結設備に依存する。例えば熱間静水圧プレスでは、低温高圧の条件が適用しやすく、ホットプレスでは高温低圧の条件が適用しやすい。
なお、焼結温度が1000℃未満では、焼結が進みにくく現実的ではなく、1800℃を超えると、耐え得る装置が限られること、焼結体の組織における結晶成長が著しくなって均一微細な組織が得にくい場合がある。
また、圧力は、10MPa以下では焼結が進みにくく現実的ではなく、200MPaを超えると耐え得る装置が限られるという問題がある。
また、焼結時間は、1時間以下では焼結を十分に進行させるのが難しく、10時間を超えると製造効率において避ける方がよい。
(5) Process of pressure-sintering mixed powder to produce a MoCr sintered body A hot isostatic press or a hot press can be applied to pressure-sintering the mixed powder, and the sintering temperature is 1000 to 1800. It is preferable to perform at 10 degreeC and a pressure of 10-200 MPa for 1 to 10 hours.
The selection of these conditions depends on the pressure sintering equipment. For example, in a hot isostatic press, conditions of low temperature and high pressure are easy to apply, and in hot press, conditions of high temperature and low pressure are easy to apply.
Note that if the sintering temperature is less than 1000 ° C., it is difficult to proceed with sintering, and if it exceeds 1800 ° C., the apparatus that can withstand is limited, and the crystal growth in the structure of the sintered body becomes remarkable, resulting in uniform fineness It may be difficult to obtain an organization.
Further, if the pressure is 10 MPa or less, sintering is difficult to proceed and it is not practical, and if it exceeds 200 MPa, there is a problem that an apparatus that can endure is limited.
In addition, if the sintering time is 1 hour or less, it is difficult to sufficiently advance the sintering, and if it exceeds 10 hours, it is better to avoid the production efficiency.

なお、熱間静水圧プレスやホットプレスで加圧焼結をする際には、混合粉末を加圧容器や加圧用ダイスに充填した後に、加熱しながら減圧脱気をすることが望ましい。減圧脱気は、加熱温度100〜600℃の範囲で、1kPaよりも低い減圧を行うことが望ましい。これは、得られる焼結体の酸素含有量をより低減することが可能となるためである。   In addition, when performing pressure sintering by hot isostatic pressing or hot pressing, it is desirable to deaerate under reduced pressure while heating after filling the mixed powder into a pressure vessel or a pressure die. The vacuum degassing is desirably performed at a pressure lower than 1 kPa within a heating temperature range of 100 to 600 ° C. This is because the oxygen content of the obtained sintered body can be further reduced.

以下に、本発明の実施例について説明する。
先ず、三酸化Moを還元した市販の平均粒径が6μmのMo原料粉末(酸素含有量523質量ppm)を軟鋼製加圧容器に充填した。充填後、加圧容器に脱気口を有する上蓋を溶接した後に450℃の温度下で10Paまで真空脱気し、熱間静水圧プレスで加圧焼結しMo焼結体を得た。なお、熱間静水圧プレスは、1250℃、147MPaの条件下で5時間保持した。このとき、Mo焼結体の相対密度は、99.1%であった。
得られたMo焼結体から軟鋼製加圧容器を剥がしたのち、インパクトミルで粉砕し分級することで、平均粒径100μmと200μmのMo粉末をそれぞれ得た。得られた各Mo粉末は、水素気流中にて1200℃で2時間保持する熱処理を施して酸素を低減する処理を行い、還元処理Mo粉末を得た。このとき、還元処理Mo粉末の酸素含有量は、平均粒径100μmの還元処理Mo粉末が72質量ppm、平均粒径200μmの還元処理Mo粉末が55質量ppmであった。
Examples of the present invention will be described below.
First, a commercially available Mo raw material powder having an average particle diameter of 6 μm (oxygen content: 523 mass ppm) obtained by reducing Mo trioxide was filled into a pressure vessel made of mild steel. After filling, an upper lid having a degassing port was welded to a pressure vessel, and then vacuum degassing was performed to 10 Pa at a temperature of 450 ° C., followed by pressure sintering with a hot isostatic press to obtain a Mo sintered body. The hot isostatic press was held at 1250 ° C. and 147 MPa for 5 hours. At this time, the relative density of the Mo sintered body was 99.1%.
After peeling the mild steel pressure vessel from the obtained Mo sintered body, Mo powders having an average particle size of 100 μm and 200 μm were obtained by pulverizing and classifying with an impact mill. Each of the obtained Mo powders was subjected to a heat treatment that was held at 1200 ° C. for 2 hours in a hydrogen stream to reduce oxygen to obtain a reduction-treated Mo powder. At this time, the oxygen content of the reduction-treated Mo powder was 72 mass ppm for the reduction-treated Mo powder having an average particle size of 100 μm and 55 mass ppm for the reduction-treated Mo powder having an average particle size of 200 μm.

