JP2012214339A - Inorganic nano particle dispersion liquid - Google Patents

Inorganic nano particle dispersion liquid Download PDF

Info

Publication number
JP2012214339A
JP2012214339A JP2011081131A JP2011081131A JP2012214339A JP 2012214339 A JP2012214339 A JP 2012214339A JP 2011081131 A JP2011081131 A JP 2011081131A JP 2011081131 A JP2011081131 A JP 2011081131A JP 2012214339 A JP2012214339 A JP 2012214339A
Authority
JP
Japan
Prior art keywords
silane coupling
dispersion
dispersion liquid
group
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011081131A
Other languages
Japanese (ja)
Other versions
JP5838036B2 (en
Inventor
Masakazu Kaneko
雅一 金子
Seiji Shinohara
誠司 篠原
Toshiyuki Tanimura
俊之 谷村
Takanobu Tadaki
隆伸 唯木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
DNP Fine Chemicals Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
DNP Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd, DNP Fine Chemicals Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2011081131A priority Critical patent/JP5838036B2/en
Publication of JP2012214339A publication Critical patent/JP2012214339A/en
Application granted granted Critical
Publication of JP5838036B2 publication Critical patent/JP5838036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an inorganic nano particle dispersion liquid having high dispersibility and excellent in transparency.SOLUTION: The inorganic nano particle dispersion liquid contains inorganic nano particles having an average primary particle diameter of 1-50 nm, a hydrolyzate of a silane coupling agent, and a dispersing agent having a salt structure in which an acid group is neutralized by a basic group, and a dispersion medium.

Description

本発明は、無機ナノ粒子分散液に関する。   The present invention relates to an inorganic nanoparticle dispersion.

平均一次粒子径が数十nm程度のナノ微粒子、とりわけ50nm以下のナノ微粒子は、可視光領域の光拡散性が低いことから高い透明性が得られるため、ナノ微粒子、あるいは該微粒子と樹脂とを組み合わせた組成物の硬化物は、導電性基板などの電気・電子材料、あるいは光学材料などの分野での利用が期待されている。
ナノ微粒子分散液の製造方法は、ブレイクダウン法(トップダウン法)とビルドアップ法(ボトムアップ法)とに分類される。ブレイクダウン法は、数μmの凝集体を粉砕機などを用いて機械的に粉砕・分解して微粒子を得る方法である。一方ビルドアップ法は、気相法や液相法といった、原料から化学的に合成して微粒子を得る方法である。ビルドアップ法は、均一なナノ微粒子を得る点で優れているものの、大量生産に適さず、また微粒子の凝集制御が容易ではないという問題がある。そこで、工業化を図るには大量生産に適することが不可欠であり、安価でありかつ大量生産に適するブレイクダウン法が注目されている(特許文献1参照)。
Nanoparticles having an average primary particle size of about several tens of nanometers, particularly nanoparticles having a particle size of 50 nm or less, have high transparency because of low light diffusibility in the visible light region. The cured product of the combined composition is expected to be used in fields such as electrical / electronic materials such as conductive substrates, or optical materials.
The method for producing the nanoparticle dispersion is classified into a breakdown method (top-down method) and a build-up method (bottom-up method). The breakdown method is a method of obtaining fine particles by mechanically crushing and decomposing an aggregate of several μm using a pulverizer or the like. On the other hand, the build-up method is a method of obtaining fine particles by chemical synthesis from raw materials, such as a gas phase method or a liquid phase method. Although the build-up method is excellent in obtaining uniform nano-particles, there is a problem that it is not suitable for mass production and the aggregation control of the particles is not easy. Therefore, in order to achieve industrialization, it is indispensable to be suitable for mass production, and a breakdown method that is inexpensive and suitable for mass production has attracted attention (see Patent Document 1).

ところで、ナノ微粒子を導電性基板などの電子材料、あるいは光学材料などの分野で利用する場合、性能向上のために、ナノ微粒子の含有量が多いことが要求される。また、分散液を用いた樹脂組成物の塗工適性粘度などの観点からも、ナノ微粒子分散液中の微粒子含有量は多いことが望ましい。一方、ブレイクダウン法において、ナノ微粒子をより高濃度にしようとすると、分散液を調製する際にゲル化や粉末化してしまい分散液を調製できない、あるいは分散液の原料を調合する際に粘度が上昇してしまい分散装置への送出ができない、という問題が生じていた。   By the way, when the nanoparticles are used in fields such as an electronic material such as a conductive substrate or an optical material, a high content of nanoparticles is required to improve performance. Moreover, it is desirable that the content of fine particles in the nano fine particle dispersion is large from the viewpoint of the viscosity suitable for coating of the resin composition using the dispersion. On the other hand, in the breakdown method, if the concentration of nanoparticles is increased, gelation or powdering occurs when preparing the dispersion, and the dispersion cannot be prepared, or the viscosity is reduced when preparing the raw material of the dispersion. There has been a problem in that it cannot be sent out to the dispersing device due to the rise.

特開平10−310415号公報Japanese Patent Laid-Open No. 10-310415

本発明は、製造しやすく、無機ナノ粒子の分散性が高く、かつ透明性に優れる無機ナノ粒子分散液を提供することを目的とするものである。また、本発明の無機ナノ粒子分散液は、該分散液を含む樹脂組成物の硬化物に、透明性に優れる光学特性及び高い機械的強度を付与することができる。   An object of the present invention is to provide an inorganic nanoparticle dispersion liquid that is easy to produce, has high dispersibility of inorganic nanoparticles, and is excellent in transparency. Moreover, the inorganic nanoparticle dispersion liquid of the present invention can impart optical properties excellent in transparency and high mechanical strength to the cured product of the resin composition containing the dispersion liquid.

本発明者らは、前記課題を達成するために鋭意研究を重ねた結果、下記の発明により解決できることを見出した。すなわち、本発明は、平均一次粒子径が1〜50nmの無機ナノ粒子、シランカップリング剤の加水分解物、酸性基を塩基性基で中和した塩構造を有する分散剤、及び分散媒を含む無機ナノ粒子分散液を提供するものである。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the problem can be solved by the following invention. That is, the present invention includes inorganic nanoparticles having an average primary particle diameter of 1 to 50 nm, a hydrolyzate of a silane coupling agent, a dispersant having a salt structure in which an acidic group is neutralized with a basic group, and a dispersion medium. An inorganic nanoparticle dispersion is provided.

本発明によれば、製造しやすく、無機ナノ粒子の分散性が高く、かつ透明性に優れる無機ナノ粒子分散液を得ることができる。また、本発明の無機ナノ粒子分散液によれば、該分散液を含む樹脂組成物の硬化物に、透明性に優れる光学特性及び高い機械的強度を付与することができる。   According to the present invention, it is possible to obtain an inorganic nanoparticle dispersion liquid that is easy to produce, has high dispersibility of inorganic nanoparticles, and is excellent in transparency. Moreover, according to the inorganic nanoparticle dispersion liquid of the present invention, optical properties excellent in transparency and high mechanical strength can be imparted to the cured product of the resin composition containing the dispersion liquid.

[無機ナノ粒子分散液]
本発明の無機ナノ粒子分散液は、平均一次粒子径が1〜50nmの無機ナノ粒子、シランカップリング剤の加水分解物、酸性基を塩基性基で中和した塩構造を有する分散剤、及び分散媒を含むものである。
[Inorganic nanoparticle dispersion]
The inorganic nanoparticle dispersion liquid of the present invention is an inorganic nanoparticle having an average primary particle diameter of 1 to 50 nm, a hydrolyzate of a silane coupling agent, a dispersant having a salt structure in which an acidic group is neutralized with a basic group, and It contains a dispersion medium.