続いて、上記で得られた各還元処理Mo粉末と各Cr原料粉末とを表1に示す割合で配合し、配合された還元処理Mo粉末とCr原料粉末とを原子%で97%Mo−3%Crとなるように配合した後、クロスロータリー混合機で混合し、これを軟鋼製加圧容器に充填した後、該加圧容器に脱気口を有する上蓋を溶接した。このとき、平均粒径65μmのCr粉末の酸素含有量は261質量ppm、平均粒径140μmのCr粉末の酸素含有量は134質量ppmであった。
次いで、上記加圧容器を450℃の温度下で10Paまで真空脱気し、温度1250℃、圧力147MPaの条件下で5時間保持する熱間静水圧プレス処理によって、本発明例1〜本発明例4に係るMoCr焼結体を得た。
Subsequently, each reduction-treated Mo powder obtained above and each Cr raw material powder were blended in the proportions shown in Table 1, and the blended reduction-treated Mo powder and Cr raw material powder were 97% Mo-3 in atomic%. After blending so as to be% Cr, the mixture was mixed with a cross rotary mixer and filled in a pressure vessel made of mild steel, and then an upper lid having a deaeration port was welded to the pressure vessel. At this time, the oxygen content of Cr powder having an average particle size of 65 μm was 261 mass ppm, and the oxygen content of Cr powder having an average particle size of 140 μm was 134 mass ppm.
Next, the pressure vessel was vacuum degassed to 10 Pa at a temperature of 450 ° C. and subjected to hot isostatic pressing for 5 hours under conditions of a temperature of 1250 ° C. and a pressure of 147 MPa. A MoCr sintered body according to No. 4 was obtained.

また、上記で得られた平均粒径100μmの還元処理Mo粉末と三酸化Moを還元した市販の平均粒径6μmのMo原料粉末(酸素含有量586質量ppm)とを表1に示す割合で配合し、クロスロータリー混合機を用いて混合した。次いで、この混合Mo粉末と平均粒径65μmのCr原料粉末(酸素含有量261質量ppm)を、原子%で97%Mo−3%Crとなるように配合した後、クロスロータリー混合機で混合し、これを軟鋼製加圧容器に充填した後、該加圧容器に脱気口を有する上蓋を溶接した。次いで、上記加圧容器を450℃の温度下で10Paまで真空脱気し、温度1250℃、圧力147MPaの条件下で5時間保持する熱間静水圧プレス処理によって、本発明例5に係るMoCr焼結体を得た。   In addition, the reduction-treated Mo powder having an average particle diameter of 100 μm obtained above and a commercially available Mo raw material powder having an average particle diameter of 6 μm (oxygen content 586 mass ppm) obtained by reducing Mo trioxide were blended in the proportions shown in Table 1. And mixed using a cross rotary mixer. Next, this mixed Mo powder and Cr raw material powder having an average particle diameter of 65 μm (oxygen content 261 mass ppm) were blended so as to be 97% Mo−3% Cr in atomic%, and then mixed by a cross rotary mixer. After filling this into a pressurized vessel made of mild steel, an upper lid having a deaeration port was welded to the pressurized vessel. Next, the pressure vessel is vacuum degassed to 10 Pa at a temperature of 450 ° C., and then subjected to MoCr firing according to Example 5 of the present invention by hot isostatic pressing that is held for 5 hours under conditions of a temperature of 1250 ° C. and a pressure of 147 MPa. A ligature was obtained.