≪無機ナノ粒子≫
本発明で用いられる無機ナノ粒子は、平均一次粒子径が1〜50nmの無機微粒子である。無機ナノ粒子の平均一次粒子径は、好ましくは1〜40nmであり、より好ましくは1〜30nmである。無機ナノ粒子の平均一次粒子径が上記範囲内であると、優れた分散性が得られ、また優れた透明性が得られるからである。上記平均一次粒子径は透過型電子顕微鏡(TEM)や走査透過型電子顕微鏡(STEM)により測定した観察像から統計処理により算出される値である。
ここで、統計処理による算出は、SEM画像からランダムに選んだ1000個の粒子について、直径を測定し、3nm区分のヒストグラムを作成したときの、下記式(A)を用いた算出により行ったものである。当該式(A)で得られた数平均一次粒子径Dnpを、本明細書の平均一次粒子径とした。
≪Inorganic nanoparticles≫
The inorganic nanoparticles used in the present invention are inorganic fine particles having an average primary particle diameter of 1 to 50 nm. The average primary particle diameter of the inorganic nanoparticles is preferably 1 to 40 nm, and more preferably 1 to 30 nm. This is because when the average primary particle diameter of the inorganic nanoparticles is within the above range, excellent dispersibility can be obtained and excellent transparency can be obtained. The average primary particle diameter is a value calculated by statistical processing from an observation image measured with a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM).
Here, the calculation by statistical processing was performed by calculation using the following formula (A) when measuring the diameter of 1000 particles randomly selected from the SEM image and creating a histogram of 3 nm sections. It is. The number average primary particle diameter D np obtained by the formula (A) was defined as the average primary particle diameter in the present specification.

np=Σnii/Σni (A)
Dnp:数平均分子量
di:ヒストグラムのi番目の直径
ni:頻度
D np = Σn i d i / Σn i (A)
Dnp: number average molecular weight di: i-th diameter of histogram ni: frequency

本発明において、無機ナノ粒子としては、金属や金属化合物からなるナノ粒子が好ましく挙げられる。金属としては、例えば、金、銀、銅、白金、パラジウム、ニッケル、コバルト、鉄、マンガン、ケイ素、チタン、ジルコニウム、タングステン、モリブデン、クロム、亜鉛、アルミニウム、及びこれら2種以上からなる複合金属などが挙げられる。また、金属化合物としては、例えば、酸化鉄、酸化ケイ素、酸化ジルコニウム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化コバルト、酸化ニッケル、酸化セリウム、酸化第二銅、酸化亜鉛、酸化スズ、酸化アンチモン、二酸化チタン、酸化アルミニウム、及びその混合物などの金属酸化物;窒化アルミニウム、窒化ガリウム、窒化チタン、窒化ケイ素、窒化チタン及びその子の混合物などの金属窒化物;、硫化カドミウム、硫化亜鉛、硫化銅、硫化モリブデン及びその混合物などの金属硫化物のほか、金属炭化物、金属ホウ化物、金属炭酸塩、ゼオライト、粘土、及びこれらの複合体などが好ましく挙げられる。これらのなかでも、本発明の効果が顕著に得られる観点から、金属酸化物が好ましく、酸化ケイ素、酸化ジルコニウム、酸化アルミニウムなどがより好ましい。   In the present invention, the inorganic nanoparticles are preferably nanoparticles made of a metal or a metal compound. Examples of the metal include gold, silver, copper, platinum, palladium, nickel, cobalt, iron, manganese, silicon, titanium, zirconium, tungsten, molybdenum, chromium, zinc, aluminum, and a composite metal composed of two or more of these. Is mentioned. Examples of the metal compound include iron oxide, silicon oxide, zirconium oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, cobalt oxide, nickel oxide, cerium oxide, cupric oxide, Metal oxides such as zinc oxide, tin oxide, antimony oxide, titanium dioxide, aluminum oxide, and mixtures thereof; metal nitrides such as aluminum nitride, gallium nitride, titanium nitride, silicon nitride, titanium nitride and mixtures thereof; sulfided Preferable examples include metal sulfides such as cadmium, zinc sulfide, copper sulfide, molybdenum sulfide and mixtures thereof, metal carbides, metal borides, metal carbonates, zeolites, clays, and composites thereof. Among these, a metal oxide is preferable from the viewpoint of remarkably obtaining the effects of the present invention, and silicon oxide, zirconium oxide, aluminum oxide, and the like are more preferable.

これらの無機ナノ粒子の形状は、特に制限はなく、球状、楕円球状、直方体や長方体などの四方体状などの粉粒状;円柱状、円盤状、楕円盤状、鱗片状などの多角板状;針状などが好ましく挙げられる。これらの微粒子の平均一次粒子径は上記の通りであり、微粒子が球状ではない場合、該平均一次粒子径は無機ナノ粒子の外接球の粒子径とする。   The shape of these inorganic nanoparticles is not particularly limited, and is granular, such as spherical, elliptical, tetragonal, such as a rectangular parallelepiped or rectangular parallelepiped; a polygonal plate, such as a cylinder, disk, ellipsoid, or scale Preferably, a needle shape is preferable. The average primary particle diameter of these fine particles is as described above. When the fine particles are not spherical, the average primary particle diameter is the particle diameter of the circumscribed sphere of the inorganic nanoparticles.

本発明の無機ナノ粒子分散液において、無機ナノ粒子の含有量は、0.5〜50質量%であることが好ましく、5〜35質量%がより好ましく、10〜30質量%がさらに好ましい。無機ナノ粒子の含有量が上記範囲内であると、汎用性に優れ、また分散性と透明性に優れる分散液が得られる。   In the inorganic nanoparticle dispersion liquid of the present invention, the content of inorganic nanoparticles is preferably 0.5 to 50% by mass, more preferably 5 to 35% by mass, and further preferably 10 to 30% by mass. When the content of the inorganic nanoparticles is within the above range, a dispersion having excellent versatility and excellent dispersibility and transparency can be obtained.

≪シランカップリング剤の加水分解物≫
本発明で用いられるシランカップリング剤の加水分解物は、無機ナノ粒子の表面添加剤として機能するものであり、また本発明の分散液の原料を調合する際の粘度の上昇を抑制する機能をも有する。
≪Hydrolyzed product of silane coupling agent≫
The hydrolyzate of the silane coupling agent used in the present invention functions as a surface additive for inorganic nanoparticles, and has a function of suppressing an increase in viscosity when the raw material of the dispersion of the present invention is prepared. Also have.

シランカップリング剤の加水分解物は、シランカップリング剤の有するアルコキシ基などの加水分解基を部分的に又は完全に加水分解して水酸基として得られるシラノール基を有するものであれば、特に制限はない。該加水分解物は、通常シランカップリング剤を、水と、塩酸や硫酸などの無機酸、酢酸などの有機酸、あるいは水酸化ナトリウム、水酸化カリウムなどのアルカリなどの加水分解触媒の存在下、部分または完全加水分解することにより得られる。この際、加水分解を均一に行うために、適当な有機溶媒を用いてもよい。   The hydrolyzate of the silane coupling agent is not particularly limited as long as it has a silanol group obtained as a hydroxyl group by partially or completely hydrolyzing a hydrolysis group such as an alkoxy group possessed by the silane coupling agent. Absent. The hydrolyzate usually contains a silane coupling agent in the presence of a hydrolysis catalyst such as water, an inorganic acid such as hydrochloric acid or sulfuric acid, an organic acid such as acetic acid, or an alkali such as sodium hydroxide or potassium hydroxide. Obtained by partial or complete hydrolysis. At this time, an appropriate organic solvent may be used in order to perform hydrolysis uniformly.

ここで、シランカップリング剤としては、本発明の分散液を樹脂組成物に用いる際の、該樹脂組成物に含まれる種々の熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、生分解性樹脂などのバインダー樹脂に応じて適宜選択されるが、好ましくは反応性基として(メタ)アクリロイルオキシ基、エポキシ基、アミノ基を有するシランカップリング剤、すなわち(メタ)アクリロイルオキシ系シランカップリング剤、エポキシ系シランカップリング剤、アミノ系シランカップリング剤が挙げられ、より好ましくは(メタ)アクリロイルオキシ系シランカップリング剤、エポキシ系シランカップリング剤が挙げられる。   Here, as the silane coupling agent, when the dispersion of the present invention is used for the resin composition, various thermoplastic resins, thermosetting resins, ionizing radiation curable resins, biodegradation contained in the resin composition are used. A silane coupling agent having a (meth) acryloyloxy group, an epoxy group, or an amino group as a reactive group, that is, a (meth) acryloyloxy-based silane coupling is selected as appropriate depending on a binder resin such as a functional resin. Agents, epoxy-based silane coupling agents, and amino-based silane coupling agents, and more preferably (meth) acryloyloxy-based silane coupling agents and epoxy-based silane coupling agents.