比較例として、三酸化Moを還元した市販の平均粒径6μmのMo原料粉末(酸素含有量586質量ppm)と平均粒径65μmのCr原料粉末(酸素含有量261質量ppm)を、原子%で97%Mo−3%Crとなるように配合した後、クロスロータリー混合機で混合し、これを軟鋼製加圧容器に充填した後、該加圧容器に脱気口を有する上蓋を溶接した。次いで、上記加圧容器を450℃の温度下で10Paまで真空脱気し、温度1250℃、圧力147MPaの条件下で5時間保持する熱間静水圧プレス処理によって、比較例1に係るMoCr焼結体を得た。   As a comparative example, a commercially available Mo raw material powder having an average particle diameter of 6 μm (oxygen content 586 mass ppm) and Cr raw material powder having an average particle diameter of 65 μm (oxygen content 261 mass ppm) obtained by reducing Mo trioxide in atomic%. After compounding so that it might become 97% Mo-3% Cr, it mixed with the cross-rotary mixer, and after filling this into the pressurization container made from a mild steel, the upper cover which has a deaeration opening was welded to this pressurization container. Next, the pressure vessel is vacuum degassed to 10 Pa at a temperature of 450 ° C., and the MoCr sintering according to Comparative Example 1 is performed by hot isostatic pressing for 5 hours under conditions of a temperature of 1250 ° C. and a pressure of 147 MPa. Got the body.

また、別の比較例として、三酸化Moを還元した市販の平均粒径6μmのMo原料粉末(酸素含有量586質量ppm)と市販の平均粒径3μmのMo原料粉末(酸素含有量1102質量ppm)とを表1に示す割合で配合し、クロスロータリー混合機で混合した。次いで、この混合Mo粉末と平均粒径65μmのCr原料粉末(酸素含有量261質量ppm)を、原子%で97%Mo−3%Crとなるように配合した後、クロスロータリー混合機で混合し、これを軟鋼製加圧容器に充填した後、該加圧容器に脱気口を有する上蓋を溶接した。次いで、上記加圧容器を450℃の温度下で10Paまで真空脱気し、温度1250℃、圧力147MPaの条件下で5時間保持する熱間静水圧プレス処理によって、比較例2に係るMoCr焼結体を得た。   As another comparative example, a commercially available Mo raw material powder having an average particle size of 6 μm (oxygen content 586 mass ppm) obtained by reducing Mo trioxide and a commercially available Mo raw material powder having an average particle size of 3 μm (oxygen content 1102 mass ppm). ) Were mixed at a ratio shown in Table 1 and mixed with a cross rotary mixer. Next, this mixed Mo powder and Cr raw material powder having an average particle diameter of 65 μm (oxygen content 261 mass ppm) were blended so as to be 97% Mo−3% Cr in atomic%, and then mixed by a cross rotary mixer. After filling this into a pressurized vessel made of mild steel, an upper lid having a deaeration port was welded to the pressurized vessel. Next, the MoCr sintering according to Comparative Example 2 was performed by hot dehydration press treatment in which the pressure vessel was vacuum degassed to 10 Pa at a temperature of 450 ° C. and maintained at a temperature of 1250 ° C. and a pressure of 147 MPa for 5 hours. Got the body.

上記で得た各MoCr焼結体から機械加工により試験片を採取し、酸素含有量を不活性ガス融解赤外線吸収法により測定した。また、焼結体密度をアルキメデス法により測定した。その結果を表2に示す。
表2に示すように、本発明例1〜本発明例5は、いずれも還元処理Mo粉末を使用することで、MoCr焼結体の酸素値が低くなることがわかる。また、焼結体密度においては、混合粉末にさらにMo原料粉末を混合した本発明例5の焼結体で高密度になっていることがわかる。
A test piece was collected from each MoCr sintered body obtained above by machining, and the oxygen content was measured by an inert gas melting infrared absorption method. Moreover, the sintered compact density was measured by the Archimedes method. The results are shown in Table 2.
As shown in Table 2, it can be seen that, in all of Inventive Example 1 to Inventive Example 5, the oxygen value of the MoCr sintered body is lowered by using the reduced Mo powder. Moreover, in the sintered compact density, it turns out that it is high in the sintered compact of this invention example 5 which mixed Mo raw material powder further with mixed powder.

上記で得た各焼結体の光学顕微鏡によって観察したミクロ組織、エネルギー分散型X線分析装置(EDX)によって観察したMo、Cr、酸素の元素分布をそれぞれ図1〜図7に示す。なお、各図の(a)が光学顕微鏡によるミクロ組織を示す図面代用写真、(b)が同一視野におけるMoの元素分布を黒色で示す図面代用写真、(c)が同一視野におけるCrの元素分布を灰色で示す図面代用写真、(d)が同一視野における酸素の元素分布を白色で示す図面代用写真である。
これらの結果から、本発明の製造方法で得た焼結体では、Cr粒周囲に酸素濃化相[(d)に示す白色部]が殆んど存在しないことがわかる。一方、比較例1においては、Cr粒周囲の少なくとも一部に酸素濃化相が連続して存在していることがわかる。また、比較例2においては、Cr粒周囲の全周にわたって酸素濃化相が連続して存在していることがわかる。
The microstructure observed by the optical microscope of each sintered body obtained above, and the element distributions of Mo, Cr, and oxygen observed by an energy dispersive X-ray analyzer (EDX) are shown in FIGS. In each figure, (a) is a drawing substitute photograph showing the microstructure by an optical microscope, (b) is a drawing substitute photograph showing the element distribution of Mo in black in the same field of view, and (c) is an element distribution of Cr in the same field of view. FIG. 6D is a drawing substitute photograph showing in gray, and (d) is a drawing substitute photograph showing in white the elemental distribution of oxygen in the same field of view.
From these results, it can be seen that the sintered body obtained by the production method of the present invention has almost no oxygen-concentrated phase [white part shown in (d)] around the Cr grains. On the other hand, in the comparative example 1, it turns out that the oxygen concentration phase exists continuously in at least one part around Cr grain. Moreover, in the comparative example 2, it turns out that the oxygen concentrating phase exists continuously over the perimeter around Cr grain.

上記で作製した各ターゲット材をDCマグネトロンスパッタ装置(キャノンアネルバ株式会社製 型式:C3010)のチャンバ内に配置し、チャンバ内を2.0×10−5Pa以下となるまで減圧した後、Arガス圧0.6Pa、投入電力1500Wの条件にて120秒ずつ放電試験を行った。このとき、0.1秒ごとの印加電圧の変化を記録し、印加電圧差の絶対値が統計的管理基準として異常値の監視に利用される、中央値(平均値)に標準偏差の3倍を加えた値以上となった回数を異常放電が発生した回数として測定した。
ターゲット材から発生するパーティクルの量と異常放電の回数の間には強い正の相関があるため、異常放電の回数を測定することでスパッタリングの際に発生するパーティクルの多少を評価することが可能である。上記の方法によって異常放電の回数を測定し、試料比較例2を基準(100%)として、得た異常放電発生比率の結果を表3に示す。
表3に示すように、本発明の製造方法によれば、従来の製造方法に比べてMoCrターゲット材中の酸素含有量を大幅に低減でき、パーティクルの発生量を抑制する効果があることが確認できた。
Each target material prepared above was placed in a chamber of a DC magnetron sputtering apparatus (Model: C3010, manufactured by Canon Anelva Co., Ltd.), and after reducing the pressure in the chamber to 2.0 × 10 −5 Pa or less, Ar gas A discharge test was conducted for 120 seconds under the conditions of a pressure of 0.6 Pa and an input power of 1500 W. At this time, changes in applied voltage every 0.1 seconds are recorded, and the absolute value of the applied voltage difference is used as a statistical management standard for monitoring abnormal values. The median (average value) is three times the standard deviation. The number of times that became equal to or greater than the value obtained by adding was measured as the number of times abnormal discharge occurred.
Since there is a strong positive correlation between the amount of particles generated from the target material and the number of abnormal discharges, it is possible to evaluate the number of particles generated during sputtering by measuring the number of abnormal discharges. is there. The number of abnormal discharges was measured by the above method, and the results of the abnormal discharge occurrence ratio obtained with Sample Comparative Example 2 as a reference (100%) are shown in Table 3.
As shown in Table 3, according to the manufacturing method of the present invention, it is confirmed that the oxygen content in the MoCr target material can be greatly reduced and the generation amount of particles can be suppressed compared to the conventional manufacturing method. did it.