(メタ)アクリロイルオキシ系シランカップリング剤としては、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリメトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジエトキシシラン、3−(メタ)アクリロイルオキシプロピルトリエトキシシランなどが好ましく挙げられる。   As the (meth) acryloyloxy-based silane coupling agent, 3- (meth) acryloyloxypropylmethyldimethoxysilane, 3- (meth) acryloyloxypropyltrimethoxysilane, 3- (meth) acryloyloxypropylmethyldiethoxysilane, Preferable examples include 3- (meth) acryloyloxypropyltriethoxysilane.

エポキシ系シランカップリング剤としては、ジエトキシ(グリシディルオキシプロピル)メチルシラン、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシランなどが好ましく挙げられる。   Epoxy silane coupling agents include diethoxy (glycidyloxypropyl) methylsilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldisilane. Preferred examples include ethoxysilane and 3-glycidoxypropyltriethoxysilane.

アミノ系シランカップリング剤としては、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1、3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシランなどが好ましく挙げられる。
これらのシランカップリング剤の加水分解物は、単独で用いることもできるし、複数を組み合わせて用いることもできる。
As amino-based silane coupling agents, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyl Triethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxy Preferable examples include silane.
These hydrolysates of silane coupling agents can be used alone or in combination.

本発明の分散液におけるシランカップリング剤の加水分解物の含有量は、以下の式(1)で示される飽和添加量(g)、すなわち無機ナノ粒子の表面に過不足なくシランカップリング剤を被覆させるために必要な添加量の、5〜100%が好ましく、5〜70%がより好ましく、10〜65%がさらに好ましい。該加水分解物の含有量が上記範囲内であると、分散剤の原料の調合時にゲル化・凝集を生じることがなく、本発明の分散液を含む樹脂組成物を硬化させる際に硬化阻害が生じることがなく、硬化物の優れた機械的強度が得られるので好ましい。ここで、比表面積はJIS Z−8830(気体吸着による粉体の比表面積測定方法)に準じ、粉体比表面積測定装置(例えば、「AMS−8000(型番)」、株式会社大倉理研製))を用いて一点法により測定したBET比表面積の値である。   The content of the hydrolyzate of the silane coupling agent in the dispersion of the present invention is the saturated addition amount (g) represented by the following formula (1), that is, the silane coupling agent is not excessively or deficient on the surface of the inorganic nanoparticles. The addition amount necessary for coating is preferably 5 to 100%, more preferably 5 to 70%, and still more preferably 10 to 65%. When the content of the hydrolyzate is within the above range, gelation / aggregation does not occur during preparation of the raw material of the dispersant, and there is no inhibition of curing when the resin composition containing the dispersion of the present invention is cured. This is preferable because it does not occur and excellent mechanical strength of the cured product can be obtained. Here, the specific surface area conforms to JIS Z-8830 (a method for measuring the specific surface area of powder by gas adsorption), and a powder specific surface area measuring device (for example, “AMS-8000 (model number)”, manufactured by Okura Riken)) Is the value of the BET specific surface area measured by the one-point method using

飽和添加量(g)=Wn×Snm/As (1)
Wn:無機ナノ粒子の質量(g)
Snm:無機ナノ粒子の比表面積(m2/g)
As:シランカップリング剤の最小被覆面積(m2/g)
As=(6.02×1023×13×10-20)/シランカップリング剤の分子量
Saturation addition amount (g) = Wn × Sn m / As (1)
Wn: mass of inorganic nanoparticles (g)
Sn m : Specific surface area of inorganic nanoparticles (m 2 / g)
As: Minimum covering area of silane coupling agent (m 2 / g)
As = (6.02 × 10 23 × 13 × 10 −20 ) / molecular weight of silane coupling agent

≪酸性基を塩基性基で中和した塩構造を有する分散剤≫
本発明の分散液は、酸性基を塩基性基で中和した塩構造を有する分散剤を含有する。酸性基、及び該酸性基を塩基性基で中和した塩は、無機ナノ粒子との親和性が高いため、優れた分散性が得られる。
酸性基としては、リン酸基、ホスホン酸基、スルホン酸基、カルボキシル基、及びフェノール性水酸基などが好ましく挙げられ、リン酸基、ホスホン酸基がより好ましい。また、塩基性基としては、アミノ基、アミド基、イミノ基、アンモニウム塩基、スルホニウム塩基、及びヒドロキシル基などが好ましく挙げられ、アミノ基、アンモニウム塩基がより好ましい。なお、本発明において、上記した酸性基及び塩基性基は、誘導体、例えばその一部が置換基やハロゲン原子などで置換されたようなものを含むものとする。このような分散剤としては、リン酸エステル系分散剤のアミン塩などが好ましく挙げられる。また、この分散剤は、上記した以外の無機ナノ粒子と親和性を有する極性基などを有していてもよい。
≪Dispersant with salt structure in which acidic group is neutralized with basic group≫
The dispersion of the present invention contains a dispersant having a salt structure in which an acidic group is neutralized with a basic group. Since the acidic group and the salt obtained by neutralizing the acidic group with a basic group have high affinity with the inorganic nanoparticles, excellent dispersibility can be obtained.
Preferred examples of the acidic group include a phosphoric acid group, a phosphonic acid group, a sulfonic acid group, a carboxyl group, and a phenolic hydroxyl group, and a phosphoric acid group and a phosphonic acid group are more preferable. Moreover, as a basic group, an amino group, an amide group, an imino group, an ammonium base, a sulfonium base, a hydroxyl group etc. are mentioned preferably, An amino group and an ammonium base are more preferable. In the present invention, the above acidic group and basic group include derivatives such as those partially substituted with a substituent or a halogen atom. As such a dispersant, an amine salt of a phosphate ester dispersant is preferably exemplified. Moreover, this dispersing agent may have a polar group having affinity with inorganic nanoparticles other than those described above.

本発明で好ましく用いられる分散剤のアミン価は、10〜190(mgKOH/g)が好ましく、60〜110(mgKOH/g)がより好ましく、70〜100(mgKOH/g)がさらに好ましい。ここで、アミン価は、分散剤固形量1gを中和するのに必要なHClに当量のKOHのmg数を表す。また酸価は、分散剤固形量1gを中和するのに必要なKOHのmg数を表す。アミン価が上記範囲内であると、分散剤の原料の調合の際に、分散性が高く、結果として分散性の高い分散液が得られる。また、分散剤の酸価は、15〜150(mgKOH/g)が好ましく、60〜150(mgKOH/g)がより好ましく、さらに好ましくは80〜140(mgKOH/g)である。酸価が上記範囲内であると、分散剤の原料の調合の際に、分散性が高く、結果として分散性の高い分散液が得られる。
これらの分散剤物は、単独で用いることもできるし、複数を組み合わせて用いることもできる。
The amine value of the dispersant preferably used in the present invention is preferably 10 to 190 (mgKOH / g), more preferably 60 to 110 (mgKOH / g), and still more preferably 70 to 100 (mgKOH / g). Here, the amine value represents the number of mg of KOH equivalent to HCl required to neutralize 1 g of the solid content of the dispersant. Moreover, an acid value represents the mg number of KOH required in order to neutralize 1 g of dispersing agent solid content. When the amine value is within the above range, a dispersion having high dispersibility is obtained during preparation of the raw material of the dispersant, and as a result, a dispersion having high dispersibility is obtained. The acid value of the dispersant is preferably 15 to 150 (mg KOH / g), more preferably 60 to 150 (mg KOH / g), and still more preferably 80 to 140 (mg KOH / g). When the acid value is within the above range, a dispersion having high dispersibility is obtained during preparation of the raw material of the dispersant, and as a result, a dispersion having high dispersibility is obtained.
These dispersants can be used alone or in combination of two or more.