Claims (4)

Crを0.5〜50原子%含有し残部Moおよび不可避的不純物からなるMoCrターゲット材の製造方法であって、
(1)Mo焼結体を平均粒径20〜500μmに粉砕してMo粉末を作製する工程と、
(2)該Mo粉末を還元性雰囲気中で熱処理して還元処理Mo粉末を作製する工程と、
(3)平均粒径20〜500μmのCr原料粉末を準備する工程と、
(4)前記還元処理Mo粉末と前記Cr原料粉末とを混合した混合粉末を作製する工程と、
(5)該混合粉末を加圧焼結してMoCr焼結体を作製する工程と、
を有することを特徴とするMoCrターゲット材の製造方法。
A method for producing a MoCr target material containing 0.5 to 50 atomic% of Cr and comprising the remaining Mo and inevitable impurities,
(1) A step of pulverizing the Mo sintered body to an average particle size of 20 to 500 μm to produce Mo powder;
(2) a step of heat-treating the Mo powder in a reducing atmosphere to produce a reduced Mo powder;
(3) preparing a Cr raw material powder having an average particle size of 20 to 500 μm;
(4) producing a mixed powder obtained by mixing the reduction-treated Mo powder and the Cr raw material powder;
(5) pressure-sintering the mixed powder to produce a MoCr sintered body;
The manufacturing method of the MoCr target material characterized by having.
前記混合粉末に、還元処理Mo粉末の平均粒径よりも小さく且つ平均粒径5〜100μmのMo原料粉末をさらに混合して作製した混合粉末を加圧焼結することを特徴とする請求項1に記載のMoCrターゲット材の製造方法。   The mixed powder prepared by further mixing the mixed powder with Mo raw material powder having an average particle diameter of 5 to 100 μm which is smaller than the average particle diameter of the reduction-treated Mo powder is pressure-sintered. The manufacturing method of the MoCr target material of description. 加圧焼結を焼結温度800〜1800℃、圧力10〜200MPaで1〜10時間行うことを特徴とする請求項1または請求項2に記載のMoCrターゲット材の製造方法。   The method for producing a MoCr target material according to claim 1 or 2, wherein the pressure sintering is performed at a sintering temperature of 800 to 1800 ° C and a pressure of 10 to 200 MPa for 1 to 10 hours. Crを0.5〜50原子%含有し残部Moおよび不可避的不純物からなるMoCrターゲット材であって、Cr粒周囲に酸素濃化相が連続して存在しないことを特徴とするMoCrターゲット材。   A MoCr target material containing 0.5 to 50 atomic% of Cr and comprising the remainder Mo and inevitable impurities, wherein no oxygen-concentrated phase is continuously present around the Cr grains.
JP2012065262A 2011-04-28 2012-03-22 METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL Pending JP2012237056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012065262A JP2012237056A (en) 2011-04-28 2012-03-22 METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011100370 2011-04-28
JP2011100370 2011-04-28
JP2012065262A JP2012237056A (en) 2011-04-28 2012-03-22 METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL

Publications (1)

Publication Number Publication Date
JP2012237056A true JP2012237056A (en) 2012-12-06

Family

ID=47050908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012065262A Pending JP2012237056A (en) 2011-04-28 2012-03-22 METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL

Country Status (3)