本発明の分散液中の分散剤の含有量は、0.15〜15質量%が好ましく、0.3〜12質量%がより好ましく、0.3〜6質量%がさらに好ましい。分散剤の含有量が上記範囲内であると、無機ナノ粒子と後述する溶媒との親和性が良好となり、高い分散性が得られる。また、該分散剤は、無機ナノ粒子100質量部に対して0.5〜50質量部の範囲内で用いることが好ましく、1〜40質量部がより好ましく、1〜20質量部がさらに好ましい。該加水分解物の含有量が上記範囲内であると、分散剤の原料の調合時にゲル化・凝集を生じることがなく、本発明の分散液を含む樹脂組成物を硬化させる際に硬化阻害が生じることがなく、硬化物の優れた機械的強度が得られるので好ましい。   0.15-15 mass% is preferable, as for content of the dispersing agent in the dispersion liquid of this invention, 0.3-12 mass% is more preferable, and 0.3-6 mass% is further more preferable. When the content of the dispersant is within the above range, the affinity between the inorganic nanoparticles and the solvent described later becomes good, and high dispersibility is obtained. Moreover, it is preferable to use this dispersing agent within the range of 0.5-50 mass parts with respect to 100 mass parts of inorganic nanoparticles, 1-40 mass parts is more preferable, 1-20 mass parts is further more preferable. When the content of the hydrolyzate is within the above range, gelation / aggregation does not occur during preparation of the raw material of the dispersant, and there is no inhibition of curing when the resin composition containing the dispersion of the present invention is cured. This is preferable because it does not occur and excellent mechanical strength of the cured product can be obtained.

≪分散媒≫
本発明の分散液は、分散媒を含み、好ましくは水及び/又は有機系分散媒を用いることができる。有機系分散媒としては、ヘキサン、デカン、ドデカン、テトラデカン等の脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素;トルエン、キシレンなどの芳香族炭化水素;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチルなどのエステル類;メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、グリセリンなどのアルコール類;テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)などのエーテル類などが好ましく挙げられる。
これらのうち、無機ナノ粒子の高い分散性を得る観点から、脂肪族炭化水素、芳香族炭化水素、ケトン類、エステル類及びアルコール類が好ましい。また、これらの分散媒は、1種を単独で、又は2種以上を混合して用いることもできる。
本発明の分散液における分散媒の含有量は、該分散液の粘度に応じて適宜決定すればよく、通常20〜80質量%程度である。
≪Dispersion medium≫
The dispersion of the present invention contains a dispersion medium, and preferably water and / or an organic dispersion medium can be used. Examples of the organic dispersion medium include aliphatic hydrocarbons such as hexane, decane, dodecane, and tetradecane; alicyclic hydrocarbons such as cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone Esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate; methanol, ethanol, n-propanol, isopropanol, n-butanol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, glycerin, etc. Alcohols: tetrahydrofuran, dioxane, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol Etc. ethers such as Bruno ether (butyl cellosolve) are preferably mentioned.
Of these, aliphatic hydrocarbons, aromatic hydrocarbons, ketones, esters and alcohols are preferred from the viewpoint of obtaining high dispersibility of the inorganic nanoparticles. Moreover, these dispersion media can also be used individually by 1 type or in mixture of 2 or more types.
What is necessary is just to determine suitably content of the dispersion medium in the dispersion liquid of this invention according to the viscosity of this dispersion liquid, and it is about 20-80 mass% normally.

≪分散液の製造方法≫
本発明の分散液は、例えば、工程(1)シランカップリング剤を加水分解する工程、工程(2)シランカップリング剤の加水分解物、分散剤、無機粒子の凝集体、及び分散媒を調合する工程、及び工程(3)湿式粉砕して分散液を得る工程を順に有する製造方法により得ることができる。
≪Method for producing dispersion liquid≫
The dispersion of the present invention is prepared, for example, by step (1) hydrolyzing the silane coupling agent, step (2) hydrolyzate of silane coupling agent, dispersant, aggregate of inorganic particles, and dispersion medium. And a step (3) a production method having in order a step of obtaining a dispersion by wet pulverization.

<工程(1)>
工程(1)は、シランカップリング剤を加水分解する工程であり、シランカップリング剤の加水分解反応を行い、シランカップリング剤の加水分解物を準備する工程である。シランカップリング剤の加水分解物は、常法により得ればよく、上記した方法によりシランカップリング剤を部分又は完全加水分解することにより得られる。
<Step (1)>
Step (1) is a step of hydrolyzing the silane coupling agent, and is a step of performing a hydrolysis reaction of the silane coupling agent to prepare a hydrolyzate of the silane coupling agent. The hydrolyzate of the silane coupling agent may be obtained by a conventional method, and can be obtained by partially or completely hydrolyzing the silane coupling agent by the method described above.

<工程(2)>
工程(2)は、本発明の分散液の原料となる、シランカップリング剤の加水分解物、分散剤、無機粒子の凝集体、有機系分散媒を調合する工程である。ここで、本発明において原料として好ましく用いられる凝集体は、沈降法やゾル−ゲル法などの湿式法、あるいは気相法などの乾式法により得られるものである。
<Step (2)>
Step (2) is a step of preparing a hydrolyzate of a silane coupling agent, a dispersant, an aggregate of inorganic particles, and an organic dispersion medium, which are raw materials for the dispersion of the present invention. Here, the aggregate preferably used as a raw material in the present invention is obtained by a wet method such as a precipitation method or a sol-gel method, or a dry method such as a gas phase method.

調合は、攪拌しながら行うことが好ましく、攪拌には、常用される攪拌装置を制限なく用いることができる。本発明においては、シランカップリング剤の加水分解物を用いることで、この分散液の原料を調合する際の粘度上昇を抑制することができるため、容易に分散液が得られるという利点がある。   The mixing is preferably carried out with stirring, and a commonly used stirring device can be used for stirring without limitation. In the present invention, by using a hydrolyzate of a silane coupling agent, an increase in viscosity at the time of preparing the raw material of this dispersion can be suppressed, so that there is an advantage that a dispersion can be easily obtained.

<工程(3)>
工程(3)は、上記工程(2)で調合した原料となる液を湿式粉砕して分散液を得る工程である。湿式粉砕に用いる機器としては、ボールミル、ビーズミル、サンドグラインダーなどのメディアミル、高圧ホモジナイザー、超高圧ホモジナイザーなどの圧力式分散機、超音波分散機、及び薄膜施回型分散機などが挙げられ、なかでも平均粒子径100μm、あるいはそれ以下のビーズ(媒体)を用いるビーズミルなどの、媒体攪拌型粉砕機が好ましく用いられる。本発明において、媒体となるビーズ材質は特に制限されず、ジルコニア、アルミナ、シリカ、窒化ケイ素などが好ましく用いられ、なかでもビーズの摩耗が少なく、ビーズ由来の不純物の発生が抑制できる観点から、ジルコニアが好ましい。
<Step (3)>
Step (3) is a step of obtaining a dispersion by wet-grinding the liquid that is the raw material prepared in step (2). Equipment used for wet grinding includes media mills such as ball mills, bead mills, sand grinders, pressure dispersers such as high-pressure homogenizers, ultra-high pressure homogenizers, ultrasonic dispersers, and thin-film distributed dispersers. However, a medium stirring type pulverizer such as a bead mill using beads (medium) having an average particle diameter of 100 μm or less is preferably used. In the present invention, the bead material used as a medium is not particularly limited, and zirconia, alumina, silica, silicon nitride, and the like are preferably used. Among them, zirconia is preferable from the viewpoint of reducing bead wear and suppressing the generation of beads-derived impurities. Is preferred.

≪分散液の性状≫
このようにして得られる本発明の分散液は、高い分散性を有し、かつ透明性に優れている。よって、本発明の分散液は、該分散液及びバインダー樹脂を含む樹脂組成物の硬化物を、透明性に優れた光学特性及び高い機械的強度を有するものとすることができる。
≪Dispersion properties≫
The dispersion of the present invention thus obtained has high dispersibility and is excellent in transparency. Therefore, the dispersion liquid of the present invention can make the cured product of the resin composition containing the dispersion liquid and the binder resin have optical properties excellent in transparency and high mechanical strength.

本発明の無機ナノ粒子分散液において、無機ナノ粒子のレーザー回折散乱式粒度分布測定法による体積累積粒径D10(体積累積10%における粒径)は、通常5〜100nm、好ましくは5〜75nm、より好ましくは10〜65nmであり、D50(体積累積50%における粒径)は、通常10〜150nm、好ましくは20〜125nm、より好ましくは25〜120nmであり、D90(体積累積90%における粒径)は、通常40〜250nmであり、好ましくは50〜225nmであり、より好ましくは60〜220nmである。本発明の無機ナノ粒子分散液は、このような体積累積粒径を有するので、樹脂組成物として塗膜を形成した際に高い透明性が得られ、かつ該無機ナノ粒子が粒状の異物として観察されないため高品質の硬化物(フィルムなど)が得られるという性状を有するものである。 In the inorganic nanoparticle dispersion liquid of the present invention, the volume cumulative particle diameter D 10 (particle diameter at 10% volume accumulation) of the inorganic nanoparticles measured by laser diffraction scattering type particle size distribution is usually 5 to 100 nm, preferably 5 to 75 nm. More preferably 10 to 65 nm, and D 50 (particle size at 50% volume accumulation) is usually 10 to 150 nm, preferably 20 to 125 nm, more preferably 25 to 120 nm, and D 90 (volume accumulation 90%). The particle size is usually 40 to 250 nm, preferably 50 to 225 nm, and more preferably 60 to 220 nm. Since the inorganic nanoparticle dispersion liquid of the present invention has such a volume cumulative particle size, high transparency is obtained when a coating film is formed as a resin composition, and the inorganic nanoparticles are observed as granular foreign matters. Therefore, it has the property that a high-quality cured product (film or the like) can be obtained.

また、本発明の無機ナノ粒子分散液は、上記工程(2)の調合後の粘度が通常300(mPa・s)未満であり、好ましくは200(mPa・s)未満であり、より好ましくは150(mPa・s)未満である。また、上記工程(3)の分散後の粘度は通常30(mPa・s)未満であり、好ましくは25(mPa・s)未満であり、より好ましくは20(mPa・s)未満である。このように、本発明の無機ナノ粒子分散液の粘度は、その原料を調合する際に粘度上昇が抑えられるため、容易に分散液を製造することが可能であり、調合後だけでなく分散後においても粘度が低いため、チキソ性に起因する塗工不良が生じにくく、取扱いも容易である。また、本発明の無機ナノ粒子分散液は、分散性が良好であるため、保存安定性にも優れたものとなる。   In addition, the inorganic nanoparticle dispersion of the present invention has a viscosity after the preparation in the above step (2) of usually less than 300 (mPa · s), preferably less than 200 (mPa · s), more preferably 150. It is less than (mPa · s). Moreover, the viscosity after dispersion | distribution of the said process (3) is usually less than 30 (mPa * s), Preferably it is less than 25 (mPa * s), More preferably, it is less than 20 (mPa * s). Thus, the viscosity of the inorganic nanoparticle dispersion liquid of the present invention can be easily manufactured because the viscosity increase is suppressed when the raw material is prepared, and not only after the preparation but also after the dispersion. Since the viscosity is low, coating failure due to thixotropy hardly occurs and handling is easy. Moreover, since the inorganic nanoparticle dispersion liquid of the present invention has good dispersibility, it also has excellent storage stability.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、この例によってなんら限定されるものではない。
(分散液の評価)
1.粘度の測定
実施例及び比較例における、原料の調合後、及び分散後の分散液について、せん断速度10(1/s)のときのせん断粘度をレオメータ(「MCR301(型番)」,Anton Paar社製)を用いて測定し、以下の基準で評価した。
○ :調合後の粘度が300(mPa・s)未満であり、分散後の粘度が30(mPa・s)未満であった
△ :調合後の粘度が300(mPa・s)未満であり、分散後の粘度が30(mPa・s)以上100(mPa・s)未満であった
× :調合後の粘度が300(mPa・s)以上、分散後の粘度が100(mPa・s)以上、及び測定不能のいずれかであり、ゲル化あるいは粉末化してしまった
2.粒度分布の測定
実施例及び比較例で得られた分散液について、レーザー回折散乱式粒度分布測定法による体積累積粒径D10、D50、及びD90(各々体積累積10%、50%及び90%における粒径)を、粒度分布測定装置(「MicrotracUPA(型番)」,日機装株式会社製)を用いて測定し、以下の基準で評価した。
○ :粒度分布においてD50が150nm未満であった
△ :粒度分布においてD50が150nm以上450nm未満であった
× :粒度分布においてD50が450nm以上であった
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by this example.
(Evaluation of dispersion)
1. Measurement of Viscosity In the Examples and Comparative Examples, the shear viscosity at a shear rate of 10 (1 / s) was measured for the dispersion after mixing the raw materials and after the dispersion, with a rheometer (“MCR301 (model number)”, manufactured by Anton Paar). ) And evaluated according to the following criteria.
○: The viscosity after blending was less than 300 (mPa · s), and the viscosity after dispersion was less than 30 (mPa · s). Δ: The viscosity after blending was less than 300 (mPa · s) and dispersed. The after viscosity was 30 (mPa · s) or more and less than 100 (mPa · s) ×: The viscosity after preparation was 300 (mPa · s) or more, the viscosity after dispersion was 100 (mPa · s) or more, and 1. Either it is not measurable and gelled or powdered. Measurement of particle size distribution For the dispersions obtained in Examples and Comparative Examples, volume cumulative particle diameters D 10 , D 50 , and D 90 (10%, 50%, and 90%, respectively) by laser diffraction scattering particle size distribution measurement method. % Particle size) was measured using a particle size distribution measuring device (“MicrotracUPA (model number)”, manufactured by Nikkiso Co., Ltd.) and evaluated according to the following criteria.
○: D 50 in particle size distribution was less than 150 nm Δ: D 50 in particle size distribution was not less than 150 nm and less than 450 nm ×: D 50 in particle size distribution was not less than 450 nm

製造例1(シランカップリング剤の加水分解)
シランカップリング剤として、3−メタクリロイルオキシプロピルトリメトキシシラン(「KBM−503(商品名)」,信越化学工業株式会社製)を準備した。該シランカップリング剤70質量部、純水14.5質量部及びアルコール14.5質量部を、ステンレス製容器に入れ、攪拌しながら0.01モル/リットル塩酸1質量部を添加し、10℃のクリーンルーム内で一時間撹拌を続け、シランカップリング剤の加水分解物(分子量:248.4,最小被覆面積As:314m2/g)を得た。
Production Example 1 (Hydrolysis of Silane Coupling Agent)
As a silane coupling agent, 3-methacryloyloxypropyltrimethoxysilane (“KBM-503 (trade name)”, manufactured by Shin-Etsu Chemical Co., Ltd.) was prepared. 70 parts by mass of the silane coupling agent, 14.5 parts by mass of pure water and 14.5 parts by mass of alcohol are put into a stainless steel container, and 1 part by mass of 0.01 mol / liter hydrochloric acid is added while stirring, Stirring was continued in a clean room for 1 hour to obtain a hydrolyzate of silane coupling agent (molecular weight: 248.4, minimum covering area As: 314 m 2 / g).