Country Link
JP (1) JP2012237056A (en)
CN (1) CN102756126A (en)
TW (1) TW201243080A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475567A (en) * 2015-08-27 2017-03-08 宁波江丰电子材料股份有限公司 The manufacture method of chrome molybdenum target blankss
WO2018131328A1 (en) * 2017-01-12 2018-07-19 日立金属株式会社 Cr alloy target material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060762B (en) * 2013-01-11 2018-02-23 江西科泰新材料有限公司 The production technology of molybdenum niobium alloy target
TW201504450A (en) * 2013-07-26 2015-02-01 shu-hua Xu Method of making molybdenum alloy target
CN105328193A (en) * 2014-08-12 2016-02-17 有研亿金新材料有限公司 Powder metallurgy target material and manufacturing method thereof
CN105568237A (en) * 2014-10-15 2016-05-11 宁波江丰电子材料股份有限公司 Chromium-molybdenum alloy target material preparation method
CN106141190A (en) * 2015-04-22 2016-11-23 宁波江丰电子材料股份有限公司 The manufacture method of chrome molybdenum target
KR101617727B1 (en) * 2015-07-24 2016-05-03 주식회사 에스앤에스텍 Blankmask and Photomask using the same
CN109811279B (en) * 2019-01-21 2021-05-18 北京科技大学 Fiber-reinforced metal-based high-temperature composite material and preparation method thereof
CN112144024B (en) * 2020-09-14 2022-12-02 浙江最成半导体科技有限公司 Chromium silicide target material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317203A (en) * 1989-06-15 1991-01-25 Kawasaki Steel Corp Manufacture of powder metallurgical product
JP2002194536A (en) * 2000-12-27 2002-07-10 Mitsui Mining & Smelting Co Ltd Sputtering target with low oxygen content
JP2003129232A (en) * 2001-10-23 2003-05-08 Hitachi Metals Ltd Mo-BASED SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
JP2006169547A (en) * 2004-12-13 2006-06-29 Hitachi Metals Ltd METHOD FOR PRODUCING Mo ALLOY POWDER TO BE PRESSURE-SINTERED, AND METHOD FOR PRODUCING TARGET MATERIAL FOR SPUTTERING
JP2008506852A (en) * 2005-10-14 2008-03-06 プランゼー エスエー Tubular target
JP2008280570A (en) * 2007-05-09 2008-11-20 Hitachi Metals Ltd METHOD FOR PRODUCING MoNb BASED SINTERED SPUTTERING TARGET MATERIAL
WO2012043227A1 (en) * 2010-09-30 2012-04-05 日立金属株式会社 Method for producing molybdenum target

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3863204B2 (en) * 1995-08-25 2006-12-27 株式会社アライドマテリアル Sputtering target material and manufacturing method thereof
JP3743740B2 (en) * 1998-07-27 2006-02-08 日立金属株式会社 Mo-based sintered target material
JP4432015B2 (en) * 2001-04-26 2010-03-17 日立金属株式会社 Sputtering target for thin film wiring formation
US7534282B2 (en) * 2003-09-16 2009-05-19 Japan New Metals Co., Ltd. High purity metal Mo coarse powder and sintered sputtering target produced by thereof
US20050230244A1 (en) * 2004-03-31 2005-10-20 Hitachi Metals, Ltd Sputter target material and method of producing the same
JP4345105B2 (en) * 2004-04-27 2009-10-14 日本新金属株式会社 Method for producing high-purity metal Mo coarse powder suitable for use as a raw material powder in the production of sputtering high-purity metal Mo sintered target
US20060042728A1 (en) * 2004-08-31 2006-03-02 Brad Lemon Molybdenum sputtering targets