実施例1
酸化ケイ素(シリカ)ナノ粒子(「E−200A(商品名)」,東ソー・シリカ株式会社製,凝集粒子径:3μm,平均一次粒子径:20nm(透過型電子顕微鏡(TEM)により測定した観察像から統計処理により算出した値である。),比表面積:200m2/g)30質量部、上記製造例1で得られたシランカップリング剤の加水分解物6質量部、リン酸基をアミノ基で中和した塩構造を有する分散剤1(「Disperbyk−106(商品名)」,ビックケミー・ジャパン株式会社製,アミン価:74mgKOH/g,酸価:132mgKOH/g)1.5質量部、及び分散媒としてメチルイソブチルケトンを62.5質量部用意して、これらを攪拌して調合した。調合して得られた液をビーズ径が100μmのジルコニアビーズを攪拌容器に入れたビーズミル装置を用いて粉砕し、無機ナノ粒子分散液を得た。該分散液は無色透明を呈していた。調合直後の液、及び分散液の粘度を上記の方法で測定し、また分散液中の無機ナノ粒子の粒度分布を上記の方法で測定し、評価した。その測定値、評価結果を第1表に示す。
Example 1
Silicon oxide (silica) nanoparticles (“E-200A (trade name)”, manufactured by Tosoh Silica Co., Ltd., agglomerated particle size: 3 μm, average primary particle size: 20 nm (observation image measured by transmission electron microscope (TEM)) ), Specific surface area: 200 m 2 / g) 30 parts by mass, 6 parts by mass of the hydrolyzate of the silane coupling agent obtained in Production Example 1, and the phosphate group as an amino group Dispersant 1 having a salt structure neutralized with 1 (“Disperbyk-106 (trade name)”, manufactured by Big Chemie Japan Co., Ltd., amine value: 74 mgKOH / g, acid value: 132 mgKOH / g) 1.5 parts by mass, and 62.5 parts by mass of methyl isobutyl ketone was prepared as a dispersion medium, and these were mixed by stirring. The liquid obtained by blending was pulverized using a bead mill apparatus in which zirconia beads having a bead diameter of 100 μm were placed in a stirring vessel to obtain an inorganic nanoparticle dispersion. The dispersion was colorless and transparent. The viscosity of the liquid immediately after the preparation and the dispersion were measured by the above method, and the particle size distribution of the inorganic nanoparticles in the dispersion was measured and evaluated by the above method. The measured values and evaluation results are shown in Table 1.

実施例2
実施例1において、分散剤1を、リン酸基をアミノ基で中和した塩構造を有する分散剤2(「Disperbyk−180(商品名)」,ビックケミー・ジャパン株式会社製,アミン価:94mgKOH/g,酸価:94mgKOH/g)を5質量部加えた以外は実施例1と同様にして分散液を得た。実施例1と同様にして粘度及び粒度分布を測定した。その測定値、及び評価結果を第1表に示す。
Example 2
In Example 1, Dispersant 1 was converted to Dispersant 2 (“Disperbyk-180 (trade name)”, manufactured by Big Chemie Japan Co., Ltd., amine value: 94 mgKOH / g, acid value: 94 mg KOH / g) was added in the same manner as in Example 1 except that 5 parts by mass was added. Viscosity and particle size distribution were measured in the same manner as in Example 1. The measured values and evaluation results are shown in Table 1.

実施例3
実施例1において、酸化ケイ素(シリカ)ナノ粒子を酸化アルミニウム(アルミナ)ナノ粒子(「AKP−G008(商品名)」,住友化学株式会社製,α−アルミナ,凝集粒子径:10μm,平均一次粒子径:20nm(透過型電子顕微鏡(TEM)により測定した観察像から統計処理により算出した値である。),比表面積:80m2/g)とした以外は実施例1と同様にして分散液を得た。実施例1と同様にして粘度及び粒度分布を測定した。その測定値、及び評価結果を第1表に示す。
Example 3
In Example 1, silicon oxide (silica) nanoparticles were changed to aluminum oxide (alumina) nanoparticles (“AKP-G008 (trade name)”, manufactured by Sumitomo Chemical Co., Ltd., α-alumina, aggregated particle size: 10 μm, average primary particles. The dispersion was prepared in the same manner as in Example 1 except that the diameter was 20 nm (the value calculated by statistical processing from an observation image measured with a transmission electron microscope (TEM)) and the specific surface area was 80 m 2 / g). Obtained. Viscosity and particle size distribution were measured in the same manner as in Example 1. The measured values and evaluation results are shown in Table 1.

実施例4
実施例1において、酸化ケイ素(シリカ)ナノ粒子を酸化ジルコニウム(ジルコニア)ナノ粒子(平均一次粒子径:11nm(透過型電子顕微鏡(TEM)により測定した観察像から統計処理により算出した値である。),比表面積:90m2/g)とした以外は実施例1と同様にして分散液を得た。実施例1と同様にして粘度及び粒度分布を測定した。その測定値、及び評価結果を第1表に示す。
Example 4
In Example 1, the silicon oxide (silica) nanoparticle was a zirconium oxide (zirconia) nanoparticle (average primary particle size: 11 nm (value calculated by statistical processing from an observation image measured with a transmission electron microscope (TEM)). ), Specific surface area: 90 m 2 / g), a dispersion was obtained in the same manner as in Example 1. Viscosity and particle size distribution were measured in the same manner as in Example 1. The measured values and evaluation results are shown in Table 1.

比較例1
実施例1において、加水分解する前のシランカップリング剤を使用し、分散媒の使用量を64質量部とした以外は、実施例1と同様にしたところ、調合後の粘度が高すぎて、分散液を得ることができなかった。調合後の粘度については、実施例1と同様にして測定した。その測定値、評価結果を第1表に示す。
Comparative Example 1
In Example 1, except that the silane coupling agent before hydrolysis was used and the amount of the dispersion medium was 64 parts by mass, the same as in Example 1, the viscosity after preparation was too high, A dispersion could not be obtained. The viscosity after blending was measured in the same manner as in Example 1. The measured values and evaluation results are shown in Table 1.

比較例2
実施例1において、分散剤1を使用せず、分散媒の使用量を64質量部とした以外は、実施例1と同様にしたところ、調合後の粘度が高すぎて、分散液を得ることができなかった。調合後の粘度については、実施例1と同様にして測定した。その測定値、評価結果を第1表に示す。
Comparative Example 2
In Example 1, except that the dispersant 1 was not used and the amount of the dispersion medium used was 64 parts by mass, the same as in Example 1, the viscosity after preparation was too high to obtain a dispersion. I could not. The viscosity after blending was measured in the same manner as in Example 1. The measured values and evaluation results are shown in Table 1.

比較例3
実施例1において、シランカップリング剤の加水分解物を使用せず、分散媒の使用量を68.5質量部とした以外は、実施例1と同様にしたところ、調合後の粘度が高すぎて、分散液を得ることができなかった。調合後の粘度については、実施例1と同様にして測定した。その測定値、評価結果を第1表に示す。
Comparative Example 3
In Example 1, except that the hydrolyzate of the silane coupling agent was not used and the amount of the dispersion medium was changed to 68.5 parts by mass, the same as in Example 1, the viscosity after preparation was too high. Thus, a dispersion could not be obtained. The viscosity after blending was measured in the same manner as in Example 1. The measured values and evaluation results are shown in Table 1.

比較例4
実施例4において、シランカップリング剤の加水分解物を使用せず、分散媒の使用量を64質量部とした以外は、実施例4と同様にして分散液を得た。実施例4と同様にして粘度及び粒度分布を測定した。その測定値、評価結果を第1表に示す。
Comparative Example 4
In Example 4, a dispersion was obtained in the same manner as in Example 4 except that the hydrolyzate of the silane coupling agent was not used and the amount of the dispersion medium used was 64 parts by mass. Viscosity and particle size distribution were measured in the same manner as in Example 4. The measured values and evaluation results are shown in Table 1.

比較例5
実施例4において、分散剤1を使用せず、分散媒の使用量を64質量部とした以外は、実施例4と同様にして分散液を得た。実施例4と同様にして粘度及び粒度分布を測定した。その測定値、評価結果を第1表に示す。
Comparative Example 5
A dispersion liquid was obtained in the same manner as in Example 4 except that the dispersant 1 was not used and the amount of the dispersion medium used was 64 parts by mass. Viscosity and particle size distribution were measured in the same manner as in Example 4. The measured values and evaluation results are shown in Table 1.

比較例6
実施例4において、シランカップリング剤の加水分解物を使用せず、分散媒の使用量を68.5質量部とした以外は、実施例4と同様にしたところ、調合後の粘度が高すぎて、分散液を得ることができなかった。調合後の粘度については、実施例4と同様にして測定した。その測定値、評価結果を第1表に示す。
Comparative Example 6
In Example 4, when the hydrolyzate of the silane coupling agent was not used and the amount of the dispersion medium used was 68.5 parts by mass, the same as in Example 4, the viscosity after preparation was too high. Thus, a dispersion could not be obtained. The viscosity after blending was measured in the same manner as in Example 4. The measured values and evaluation results are shown in Table 1.

Figure 2012214339
*1,シランカップリング剤含有量は、飽和添加量(g)に対する割合(%)である。
Figure 2012214339
* 1, The silane coupling agent content is a ratio (%) to the saturated addition amount (g).

実施例の結果から、本発明の分散液は、調製しやすく、高い分散性を有し、また粒径が小さく、透明性に優れており、これを含む樹脂組成物の硬化物は、透明性に優れた光学特性及び高い機械的強度を有することが確認された。一方、比較例1〜3では、調合後の粘度が極めて高い、または極めて高く粘度が測定できず、分散液を調製することができなかった。また、比較例4〜6では、調合後の粘度は2(mPa・s)と低くて良好だったものの、分散後の粘度が極めて高い、あるいは極めて高く粘度が測定できなかった。   From the results of the examples, the dispersion of the present invention is easy to prepare, has high dispersibility, has a small particle size, and is excellent in transparency. It was confirmed to have excellent optical properties and high mechanical strength. On the other hand, in Comparative Examples 1 to 3, the viscosity after preparation was extremely high or extremely high, and the viscosity could not be measured, so that a dispersion could not be prepared. In Comparative Examples 4 to 6, although the viscosity after preparation was as low as 2 (mPa · s) and good, the viscosity after dispersion was extremely high or extremely high, and the viscosity could not be measured.

本発明の無機ナノ粒子分散液は、無機ナノ粒子の分散性が高く、かつ透明性に優れており、該分散液及びバインダー樹脂を含む樹脂組成物の硬化物に、透明性に優れた光学特性及び高い機械的強度を付与することができる。また、本発明の分散液は、その原料を調合する際に粘度上昇が抑えられるため、容易に分散液を製造することができる。したがって、電気・電子材料や光学材料のほか、ハードコート材、構造部材、自動車部品、その他透明性を要する材料に好適に用いられる。   The inorganic nanoparticle dispersion of the present invention has high dispersibility of inorganic nanoparticles and excellent transparency, and the cured resin composition containing the dispersion and binder resin has excellent optical properties. And high mechanical strength can be imparted. Moreover, since the viscosity increase is suppressed when the dispersion liquid of this invention mix | blends the raw material, a dispersion liquid can be manufactured easily. Therefore, in addition to electric / electronic materials and optical materials, they are suitably used for hard coat materials, structural members, automobile parts, and other materials that require transparency.

Claims (7)

平均一次粒子径が1〜50nmの無機ナノ粒子、シランカップリング剤の加水分解物、酸性基を塩基性基で中和した塩構造を有する分散剤、及び分散媒を含む無機ナノ粒子分散液。   An inorganic nanoparticle dispersion comprising an inorganic nanoparticle having an average primary particle diameter of 1 to 50 nm, a hydrolyzate of a silane coupling agent, a dispersant having a salt structure in which an acidic group is neutralized with a basic group, and a dispersion medium. 酸性基が、リン酸基又はホスホン酸基である請求項1に記載の無機ナノ粒子分散液。   The inorganic nanoparticle dispersion liquid according to claim 1, wherein the acidic group is a phosphoric acid group or a phosphonic acid group. 塩基性基が、アミノ基又はアンモニウム塩基である請求項1又は2に記載の無機ナノ粒子分散液。   The inorganic nanoparticle dispersion liquid according to claim 1 or 2, wherein the basic group is an amino group or an ammonium base. 分散剤のアミン価が10〜190(mgKOH/g)であり、かつ酸価が15〜150(mgKOH/g)である請求項1〜3のいずれかに記載の無機ナノ粒子分散液。   The inorganic nanoparticle dispersion liquid according to any one of claims 1 to 3, wherein the dispersant has an amine value of 10 to 190 (mgKOH / g) and an acid value of 15 to 150 (mgKOH / g). シランカップリング剤の加水分解物の含有量が、下記式(1)で示される飽和添加量(g)の5〜100%である請求項1〜4のいずれかに記載の無機ナノ粒子分散液。
飽和添加量(g)=Wn×Snm/As (1)
Wn:無機ナノ粒子の質量(g)
Snm:無機ナノ粒子の比表面積(m2/g)
As:シランカップリング剤の最小被覆面積(m2/g)
As=(6.02×1023×13×10-20)/シランカップリング剤の分子量
Content of the hydrolyzate of a silane coupling agent is 5 to 100% of the saturated addition amount (g) shown by following formula (1), The inorganic nanoparticle dispersion liquid in any one of Claims 1-4 .
Saturation addition amount (g) = Wn × Sn m / As (1)
Wn: mass of inorganic nanoparticles (g)
Sn m : Specific surface area of inorganic nanoparticles (m 2 / g)
As: Minimum covering area of silane coupling agent (m 2 / g)
As = (6.02 × 10 23 × 13 × 10 −20 ) / molecular weight of silane coupling agent
シランカップリング剤の加水分解物が、(メタ)アクリロイルオキシ基及び/又はエポキシ基を有する請求項1〜5のいずれかに記載の無機ナノ粒子分散液。   The inorganic nanoparticle dispersion liquid according to any one of claims 1 to 5, wherein the hydrolyzate of the silane coupling agent has a (meth) acryloyloxy group and / or an epoxy group. 無機ナノ粒子が、酸化ケイ素ナノ粒子、酸化ジルコニウムナノ粒子、又は酸化アルミニウムナノ粒子である請求項1〜6のいずれかに記載の無機ナノ粒子分散液。   The inorganic nanoparticle dispersion liquid according to any one of claims 1 to 6, wherein the inorganic nanoparticles are silicon oxide nanoparticles, zirconium oxide nanoparticles, or aluminum oxide nanoparticles.
JP2011081131A 2011-03-31 2011-03-31 Inorganic nanoparticle dispersion Active JP5838036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011081131A JP5838036B2 (en) 2011-03-31 2011-03-31 Inorganic nanoparticle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011081131A JP5838036B2 (en) 2011-03-31 2011-03-31 Inorganic nanoparticle dispersion

Publications (2)

Publication Number Publication Date
JP2012214339A true JP2012214339A (en) 2012-11-08
JP5838036B2 JP5838036B2 (en) 2015-12-24

Family

ID=47267565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081131A Active JP5838036B2 (en) 2011-03-31 2011-03-31 Inorganic nanoparticle dispersion

Country Status (1)