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0317203A (en) * 1989-06-15 1991-01-25 Kawasaki Steel Corp Manufacture of powder metallurgical product
JP2002194536A (en) * 2000-12-27 2002-07-10 Mitsui Mining & Smelting Co Ltd Sputtering target with low oxygen content
JP2003129232A (en) * 2001-10-23 2003-05-08 Hitachi Metals Ltd Mo-BASED SPUTTERING TARGET AND METHOD FOR PRODUCING THE SAME
JP2006169547A (en) * 2004-12-13 2006-06-29 Hitachi Metals Ltd METHOD FOR PRODUCING Mo ALLOY POWDER TO BE PRESSURE-SINTERED, AND METHOD FOR PRODUCING TARGET MATERIAL FOR SPUTTERING
JP2008506852A (en) * 2005-10-14 2008-03-06 プランゼー エスエー Tubular target
JP2008280570A (en) * 2007-05-09 2008-11-20 Hitachi Metals Ltd METHOD FOR PRODUCING MoNb BASED SINTERED SPUTTERING TARGET MATERIAL
WO2012043227A1 (en) * 2010-09-30 2012-04-05 日立金属株式会社 Method for producing molybdenum target

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475567A (en) * 2015-08-27 2017-03-08 宁波江丰电子材料股份有限公司 The manufacture method of chrome molybdenum target blankss
WO2018131328A1 (en) * 2017-01-12 2018-07-19 日立金属株式会社 Cr alloy target material
JPWO2018131328A1 (en) * 2017-01-12 2019-11-07 日立金属株式会社 Cr alloy target material
US11118248B2 (en) 2017-01-12 2021-09-14 Hitachi Metals, Ltd. Cr alloy target material
JP7103233B2 (en) 2017-01-12 2022-07-20 日立金属株式会社 Cr alloy target material

Also Published As

Publication number Publication date
CN102756126A (en) 2012-10-31
TW201243080A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP2012237056A (en) METHOD FOR PRODUCING MoCr TARGET MATERIAL AND THE MoCr TARGET MATERIAL
JP4894008B2 (en) Method for producing MoNb-based sintered sputtering target material
CN105478772B (en) A kind of manufacturing method of molybdenum planar targets
JP2013083000A (en) METHOD OF MANUFACTURING SINTERED Mo ALLOY SPUTTERING TARGET MATERIAL
JP5431535B2 (en) Method for producing ruthenium-tantalum alloy sintered compact target
TWI654315B (en) Sputtering target and process for producing it
KR20060045034A (en) Sputter target material and method of producing the same
JP2009074127A (en) Sintered sputtering target material and manufacturing method therefor
US9689067B2 (en) Method for producing molybdenum target
JP6037211B2 (en) Manufacturing method of MoTi target material
JP6665428B2 (en) Cu-Ga alloy sputtering target and manufacturing method thereof
KR101469873B1 (en) Manufacturing method of a high purity and refining Ru alloy powder
CN107208259A (en) Chromium titanium alloy sputtering target material and its manufacture method
Zhang et al. Effects of process control agents on the mechanical alloying behavior of Nb-Ti-Si based alloy
JP5988140B2 (en) Manufacturing method of MoTi target material and MoTi target material
WO2015146311A1 (en) SPUTTERING TARGET COMPRISING Al-Te-Cu-Zr ALLOY, AND METHOD FOR PRODUCING SAME
JP4721090B2 (en) Manufacturing method of Mo-based target material
CN107470625A (en) A kind of powder metallurgy process for preparing high-purity material
KR101560455B1 (en) LCD Glass METHOD OF MANUFACTURING AN OXIDE DISPERSION STRENGTHENED PLATINUMRHODIUM ALLOYS MATERIALS USING SPARK PLASMA SINTERING FOR LIQUID CRYSTAL DISPLAY GLASS MANUFACTURING
WO2021019991A1 (en) Sputtering target
WO2016039154A1 (en) Method for manufacturing electrode material and electrode material
KR20120122898A (en) Method of producing MoCr sputtering target material and MoCr sputtering target material
JP2013032573A (en) METHOD FOR MANUFACTURING Fe-Co-Ta SPUTTERING TARGET MATERIAL AND THE Fe-Co-Ta SPUTTERING TARGET MATERIAL
CN116716517A (en) High-homogeneity nickel-niobium intermediate alloy and one-step preparation method thereof
JP2005307225A (en) Mo TARGET MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160819