Country Link
JP (1) JP5838036B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541486A (en) * 2011-06-02 2013-11-14 ベイジン ユニバーシティ オブ ケミカル テクノロジー Preparation method of silane coupling agent modified white carbon black
JP2014196216A (en) * 2013-03-29 2014-10-16 日揮触媒化成株式会社 Modified metal oxide particulate powder, modified metal oxide particulate dispersion and method for producing the same
JP2015036357A (en) * 2013-08-13 2015-02-23 電気化学工業株式会社 Surface-treated silica powder, slurry composition, and resin composition using the same
JP2015091985A (en) * 2013-09-30 2015-05-14 住友大阪セメント株式会社 Inorganic particle dispersion, inorganic particle-containing composition, coating, plastic substrate with coating, and display device
JP2015189637A (en) * 2014-03-28 2015-11-02 電気化学工業株式会社 Surface-modified silica powder, slurry composition and resin composition using the slurry composition
JP2017522395A (en) * 2014-05-30 2017-08-10 エルジー・ケム・リミテッド Silica sol composition excellent in dispersibility for cyanate resin and method for producing the same
WO2020203459A1 (en) * 2019-03-29 2020-10-08 住友大阪セメント株式会社 Surface modification method for inorganic particles, method for producing dispersion liquid, and dispersion liquid
EP3664169A4 (en) * 2017-08-04 2021-05-05 Sumitomo Osaka Cement Co., Ltd. Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, and method for producing light-emitting device
KR20220031269A (en) * 2020-09-04 2022-03-11 주식회사 케이씨텍 Titania dispersion composition and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102136939B1 (en) * 2018-12-26 2020-07-22 주식회사 케이씨텍 Titania-monomer dispersions and method for preparing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122501A (en) * 1994-10-20 1996-05-17 Nissan Chem Ind Ltd Low refractive index antireflection film
US20040034123A1 (en) * 2002-08-14 2004-02-19 Hoefler Joseph Michael Aqueous silica dispersion
JP2006001775A (en) * 2004-06-16 2006-01-05 Toho Titanium Co Ltd Titanium oxide dispersion and its producing method
JP2006083033A (en) * 2004-09-17 2006-03-30 Tayca Corp Rutile-type titanium oxide sol
JP2008050253A (en) * 2006-06-22 2008-03-06 Nissan Chem Ind Ltd Conductive tin oxide sol and process for producing the same
JP2009148681A (en) * 2007-12-19 2009-07-09 Taiyo Ink Mfg Ltd Slurry composition
JP2010090002A (en) * 2008-10-09 2010-04-22 Tayca Corp Production method of monoclinic particulate bismuth oxide, ultraviolet ray shielding dispersion and production method of the same, and ultraviolet ray shielding coating composition
JP2010143806A (en) * 2008-12-19 2010-07-01 Tokuyama Corp Surface-treated silica-based particle and process of manufacturing same
JP2010189506A (en) * 2009-02-17 2010-09-02 Dic Corp Resin composition containing inorganic oxide fine particle and cured product obtained from the composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122501A (en) * 1994-10-20 1996-05-17 Nissan Chem Ind Ltd Low refractive index antireflection film
US20040034123A1 (en) * 2002-08-14 2004-02-19 Hoefler Joseph Michael Aqueous silica dispersion
JP2006001775A (en) * 2004-06-16 2006-01-05 Toho Titanium Co Ltd Titanium oxide dispersion and its producing method
JP2006083033A (en) * 2004-09-17 2006-03-30 Tayca Corp Rutile-type titanium oxide sol
JP2008050253A (en) * 2006-06-22 2008-03-06 Nissan Chem Ind Ltd Conductive tin oxide sol and process for producing the same
JP2009148681A (en) * 2007-12-19 2009-07-09 Taiyo Ink Mfg Ltd Slurry composition
JP2010090002A (en) * 2008-10-09 2010-04-22 Tayca Corp Production method of monoclinic particulate bismuth oxide, ultraviolet ray shielding dispersion and production method of the same, and ultraviolet ray shielding coating composition
JP2010143806A (en) * 2008-12-19 2010-07-01 Tokuyama Corp Surface-treated silica-based particle and process of manufacturing same
JP2010189506A (en) * 2009-02-17 2010-09-02 Dic Corp Resin composition containing inorganic oxide fine particle and cured product obtained from the composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541486A (en) * 2011-06-02 2013-11-14 ベイジン ユニバーシティ オブ ケミカル テクノロジー Preparation method of silane coupling agent modified white carbon black
JP2014196216A (en) * 2013-03-29 2014-10-16 日揮触媒化成株式会社 Modified metal oxide particulate powder, modified metal oxide particulate dispersion and method for producing the same
JP2015036357A (en) * 2013-08-13 2015-02-23 電気化学工業株式会社 Surface-treated silica powder, slurry composition, and resin composition using the same
JP2015091985A (en) * 2013-09-30 2015-05-14 住友大阪セメント株式会社 Inorganic particle dispersion, inorganic particle-containing composition, coating, plastic substrate with coating, and display device
CN105579123A (en) * 2013-09-30 2016-05-11 住友大阪水泥股份有限公司 Inorganic particle dispersion liquid, inorganic particle-containing composition, coating film, plastic base with coating film, and display device
JP2015189637A (en) * 2014-03-28 2015-11-02 電気化学工業株式会社 Surface-modified silica powder, slurry composition and resin composition using the slurry composition
JP2017522395A (en) * 2014-05-30 2017-08-10 エルジー・ケム・リミテッド Silica sol composition excellent in dispersibility for cyanate resin and method for producing the same
US10329438B2 (en) 2014-05-30 2019-06-25 Lg Chem, Ltd. Silica sol composition with excellent dispersibility to cyanate resin, and preparation method therefor
EP3664169A4 (en) * 2017-08-04 2021-05-05 Sumitomo Osaka Cement Co., Ltd. Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, and method for producing light-emitting device
US11359072B2 (en) 2017-08-04 2022-06-14 Sumitomo Osaka Cement Co., Ltd. Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, and method for producing light-emitting device
WO2020203459A1 (en) * 2019-03-29 2020-10-08 住友大阪セメント株式会社 Surface modification method for inorganic particles, method for producing dispersion liquid, and dispersion liquid
JP7414063B2 (en) 2019-03-29 2024-01-16 住友大阪セメント株式会社 Method for surface modification of inorganic particles, method for producing dispersion liquid, and dispersion liquid
KR20220031269A (en) * 2020-09-04 2022-03-11 주식회사 케이씨텍 Titania dispersion composition and preparation method thereof
KR102397564B1 (en) * 2020-09-04 2022-05-16 주식회사 케이씨텍 Titania dispersion composition and preparation method thereof

Also Published As

Publication number Publication date
JP5838036B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5838036B2 (en) Inorganic nanoparticle dispersion
US9096438B2 (en) Nano-diamond dispersion solution and method for preparing same
JP2011173779A (en) Silica particles, process for production of same, and resin composition containing same
JP4801617B2 (en) Conductive zinc oxide particles and method for producing the same
JP6060973B2 (en) Barium sulfate composite particles, resin composition containing the same, and method for producing the same
JP2016060682A (en) Spherical ferrite powder, resin composition containing spherical ferrite powder and molded body using resin composition
WO2011013169A1 (en) Oil content adsorbent material and method for producing oil content adsorbent material
JP5834450B2 (en) Resin composition and cured product containing inorganic nanoparticle dispersion
JP2010195671A (en) Carbon nanoparticle-dispersed aqueous solution having high dispersion stability, method for producing the same, and carbon nanoparticle-dispersed film material
JP5862848B2 (en) Production method of functional inorganic particle powder
JP5517268B2 (en) Particulate metal oxides and their applications
JP6059577B2 (en) Magnesium hydroxide particles and resin composition containing the same
JP5887706B2 (en) Alumina nanoparticle dispersion and resin composition containing the same
JPWO2003055800A1 (en) Inorganic oxide
CN101302358B (en) Waterless nano-znic antimonite sol and preparation thereof
TW201908388A (en) Coated inorganic particles and a method for preparing the same
JPWO2019146783A1 (en) Titanium dioxide aqueous dispersion and its manufacturing method
JP6322474B2 (en) Hydrophobic silica powder, rubber molding composition containing the same, and method for producing the same
TW201139535A (en) Modified cerium(IV) oxide colloidal particles and production method thereof
JP5944714B2 (en) Magnesium hydroxide particles and resin composition containing the same
JP6195524B2 (en) Hydrophobic silica powder and method for producing the same
JP2005305367A (en) Particle dispersion and its application
JP2016534212A (en) Complex pigment
JP5877745B2 (en) Composite metal hydroxide particles and resin composition containing the same
KR102019698B1 (en) Reformed zirconia fine particle, dispersion sol of reformed zirconia fine particle and its preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5838036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250